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Abstract 

A procedure is proposed for determining the measure of “nearness” of two words in a 

semantic network dictionary. Applications of this procedure are discussed in detail for 

lexical, syntactical, and referential disambiguation in natural language analysis, as well 

as in machine translation. A simplified version of the same procedure is used for 

automatic translation of the semantic network itself into other languages. This simplifies 

creation and maintenance of semantic network dictionaries for different languages, and 

thus makes the described methods available for processing of texts in languages other 

than English. 
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1. Introduction1 

This article describes an ongoing research being conducted in the Natural Language 

Laboratory, CIC, IPN, Mexico D.F. 

1.1. The curse of ambiguity 

The most unpleasant problem that nearly any algorithm dealing with the natural 

language faces is the curse of ambiguity. Be it just one word, or a phrase, or a text, there 

always are several possible interpretations of what it means or what structure it has. We 

                                                   

1 This article is an improved and significantly enlarged version of our paper [Gelbukh, 1997]. 



consider ambiguity resolution at all the levels of the language the most important 

problem of natural language processing. In much larger number of cases than it seems at 

the first glance, to resolve the ambiguity complicated reasoning or deep knowledge is 

necessary, often of semantic, pragmatic, or extralinguistic nature. 

There is a large number of researches on ambiguity resolution that employ marked up 

text corpora, dictionaries [Alpha, 1995], thesauri [Yarowsky, 1992], semantic networks 

[Sussna, 1993; Voorhees, 1993], or a combination of such lexical information sources 

[Yarowsky, 1995]. However the problem is far from being completely solved up to the 

date. 

Ideally, ambiguity resolution might be just a side effect of some kind of “understanding,” 

by which we would mean construction of some detailed model of the whole situation 

described in the text and embedding it in the world model based on the hand-coded 

knowledge, experience, or other texts read. The “true” linguistic knowledge, mostly 

lexical, ideally should be stored in vast dictionaries, such as combinatory dictionaries 

developed in frame of the Meaning ⇔ Text theory [Mel’cuk, 1974; Steel, 1990], or 
programmed in very sophisticated procedures, like in the Word Expert Parser model 

[Berleant and Daniel, 1995]. 

However compilation of such resources is extremely labor-consuming and is hardly 

affordable in the nearest decades. On the other hand, such “true understanding” is too 

demanding computationally to be considered now; what is more, it seems that such a way 

is too computationally demanding even for human brain. 

A less computationally demanding way is to use some pre-constructed pieces of “typical” 

situations and first of all to check the ambiguous constructions against them, addressing 

to a deeper analysis only when a serious contradiction arises in the understanding 

process. Such pre-constructed pieces of information can be of different nature, such as 

syntagmatic, semantic, pragmatic, etc. 

For example, syntagmatic patterns could be represented by frequently used or 

“meaningful” word combinations, such as take a bus, take a pen, as opposed to *take 

weather [Bolshakov et al., 1995a]. Such a simplified set of syntagmatic patterns can be 

used (and probably is used by a human) in syntactic analysis instead of expensive “true 

understanding.” 

Similarly, instead of a computationally demanding reasoning, a set of simplified “typical” 

semantic patterns can be used for disambiguation. Such semantic patters could describe 

some atomic pieces of typical situations involving the words of the text. One of the form of 

representation of such knowledge is a semantic network, a set of semantic relationships 

between words in their specific senses. 



1.2. The use of a semantic network for ambiguity resolution 

As we show in this article, a semantic network dictionary can be used to measure the 

degree of “semantic closeness” in a typical context between two given words. This 

measure of closeness can be used for resolving ambiguities of different types as well as for 

related tasks such as automatic translation of texts or even dictionaries. 

For example, to resolve syntactic ambiguity, a variant of parsing can be chosen in which 

syntactically related words are more closely related semantically. To resolve lexical 

ambiguity between homonyms or word senses in a context, the lexical variant can be 

chosen that is most closely related to the global or local topic of the document, or to the 

nearest words in the context. Similarly, to resolve referential ambiguity, the closest 

candidate is chosen to the words in the local context. In text translation, if the 

homonyms are not separated in the bilingual dictionary used for translation, the 

procedure of lexical disambiguation can be applied in the target language at the stage of 

text generation. Finally, in translation of dictionaries including the semantic network 

itself, lexical disambiguation can be performed on the reverse translation of the results 

back to the source language. 

2. Distance measurements in a semantic network 

Here we discuss the basic notions of measuring the semantic distances between two given 

words. The algorithms are given in the last section of the article. 

2.1. The structure of a semantic network dictionary 

In our research we use the FACTOTUM® SemNet semantic network dictionary 

[FACTOTUM, 1997] developed by Dr. P.Cassidy of MICRA, Inc. It is an English 

dictionary, though below we describe how to use it for other languages, currently our 

target language being Spanish2. 

Logically FACTOTUM® SemNet dictionary is a set of so called relationships between 

pairs of concepts (in rare cases between sets, here we omit this for simplicity). 

A concept is usually a word, e.g., book, or a word combination, e.g., address book, 

referring to a specific thing or idea. In most cases textual words have several meanings, 

in this case they are marked with different numbers, e.g., bill1 (banknote), versus bill2 

(check), bill3 (declaration), bill4 (pike), or bill5 (ax). Very often such word senses, or 

homonyms, have different translations to other languages: in Spanish bill1 is billete, bill2 

                                                   

2 Other semantic networks have been described, most notably the WordNet [Miller, 1990], which has been 

widely investigated for natural language processing because of its availability; a Spanish version is to be 

available soon in frame of European WordNet project. The FACTOTUM®  semantic network, however, has 

a larger number of types and a more flexible representation of semantic relationships, making it more 

suitable for natural language understanding applications. 



is cuenta, bill3 is declaración, bill4 is pico, bill5 is hacha. All such senses of any word, even 

closely related ones, have different numbers in the dictionary, are located in different 

positions, and have different sets of relationships to other words; if necessary, they can be 

connected with each other explicitly by some relationships. Thus one textual word can 

represent many different concepts. 

Similarly, one concept can be represented by several words. In this case they are 

considered synonymous in these particular meanings, and are listed together to represent 

and disambiguate the concept, e.g., bill1, note, banknote. Thus generally by a concept we 

always mean a group of synonymous word senses. However for convenience we name the 

concepts with just one of the words of the group. 

Relationships are used to connect a pair of, or rarely more, concepts. They are labeled 

with different type names, such as IS_A, USES, CAUSES, etc. A relationship can be also 

viewed as a simplest statement expressing a “typical” fact, e.g., computer IS_A 

equipment, explosion CAUSES damage. There are some attributes, or properties, of 

individual relationships, like MAYBE, USUALLY, RARELY, etc., e.g., seeing MAYBE 

USES telescope. For human convenience there are different ways to express the same fact 

in FACTOTUM ® SemNet dictionary, e.g., telescope IS_USED_FOR seeing, though all 

such expressions can be formally converted to a common internal representation. A 

fragment of such a network is shown on the Fig. 1. 
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Fig. 1. Semantic network. 

 

From this example, we can see that a telescope is a tool to see, an animal can have an 

object, etc. 

In the human-editable form of the dictionary the most extensive set of relationships, 

namely most of the IS_A relationships, are represented implicitly by just placing the 

concepts in hierarchical order in the dictionary. This does not imply that a concept may 

not be a subtype of several concepts, for example, a girl IS_A child and IS_A female, in 

this case one of the relationships is indicated in the dictionary explicitly. 



Clearly, there are many possible relationships that can be easily inferred by some general 

rules from other relationships; e.g., transitive relationships like IS_A and IS_PART_OF: 

if a IS_PART_OF b and b IS_PART_OF c, then a IS_PART_OF c. In such cases only some 

of the relationships, the most immediate ones, are explicitly included in the dictionary, to 

keep its size maintainable, e.g., car HAS_PART motor and motor HAS_PART screw 

implies car HAS_PART screw. 

There are other rules of inference involving particular relationships or groups of 

relationships. E.g., the most obvious one is that if a IS_A b and b R c, then a R c, where R 

is any relationship. In some cases, such inheritance of characteristics from higher 

categories is defeasible, i.e., it may be blocked explicitly by a special notation in the 

definition of a concept, or it may be canceled where contradictory information is inherited 

from more than one higher node.  

2.2. Paths in the semantic network 

A semantic network is a graph. A path in such a graph is a chain of relationships r1, ..., 

rn such that ri and ri+1 have exactly one common word, i = 1, ..., n – 1. If a word A is the 

beginning of the path and the word B is its end, we say that the path leads from A to B. 

There are several reasons to use paths for measure the semantic closeness of words in the 

network. 

First, since some of the relationships are present in the network only implicitly and can 

be inferred by application of the inference rules, a problem arises of generating all the 

relationships, including the implicit ones, between, say, two given words. The problem 

can be formulated as enumerating all the network paths with some special condition that 

lead from one given word to another. 

Second, in some cases important commonality between words may not be expressed in 

terms of any existing named type of relationship. E.g., on Fig. 1, it can be seen that “a cat 

CAN HAVE something that IS_USED_FOR seeing”. There is no named type of 

relationship expressing this fact, so we have to represent the commonality between these 

two words by just a path of the two relationships. 

Third, some rules of inference may have fuzzy character, being rather common-sense 

observations. At least this may imply that applying too many rules can make the result 

less reliable. We can express this lost of reliability, in some cases, by adding the MAYBE 

attribute to the resulting inferred relationship, though in general case we should use 

some kind of lengths, or weights, of relationships and paths, which are described below. 

Finally, there may exist some participants of the situation described in the text that are 

not mentioned explicitly. E.g., in the phrase “The seller asked the buyer for too high price.” 

there may be no explicit relationship in the dictionary between the words seller and 

buyer, though the commonality between them can be established through the implied 

actant, goods: buyer CONSUMES goods HAS_SOURCE seller, a path of two 

relationships. 



2.3. Lengths of the relationships and paths 

In general we need to assign some weight, or “length,” to each relationship and calculate 

the “length” of a path based not just on the number of links in it, but on their individual 

lengths. This value gives the quantitative estimation of how closely related are the two 

given words, while the path itself with the labeled links gives the qualitative estimation 

of exactly how the two given words are related. 

For explicit relationships, such a length can reflect the degree of the importance of the 

relationship, e.g., IS_A relationships indicate that the words are close and probably 

substitutable for each other in most contexts. On the other hand, CONSUMES 

relationship reflects much less degree of closeness, i.e., it is “longer.” 

For inferred relationships, their lengths can depend on the kind of relationships 

involved in the logical inference (i.e., be an attribute of the corresponding rule) as well as 

on the length of the logical chain. E.g., many applications of the transitivity rule for IS_A 

relationships can increase the length of the resulting IS_A relationship. On Fig. 1, it is 

true but “less reliable” that cat CAN HAVE telescope, due to too many applications of 

IS_A transitivity rule. The fuzzy character of the inference rules is quite obvious when it 

comes to such relationships as IS_SIMILAR_TO, which is “to some degree” transitive. 

For a path, its length should increase with the total length of the constituting links. The 

more is the length of the path between two words, the less semantically close the words 

are. 

The easy way to assign the lengths to the links is to relate a specific length value to each 

type of the links, e.g., 1 to IS_A, 5 to SIMILAR_TO, and 20 to CAUSED_BY. Such 

assignment may be context-dependent or may vary according to the type of information 

being retrieved from the text. E.g., in a text with the principal topic “toys” the 

relationship SIMILAR_APPEARANCE can be more important than in a text with 

another principal topic. We leave such considerations for the future. 

In some cases it might be desirable to assign a length to individual links or groups of 

links. Ideally, each individual link should have some specific length expressing the 

degree of commonality between the two specific words. Assignment of these values hardly 

can be done by hand, instead, some procedure for training on a large corpus might be 

used in the future. There are cases, though, when additional individual coefficients can 

be assigned automatically. 

For example, special precautions are to be taken in order to prevent the algorithm from 

abuse of hierarchical links like IS_A. Namely, any concept referring to an object IS_A 

object: car IS_A object, book IS_A object. Thus any two objects are connected with a path 

of two (usually implicit) links: car IS_A object HAS_SUBTYPE book, which normally 

should not imply a great degree of commonality between them. On the other hand, in 

some cases a path of two IS_A relationships does imply commonality: Ford IS_A car 

HAS_SUBTYPE BMW. 



To some degree this problem is already solved by assigning to the implicit relationship a 

greater length (corresponding to a weaker relationship) than the length of an explicit 

relationship, when the implicit relationship is computed by application of the inference 

rules. However the precision of the procedure can be improved by assigning the greater 

length to the hierarchical links located near the top of the hierarchy, thus, the length of 

the link thing IS_A object is more than that of the link Ford IS_A car. Namely, on the 

stage of preparation of the relationships database, the maximum number of links is 

determined from each node to the top of the hierarchy, and the links leading to this node 

are scaled correspondingly.  
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Fig. 2. Different length of the hierarchical links. 

E.g., on Fig. 2, the distance between Ford and linguist is much greater than between 

Ford and BMW, though both ones are subtypes of object. The distance between car and 

book is greater than the distance between Ford and BMW, though in both pairs there are 

exactly two explicit links between the nodes. 

2.4. Shortest paths problem 

To determine the semantic distance between two words, the shortest possible path in the 

network is to be found; its length can be used as an estimation of the degree of their 

semantic nearness. Since not all paths can be acceptable in a specific context, in some, 

and supposedly many, cases the next, then next, etc., shortest path should be used to 

determine the mesure of the semantic distance between two words in a specific context. 

E.g., if the context suggests that the possible relationship between the two words is 

USES (expressed by the preposition with), then even a shorter relationship of the type 

IS_A cannot be used as a measure of closeness between these words in this context. 

Naturally the curse of ambiguity manifests itself in the full degree in the task of finding 

such paths. There is virtually infinite number of paths in the network, connecting the two 



given words. The computational aspects of the problem of finding the shortest path are 

discussed in the last section of the article; here it is enough to mention that the problem 

has well-known solutions and the only mathematical issue is computational efficiency. 

Thus we will first discuss the linguistic applications of such an algorithm, provided that 

it operates on a large enough semantic network dictionary. 

3. Linguistic Applications 

An autonatic procedure for finding the shortest paths in the semantic network between 

the two given words and measuring their “nearness” in the network in a specific context 

has numerous applications for disambiguation in language processing and automatic 

translation. 

The methods we describe should not be regarded as the ultimate solution of the problem 

of ambiguity. Instead, we believe that this problem must be solved by “voting” of as many 

different methods as possible in a particular system, and here we propose one of such 

“voters.” 

3.1. Syntactical disambiguation 

Consider an English phrase “John sees a cat with a telescope.” The phrase is syntactically 

ambiguous: Does it mean ‘John uses a telescope to see a cat’ or ‘John sees a cat that has a 

telescope,’ or ‘John sees a cat and a telescope,’ or maybe ‘John that has a telescope sees a 

cat,’ etc.? This ambiguity cannot be resolved using only lexical or syntactical information, 

since all the interpretations are quite legal syntactically. On Fig. 3, the first two of above 

variants are represented. 
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Fig. 3. Resolution of syntactic ambiguity. 



The syntactic relationships in question are see → telescope and cat → telescope; what are 
the semantic relationships between these words? There is a short path between seeing 

and telescope in the semantic network dictionary. What is more, the type of the 

relationship(s) constituting this path agrees with the supposed instrumental syntactic 

relationship between these words in the phrase. On the other hand, the best path 

between any sense of cat and telescope that agrees with the type of the supposed syntactic 

relationship, is much longer. Thus, the variant (1) should be chosen as the probable one.  

Note that this of course should not prevent the linguistic processor from being able to 

revise this decision later if the subsequent sentences disagree with this choice. 

In the simplest case, just the quantitative measure of the nearness (the weighted length 

of the path) can be used for comparison. However for better quality of analysis the whole 

path should be checked against the expected syntactical type of the relationship. E.g., in 

a phrase “John sees a cat with a boy” there is a short path between seeing and boy: boy 

IS_ABLE see, but the type of the relationship contradicts with the hypothesis that boy 

here is a tool to see with. This is why the procedure for finding the paths should be able to 

enumerate the paths until an acceptable one is found. 

3.2. Lexical disambiguation 

Similar problems arise with the selection of a particular meaning of a word in the phrase. 

Sometimes they can be resolved at syntactic level, usually when the choice is made 

between different parts of speech, e.g., in the phrase “John tables the dishes” the word 

tables is clearly a verb. However in many cases, especially when a word has different 

meanings within the same part of speech, semantic information has to be employed. 

Compare, for example, the phrases “There were fruits and drinks on the table” and “The 

numbers were arranged in a table.” By addressing a semantic network, it can be 

determined that in the first phrase the shortest path exists between other words and the 

sense ‘table as a furniture,’ while in the second phrase, the shortest path leads from 

numbers to ‘table as a picture.’ 

It is not as clear as it is with syntactic ambiguity, with what words in the phrase the 

given word is to be compared. Good candidates can be words close in the syntactical 

structure to the given one. Other good candidates are the words describing the main 

global or local topics of the document. For example, if the document in general is on 

mathematics, the word table will likely be used in it as ‘table as a picture,’ even if the 

nearest words don’t suggest this directly. 

Local and global topics of the document can be determined with the approach developed 

by Dr. A.Guzmán of CIC in his program CLASITEX [Guzmán-Arenas, 1997]. In this 

approach, all the textual words of the document without any preliminary disambiguation 

are clustered with the help of a semantic network dictionary. The centers of the largest 

clusters represent the main topics of the document. The noise thus is filtered out, since 

the wrong homonyms of the words form smaller clusters. This approach can be applied to 



the parts of the document, revealing the local topics. These topics can also be used in the 

disambiguation process: the distance is to be measured between them and the current 

word being disambiguated. 

Since in the process of disambiguation many words or word senses (global and local 

topics, surrounding words, etc.) possibly have to be tried and the results have to be 

accumulated, the procedure may be computationally demanding. However, in comparison 

with, say, Word Expert Parser model [Small and Rieger, 1982], our procedure requires 

easier available data and can be used in frame of the traditional text processing 

algorithms. 

3.3. Referential disambiguation 

The problem of referential disambiguation arises each time a pronoun, ellipsis, or zero 

subject (very common in such languages as Spanish) is used in the text. In general, at the 

stage of text analysis such a reference must be replaced with another word probably used 

somewhere in the text. Though there are linguistic considerations on selecting the 

candidates to fill the valence, they usually give ambiguous results when only lexical and 

syntactic information is considered. 

However, it is possible to resolve this task into the task of lexical disambiguation. 

Namely, when several candidates are to be tried to fill the valence, they can be just 

treated as different “senses” of the pronoun in this particular context. Then the procedure 

described in the previous section can be applied with nearly no modifications. The only 

difference is that neither global nor local topics are not considered in the comparisons. 

3.4. Machine translation 

In general text translation is quite another task than text understanding. Ideally 

translation should include the steps of text understanding in the source language and 

then text generating in the target language. If the ambiguity is resolved at the stage of 

analysis, and if the bilingual dictionary is good enough, there should be no problems with 

ambiguity during text generation. However, in real life it is not the case, for both 

practical and theoretical reasons [Narin’yani, 1997]. 

In practice currently some less sophisticated methods are used, working mostly at the 

syntactic level. To our knowledge, most commercially available translation programs, 

such as Globalink’s Power Translator [Power Translator, 1997]3, distinguish the senses of 

the words only by a limited number of semantic classes or by literal recognition of some 

number of idioms. E.g., this phrase was translated from Spanish by Power Translator 

                                                   

3 We used the version of 1994 for our experiments. 



Professional: “El artista realiza bien el papel” ⇒ “The artist accomplishes well the paper” 

(instead of role4). 

For the ideal scheme of translation, there must be available (1) a good disambiguation 

procedure in the source language, (2) a good bilingual dictionary that translates one-to-

one senses to senses, not textual words to sets of words. Both conditions are very difficult 

to satisfy. For example, there might not be available a Spanish dictionary to 

disambiguate the two senses of the word papel. 

What is more, the most elaborated up to date dictionaries, including academic 

dictionaries, usually provide translations of a word to several possible words in the target 

language, e.g.: “papel: paper; document; role; <...>” [Spanish-English, 1963]. In this case 

even if the senses have been disambiguated in the source language, the dictionary 

anyway does not contain the information necessary to translate them one-to-one into 

words of the target language. 

However with the procedure suggested in this article it becomes possible to disambiguate 

the words after translation in the target language. As in the previous section, we can 

treat the ambiguous position as a word with several “senses” and then apply the 

procedure of lexical disambiguation to the generated phrase in the target language. 

E.g., in the example above we can notice that there is a shorter path in the English 

semantic network between artist and role than between artist and paper or document. 

This will allow to use a semantic network as a “black box” to improve the results of 

translation made with help of existing bilingual dictionaries, rather than to develop new 

sense-to-sense dictionaries, which are expensive to create and difficult to share between 

different systems due to their tight integration with the other modules of a linguistic 

processor. 

3.5. Automatic translation of the semantic network 

The disambiguation procedure can be applied to automatic or semi-automatic translation 

of the semantic network itself into other languages. Since we have taken part in such a 

translation project (though the work was mainly done by hand), we are aware of all the 

deficiencies of the very idea of translation of a semantic network, and of low quality of the 

resulting dictionary [Bolshakov et al., 1995b]. However, we see at least three reasons to 

translate semantic networks. 

First, creating a semantic network from zero is a very difficult and expensive work. If the 

the way the results are used is tolerant to the incompleteness and minor inaccuracies, it 

                                                   

4 Though this program does distinguish these senses in some contexts, it seems to make choice based on 

nearly literal recognition of the idiom “jugar un papel,” e.g., “El diputado juega un papel importante” ⇒ 

“The deputy plays a role important,” but: “El diputado juega el papel más importante” ⇒ “The deputy plays 

the most important paper.” 



may be more efficient to use a lower quality dictionary translated from an existing 

resource than to wait for a better dictionary to be created in the far future. Actually we 

believe that due to the nature of the functioning of natural language, any language 

processing software must be tolerant enough to incomplete and inaccurate information. 

However, since the semantic network contains mostly the facts about real-world objects 

and ideas, and in part due to commonality between the languages, most of the 

relationships tend to be translated correctly (though this may depend on the languages 

and subject area). 

Second, the linguistic resources for such languages as English, French, Japanese, etc., 

are maintained by many people and groups all over the world, with much money spent on 

their development, enlargement, and refinement. It would be a waste of effort to repeat 

all this work in full size for each language.  

Thus for groups that work on, say, Spanish language, to take advantage of the efforts 

spent in the world on development of English semantic networks, it is necessary not only 

to translate the first draft of the dictionary from English, but to be able to repeat such 

translation automatically as new versions of the English dictionaries become available. 

There is no need to mention that the existing machine translation programs designed for 

translation of phrases in a discourse are not appropriate to translate structured resources 

such as dictionaries; thus the necessity to create specialized dictionary translation 

software. 

Third, currently the ANSI is developing a standard ontology, so-called T2 Reference 

Ontology. It is developed in English. Automatic or semi-automatic procedure for 

translation of this resource can be very useful in maintaining compatibility between 

semantic networks in different languages and the ANSI standard. 

A detailed description of the translation procedure is beyond the scope of this article. 

Here we only discuss the application of the procedure for enumerating the paths in the 

network between two given points to the task of translation of the semantic network 

itself. 

The main problem of automatic translation of a semantic network is the same: 

ambiguity. Each word in each its occurrence in the text of the dictionary, presumably in 

different senses, is translated by an ordinary bilingual dictionary to several different 

words of the target language. 

We propose the following procedure to choose the correct variant of the translation, using 

the same (English in our case) semantic network. Each variant of translation of a word is 

translated back to the source language. Then the distance in the source semantic network 

is measured between the source word and each variant of such a reverse translation. The 

variant(s) of translation are chosen, at least one of whose reverse translations is located 

near the source word sense in the network, i.e., there is a “short” enough path from this 

variant to the source word sense, see Fig. 4. 
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Fig. 4. Translation of a semantic network5. 

Naturally, the copy of the source word is removed from the set of the reverse translations. 

Words having only one reverse translation, namely the same source word, are treated as 

special cases. They are inserted in the resulting dictionary, and if the source word has 

different senses, such words are marked when automatically inserted in the dictionary, 

and then checked by hand. 

Ideally, only the words with a reverse translation within the same concept, i.e., at the 

zero distance from the source word, should be accepted. But in real life, a bilingual 

dictionary in most cases does not gives such accurate results, therefore the paths of 

nonzero length should be taken into account. 

When searching for the paths in the network, for each textual word all its senses should 

be tried unless any disambiguating information is available in the bilingual dictionary; 

usually it is not. 

The choice of the candidate is made in two steps. First the “weights,” i.e., the lengths of 

the corresponding paths, of the reverse translations of each candidate are combined to 

calculate the “weight” of the candidate itself. Second, the candidate(s) are chosen with the 

best such “weight.” 

Different procedures can be used for both calculations. To combine the weights of the 

reverse translations for one candidate, in the simplest case a maximum (but not average) 

can be taken. In a more sophisticated procedure, all the reverse translations worse than 

some threshold should be ignored, and the values for the other ones should be 

accumulated. 

                                                   

5 Two copies of the same network are shown to simplify the picture. 



Similarly, to choose the acceptable candidates of translation, in the simplest case only the 

best one is taken for each word, or all the candidates are accepted that are better than 

some threshold value. More sophisticated procedures can also be tried. For example, all 

candidates better than some threshold value should be accepted, all candidates worse 

than some threshold value should be rejected, or the best one should be chosen from those 

candidates whose weight falls between these two thresholds. 

The resulting semantic network dictionary may be then post-edited by hand. To be able 

to repeat the translation as new versions of the source dictionary become available, the 

changes made by hand should be saved in a special protocol. 

In contrast with the procedure of enumerating the paths used for text processing, the 

procedure used for translation of the dictionary itself can be simplified by ignoring 

completely the inference rules, since in this case the meanings should be preserved much 

more precisely. The length of the path can be calculated as just the number of links in it. 

This makes the implementation of the procedure for translation much more 

straightforward than for text understanding. 

For better results, though, the inference rules may be used, but application of each rule 

should substantially increment the length of the path. E.g., a chain of transitive 

relationships like IS_A should be considered long enough, whereas the procedure used for 

text understanding would use the length near to 1 for such a path. The choice here, as 

well as the selection of the thresholds mentioned above, is made on the basis of desired 

compromise between the accuracy of the translation (less usage of inference, higher 

thresholds) and the number of words that will get any translation at all (more usage of 

inference, lower thresholds). 

In any case only basic relationships, such as IS_A or possibly IS_PART_OF and few 

others, should be allowed to appear in the paths, while such relationships as USES, etc., 

should be prohibited.  

4. Computational aspects 

This section describes the mathematical problem statement and possible algorithms for 

its solution. The reader who is not interested in computational details can skip this 

section completely. Generally a simple modification of Dijkstra’s shortest path finiding 

algorithm [Dijkstra, 1959] should be suffictient, though we describe here a more 

sophisticated modification of Dijkstra’s algorithm, adapted to large sparse networks. 

4.1. Problem statement 

As it has been shown above, finding paths in the network is useful for linguistic 

applications, primarily to measure the distance in the network between the two given 

words in a specific context. Usually to measure such a distance in a specific context, the 

shortest paths between the two points are to be found; however, it is not always true that 



necessarily the very short, optimal, path should be found first. There are several reasons 

for this. 

First, there are many restrictions on suitability of a particular types of paths in a 

specific context. If, for example, the syntactic relationship between the two given words 

suggests, say, instrumental relationship, then the semantic relationships of any other 

types, even very short, are useless in this context. Such restrictions can be applied after 

the path is found in the network. Thus, it is probable that the very short path will prove 

unusable in a specific context; in this case the next path should be retrieved and 

examined. Thus, there is no point to apply a computationally demanding procedure to 

completely optimize the search process. 

Second, the rules for calculating the length of a path in a specific context can be context-

dependent, complicated, and are better applied after the path has been found. This 

problem is discussed in more detail below at the end of this section. 

Third, the low precision of all language data, including in the first place the text itself 

being analyzed, but also the dictionaries, grammars, etc., makes very precise procedures 

not so necessary. Everything in language is vague, any text is full with hints, omissions, 

implied information, metaphors, rather than being a collection of clear and simple logical 

statements. This makes too precise procedures of text processing in many cases useless. 

On the other hand, since automatic procedures are applied to huge amounts of texts, 

performance is important, as long as the final result of analysis fits in the same 

“confidence interval.” Performance is especially important since the procedure for 

semantic distance measurement is invoked very many times in typical applications, such 

as referential disambiguation. 

Thus we can consider the following problem: 

To enumerate the paths in a network between two given nodes, as a tendency starting from 

shorter ones, under the following conditions: 

• Various timeouts apply, e.g., a threshold on the length of the paths: only the paths of the 

length less than a threshold value are considered. 

• Computational effectiveness is a priority. 

• Accuracy is the second priority. The better paths should go first, but only as a tendency. 

• The network is large and stored in a database, so that retrieval of the links leading from 

a given point is the most time-consuming operation. 

Also at each step estimate (again, with some probability) the lower limit of the length of the 

paths the procedure can find yet. 

The significance of the latter requirement will be discussed below. It is supposed that the 

calling routine will at some moment stop the enumerating process, or some kind of time-

out will be applied to prevent the algorithm from infinite work, such as a restriction on 

the number of paths, or on their lengths, so that if the procedure cannot find any paths 



shorter than some threshold, it should stop. Also some qualitative restrictions may be 

imposed on the desirable paths, e.g., not to contain a particular relationship. 

The problem is very similar to the well-known problem of finding the shortest paths in 

sparse graphs, e.g., [Shier, 1976; Johnson, 1977; Minieka, 1978], but there are some 

differences in goals and conditions with the classical problems of optimization, shown in 

Table 1. 

 

Classical Optimization Our problem 

There are no restrictions on the 

length of the path. 

Only the paths shorter than some threshold value 

(i.e., short enough ones) are considered. 

Only one path is searched for (in 

some variants K paths). 

Paths must be enumerated until the caller 

“accepts” one. 

The very best path must be found. The better paths should generally go first, but not 

necessarily the very best is to be the first. 

The length of a path is a mere sum 

of the lengths, or weights, of the 

individual links. 

The length is calculated according to the fuzzy 

rules of combination of the relationships. 

No previously prepared data is 

usually used. 

Some data can be prepared in the database in 

advance. 

The graph is small enough to be 

kept in memory. 

The graph is very big and is stored on the hard 

disk. 

Table 1. Comparison of the proposed problem and the classical one.  

In the Table 1, by better paths we mean the ones with less length, that usually means 

ones that contain fewer links or links with less lengths. This measure is computed as a 

combination of the lengths of individual links, with application of, or taking into account, 

the rules of inference. E.g., a chain of five IS_A relationships may be considered “shorter” 

than a chain of two IS_SIMILAR_TO relationships. In general such an estimation is a 

complex problem by itself, and we will not describe it here in more detail. 

Note again that the measure of length used by the algorithm can differ from the measure 

that is used by the calling procedure, the latter being probably calculated or refined by 

the caller itself with the application of some specific, possibly very complex, rules, for 

example, making use of the logical structure of the situation described in the text itself. 



This difference arises from our intention to separate the information internal to the 

semantic network from the information used in various applications, and to provide a 

general procedure (probably implemented as a separate module) that permits the caller 

to treat the semantic network as a black box. Though, some minimal adjustments of the 

procedure will anyway be necessary for some applications; they are discussed in the 

sections on the corresponding applications. 

Thus we presume that the algorithm should find the paths just good in some general 

meaning, and the caller will check if the path is really good for it, though the “generally 

good” paths should be usually good enough for the caller. 

This implies that the algorithm should not even try to absolutely optimize the 

enumerating process, since anyway chances are little that the very best in general sense 

path will be the very best for the caller, and we expect usually it will not. This changes 

the approach to the algorithm as compared with the classical optimization problems. 

4.2. Possible algorithms 

In spite of the large number of researches devoted to the shortest paths problem, we are 

not aware of any known algorithm for solving exactly our task. It is not the main goal of 

this article to propose a mathematically refined algorithm, since at the current stage of 

the research we are mostly interested in the linguistic applications of the idea itself. 

However, we describe here the variants of the algorithms we currently use. 

4.2.1. The case of equal lengths of the links 

In this section, a non-weighted graph is considered. A simple algorithm of enumerating 

all the paths, a modification of Dijksatra’s one, is as follows. Let’s define a sphere Sr (A) 

around the point A as the set, actually a tree, of all the paths6 of the length r leading 

from the point A. Since we consider here the length of each link in the network to be just 

1, the radii of the spheres are natural numbers; we can also consider S0 (A) being the 

empty path, i.e., the point A itself. Let’s call the set of ends of all the paths of the sphere 

S (A) its surface. 

The sphere Si+1 (A) can be formed by adding to Si (A) each link leading from each its 

surface point, see Fig. 5. If necessary, obvious precautions can be taken to prevent the 

paths being formed from cycles, at least from the cycles formed by two copies of the same 

link passed in the opposite directions; this can be done by comparision of the link being 

added to a path with the immediately previous link in the path. Other types of cycles in a 

sparse network usually do not present much problems for our task. 

                                                   

6 Each path in the tree is compactly represented by the ending point, additional characteristics such as the 

length, and a pointer to the previous path in the tree. When a new path is formed by adding one link to the 

previous one, only such a data structure is to be created in memory. 
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Fig. 5. The spheres in the network. 

The algorithm increases the spheres S (A) and S (B) in turn, starting from, say, S (A). At 

each step, the intersection of the surfaces of the spheres Si (A) and Sj (B), j = i or j = i – 1, 

gives the paths of the length i + j. This algorithm enumerates all the paths between A 

and B, starting from the shortest ones. 

For an oriented graph, when only the oriented paths from A to B are to be found, a simple 

modification of this algorithm can be used. The sphere S+i+1 (A) should be formed only 

with the links leading from the points of S+i (A), while the sphere S–i+1 (B) should be 

formed only with the links leading to the points of S–i (B). If the paths both from A to B 

and from B to A are to be found, two spheres S+ and S– are maintained for A and B, 

consisting of the links leading to and from the points, correspondingly. If there are other 

restrictions on the types of the paths, they also can be taken into consideration at the 

step of increasing the spheres. 

4.2.2. Different lengths and inference rules 

The previous algorithm can be generalized to the case of weighted graphs. We consider 

here a modification that not always gives the shortest paths first, but does so as a 

tendency. This algorithm can be easily modified to enumerate the paths in the proper 

order, but with slightly lower efficiency. 

In this algorithm the sets of paths which we will still call spheres actually are not 

spheres, i.e., the paths in such “spheres” do not have the same lengths. We define these 

spheres just recursively, the sphere Si+1 (A) being formed by adding to Si (A) all the  links 

leading from some of its surface points7. In this case not all the surface points of Si (A) are 

                                                   

7 We chose to add all the links here since the operation of retrieval of the links is the most time-consuming. 



expanded, instead, expanded are only the paths, usually one path, with the minimal 

length among all the paths of Si (A). The surface of Si+1 (A) is defined by replacing the 

expanded points of the surface of Si (A) with the ends of the newly added links. 

Again, the spheres S (A) and S (B) are increased in turn, and the intersection of their 

surfaces gives the different paths between A and B. It is easy to prove that this algorithm 

enumerates all the paths. Namely, let’s call the minimal length of a path in the sphere its 

minimal radius. Each step of the algorithm increases the minimal radius of one sphere, 

and if the current minimal radii of S (A) and S (B) are r1 and r2, then all the paths with 

the lengths of r1 + r2 have been already enumerated by this moment. 

This algorithm does not enumerate the paths in the order of their length, see Fig. 6, 

though generally it tends to enumerate the shorter paths before the longer ones. It is 

possible to store the found paths temporarily without reporting them to the output, until 

the value r1 + r2  reaches the length of a temporarily stored path. With this modification 

the algorithm will enumerate the paths in the proper order, but for our goals we chose to 

use the path as soon as the algorithm finds it. 

S1 (A)

A B

S1 (B)

 

Fig. 6. A counter example: a longer path is found first. 

The inference rules and the rules for determining the lengths of different combinations of 

the relationships can be taken into account at the step of increasing the spheres and at 

the step of determining the intersection of the spheres. Namely, when a link is added to 

the path, the length of the path being formed is determined accordingly to the rules of 

combination of links. Similarly, when a complete path between A and B is formed by 

connecting together two paths, one of S (A) and another of S (B), the length of the 

combination may differ from the sum of the length of the two paths. This contributes in 

the lack of order in enumeration process. However, the shorter paths still tend to be 

enumerated before the longer ones. 



4.2.3. Use of pre-calculated data 

Due to the high number of “dimensions” of the network, the methods described above are 

good only to find short enough paths, since spheres of big radii are too large. In practice it 

may not be a problem if only short paths are searched for.  

However if longer paths are required, an additional network of “control nodes” with pre-

calculated information about their connections with each other may be used. This is 

similar to the idea of a cellular telephone system, see Fig. 7. 

Semantic network

Control nodes
A

B

 

Fig. 7. The network of control nodes. 

At the stage of preparation of the database, nodes are added, or existing nodes are used, 

at nearly equal distances from each other and not further than some threshold distance 

from any node in the network. The number of such control nodes should be much less 

than the total number of nodes in the network. The information is stored with these 

nodes that helps to find the paths leading from each of them to each another. To find a 

path from an arbitrary point A in the network to another point B, first the paths from 

these points to the nearest control node are determined using the method of increasing 

spheres described above, then the path between the control nodes is retrieved from the 

database, and then the whole resulting path can be varied or optimized locally. 

4.2.4. Multiple comparisons 

In the applications, often not only the distance between two given nodes is to be 

determined. Instead, the questions to be answered are: What point in some set of points 

is the nearest to a given one, or what are two nearest points in a two given sets. These 

problems arise in disambiguation of the binding of a prepositional phrase and in 

referential disambiguation, correspondingly. 
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Fig. 8. Determining the distance to a set of nodes. 

A simple modification of the algorithm, shown on the Fig. 8, allows to take advantage of 

increasing the spheres in turn and of using the same sphere to determine the distances 

from the given point A to each of the points B1, ..., Bn. With light color the “surface” of the 

sphere is shown, since the paths constituting the “sphere” in a weighted graph can have 

different length. With the darker color, the minimal radius is shown. 

All the spheres are increased in turn. If there was found at least one path between A and, 

say, B1 such that its length is less than the sum of the minimal radii of the spheres S (A) 

and S (B2), and no shorter paths were yet found between A and B2, then the distance 

between A and B1 is smaller than the distance between A and B2. Note that since the 

paths are found not in a completely precise order, the check against the minimal radii is 

very desirable. 

With the complicated rules of link combination, the latter criterion is not precise, since 

the length of a path can be different from the sum of the lengths of its parts. Currently 

we ignore this complication, since we consider the lost of precision less than normal 

fuzziness of all data related to natural language. In case of serious problems arising in 

understanding of a particular phrase, backtracking can be used later to calculate the 

distances in question more precisely. 

Conclusions 

In recent years semantic network dictionaries have become available, mostly for English 

language, such as MICRA’s FACTOTUM®  SemNet dictionary. 

As it was shown in this work, a simple procedure, namely the search for the shortest 

paths in a sparse network, can be used for determining the measure of semantic 



“nearness” of two given word senses in a very large semantic network. This measure is 

useful for disambiguation in a variety of important tasks of natural language processing, 

namely for lexical, syntactical, referential disambiguation, as well as in text generation 

and machine translation. 

Also this procedure can be used to automatically translate the semantic network 

dictionary itself into other languages. This makes the methods described in the work 

available for processing of languages other than English, and also simplifies creation and 

maintenance of semantic network dictionaries for these languages. What is more, such 

automatic translation of a semantic network will be useful in development and 

maintanance of semantic networks in the languages other than English, which would 

conform to the Standard Ontology (T2) being developed currently by ANSI. 
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