
Lazy Query Expansion*

Alexander Gelbukh

Center for Computing Research (CIC),

National Polytechnic Institute (IPN),
Av. Juan Dios Bátiz s/n esq. Mendizábal,
Col. Zacatenco, C.P. 07738, D.F., Mexico

gelbukh*cic.ipn.mx

Abstract

An information retrieval or document base system has to
somehow deal with various phenomena of equivalence of
some strings. These are lowercase versus uppercase match-
ing, morphological inflection, derivation, and synonymy of
words: e.g., given a query computer, find Computers, com-
puting, workstation. The latter problems are very important
in languages with richer morphology and less stable termi-
nology than in English. Also, much better recall is achieved
by matching hyponyms and hypernyms using a thesaurus,
e.g., given a query computers, find also supercomputer,
microcomputer, mainframe, machine, device, processor,
UNIX, etc. Technically, this can be handled at the time of
indexing by reducing related strings to a common form, or
at the time of query processing by expanding the query with
the whole set of the related forms. We argue for that the
latter way allows for greater flexibility and easier mainte-
nance, while being more affordable than it is usually con-
sidered. We propose to expand the query with only those
words that really appear in the document base. Our experi-
ments with a thesaurus-based information retrieval system
we are developing for the Senate of Mexican Republic
show only insignificant increase of the real user queries on
average with the 200-megabyte document base of the Sen-
ate, in spite of highly inflective Spanish language.

Keywords: full-text database, information retrieval, query
expansion, natural language.

* An extended version of the paper Lazy Query Enrichment:

A Simple Method of Indexing Large Specialized Document

Bases, In Proc. DEXA-2000, 11th International Conference and

Workshop on Database and Expert Systems Applications, Lec-

ture Notes in Computer Science, Springer-Verlag, 2000.

 Work done under partial support of the Senate of Mexican

Republic (unnumbered project), Mexican Government

(CONACyT and SNI), and CGPI-IPN (Mexico).

1. Introduction

Nearly any information retrieval system has to somehow
deal with the problem of non-literal matching of the query
and the document keywords. For example, given a query
computer, the system should be able to retrieve (or not,
depending on the user-defined settings and query options)
the documents containing the strings Computer, computers,
computation, mainframe, motherboard, Internet, etc. There
are two places in the system architecture where this prob-
lem can be dealt with:

• at the moment of indexing the documents—index expan-
sion—or

• at the moment of processing of the specific query—
query expansion.

The former technique is most commonly used due to ap-
parently prohibitively serious problems caused by the latter
one. We will show, however, that the former method has its
own disadvantages, and that the problems of the latter
method can be efficiently solved.

Our main motivation in this work was the development
of an information retrieval system for the Senate of Mexi-
can Republic. The document base of the Senate contains the
laws of the Mexican Republic, the bills under consideration
in the commissions of the Senate, the protocols of the ses-
sions, the discourses of the Senators, etc. Our customer
formulated the order of the priorities as follows.

• The quality, expressive power, and flexibility were the
main priority due to the importance of the search results
for the legislation of the Senators.

• Small size of the index and reasonably low maintenance
load on the server were the second priority according to
the hardware resources available for the system.

• No or minimal changes to the existing technology of the
maintenance of the database and its structure were to be
introduced.

• The system was to be operational while the dictionaries
and grammars were under development, and the im-

provements and corrections to them were to be immedi-
ately available to the users.

• Computational efficiency of processing of a single query
was of lower priority since the number of the users—the
Senators and their aids—is rather limited.

The characteristic properties of the document base at hand
were the following:

• Large size, in the order of a gigabyte, to be extended to
several gigabytes,

• Specialized contents with limited variety of lexicon and
syntactic constructions,

• Still, unrestricted language with the possibility of occa-
sional use of nearly any word or word form.

In this work, we are interested in a flexible, computa-
tionally efficient, conceptually simple, and easily maintain-
able solution of the problem of non-literal matching under
the requirements and circumstances listed above.

1.1 Related work

There is a vast literature on approximate string matching;
various data structures, such as tries, B-trees, etc. were
suggested (Aho, 1990; Gusfield, 1997; Frakes & Baeza-

Yates, 1992). These works are based on implicit or explicit
patterns that describe the similarity between the source
string and the matched strings (e.g., minimal editing dis-
tance) or the set of the strings to be found (e.g., regular
expressions), at the level of individual letters. For example,
a pattern com* can be used to search for all forms of the
Spanish word comer ‘to eat,’ though this pattern will also
match 172 other Spanish words like cometa ‘comet.’ How-
ever, in our case we consider the problem of matching
arbitrary word sets that might not share any simple letter
pattern. For example, the strings dormía, duermo, and dur-
miendo are forms of the same Spanish verb dormir ‘to
sleep;’ the strings church, priest, and pilgrim represent the
same English concept religion though they do not match
any particular letter pattern for approximate string matching
to be applied.

The problem of generating and matching the word forms
in various languages, including English and Spanish, is well
studied in linguistics. Various methods and data structures
are suggested in computational linguistics for handling the
corresponding dictionaries and morpheme lists (Gelbukh,
2000; Hausser, 1999; Koskenniemi, 1983). However, in this
article we do not discuss the problems of natural language
morphology. Instead, we are interested in application of a
morphological analyzer to the purely database management
task of retrieval of a keyword in all its forms. The list of the
word forms is supposed to be already known while these
forms are not supposed to match any particular letter pat-
tern.

The use of concept hierarchies for topical document
analysis was suggested in (Guzmán-Arenas, 1998) and
applied to the information retrieval tasks in (Gelbukh et al.,

1999). Various large hierarchical thesauri have been com-
piled (Cassidy, 2000; Fellbaum, 1998; Lenat et al., 1990).
However, here we are interested not in the handling of the
statistical weights nor in compilation of the concept dic-
tionary, but rather in the way the documents relevant for a
specific node can be in practice found in an existing large
information system.

2. Types of non-literal string matching

Here we will discuss in more detail the types of the strings
that the user might want to be matched. An important point
in each case is the great degree of flexibility necessary to
meet the requirements of a specific user or a specific
search.

2.1 Letter case

This is the simplest type of non-literal matching: usually the
strings like computer, Computer, COMPUTER, and Com-
PuTer are to be considered equivalent. The designers of
information retrieval systems tend to consider it obvious
that before indexing the database, all words are to be auto-
matically converted to, say, lowercase.

However, under certain circumstances, the user might
want to search for a specific string such as Bill or Main-
frame (personal names) but not bill nor mainframe, CIS (the
name of an organization) but not Cis (personal name), CY-
CLing (the name of a conference) but not cycling nor Cy-
cling.

2.2 Morphology

The second class of strings that frequently are considered
equivalent are the word forms of the same lexeme: com-
pute, computing, computed, or its derivational variants:
computer, computation, computational, computability.

Such equivalence is determined by linguistic software—
stemmer or, more generally, morphological analyzer
(Hausser, 1999; Koskenniemi, 1983, Gelbukh, 2003 ###).
For each word, it provides (possibly ambiguously) an iden-
tifier—a normal form like compute, a stem or root like
comput-, a number, etc.—that is common for all such
equivalent word forms. Then matching of the two strings
consists in reducing, or normalizing, them to such identifi-
ers and comparing the results.

Morphological analyzers can be of different degree of
complexity, which depends on the language of the docu-
ments, on the desired precision, and on whether only inflec-
tion within one lexeme (compute/computed) is to be taken
into account or also derivation (compute/computer) word
formation (computer/uncomputability). In the simple case,
such an analyzer can use a simple list of endings, such as -s,
-ed, -ing, -er, -ability and a small list of exceptions, such as
go, goes, went, gone. For highly inflective languages such
as Spanish, the list of endings can be quite large, currently
3451 endings being used in our system. A more sophisti-

cated—and thus more precise—morphological system can
use complex patterns and/or rely on a large dictionary.
However, even a dictionary-based system must contain a
heuristic algorithm for handling the words absent in the
dictionary.

Note that heuristic-based morphological algorithms per-
form much better on analysis (normalization) than on syn-
thesis (generation) of the word forms corresponding to a
given stem. For example, a simple list-based algorithm can
normalize uncomputability to -comput-, however, given a
stem -comput-, it is more difficult to make a choice between
*incomputibility, *ircomputibility, etc.

Matching the morphological forms of the same stem is
not always desirable for the user. For example, the user can
be interested in computers, but not in computation. Very
annoying can be morphological reduction of ambiguous
forms, especially in highly inflective languages such as
Spanish. For instance, the Spanish verb comer ‘to eat’ form
about 700 morphological variants like comiste ‘you ate’ or
comiéndotela ‘(you) eating it up’, one of which—namely
como ‘I eat’—happens to be homonymous with a very
frequently used conjunction como ‘as,’ ‘how.’ Thus, to find
the documents with the Spanish lexeme comer with a rea-
sonable precision, one has to sacrifice recall a little bit by
forming the query as “all word forms of comer but como.”1

Thus, the user should be able to control the application
and the degree of morphological normalization applied to
the query by the system.

2.3 Concept hierarchy

The third class of the words that might be considered
equivalent are synonyms (processor/CPU), hyponyms
(computer/mainframe), hypernyms (computer/device), and
possibly other related words. Since no algorithm can infer
such relationships between words on its own, a diction-
ary—namely, a hierarchical thesaurus—is used to provide
this option to the user.

1 Note that this effect cannot be achieved with a simple logical

expression “all documents containing the word forms of comer

but those containing the word como” since its meaning is not

equivalent to the desired one. Namely, the recall with such a

query would be extremely low since nearly any Spanish docu-

ment does contain the string como ‘as,’ ‘how.’

In our system, we use a 33,000-word dictionary organ-
ized in a deep hierarchy of related concepts, similar to, and
in part derived from, the Roget thesaurus (Cassidy, 2000).
By related concepts, we mean not only the is-a relationship,
but also other words that are of interest to the user looking
for the documents on a given topic (Guzmán-Arenas,
1998). For example, the entry for religion contains such
words as Bible, priest, pray, church, pilgrim, etc. Thus, the
user looking for the documents on religion will be offered a
document that mentions Bible. Optionally the degree of
such relationship can be weighted quantitatively to measure
the relevance of the found document (Gelbukh et al., 1999).

Obviously, the user should have a full control over the
set of words to be considered equivalent to the query key-
word(s). The following options are of particular interest,
see Fig. 1:

1. All instances of a given concept, i.e., all words below a
given node. For example, with this type of query, given a
query “Find everything on mathematics,” the system
should retrieve all documents on algebra, geometry, cal-
culus, and within these topics, everything on linear alge-
bra, group theory, ..., differential geometry, foliation
theory, ..., differential calculus, ..., and finally retrieve
the documents that mention the words vectors, mani-
folds, differentials, etc. Another example: “What events
happened in Europe?” This query should be interpreted
in such a way that the documents mentioning England,
Italy, Austria, ..., London, Manchester, Birmingham, etc.
be retrieved.

2. Near-immediate instances of a given concept, i.e., the
words below a given node but not deeper than n levels.
For example, a student might want to know what is
mathematics: “Find documents on mathematics in gen-
eral.” In this case, the system does retrieve the docu-
ments that mention the words equation, inequality, theo-
rem, but not isostrophy nor semilattice, the latter words
being too specialized. Another example: “What is the
politics of the European countries?” In this case, only the
documents that mention England, Italy, Austria, ..., and
probably London, Rome, Vienna, but not Manchester,
Birmingham, etc. are to be retrieved.

3. Similar concepts, the words located in the concept tree
not farther than n steps from the given one, be the steps
in the down, up, or horizontal direction in the tree. For
example, “What disciplines are similar to mathematics?”

Query 1

Query 2

Query 3

Query 4

Fig. 1. Types of neighborhoods in a hierarchical thesaurus.

In this case, the relevant words are physics, astronomy,
algebra, geometry, etc.

4. General concepts, i.e., the words of which the given
node is an instance. For example, “In what hemisphere is
Morelia located?” In this case, the documents that might
mention the hemisphere where Michoacán, or Mexico, or
North America is located (Morelia being a city in the
Michoacán state, Mexico). Another example: “What
right an Associate Professor has?” In this case, useful
documents can mention the rights of a teacher, em-
ployee, citizen, or human.

In fact, the constraints 1 to 4 often have to be combined.
For example, in a type 4 query, a limit on the number of
levels—as in the type 1 query—or on the most general level
is useful, since too general concepts appear in too many
documents and also scarcely provide any knowledge un-
known to the user. Or, type 4 queries can be combined with
type 1 or 2 queries. For example, for the query “In what
hemisphere is Michoacán located?” both more general (as
in type 4) and more specific (as in type 1) concepts are to
be searched for. Note that, at least currently, the desired
type of the query generalization cannot be inferred auto-
matically by the system and should be chosen explicitly by
the user.

3. Index expansion

In the previous section, we discussed four cases of identity
of the strings: letter case, morphologically inflected forms,
synonyms, and a concept tree (type 1 queries, see Fig. 1). A
naïve—and the most frequently used—approach to repre-

sent the first three cases of identity is index reduction: at the

moment of indexing, all letters are reduced, say, to lower-

case; all word forms are reduced to the main form (comput-

ing, computed, computes, computation, computer → com-
pute), and synonyms are replaced with one chosen repre-

sentative (CPU → processor). The latter case—a concept

tree—can be handled by additionally indexing each docu-
ment with the hypernyms of the words it contains (main-

frame → computer, device, artifact); with this method, a
query “devices” will retrieve also mainframe.

In this article, we argue that this naïve approach has se-

rious disadvantages. First of all, as we have shown in the
previous section, depending on the desired precision/recall
ratio, the user might not want such strings to be considered
identical. Thus, indexing process should not cause any loss
of information—i.e., all the letter strings should appear in
the index as is, without any change, even in the letter case
(i.e., reducing to lowercase). To achieve this, the strings
reduced in letter case, or morphologically, or by a thesaurus
should appear in the index in addition to (rather than in-

stead of) the original strings, e.g.: Mainframes → Main-
frames, mainframes, mainframe, computer, device, artifact.

Since the new keywords are added to the index instead of

replacing the original ones, we call this process index ex-
pansion.

To allow for certain flexibility of the queries, some im-

provements to this indexing scheme can be suggested. For

instance, the additional keys are to be marked somehow to

be distinguishable from the original ones, e.g., Mainframes

→ Mainframes, CASE-mainframes, MORPH-mainframe,
UP-computer, UP-device, UP-artifact. With this, a user

query “exactly the string Mainframes” can be internally

translated by the system into the SQL query “Mainframes”;

the query “the word form mainframes” into “CASE-
mainframes” that matches both Mainframes and main-
frames; the query “the lexeme mainframe” into “MORPH-
mainframe” that matches both mainframe and mainframes;
the type 1 query “devices” into “UP-device” that matches

both mainframe and printer.

Other possible improvements will be discussed in sec-
tion 8. However, the index expansion method presents
some inherent problems:

• Lack of flexibility. Only the types of queries for which
the index was specifically designed can be executed. The
user cannot choose what words of a given set are to be
considered equivalent, e.g., “all word forms of compute
but computing;” see also the discussion of the example
with the Spanish comer in section 2.2, and also the foot-
note there.

• Lager index. Unlike index reduction, index expansion
can significantly—from twice to tenfold, depending of
the use of only morphology or also a thesaurus—
increase the index size. In many cases, especially with
large databases, this is not affordable.

• Maintenance difficulties. Too close coupling of the in-
dexing process and potentially complex lingware—the
morphological analyzer and the thesaurus—presents
both organizational and technical problems.

− Adding the intelligent search engine to a long-existing
operational database maintenance technology requires
significant changes in the latter, which implies chang-
ing existing software and documentation, training the
maintenance engineers, etc. In our case, preserving in-
tact the existing technology was one of the strongest
requirements of the customer.

− Unlike stable database maintenance procedures, com-
plex dictionary-based lingware tends to be—at least
for a certain period of time—in constant development:
new words are added to the dictionary, the morpho-
logical tables and algorithms are corrected, new links
are added to the thesaurus. With index reduction or
expansion, each time a change is made to the ling-
ware, the whole database is to be re-indexed, which is
often not affordable, especially when the linguistic
processing is slow and resource-consuming. On the
other hand, delaying re-indexing for a long time
greatly discourages any improvements to the lingware,

from the point of view of both the developers and the
customer.

4. Query expansion

An alternative to handling non-literal string matching at the
moment of indexing is handling it at the moment of query
processing. A naïve approach to this method is the follow-

ing. The letter strings found in the documents are indexed

as is, without any changes. Then, at the moment of query

processing, the user query is automatically substituted with

an appropriate logical expression, e.g., the query “compute

and matrix” internally is executed as “(compute OR com-
putes OR computed OR computing) and (matrix OR ma-

trixes OR matrices).” This procedure is a variant of so-

called query expansion (Kowalski, 1997, Voorhees 1998).

This method does not present any of the problems listed
in the previous section. Namely, it has the following advan-
tages over index expansion or reduction:

• Flexibility. The user can edit the resulting expression
(say, by checking or unchecking the checkboxes next to
each generated form) to achieve any desired combina-
tion. For example, the query “all forms of the Spanish
verb comer but como” can be naturally expressed by the
user and processed by the system.

• Smaller index as compared with index expansion. Only
the strings literally present in the document are present
in the index.

• Easy maintenance. The indexing procedure is trivial and
does not include, nor depends on, any lingware. No
changes to the existing non-intelligent indexing technol-
ogy are necessary when adding an intelligent search en-
gine to an operational database. No re-indexing is neces-
sary when changes are made to the lingware, and such
changes are available immediately to the user.

However, the disadvantages of this naïve approach are
so obvious that it cannot be considered a practical option.
Namely, the following two problems render such a method
unusable:

• Too large queries. As we have mentioned, the Spanish
verb comer form about 700 variants, which results in too
large query. With a thesaurus, the concept Europe would
contribute to the query all countries, cities, rivers, moun-
tains, nations, types of food, etc. specific for Europe. In
addition, each of these strings should be capitalized in all
possible ways.

• Generation. As we have mentioned in section 2.2,

generating all forms of a given lexeme (compute →
compute, computing, ..., uncomputable, ...) is a task
significantly more difficult than guessing the correct
main form or stem of a given word form (compute,

computing, uncomputable → compute OR -comput-).
In case of a heuristic-based morphological algorithm,

the number of hypotheses in form generation is usually
much greater than in reducing to the stem.

However, limited version of this approach (similar to
Type 2 expansion, see Fig. ###) has been tested, with prom-
ising results. Voorhees (###) reports that semantic query
expansion using WordNet (even in such a limited form)
significantly improves the results in terms of precision and
recall, especially when the query is short. Fig. ## approxi-
mately shows the figures reported by Voorhees.

####In the next section, we will show how these prob-
lems can be worked around.

5. Lazy query expansion

First, we will briefly discuss the common properties of
languages that guarantee the applicability of our method,
and then proceed to the method itself.

5. 1 Diversity of language

The diversity of language in a certain text collection is
limited. Indeed, the most frequent words as repeated many
times, not leaving much space for other words. These intui-
tive considerations are formalized by two empirical statisti-
cal laws called Zipf law and Heaps law.

To explain them, it is important to distinguish between
words as types (i.e., different words, words as elements of
the language) and running words, i.e., occurrences of a
word in a specific text. For example, in the phrase John
loves Mary and Mary loves John there are 4 different words
(types) and 7 running words (occurrences). By frequency of
a word, we mean the number of its occurrences in a given
text.

The Zipf law (###) states that the most frequent words
are much more frequent than the less frequent words. Given
a text, denote r (w) the statistical rank of a word w in this
text, i.e., the number of different words which has higher
frequency than w. Then the frequency f

(w) of the word w is
approximately

z

wr

C
wf

)(
)(≈ ,

where C is a constant and z is near 1. Fig. ### graphically
illustrates the real distribution of the frequencies ordered by
the tank for a typical document, together with the approxi-
mation given by the formula: as one can see, only the most

frequent 300 lexemes appeared in this English document
more that 50 times.

Presumably, one of the consequences of the Zipf law is
the Heaps law (###). It states that the number of different
words is a text is much less than the size of the text. Given
a text, denote v

(n) the number of different words whose
first occurrence is the running word with the number less
than n in the text. Then this value is approximately

h
nDnv ≈)(,

where D is a constant and h is reported in (###) to be in the
range between 0.4 and 0.6. Fig. ### illustrates the distribu-
tion of the number of different words occurred before the
n-th position for a typical document: as one can see, this

90,000-word English document contains only 6,000 differ-

ent lexemes.

We have conducted some experiments to

validate these laws. Unlike (###), in these
experiments, we approximated the whole
range of distribution (for Zipf coefficient, we
ignored the first 10 ranks). Fig. ### shows a
sample of the results for three English, Span-
ish, and Russian documents. All documents
had the size of 100,000 running words or
more. This figure also shows the average
values for the corresponding languages
found in our experiments. The average was
calculated over 39 texts for English and
Russian and 3 long texts for Spanish. In fact,
Fig. ### presents the results for one of the
documents from our collection.

Thus, the number of words in a large
enough text is approximately proportional to
a square root of its size. What, however, is
the number of different words in a language?
There are different ways to answer this ques-
tion. A large dictionary usually has about

200,000 words (lexemes, or stems). Using the values given
in Figure ###, we can predict that an English texts needs to
be at least 48 million words long for each of these words to
appear at least once in it. However, together with scientific
and special terms, the estimated number of words in a lan-
guage is about 1 million, which gives 1 milliard word long
text (10 GB).

However, one can count not different lexemes but differ-
ent wordforms (strings). Even though the strings ask, asks,
asked, asking belong to the same dictionary entry ask, they
can be counted as separate types. In our experiment, we
observed that 90,000 most frequent Russian words (lex-
emes) generate 2,234,000 different strings. Using again the
values from Figure ###, one can see that a 36 million words
long text is needed for each of these wordforms to occur at

Fig. ### Fig. ###

Zipf Heaps

Wordforms Lexemes Wordforms Lexemes

z C z C h D h D

0.96 9480.53 0.97 10638.11 0.50 21.74 0.45 32.08

0.98 12854.57 0.99 18140.46 0.61 5.40 0.58 6.41English

1.01 7431.42 1.00 7869.44 0.63 6.02 0.59 8.67

1.04 3224.48 1.10 6107.22 0.72 2.59 0.62 4.83

1.06 55944.81 1.14 110879.83 0.58 12.66 0.53 13.88Spanish

1.04 3027.26 1.10 5589.66 0.65 5.49 0.57 8.83

0.95 4764.25 0.90 5156.40 0.78 3.75 0.64 10.75

0.91 9170.19 0.99 16305.47 0.68 7.09 0.50 25.85Russian

1.02 12004.91 1.04 16610.19 0.77 2.74 0.69 4.20

Fig. ###

Zipf Heaps

Wordforms Lexemes Wordforms Lexemes

z C z C h D h D

English 1.00 15396.60 1.01 17335.70 0.57 12.61 0.53 17.24

Spanish 1.05 20732.20 1.12 40858.90 0.65 6.92 0.57 9.182
Russian 0.93 5162.33 0.96 7926.62 0.76 4.18 0.63 10.05

Fig. ###

least once. Thus, for a 200,000 words dictionary, 100 mil-
lion words long text (1 GB) is needed. We expect similar
results for Spanish.

Finally, in agglutinative languages like Turkish the num-
ber of wordforms is potentially unlimited, so in such a
language the number of different words (counting word-
forms, not stems) is infinite.

The conclusion is that even in a quite large text, only a
small fraction of the words (stems or wordforms) poten-
tially existing in the given language occurs.

It seems obvious that in specialized document collec-
tions (such as medical records or legal contracts) even a
smaller part of all words potentially existing in the language
occur (since the words of other language styles and topics
do not occur in such collections), though we did not con-
duct the corresponding experiments.

5. 2 Lazy query expansion method

The improvement we suggest for the method of query ex-
pansion consists in including into the expanded query only
the strings known to be present in at least one document of
the given database. Since only a small fraction of all possi-
ble forms of a word or sub-concepts of a concept is present
in the database, this greatly reduces the size of the ex-
panded query. At the same time, when applied to the spe-
cific database, such a reduced query is equivalent to the
fully expanded query. We call this modification of the ex-
pansion procedure lazy expansion.

The process of lazy query expansion can be sketched as
follows.

• A list of all strings that appear at least once in the given
database is compiled.

• This relatively small list is indexed as described in sec-
tion 3, which produces an index table such as the one
shown in Fig. 2.

In this figure, by the identifier (ID) we mean a re-
duced form, such as reduced to the lowercase, morpho-
logically reduced to the main form, promoted up the tree
in the thesaurus, etc., see section 2 (we did not show in
this table the improvements discussed in the sections 3
and 8).

• At the moment of processing the query, each keyword of
the query is subject to an appropriate indexing process
depending on the user-defined option, for example, to
morphological reduction to its main form, e.g., comput-

able → compute, thus giving a potential ID. In case of
ambiguity, all potential IDs are obtained.

• The ID(s) for each query keyword are looked up in the
right column of the table, and the word is substituted
with the list of the corresponding literal strings found in
the left column.

For example, with the table above, the query “what
things are computable?” is transformed first into the query
“ID = compute” and after the lookup in the table, into the
query “computes OR computing OR uncomputability.”
Note that it does not contain such strings as compute, com-
puted, nor the very source form computable since they do
not occur in the documents in the database.

To process a complex query, such as, for example, type
3 query discussed in the section 2.3, the thesaurus is navi-
gated correspondingly and the query is first built as a dis-
junction of the relevant lexemes or concepts as shown on
Fig. 1. Then such a query is further expanded through the
index table as described above.

The suggested modification of the query expansion
method does not have any disadvantages of the latter, thus
presenting the following advantages as compared with full
query expansion:

• Smaller queries. Only the words really appearing in the
database are included into the query. The difference is
especially sensible in the languages with developed
morphology. For example, of about 700 forms of the
frequently used Spanish verb comer ‘to eat,’ in the data-
base of the Senate of Mexican Republic appeared only
29, e.g., comiéndose ‘being eaten,’ comérselo ‘to eat it

up,’ etc.; of more than 100 forms of falsificar ‘to falsify,’
appeared only 11, e.g., falsificarla ‘to falsify her,’ falsi-
ficadas ‘thosefeminine being falsified,’ etc.

• Only reduction. The algorithm does not use any genera-
tion; instead, only reduction—such as reduction to low-
ercase or morphological reduction—is used. This greatly
simplifies the lingware, allowing for a rather simple heu-
ristic-based morphological algorithm.

Of course, the suggested method still has some disadvan-
tages as compared with the full query expansion or index
expansion methods.

• Need to maintain the list of strings. As compared to the
full query expansion, the suggested method requires to
maintain an additional data structure. In the next section

String ID String ID String ID

computer computer computes compute mainframe computer
Computer computer computing compute mainframe device

CompuTer computer uncomputability compute mainframe artifact

Fig. 2. The table used for lazy query expansion.

we will show that this does not present serious mainte-
nance problems.

• Still increase in query size. As compared to the index
expansion, the queries are still increased in size, though
not as much as with full query expansion.

• Options may look strange. As compared to the full query
expansion, the list of strings presented to the user for ed-
iting (see section 0) may look incomplete, especially if
the user does not understand how the method works and
why some word forms, e.g., computes, computing, and
uncomputability are present in the list while other ones,
e.g., compute or computed, are not.2 This, however,
should not be a serious problem.

6. System architecture

The success of application of our method depends on the
index updating procedure, which we will describe below.
Another interesting feature of our method is the possibility
of gradual query expansion, which we describe in the next
subsection.

6. 1 Updating the index

In the previous section, the necessity of maintenance of the
list of strings and the index table was mentioned as a poten-
tial source of complications or undesired coupling of the
indexing technology with the lingware. Here we will show
how we avoid these problems in our system. There are two
potential sources of problems:

• Updating the list of strings and the index table when the
database changes, and

• Updating the index table when the lingware changes.

The latter point does not present any real problem since
the list of the strings found in the database is very small in
comparison with the whole database. Thus the index table
is simply rebuilt from this list each time the lingware is
changed, with no significant load on the system.

The former point is only slightly more difficult. To keep
the existing database maintenance technology independent
of the linguistic module that builds and uses the list of the
strings, we use an independent process (an agent, or a dae-
mon in UNIX terminology) that periodically (at time inter-
vals depending on the current system load) synchronizes
the list with the actual database. There are two possible
ways to achieve such synchronization.

With one method, the database index is accessed by the
agent and enumerated alphabetically. The agent re-builds
the word list and compares it with the current one, thus
detecting what words have been introduced and what ones

2 Note that the list cannot be completed with the words absent in

the database since the heuristic-based morphological algorithm

being used for reduction is not designed for generation of all

possible word forms.

have disappeared. The disappeared entries are removed
from the table, and the new ones reduced (to the lowercase,
morphologically, and with the thesaurus) and added to the
table.

Another method requires an additional Boolean property
of the document—indexed—to be kept in the database.
When a new document is added to the database, this prop-
erty is set to false. The agent periodically addresses the
database with the query “indexed = false,” retrieves some
of the found documents (depending on current system
load), extracts the letter strings from them, adds to the list
and the table those ones that are not yet there, and marks
the document as indexed = true.

The two methods have the following advantages and dis-
advantages:

• The second one allows treating the DBMS as a black
box, while the first one requires the direct operation on
its internal structures.

• The first one does not require any changes in the data-
base maintenance technology used by the customer,
while the second one requires a small change in the da-
tabase structure.

• The second method allows indexing documents with the
properties not related to individual words, but rather to
specific word combinations or to the whole document,
such as the main topic of the document (Gelbukh et al.,
1999; Guzmán-Arenas, 1998).

• The second method does not provide a convenient way
to detect deleted documents and thus the words having

disappeared from the index.

The latter is not a serious problem since the strings pre-
sent in the list but absent in the database do not affect the
results of the search though do reduce system performance.
One of the possible solutions to this problem is to periodi-
cally (say, once a month) rebuild the whole list. For this,
the property indexed is made of the type date rather than
Boolean. To rebuilt the list initiating the rebuild process,
say, on 01-apr-2000, the agent retrieves the documents with
“indexed < 01-apr-2000,” analyzes found documents, and
sets the property to “indexed = today.”

6. 2 Overall system architecture.

Partial expansion

Our system is built on top of the existing operational tech-
nology treated as a black box. The information flow is
intercepted in the three points:

• The user query is intercepted, analyzed, and substituted
with an expanded query using the lazy query expansion
technique. The new query is presented to the user in a
user-friendly form for possible editing. If necessary, the
expanded query is broken down into a series of smaller
queries (see below).

• The response of the DBMS is intercepted, analyzed,
and—in case of a broken query—one response is com-
piled of several partial query results.

• At the moments of low system load, an agent periodi-
cally analyzes the database to update the word list and
thus the substitution table used for lazy query expansion.

To improve performance in cases when the expanded
query is too large, the query is expanded partially with the

words that are most closely related to the original user

query. For example, in type 1 query discussed in section

2.3, first of all reducing to lowercase and then morphologi-

cal reducing is tried. Only in the case if such a partially

expanded query does not result in a sufficient number of

found documents, the type 2 expansion is tried, see Fig. 1.

If this query is not sufficient, the fully type 1 expanded

query is performed. As soon as, however, a partial query
results in a sufficient number of the documents (say, 10),

they are sorted by relevance and presented to the user. Any

further search is performed only if the user asks for more

results. With this technique, in the most cases much smaller

queries proved to be sufficient.

This technique is based on the presupposition that the
documents containing the words nearer (in the sequence
letter case > morphology > thesaurus) to the original user
query keywords are always more relevant for the user.
Actually, the user should be able to control the exact order

of the partial queries. For example, in some cases morpho-
logical declension might be preferable to the lowercase
reduction, e.g., State can be considered nearer to States than
to state (cf. also section 7.2).

7. Experimental results

We investigated a 200 MB subset of the database of the
Mexican Senate containing a representative mixture of the
discourses of the Senators, laws, and other working docu-
ments of the Senate. The corpus contained 21,378,740 letter
strings (running words), of them, only 174,386 strings dif-
ferent ones (0.8%). Then we reduced the strings in various
ways. Obviously, the ratio of such reduction is equal to the
ratio of inflating the query when lazy query expansion is
used.

First, lowercase reduction gave 102,715 different strings,
which shows that with only letter case equivalences taken
into account, the query is inflated insignificantly—less than
twice. The results for morphological and thesaurus-based
expansion are discussed in the next subsections.

7. 1 Morphological query expansion

For our experiments we used a very simple morphological
procedure based on a list of all possible chains of postfixes
(suffixes, endings, and clitics) potentially used in Spanish,
total of 3,578: -a, -aba, -abais, -abamos, -aban, -andoselas
‘-ing themfeminine to him’, ..., -eandoselo, -eandoselos,

-eandoseme, -eandosenos, ..., -ismo, -ismos, -ista, -istas, ...,
etc. Reduction of a word consists simply in removing the
postfix; in case of ambiguity, all possible variants of reduc-

tion are tried: hablaba ‘was speaking’ → hablab-, habl-.
Note that our reduction involves meaningful suffices, e.g.,
comunismo ‘communism’, comunista ‘communist’, comu-

nes ‘commonplural’ → comun-, which increases the expan-
sion ratio; our intention was to increase the recall with a
simple and robust method.

Clearly, the method we used produces many incorrect
stems and sometimes erroneously considers different words
as if they had common stem, e.g., démosle ‘let us give him’
and día ‘day’ are assigned a common stem d-, see below.
At later stages of the development of our system, a diction-
ary-based morphological analyzer will be used and the
meaningful suffixes will be treated in the thesaurus; the
postfix-list-based method will only be applied to the words
absent in the morphological dictionary. This will further
improve the query inflation ratio and the precision of the
search.

Morphological reduction with our simple method
showed that the database used 55,489 different stems.
Therefore, the average number of strings per stem—i.e., the
average ratio of lazy query expansion using only morphol-
ogy—was about 4. We distinguished lowercase and upper-
case letters; for example, the stem cultiv- was represented
by three strings: Cultiva, cultiva, and cultivaron. The larg-
est number of strings (including typos) per stem was
279 (stem d-: D, Dádme, Dé, Démos, Démosle, Démosles,
Dénnos, Día, Días, Díza, DA, DADO, ..., duelo, duelos),
then 201 (stem s-: S, Sán, Sé, Sí, SA, SADAS, SAL, SALA,
SALAS, SALES, SAN, ..., suelo, suelos), then 200 (v-),
190 (c-), 172 (m-), 171 (p-), 150 (t-), 140 (r-), 131 (l-),
125 (est-: éstó, ésta, éstan, éstas, éste, éster, ésto, éstos,
ESTA, ESTABLE, ESTADO, ESTADOS, ..., estira, esto,
estos), the latter being the first non-single-letter stem in the
list. For 183 stems, i.e., only 0.3% of the total stems present
in the database, the number of strings per stem was greater
or equal to 50, the total number of strings corresponding to
these stems being 12377, i.e., 7% of the total number of
different strings in the database.

As one can see, the words causing high expansion ratio
are short words, mostly the forms of auxiliary verbs, or
words with very broad meaning, or words incorrectly iden-
tified by our morphological procedure as having the same
stem. Thus, though the average ratio of morphological lazy
query expansion calculated by the strings of the database is
4, excluding the words with broad meaning that are not
used in real queries and improving the morphological pro-
cedure would further decrease this figure. Indeed, in the
real user queries, the average ratio we observed (with our
postfix-list-based morphology) was about 3, which is a very
promising result.

To evaluate this result—3 times query inflation with case
and morphology reduction—let us consider the inflation
ratio for case and morphology reduction with full query

expansion, i.e., without the information on what strings are
actually present in the database. In Spanish, a lexeme has
on average about 300 wordforms (nouns 2, adjectives 4,
verbs 700); so, the query is to be expanded 300 times.
Then, each of these forms, in theory, can have about 1,000
letter case variants (10 letters, each one in lowercase or
uppercase). This gives, for each query word, 700,000 vari-
ants word to be tried. Even if only three case variants are
considered (car, Car, CAR), the number is 2,100—while
lazy expansion gives only 3.

7. 2 Thesaurus-based query expansion

Here are two examples of thesaurus-based query expansion
of type 1; see Fig. 1. In our dictionary, the concept a Mexi-
can city consists of 2,413 names. When the name of city
consisted of several words, e.g., La Paz, we considered
both strings independently, as if the list included both
words la ‘the’ and paz ‘peace,’ which resulted in 2,129
strings (due to repetitions of parts of the names). The data-
base happened to mention 1,130 such words with case ig-
noring comparison, or 1,780 strings if uppercase and lower-
case letters are distinguished.

Actually, only 1,077 of these were the names of cities,
the rest being the words accidentally matching the name of
a city (or a part of such a name) because of prior lowercase
reduction, e.g., the word paz ‘peace’ matching the city
name La Paz. This example shows once more the impor-
tance of the user’s control over the types of reduction ap-
plied to the query: in this case, the thesaurus-based reduc-
tion should be applied without the lowercase reduction.
With the index expansion technique, the decision on the
order of application of reduction types is made at the mo-
ment of indexing (though it can be made in an intelligent
manner for each word individually) and cannot then be
changed by the user.

The concept body parts in our dictionary is represented
by 97 words: barba ‘beard’, barbilla ‘chin’, ..., mejilla
‘cheek’ ..., torso, tripa ‘intestine.’ The database happened
to mention 55 of them, or 86 strings with letter case distin-
guished. Most of these words were mentioned in the dis-
courses of the Senators of rather sonorous style, e.g., “And
will we now turn the other cheek?”, “We will not drop on
our knees!”

To evaluate this result, let us notice that with full expan-
sion, all the words below some node are to be tried. Say, in
the case of the concept a Mexican city, 2,413 variants
would be tried, while lazy expansion gives 1,130.

Therefore, with pure thesaurus-based expansion, lazy
expansion does not provide substantial improvement as
compared with full expansion. The query inflation ratio is
high and might be not affordable in practice.3 However, as

3 In our system, the application of query expansion is based on

the Informix DataBlade’s synonym list feature. Our tests

showed that this feature works with the entry size up to 3,000

we have mentioned, due to the very nature of a thesaurus
reflecting “general” knowledge that often proves to be not
suitable for a particular user, as well as due to rather low
quality of existing dictionaries, this type of expansion espe-
cially needs in the degree of user’s control that cannot be
provided by index expansion. Therefore, we consider the
disadvantage of the query expansion method to be techni-
cal, i.e., temporal, while its advantage—a greater degree of
control—to be fundamental. Note that as the dictionary is
being elaborated, the inflation ratio will not significantly
increase since the new words being added to the dictionary
are of low frequency in the texts. In the next section, a
possible workaround for the problem of too high query
inflation will be discussed.

8. Future work: A combined technique

Even with the proposed technique, query expansion still
slows down the system by inflating the user query, espe-
cially in case of thesaurus-based expansion. On the other
hand, index expansion has an advantage of using the con-
text of the word:

• Multiword expressions and idioms in the thesaurus, such
as hot dog, can be handled naturally at the stage of in-
dexing of the full text of the document.

• The words can be disambiguated in context; e.g., with
the query “wells,” the text oil well will be found while he
did it well not.

• The structure of the document can be taken into account,
e.g., words in the title or abstract can be indexed differ-
ently from the words in the main text.

• The global properties of the document not related with
any specific word in it, such as the main topic of the
document (Gelbukh et al., 1999; Guzmán-Arenas, 1998),
can be used for indexing.

To provide these features without sacrificing the flexibil-
ity of the query language, the index expansion can be used
in combination with the query expansion. The first step to
such combination is the following. Both methods are im-
plemented in the system; in particular, the documents are
indexed with index expansion as explained in section 3.
The user queries of standard types such as full morphologi-
cal reduction or a full type 1 thesaurus-based query (see
section 2.3), are processed fast with the expanded index
without any query expansion. In the rather rare case when
the user somehow modifies the list of strings to be matched,
index expansion is used.

The division of work between the two methods can be
optimized. For example, only deep levels of the thesaurus
can be considered for index expansion (matrix, equation,

inequality, ... → UP-mathematics, see section 3), while the

synonyms for one headword. Thus, with this particular plat-

form, thousand-fold expansion is still possible.

upper level hierarchy, if need by the query, can be taken

into account by query expansion (science → UP-
mathematics OR UP-physics OR UP-chemistry). What is
more, the way the users most frequently modify their que-
ries can be automatically, semi-automatically, or manually
learned and implemented in the index expansion. For ex-
ample, if the users frequently exclude the form como from
the paradigm of the Spanish verb comer (see section 2.2),
then it should be excluded at the stage of index expansion;
the query with the unmodified paradigm will be internally
(and transparently for the user) implemented, if needed,
through query expansion as “MORPH-comer OR como.”

In addition, the index expansion can be further improved
when used in combination with query expansion. In the
section 3 we introduced the marks for the keywords added
to the index during expansion, such as MORPH-, UP-, etc.
To allow even more flexibility necessary for the type 2 or 3
thesaurus-based queries (see Fig. 1), the distance (in terms
of levels) from the source word to the generalized concept
is to be marked in the index. With this, the example from

the section 3 can be rewritten as follows: Mainframes → ...,
UP-1-computer, UP-2-device, UP-3-artifact. Now the type

2 query “devices, but not more than 2 levels down” is im-

plemented as query expansion “UP-1-device OR UP-2-

device” and thus will fetch Mainframes, while the query

“artifacts, but not more than 2 levels down” internally im-

plemented as “UP-1- artifact OR UP-2-artifact” will not.

The queries of the other three types are implemented

similarly by enumerating the relevant nodes. Even if the
user excludes some words or nodes from the sub-hierarchy,

which results in a non-standard query, the nodes kept intact

can be enumerated in the UP-... notation instead of enumer-

ating all keywords as was suggested in sections 0 and 5.

The original keywords like UP-computer can be kept in the

index and used only for the most frequent—type 1—

queries.

The combined technique compensates for the query in-

flation problem caused by query expansion, especially of

the thesaurus-based type. It has the advantage of higher

performance due to smaller queries, without sacrificing
flexibility. Obviously, it implies both advantages and dis-
advantages of index expansion. Specifically, it gives the
advantage of the possibility to consider the context. On the
other hand, it introduces the methodological and technical
disadvantages of index expansion listed in the section 3,
such as maintenance problems and undesirable coupling of
the DBMS and the lingware. A closer investigation of the
combined technique will be the direction of our future
work.

9. Conclusions

We have shown that the traditional technique for non-literal
string matching in information retrieval—index expansion
—has some inherent disadvantages, and have suggested a
new technique—lazy query expansion—that allows greater
flexibility of queries, better overall system architecture, and
easier maintenance.

Our method still has two problems: (1) the expanded
queries in some cases are significantly larger and thus work
slower, and (2) it is not obvious how to take the context of
the keyword into account. As a solution, a combination of
the query and index expansion methods was discussed.

References

Aho, Alfred V. Algorithms for finding patterns in strings. In
J. van Leeuwen (ed.), Handbook of Theoretical Computer
Science, chapter 5, pp. 254-300. Elsevier Science Publishers B.
V., 1990.

Cassidy P. An Investigation of the Semantic Relations in the
Roget’s Thesaurus: Preliminary Results. In: A. Gelbukh (ed.),
Computational Linguistics and Intelligent Text Processing, IPN-

UNAM, Mexico, to appear. See also Proc. of CICLing-2000,
February 2000, CIC-IPN, Mexico City, ISBN 970-18-4206-5.

Gelbukh, A. A data structure for prefix search under access

locality requirements and its application to spelling correction.
Proc. of MICAI-2000: Mexican International Conference on
Artificial Intelligence, Acapulco, Mexico, 2000.

Gelbukh, A., G. Sidorov, and A. Guzmán-Arenas. Use of a

Weighted Topic Hierarchy for Document Classification, Matoušek
et al., TSD-99: Text, Speech, Dialogue. Lecture Notes in Artificial
Intelligence N 1692, Springer, 1999.

Gusfield, Dan. Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, 1997; ISBN: 0521585198.

Guzmán-Arenas, Adolfo. Finding the main themes in a Spanish
document, Journal Expert Systems with Applications, Vol. 14, No.
1/2. Jan/Feb 1998, pp. 139-148.

Fellbaum, Ch. (ed.) WordNet as Electronic Lexical Database.
MIT Press, 1998.

Frakes, W., and R. Baeza-Yates, editors. Information Retrieval:
Data Structures and Algorithms. Prentice-Hall, 1992.

Hausser, Ronald. Three principled methods of automatic word

form recognition. Proc. of VEXTAL: Venecia per il Tratamento
Automatico delle Lingue. Venice, Italy, Sept. 1999.

Koskenniemi, Kimmo. Two-level Morphology: A General

Computational Model for Word-Form Recognition and
Production. University of Helsinki Publications, N 11, 1983.

Kowalski, Gerald. Information Retrieval Systems Theory and
Implementation, Kluwer Academic Publishers, 1997.

Lenat, D. B. and R. V. Guha. Building Large Knowledge Based
Systems. Reading, Massachusetts: Addison Wesley, 1990. See also
more recent publications on CYC project, http://www.cyc.com.

Alexander Gelbukh was born in Moscow in 1962. He obtained his Master degree in Mathematics in
1990 from the department of Mechanics and Mathematics of the Moscow State “Lomonossov”
University, Russia, and his Ph.D. degree in Computer Science in 1995 from the All-Russian Institute of
the Scientific and Technical Information (VINITI), Russia. Since 1997, he is the head of the Natural
Language and Text Processing Laboratory of the Computing Research Center, National Polytechnic
Institute, Mexico City. He is a member of SNI, Mexico, since 1998. He is the author of about 100

publications on computational linguistics. See http://www.cic.ipn.mx/~gelbukh.

