

Method and Means of Development

of Context-Free Grammars

for Natural Language Parsers

A. GELBUKH,
1,2

 G. SIDOROV,
1
 S. N. GALICIA-HARO,

1
 and I. A. BOLSHAKOV

 1

1
Natural Language and Text Processing Laboratory,

Center for Computing Research, National Polytechnic Institute,

Av. Juan Dios Batiz s/n, Zacatenco 07738, Mexico City

MEXICO

2
Department of Engineering and Computer Science,

Chung-Ang University,

221 Huksuk-Dong, DongJak-Ku, 156-756, Seoul,

KOREA

Abstract: - We discuss the requirements for the system that performs the analysis of natural language at the

syntactic level. We also present the environment that allows development of context-free grammars for natural

language parsers. The environment was tested for Spanish language, resulting on the development of a Spanish

morphological analyzer. The environment gives the user the possibilities to develop and debug grammars of

new languages. It has an option of ordering different parsing variants according to their probabilities on the

basis of a specialized dictionary of government patterns.

Key-words: Context-free grammars, natural language parsing, language engineering, knowledge engineering.

1 Introduction

A natural language processing system usually relies

on two possible sources of information: statistical

information and/or large lexical resources

(dictionaries). As any software system, it requires

developing and implementation of algorithms.

Linguistic algorithms, apart from programs, include

formal grammars that can be applied by programs

called parsers, for syntactic analysis of texts.

Formal grammars differ from traditional grammars

from textbooks in that they have strict format and

can be automatically interpreted by specialized

computer programs.

Large lexical resources are dictionaries that

contain different kinds of information. For

example, morphological dictionary contains the

information about grammatical classes of words or

stems, as well as other relevant information for

correct declension or conjugation [Gelbukh and

Sidorov, 2003]. A dictionary of subcategorization

frames (government patterns) [Gelbukh et al.,

1998] presents information about syntagmatic

relations between words that play different

syntactic roles, such as direct object, indirect

object, etc., usually expressed through prepositions

or grammatical cases. A special type of dictionaries

is thesaurus, which lists for the words their

relations with other words such as homonyms,

hyponyms, etc.; see, for example, [Gelbukh et al.,

1999].

Statistical information is obtained by analyzing

another type of large textual resources, namely,

corpora. A corpus is a large collection of texts with

certain characteristics, such as certain genre or a

balanced mixture of genres, etc. Its size can vary

from several megabytes to several gigabytes.

Corpora augmented by additional linguistic

information, for example, morphological tags,

syntactic relations, etc., usually are more useful for

linguistic research.

In this paper we discuss an approach to

building machine-readable grammars for syntactic

analysis of natural language texts. It is based on

lexical resources, though statistical information was

used for its construction— for example, for

construction of the dictionary of subcategorization

frames.

In the rest of the paper, we describe the

environment that presents a means for development

of context-free grammars for natural language

processing. The environment also uses some

specialized dictionaries, such as morphological

dictionary and dictionary of subcategorization

frames.

The paper is organized as follows. Section 2

presents the environment for developing natural

language grammars. Section 3 describes the use of

this environment. Finally, Section 4 draws some

conclusions.

2 Description of the Environment

Our environment loads a context-free grammar and

then applies it to parsing of sentences written in

natural language. During the parsing it presents

information on the steps it executes and the rules it

uses, so that the developer of the grammar can

easily see the effects of changes to the grammar

and the work of individual rules and groups of

rules.

In the environment there are possibilities to

write a new text or load for the analysis already

existing texts. The text can have different formats:

– Texts in free format. In this case the

environment applies morphological analysis to

the words of the text. In our case the

morphological analyzer is for Spanish

language, however, by changing the module of

morphological analysis the system can process

other languages.

– The sentences can have the form of <word,

lemma, grammar information>, one tuple per

line. This is the format of one of existing

Spanish corpora, namely, LEXESP. The

format of grammar information was borrowed

from the same corpus.

– Another possibility to avoid morphological

analysis is to add all necessary words in their

different grammar forms to the CF grammar.

Note that the words in languages other than

English can have very many grammar forms,

so it is not very convenient solution. Say, in

Spanish verbs have 65 forms, not counting

clitic forms.

The main result of the application of a

grammar is the syntactic tree built for each

sentence, such as the one shown in Figure 1. The

left part of the figure shows the individual

sentences of the text under analysis. Moving the

position of the active sentence in the left-hand

panel, the user can see the syntactic tree (more

precisely, the variants of the syntactic tree) built by

the program for the current sentence. The

representation of the tree can be textual (as a list of

nodes and their relationships) or graphical (as a tree

drawn by lines on the screen). Obviously, graphical

form is much more intuitive.

The environment allows different modes of

representation of syntactic information: in form of

dependencies or in form of constituents [Mel’cuk,

1988]. The difference between these formalisms is

that constituents reflect the nested structure of the

grammatical parts of the sentence, while

dependencies focus on the relations between the

head word and its dependents [Steele, 1990].

Representation using dependencies is presented in

textual form in Figure 2. The conversion from the

Figure 1. Representation of syntactic tree in graphic form.

constituency output of the grammar to the

dependency tree can be performed thanks to

inclusion of head markers in the grammar. With

this, inclusion of a constituent into a larger one can

be treated as a dependency link between the

correspondent heads.

Usually there are many syntactic variants that

can correspond to the given sentence. For example,

the sentence I see a cat with a telescope can be

interpreted as

[I see [a cat] [with a telescope]]

(meaning ‘I use a telescope to see a cat’) or

[I see [a cat [with a telescope]]]

(meaning ‘I see a cat that has a telescope’). Our

syntactic analyzer assigns likelihood weights to

different possible variants. The variants are ordered

according to these weights, so that the most

probable variant is shown first. However, the user

can select other variants to see the corresponding

alternative trees. The menu of the variants is shown

in the right-hand side of Figure 1.

The details of calculation of the likelihood

weights are shown in Figure 2. They are calculated

on the basis of the information about

subcategorization frames present in the dictionary.

An example of this information is presented in

Figure 3. In this figure, one can see that different

possible combinations of syntactic roles have

different probabilities (learnt automatically from a

large text corpus), and the resulting value is a

combination of these values. More details about the

method of assigning the likelihood weights through

the learnt probabilities can be found in [Gelbukh,

1999].

The system provides different views that show

different aspects of the analysis. Very important is

the possibility to trace each step of the application

of grammar. The correspondent tracing is shown in

Figure 4. This view allows analyzing which rules

were applied and in what order. The result of the

current connected branch of the parsing tree for

each rule can be seen at the right side of the

Tracing view.

In addition to the syntactic structure, tracing,

and information about subcategirzation, which

explains the weights assigned to variants of

parsing, the system presents various views that

allow debugging of the grammar, such as

Morphology and Dump. We do not describe here

these additional views.

The system relies on external software modules

for compilation of the grammar prior to its use. The

language engineer writes a context-free grammar as

a plain text file in a special format. Then it is

automatically converted into a binary grammar file

used by the system to process the input texts. From

Figure 2. Weights of variants.

the point of view of the user, this conversion is

done through execution of the compilation program

with certain parameters. During the execution of

the program unification procedures are applied to

model various aspects of grammatical concordance.

Thus it is not necessary for the linguist to write all

the possible rules manually, as shown in the

following example.

Consider an example of Spanish grammar:

NP(nmb,gnd)

 → [det:DETER(nmb,gnd)] @:NOM(nmb,gnd)

 → @:PPR [prep:PP]

 → [det:DETER(nmb,gnd)] @:'cual'

 → mod:'todo' @:NP(nmb,gnd)

AP(nmb,gnd)

 → @:ADJ(nmb,gnd) comp:ADJ(nmb,gnd)

 → @:ADJ(nmb,gnd) [',' comp:AP(nmb,gnd)]

 → AP(nmb,gnd) @:CONJ c_conj:ADJ(nmb,gnd)

 → @:ADJ(nmb,gnd) prep:PP

The left-hand part of the rules is written before

the first arrow “→”. The variants of the right-hand

part of a rule are given after the arrows. This

notation is a shorthand for several rules with the

same left-hand part.

The parts of the rules in square brackets are

optional; thus a rule with a construction in square

brackets is a shortcut for two rules, one with the

construction in question and another one without

this construction.

The symbol @ marks the head of the syntactic

relation. This information is not needed for the

analysis of the constituency structure, but is used

for conversion of the constituency tree into

dependency tree. Namely, the dependency links are

drawn from the head of the enclosing constituent to

the heads of the immediately nested constituents.

The use of the variables nmb and gnd allows

for definition of the agreement between noun and

its modifier using unification techniques. Namely, a

rule with variables is a shorthand for several rules,

one for each combination of the specific values of

the variables. For example, the rule with two

varaibles, say, number and gender, stands for four

individual rules with singular masculine, singular

feminine, plural masculine, and plural feminine.

Some special words with grammatical function

in Spanish grammar can be indicated. For example,

in case of nominals, these are todo ‘all’, cual

‘which’, etc.

A real-world Spanish grammar that we

developed contains only 150 lines of manually

written rules. So little number of rules is possible

due to unification mechanism described above.

After compilation, these rules are automatically

converted in ca. 10,000 standard context-free rules

in the Chomsky normal form, without any

Figure 3. Subcaterization information.

shorthands and any special notation. However, the

information on the heads of the constituents and the

names of the grammatical relations is preserved in

these rules. An example of the obtained rules can

be given as follows:

N(PL,FEM) → @:N(PL,FEM) comp:N(PL,FEM)

N(PL,MASC) → @:N(PL,MASC) comp:N(PL,MASC)

As one can see, instead of variables nmb and

gnd, their real values MASC, FEM, SG, and PL are

used (standing for masculine, feminine, singular,

plural).

3 Method of Development of the CF

Grammars

The process of manual development of a large

grammar using the presented system can be

characterized as follows. The linguistic knowledge

engineer prepares a CF grammar taking in account

the unification features that will be applied to

expand the manually written grammar to the

complied internal form. The grammar is complied

and then loaded into the environment.

A small corpus of several test sentences in the

given language should be prepared. It is desirable

that these sentences be representative of different

syntactic phenomena of the given language.

Then the main procedure of development and

debugging of the grammar is being carried out.

According to the information presented by the

system under the Tracing and PMS

(subcategorization frames with assigned

probabilities) Tabs, the grammar developer can find

out the reasons for some sentences to not be parsed

or to be parsed incorrectly. The corresponding

changes of grammar are made and its recompilation

is performed. This process is repeated iteratively

until satisfactory results are obtained.

4 Modular Structure of the

Weighting Process

The weighting process described above currently

uses only the information about subcategorization

properties of words. However, many different

sources of evidence can—and should—be taken

into account when determining the likelihood of a

variant of the syntactic tree to be the intended one

[Galicia-Haro et al., 2001]. These can be of

statistical nature with different features selected for

generalization, of semantic, pragmatic, or some

another nature.

Figure 4. The trace record of the analysis.

The system includes the possibility to plug in

new modules that provide sources of evidence for

syntactic disambiguation, and control the way the

scores assigned to the syntactic variants by the

individual sources are combined (“vote” for the

final weighting). The study of the effects of

different sources of evidence and different ways of

their combination on the overall performance of

syntactic disambiguation is one of the main

applications of the system.

The additional modules being currently under

development are based on:

– Collocations (word combinations): some

specific words tend to be used together (e.g.,

read a book) and some not (e.g., read a

house); this can be learnt automatically from

corpora.

– Selectional preferences: some words occur

together with words of certain semantic classes

of the WordNet hierarchy, (e.g., eat FOOD).

Similarly, some classes of words tend to occur

together (e.g., MOVE MATERIAL-OBJECT).

5 Conclusions and Future Work

We have presented a method and the means

(software environment) that allow for development

of the context-free grammars for a given natural

language language. The method consists in

development of a CF grammar and its further

debugging using the described environment. For

the time being, a grammar for Spanish language has

been built using the described procedure.

The future work consists in developing the

possibilities of lexicalization of the grammar and

development of a tool that would permit writing

and debugging of a grammar at the same time in an

interactive manner.

In addition, we plan to add new modules

contributing to the disambiguation process. Finally,

word sense disambiguation and anaphora resolution

facilities are planned to be incorporated into the

program, which is to improve the performance of

syntactic disambiguation modules.

Acknowledgements

The work was done under partial support of

Mexican Government (CONACyT, SNI, IPN, PIFI)

and Korean Government (KIPA Professorship for

visiting academic positions in Korea). The first

author is currently on Sabbatical leave at the

Chung-Ang University.

References:

[1] Galicia-Haro, S. N., A. Gelbukh, and I. A.

Bolshakov. Three Mechanisms of Parser

Driving for Structure Disambiguation. In:

Computational Linguistics and Intelligent Text

Processing (CICLing-2001), Lecture Notes in

Computer Science, N 2004, Springer-Verlag,

2001, pp. 190–192.

[2] Gelbukh, A., I. Bolshakov, S. Galicia Haro.

Automatic Learning of a Syntactical

Government Patterns Dictionary from Web-

Retrieved Texts. Int. Conf. on Automatic

Learning and Discovery, Pittsburgh, USA,

June 11–13, pp. 261–267, 1998.

[3] Gelbukh, A., G. Sidorov, A. Guzman-Arenas.

Use of a weighted topic hierarchy for

document classification. Václav Matoušek et

al. (Eds.). Text, Speech and Dialogue.

2
nd

 International Workshop TSD-99, Plzen,

Czech Republic, September 13–17, 1999.

Lecture Notes in Artificial Intelligence, N

1692, Springer-Verlag, pp. 130–135.

[4] Gelbukh, A. Syntactic disambiguation with

weighted extended subcategorization frames.

In: Proc. PACLING-99, Pacific Association

for Computational Linguistics, University of

Waterloo, Waterloo, Ontario, Canada, August

25-28, 1999, pp. 244–249.

[5] Gelbukh, A. and G. Sidorov. Approach to

construction of automatic morphological

analysis systems for inflective languages with

little effort. In: Computational Linguistics and

Intelligent Text Processing. Proc. CICLing-

2003, 4th International Conference on

Intelligent Text Processing and Computational

Linguistics, February 15–22, 2003, Mexico

City. Lecture Notes in Computer Science,

N 2588, Springer-Verlag, pp. 215–220.

[6] Mel’cuk, I. A. Dependency Syntax: Theory

and Practice. State University of New York

Press. 1988.

[7] Steele, J. Meaning – Text Theory. Linguistics,

Lexicography, and Implications. James Steele,

editor. University of Ottawa press. 1990.

