
Learning a Domain Ontology from Hierarchically Structured Texts

Pavel Makagonov MPP@MIXTECO.UTM.MX
Alejandro Ruiz Figueroa FIGUEROA@NUYOO.UTM.MX
Mixteca University of Technology, Huajuapan de León, Oaxaca, 69000, Mexico

Konstantin Sboychakov KSBOYCHAKOV@YANDEX.RU
Russian National Public Library for Science and Technology

Alexander Gelbukh GELBUKH@GELBUKH.COM
Center for Computing Research, National Polytechnic Institute, 07738, DF, Mexico

Abstract
Any scientific or technical document is
organized hierarchically: some sections of the
text (such as the abstract or conclusions)
summarize the contents of the main text; sections
have titles describing their contents in general
words; chapter titles describe the contents of a
set of sections; book title describes the contexts
of all chapters, etc. Moreover, whole collections
of scientific documents are usually organized
hierarchically: e.g., papers are organized in
journals, conferences, etc., which in turn have
their own titles. We exploit this hierarchical
structure to learn a lexical ontology, in which
subordination relationships roughly mirror those
between the texts and titles in which these words
occur: words occurring in more general titles
subordinate the words occurring in the texts
described by these titles.

1. Introduction

Our initial motivation was to develop a methodology for
quantitative and qualitative comparison of the state of a
field of science in certain periods of time, which allows
for detecting trends in its development and predicting its
future state (Kuhn, 1970; Makagonov & Ruiz Figueroa,
2004).

To portrait the state of a field of science (in a certain time
span), we use its ontology: an account of which words
describe its large branches in a general way and which

—————
 Appearing in Proceedings of the 22nd International Conference on
Machine Learning, Bonn, Germany, 2005. Copyright 2005 by the
author(s)/owner(s).

words describe the concepts or sub-branches within each
branch. The observation on which the work presented
here is based is that large branches of a field roughly
correspond to the titles of journals, books, or conferences
devoted to it; its sub-branches correspond to paper titles
published in these journals or conferences, etc.

There exist a variety of methods for automatically extract
ontologies from texts. E.g., Hearst (1992) looks for
patterns such as France and other European countries to
extract the fact that France is a European country from
texts. Paşca (2004) reports an experiment on application
of a similar method to a corpus of 500 million web pages.
However, the amount of texts available on a narrow
technical domain is insufficient for such methods. Our
approach, on the contrary, can cope with a relatively
small amount of data. On the other hand, existing
methods for extracting narrow-domain ontologies either
require manual effort (Martins et al., 2004) or can extract
a very small number of words. Our observation on the
usefulness of the hierarchical text structure provides an
alternative (or—as a future work—an additional) source
of information on relations between words.

Thus the aim of this work is to construct a hierarchy of
topics and subtopics in a given domain by extracting it
from a hierarchically structured text corpus so that the
subordination relationships between words in the
ontology mirror those between the text segments in the
text hierarchy where the given words occur. In particular,
the levels in the constructed ontology are in a one-to-one
correspondence with the levels in the text hierarchy.

Though the idea looks quite simple, there are a number of
details to consider in order for this idea to work in
practice. In what follows we define the main notions used
in our algorithm: Section 2 describes the input data used
for ontology construction and Section 3 the data structure
that the algorithm constructs. In Section 4 we describe the
algorithm itself, and in Section 5 we present the
experimental results. Section 6 concludes the paper and
discusses future work directions.

ipn
P. Makagonov, A. Ruiz Figueroa, K. Sboychakov, A. Gelbukh. Learning a Domain Ontology from Hierarchically Structured Texts. Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 2005; www.Gelbukh.com/CV/Publications/2005/ICML-2005-ontology.pdf.

 Learning a Domain Ontology from Hierarchically Structured Texts

2. Input Data: Text Corpus

Most of existing texts are hierarchically structured in such
a way that some their segments (which can be very short,
e.g., titles) are marked as “more general” than others. We
build our ontology hierarchy using such a text, as well as
some sources of statistical information, as described
below.

Hierarchically structured text is any text partitioned
into segments that are arranged in a tree (or, more
generally, in an acyclic directed graph) so that the “upper-
level” segments contain meta-information with respect to
their subordinated text segments. For simplicity we also
refer to such text segments as texts.

For example, in a book, the root is the book title (which is
a short text); the intermediate levels are formed by part
titles, then chapter titles, section titles, etc.; finally, the
full text of each section is a leaf below the corresponding
section title.

Another example is any HTML-encoded webpage
partitioned into subordinated text segments (titles and
main text) by the <h1> to <h6> tags that mark the
headers, sub-headers, sub-sub-headers, etc., with the main
text (text outside of such tags) corresponding to the leaves
of the tree.

In the experiments reported in this paper we used a
collection of abstracts of papers presented at conferences
on a specific domain, namely, on parallel, concurrent,
distributed, and simultaneous computing. Note that we
did not have access to the full texts of the papers but only
to the abstracts; this is because unlike the full texts, the
abstracts are freely available for download from the
Internet. Thus the collection had a three-level tree
structure, with the root level added for convenience, see
Figure 1. In the figure, the domain description consists of
its name: Parallel, concurrent, distributed, and
simultaneous computing.

Domain is a narrow technical topic, which in our case
was parallel computing. Narrow-domain texts include
three types of words:

– General-lexicon words appearing in any text. Such
words include articles, prepositions, or the words like
have, give, see, number, etc. Any information on such
words can be easily found in existing dictionaries.

– Technical terms used in a wider area of knowledge
and not only in the given narrow domain. For the
narrow domain of parallel computing these are words
used also in texts on other areas of computing, such
as program or execution.

– Terms specific for the selected domain, such as clock,
monitor, or semaphore for the parallel computing
domain.

In domain ontology we are only interested in the latter
type of words: domain-specific terms. These terms have
the following special properties as compared with the
general words or wider-domain terms:

– They are not homonymous (polysemous), i.e., they
are unambiguous. While in general-topic text the
word parallel can refer to two straight lines or two
similar ideas, in the chosen narrow domain it only
can mean simultaneous.

– They usually are not synonymous. While in general-
topic text clock can be substituted with watch,
chronometer, or timer, in the chosen domain no word
other than clock can be used to refer to this device.
However, some synonyms still exist in narrow-
domain texts, e.g., parallel, concurrent, distributed,
and simultaneous computing are near-synonyms.
Though our algorithm does not detect such rare cases
of synonymy explicitly, it handles them almost
correctly (see below).

While our method can easily be used to build a general-
topic ontology, these properties of domain-specific text
greatly alleviate linguistic problems in their automatic

Level 0 .

Level 1.

Level 2.

Level 3.

Domain description

Conference title Conference title . . .

Paper title Paper title Paper title Paper title

Paper
abstract

Paper
abstract

Paper
abstract

Paper
abstract

Figure 1. Hierarchy of text segments in our corpus.

 Learning a Domain Ontology from Hierarchically Structured Texts

statistical analysis and allow us to omit many of such
complications both in our implementation in the
discussion presented here. In particular, they allow us to
avoid addressing word sense disambiguation (WSD) and
detection and handling synonymy—the two main
problems preventing from obtaining accurate statistics on
the word usage in general texts. However, we have to deal
with other linguistic phenomena such as morphology and
multi-word expressions, as described in Section 3.

Data sources used in our algorithm are: a hierarchically
structured domain corpus, a corpus of a wider area, and a
frequency dictionary for the given language. The latter
two sources are used only to provide negative examples
for the classification of words into domain-specific and
non-domain-specific terms.

As a domain corpus, we have constructed a corpus of
conference papers belonging to a quite narrow domain of
parallel computing, see Figure 1. As a source of negative
examples for selecting domain-specific words, we used a
corpus on software engineering. The frequency dictionary
is needed only because the wider-domain corpus may not
contain reliable statistics for some words, while collecting
a very large corpus of open-topic texts is relatively easy.
Thus we used a large general-topic corpus to learn the
frequencies of words in general language use.

3. Output Structure: Ontology

The ontology consists of concepts (roughly, words) of a
chosen domain, interrelated to form a hierarchy (roughly,
a tree). Below we discuss these notions in more detail.

Relationship reflected in our ontology is, informally,
subordination between topics and subtopics in a given
domain. Since such topics and subtopics are described
through words, so finally what are arranged into a
hierarchy are words.

The resulting relationship between words differs from the
is-a relationship (Socrates is a man) often considered in
ontologies in that the corresponding words neither
substitute each other in a context (Socrates died ⇒ a man
died) nor inherit properties of others (men are mortal ⇒
Socrates is mortal). Instead, the relationship we are
interested in here can be called involvement. It resembles
the holonym / meronym (whole / part) relationship:
higher-level words describe situations that involve—
include as their (possible) parts—the situations described
by the lower-level words. For example, evaluation
involves measurement (which in turn involves value and
calculation) as a part of the process; processor involves
memory as part of its typical functioning, and involves
register as its physical part.

Word is a semantically meaningful token in the text. The
most relevant linguistic phenomena related to words are
morphological variation and multiword expressions.

As to morphological variation (e.g., do, did, does, done,
doing), we consider all such variants as representatives of
one and the same unit (lexeme), which we hereafter refer
to simply as a word. Thus, the above list simply mentions
the word do five times, even if in different morphological
variants.

Multiword expressions are defined as word combinations
(roughly, frequent word bigrams) referring to a single
entity that cannot be referred to with only one of the
words, e.g., mutual exclusion, cf. hot dog, New York.
Unlike multiword expressions, other types of word
combinations refer to hyponyms of one of the words:
mutual love is love which is mutual; little dog is a dog
which is little. Multiword terms are even more frequent in
narrow-domain texts than in general-topic ones.
Accordingly, in our algorithm such expressions are
identified and treated in the same way as single words.
For simplicity, we will also refer to such expressions as
(compound) words.

Concept is an elementary entry in our ontology. It is an
individual word or a cluster of words that are very
frequently used in the same text, e.g., {clock, mutual
exclusion, monitor} (recall that these words are
unambiguous within our narrow domain and note that
multiword expressions such as mutual exclusion are
considered in the same way as single words). Note that by
definition, each word belongs to only one concept
(cluster); this is possible because we consider all words
unambiguous.

Indeed, all statistical properties of such frequently co-
occurring words are practically identical, so there is no
point to distinguish them in an automatically constructed
ontology. On the other hand, grouping together highly co-
occurring words reduces the dimensionality of the task
and thus improves statistical significance of the results,
though at the cost of their granularity.

There are other dimensionality reduction methods, such as
Latent Semantic Indexing (LSI). However, in LSI the
resulting units are linear combinations difficult to
understand by the human users of the ontology and with
unclear linguistic meaning. This is why we opted for
simple word clusters. In the future we can, though,
consider weighting the words in a cluster in a way similar
to LSI.

The representation of an elementary entry of an ontology
as a set of words resembles the familiar WordNet synsets.
However, there is a crucial difference between synsets
and co-occurrence clusters. The words combined in a
synset are different variants of referring to the same entity
or idea (interchangeable in every context). Thus, a text
mentioning n1 times the first word in the synset, ..., nk

 Learning a Domain Ontology from Hierarchically Structured Texts

times the last word in the synset, can be considered as
mentioning the corresponding entity n = n1 + ... + nk
times, i.e., the frequency of the entry (synset) in a text is
the sum of the frequencies of its member words.

The words included in our clusters are, on the contrary,
the names of different participants of the same situation
(such as parts of the same device, parameters and tools
used in the same measurement, etc.). A text mentioning
one of them would mention, or at least imply, all others:
e.g., a text on parallel computing mentioning mutual
exclusion of processes would necessarily mention (or
imply) the presence of a monitor for its handling and of a
clock used by the latter. Thus, all k words in the cluster
refer to the corresponding situation only once, each one
predicting the presence of the rest. In such ideal case the
frequency n of the concept (cluster) would be the
frequency n1 of one its representative, with all the other
words being ignored. Since in practice some of the words
can be implied, we define the frequency of the cluster in a
text as the average frequency of its member words: n =
(n1 + ... + nk) / k.

Note that the claim on predictability of words in the
cluster is valid only for narrow-domain texts, where the
words unambiguously refer to a standard situation and
thus clearly predict the presence of each other. What is
more, since synonymy nearly does not exist in narrow-
domain text, we ignore its possible presence. To handle it
seriously (e.g., in open-topic texts) we would need to use
synsets instead of words:

{(clock, watch),
(mutual exclusion, avoidance),
(monitor, supervisor)}, (1)

summing up the word frequencies within synsets and
averaging the results over all synsets. However, in this
paper we do not consider such complications.

Those (rare) synonyms that do exist in narrow-domain
texts happen to be mapped into the same concept. The
reason for this is that they co-occur with the same words

in texts. Since concepts are clusters of highly co-
occurring words, synonyms are mapped to the same
cluster because they all stick to the same words with
which they co-occur, even if they do not co-occur with
each other, see Figure 2. Note that unlike (1), the structure
of the cluster is flat: {clock, watch, mutual exclusion,
avoidance, monitor, supervisor}, so that it is not known
which word is a synonym of which. This leads to
incorrect calculation of frequencies: frequencies of all
words in the cluster are averaged instead of summing up
the frequencies of synonyms. However, we do not
consider this a big problem, since (a) there are few
synonyms in narrow-domain texts and (b) they nearly
never appear in the same text together since one author
usually uses only one variant of the term.

Topic is a cluster of concepts discussed above, grouped
according to their co-occurrence in texts: e.g, {{clock,
mutual exclusion, monitor}, {thread, semaphore}}. The
co-occurrence frequency threshold for clustering in this
case is lower than for the case of clustering words into
concepts, so such clusters are fuzzier than concepts—that
is, they correspond to broader ideas than concepts, which
refer to one specific situation or thing. This allows for
reliable statistics even over very short texts.

Note that such topics are not just “fuzzier” variants of
concepts. Indeed, clustering concepts (word clusters) is
not the same as clustering individual words. Recall that
the frequency of occurrence of a concept in a text is the
average of the frequencies of its member words: a text
mentioning clock and monitor contains only one
occurrence of the concept {clock, mutual exclusion,
monitor}.

Thus, finding such topics is a two-step process: first,
individual words are clustered into concepts (with a high
co-occurrence threshold), and then the resulting units are
clustered again, but with lower threshold. The practice
shows that the resulting grouping differs from a one-step
grouping with the lower threshold. The clusters at the
second step are identified more reliably due to
dimensionality reduction resulting from the first step. For
the reasons discussed above, the result of such a two-step
clustering procedure is linguistically more plausible.

Again, by definition each concept (and thus each word)
belongs to only one topic.

Ontology is an acyclic directed graph with one source
(root)—in practice, almost a rooted tree, with rare nodes
having multiple parents. We maintain a layered structure
in the graph: if a node has multiple parents, all of them
belong to the same level (i.e., at the same distance from
the root).

The leaf nodes of the graph are concepts described above.
However, non-terminal nodes are topics. This is because
of two reasons. One is that since the ontology is (almost)

parallel

simultaneous

concurrent

distributed computing

program

system

calculation

Cluster

Figure 2. Synonyms are mapped in one cluster.

 Learning a Domain Ontology from Hierarchically Structured Texts

a tree, for its usability we need fewer nodes at higher
levels of the tree. The second reason is purely technical:
reliability of statistics of relationships between N nodes is
O(1/N2); thus with many nodes at the lower levels and
many nodes at the higher levels it is difficult to gather
reliable statistics of their relationships. Considering fewer
(though fuzzier) clusters at the higher levels leads to
desirable dimensionality reduction while still preserving
detailed classification at the lower levels.

The subordination relationship between nodes is
interpreted as the involvement (topic/subtopic)
relationship as described above, while the layers of nodes
correspond to intuitively perceived levels of abstractness
of topics. The latter intuition is expressed in the layered
structure of the hierarchical text corpus shown in
Figure 1.

4. Algorithm

For each node of the ontology hierarchy, our algorithm
recursively constructs the subordinated nodes of the
words used at the next level of the text hierarchy that
frequently co-occur with the words of the given node.
Figure 3 outlines the algorithm; the details are explained
below.

Corpus pre-processing. Using the keywords assigned to
the root, we search in the Internet for texts containing
these words in their titles (in our case, these were
conferences; then we downloaded the abstracts of the
papers presented at each found conference). The obtained
texts are stemmed (we used the stemmer described by
Gelbukh et al., (2004); Porter stemmer (Porter, 1980) can
also be used) and multiword expressions are identified
(we identified them as the most frequent bigrams of
content words) (Makagonov et al., 2000). In what follows
the term word refers to stemmed words or multiword
expressions.

Root formation. The words identifying the domain of
interest in the most abstract way (in our case, parallel
computing, concurrent computing, distributed computing,

simultaneous computing) are assigned to the root of the
ontology as the most general topic of the domain. The
root is at level L = 0 of the hierarchy.

Recursion by nodes. The following steps are performed
for each non-terminal node. The process starts with the
root node just mentioned, and is performed for each
newly constructed node, except for the nodes of the leaf
level. The aim of these steps is, given a topic (node) t at a
level L – 1 in the ontology, to construct its subordinated
nodes (of level L). The recursion must be organized level-
by-level (all nodes of a level L are constructed before we
proceed with constructing the nodes of level L + 1), since
at each step we need to know whether a concept belongs
to a higher-level topic.

Sub-corpus selection. Given a topic t of level L – 1, all
texts of the next level containing this topic are selected.
By a text of level L, we mean a hood in the text hierarchy
(Figure 1) rooted by a fragment of level L (a hood rooted
by a node x is the set of nodes directly or indirectly
subordinated to x, including x itself). For example, if t
belongs to level 1 (conference titles in Figure 1), then as
texts we consider all individual papers, i.e., a
concatenation of an abstract with its title. We say that a
text contains a topic if it contains any word belonging to
this topic.

Vocabulary selection. Only words whose frequency in
the selected sub-corpus is k = 3 times higher than their
frequency in the general language use, in the wider-topic
corpus, or in the rest of the initial corpus (outside the sub-
corpus just built) are selected as topic-specific terms. All
other words are ignored and do not participate in any
further operations for the given topic t. We also exclude
from consideration all words already assigned to the
nodes of higher levels (less than L).

Document aggregation. For calculating word co-
occurrences in documents at the next step, we could
consider each text fragment at each level of the text
hierarchy (Figure 1) as individual document. However,
such “documents” at the higher levels of the hierarchy are
very short. To reduce sparseness, we concatenate all
sibling short texts. For example, all conference titles in
our experiments were merged into a single “document”;
similarly, all paper titles within each conference were
merged together. Note that each paper abstract was thus
considered as an individual document, which is not a
problem because the abstracts are longer than titles.

Concept formation. Given a sub-corpus of N documents
containing W different words (types), we consider an
N × W term frequency matrix F = |fdw|, where fdw is the
number of occurrences of the word w in the document d,

Pre-process the text in the corpus
Create the root of the hierarchy
For each level of the hierarchy from root until leaves do
 For each node t at this level do
 Select texts containing the words from t
 Select words specific for the topic t
 Cluster these words to form concepts
 Select frequent concepts from next level text fragments
 If they are not leafs then
 Cluster these concepts to form topics
 Add these topics (or concepts) to hierarchy as sons of t

Figure 3. Algorithm for constructing the ontology.

 Learning a Domain Ontology from Hierarchically Structured Texts

and a W × W term co-occurrence matrix C = |cij|, where cij
is a cosine measure between the corresponding rows of F
(mutual information can also be used as a co-occurrence
measure). To form concepts, the words are clustered
according to the measure cij using any algorithm that
allows for a threshold α = 0.9 on the inter-cluster
relatedness; see details in (Makagonov and Figueroa,

2005). Note that most of the clusters consist of only one
word, which is not a problem.

Concept selection. We consider all concepts present in
the highest-level fragments of the texts in the sub-corpus
(in the previous examples these are the titles of the papers

{parallel, concurrent, distributed, simultaneous (computing)}.

{analysi, network, vlsi},

{graphic, model, securit,
communicat, test},

frontier,
massive,
optic,

real,
reliabilit,
reliabl;

 fault,
orient,
transaction,

volum,
toleran;

{autonom, defect, discret, event, foundation, generat, grid,
integrat, interact, storag, technologi, tool},

{circuit, date, evolvabl, interconnect, languag, requirement},
knowledg,
object.

 {allocat, spar},
barri,
board,
network,
critic,

 efficient,
execut,
orient,
reliabl

 {fault_toleranc},
 inject,
object,
system

adapt,
adaptat,
alternat,
amplifi,
analog,
communicat,
control,

controller,
cost,
determin,
enhanc,
etern,
evolut,
filter

flexibl,
immun,
java,
motor,
path,
platform,
schedul,

 test,
tool,
trigger,
upgrad

 [{corrupt, delay, deploy, exceed,
fabr, manifest, potential,
referenc, sensor, switch,
transient}],

[{defect, mutat, successful, useful},
allow],

[present, {designer, developer,
guidanc, numer, option,
researcher, statistic}],

[{binar, blind, budd, complexit,
effective, eliminat, feasibl, mesh,
request, spot, statu, uniqu},
obtain, {clock, fuzz, inferenc,
obtainabl, represent, resolut}],

 [{bandwidth, challeng, decad, disk,
expens, optic, pron}, {crisis,
intuit, ironical, lowlevel,
rediscover}, {accurat, arra,
drastical, fast, fault, fouri,
hartmann, reliabl, round,
transform}, network],

[novel, {cell, imag, mobil, video}],
[advantag, bist, built, constitut,

solut, techniqu, window}, practic,
{attract, requir}]

 account,
system,
chip,
critic,
threshold,
memor,
approach,
design,
experiment,
allocat,
efficienc,
convention,
schem,
frequenc,
scalabilit,
 monitor,
achiev,
analyz,
throughput,
distribut,
sequenc,
test,
efficient,
previ

[{abilit, compromis, incurr, interfer, presum, spar}, {attitud,
choic, determinat, genet, grain, utilis}],

[{accompany, dependabl, handicapp, interv, intrus, match,
vector}],

[emplo, realis, predict, {borrow, cult, lowest, occasional},
{alarm, analog, attain, budget, contrast, full, incorporat,
minimiz, safet, statistic, tapp, widespread}],

[{bind, comparison, cycl, dominant, interact, overall,
technologi}, sign],

[platform, {admit, clair, compatibl, explain, preliminar,
principl, systemat, tangu}, {acycl, encounter, entail,
impractic, mann, medium, partition, pipelin, recess, stem,
tackl, telecom}],

[{elia, heath, interpos, java, packet, quinn}, communicat,
requir],

[{consumpt, elongat, multimedia, peak, purpos, tradeoff},
execut],

[{evolut, joint, migrat}, volum, advantag, introduc, {chia,
collect, garbag, heap, mark, morri, sweep}],

[exploit, fault, exam, {inject, radiat, suitabl, upset}],
[{extern, orient, smart}],
[{bist, feedback, hazard, insert, scann}, pari, {ipdp, tabu,

thread}, {alternat, earl, enhanc, front, modest, redundanc,
reliabilit, stuck, tripl, verif}],

[utilizat, {condit, prioriti, quantit}, averag, object, indicat],
[properti, path, failur, demonstrat, {combinat, divers,

diversit, duplicat, flipflop, integrit, mitra, primar}]

1990–1997
1998–2004

1990–1997
1998–2004

1990–1997

1998–2004

(Other branches are not shown
 for lack of space)

Figure 4. Examples of the obrtained ontology for two periods.

 Learning a Domain Ontology from Hierarchically Structured Texts

but not their abstracts). Again, we say that a concept is
present in a text if at least one of its words is present in
this text. To reduce noise, of these concepts only those
that occur more than λt = ln Nt times are selected.

Topic formation. Unless L is the leaf level, the selected
concepts are clustered into topics. This is done in the
same way as words are clustered into concepts, but with a
lower threshold β = 0.5 (it can be manually adjusted).
Trivial clusters (those of only one element) are not
allowed here. As a corpus to measure co-occurrence
between concepts, we use the same corpus as we used for
concept creation above (and not the sub-corpus used in
the previous step). As a number of occurrences of a
concept in a document (cf. the matrix C above) we
consider the average number of occurrences of its
member words; cf. the discussion on the difference
between a synset and a concept in Section 3. Each newly
constructed topic (or concept in case of leaf level)
becomes a new node subordinated to the topic t.

5. Experimental Results

Our initial motivation was to detect trends in computer
science development over time. Accordingly, we
experimented with two sets of abstracts of conference
proceedings (Figure 1) corresponding to the periods of
1990–1997 and 1998–2004. Figure 4 shows some
examples from the two constructed ontologies. The words
are represented by stems (not by normal form), for
example, toleran corresponds to tolerance and tolerant.
Non-trivial concepts are shown using {...}, and non-trivial
topics using [...].

Because of lack of space in the paper, we only show a
very small excerpt of the total ontology. Namely, we
show the root, the first level below the root, and the nodes
located in the tree below two selected nodes of the first
level: the node {analysi, network, vlsi} and the node
toleran. Other nodes have a similar number of sons (not
shown here).

In our experiments, 80% of concept clusters consisted of
only one word; 25% of all words belonged to such trivial
clusters, while the remaining non-trivial clusters
contained 75% of all words; the number of clusters was
ca. 20% of that of words.

While the analysis of the trends in the development of the
corresponding areas over time will be presented in a
future publication, these trends are clearly visible—which
can be considered an evidence of usefulness of our
approach, in addition to intuitive appropriateness of the
words listed in the ontology.

For evaluation of the obtained ontology, we compared it
with the structure of existing textbooks on the
corresponding topics (the textbooks with the title

corresponding to a concept). We noted that the concepts
below the given one in the tree matched well the chapters
and sections of the textbooks. Note that we could do this
only with an ontology corresponding to a period in a
rather remote past for which textbook already exist, while
for the currently active research areas the textbooks will
appear only in the future (actually, as we have seen, our
ontology reflects the structure of such a future textbook).
However, more rigorous evaluation is still a topic of our
future work.

6. Conclusions and Future Work

The hierarchical structure of technical documents is
useful for automatic learning of a narrow-domain
ontology from a relatively small corpus of scientific
papers, as a sole or an additional source of information.
The method presented here can potentially be applied to
any hierarchically structured texts, for example, HTML
web pages.

Experimental results show that the constructed ontology
is meaningful. Specifically, it can be used for comparative
analysis of the state and development of a branch of
science over different time spans; we will report the
results of such analysis elsewhere. However, the most
probable use of the method, as that of many other
automatic ontology learning methods, is rapid prototyping
of an ontology, with manual post-editing for higher-
quality results (IRBIS; Makagonov and Figueroa, 2005).

There are many possible future work directions, most of
which have been mentioned in the text. To improve fully
automatic functioning of the method, proper handling of
synonymy and, probably, homonymy (word sense
disambiguation) can be useful. On the other hand,
integration with a visual user interface will be useful for
manual correction of parameters (such as thresholds) in
semi-automatic mode. Finally, we plan to develop on our
idea of the two-step clustering of words into concepts and
of concepts into topics, which in our opinion can be used
in many clustering and natural language processing
applications other than ontology construction.

Acknowledgments
This work was partially supported by Mexican
Government (CONACyT, SNI, CGPI).

References
Gelbukh, A., M. Alexandrov, S.Y. Han. Detecting

Inflection Patterns in Natural Language by
Minimization of Morphological Model. In: Lecture
Notes in Computer Science 3287, Springer-Verlag,
2004, p. 432–438.

Hearst, M. Automatic acquisition of hyponyms from large
text corpora. In: Proc. 14th International Conference on

 Learning a Domain Ontology from Hierarchically Structured Texts

Computational Linguistics (COLING-92), 1992, p. 539–
545.

IRBIS Library Automated System; www.gpntb.ru.

Kuhn, Thomas S. The Structure of Scientific Revolutions.
The University of Chicago Press, 1970.

Makagonov, P., A. Ruiz Figueroa. Study of Knowledge
Evolution in Parallel Computing by Short Texts
Analysis. In: Progress in Pattern Recognition, Image
Analysis and Applications, CIARP-2004. Lecture Notes
in Computer Science 3287, Springer, 2004.

Makagonov, P., Alejandro Ruíz Figueroa. A Method of
Rapid Prototyping of Evolving Ontologies. In: Lecture
Notes in Computer Science 3406, Springer-Verlag,
2005.

Makagonov, P., M. Alexandrov, K. Sboychakov. A
toolkit for development of the domain-oriented

dictionaries for structuring document flows. In: H. A.
Kiers et al. (Eds.), Data Analysis, Classification, and
Related Methods. Studies in classification, data
analysis, and knowledge organization, Springer, 2000,
pp. 83–88.

Martins, A., H. S. Pinto, A. L. Oliveira, Towards
Automatic Learning of a Structure Ontology for
Technical Articles. In: Proc. Workshop on the Semantic
Web at SIGIR-04, U.K., 2004.

Paşka, M. Acquisition of Categorized Named Entities for
Web Search. In: Proc. 2004 ACM CIKM Intern. Conf.
on Information and Knowledge Management. ACM
2004.

Porter, M. An algorithm for suffix stripping. Program 14,
1980, pp. 130–137.

