
Learning a Domain Ontology from Hierarchically Structured Texts 

Pavel Makagonov MPP@MIXTECO.UTM.MX 
Alejandro Ruiz Figueroa FIGUEROA@NUYOO.UTM.MX 
Mixteca University of Technology, Huajuapan de León, Oaxaca, 69000, Mexico 
 
Konstantin Sboychakov  KSBOYCHAKOV@YANDEX.RU 
Russian National Public Library for Science and Technology 
 
Alexander Gelbukh  GELBUKH@GELBUKH.COM 
Center for Computing Research, National Polytechnic Institute, 07738, DF, Mexico 
 

Abstract  
Any scientific or technical document is 
organized hierarchically: some sections of the 
text (such as the abstract or conclusions) 
summarize the contents of the main text; sections 
have titles describing their contents in general 
words; chapter titles describe the contents of a 
set of sections; book title describes the contexts 
of all chapters, etc. Moreover, whole collections 
of scientific documents are usually organized 
hierarchically: e.g., papers are organized in 
journals, conferences, etc., which in turn have 
their own titles. We exploit this hierarchical 
structure to learn a lexical ontology, in which 
subordination relationships roughly mirror those 
between the texts and titles in which these words 
occur: words occurring in more general titles 
subordinate the words occurring in the texts 
described by these titles. 

 

1.  Introduction 

Our initial motivation was to develop a methodology for 
quantitative and qualitative comparison of the state of a 
field of science in certain periods of time, which allows 
for detecting trends in its development and predicting its 
future state (Kuhn, 1970; Makagonov & Ruiz Figueroa, 
2004). 

To portrait the state of a field of science (in a certain time 
span), we use its ontology: an account of which words 
describe its large branches in a general way and which 
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words describe the concepts or sub-branches within each 
branch. The observation on which the work presented 
here is based is that large branches of a field roughly 
correspond to the titles of journals, books, or conferences 
devoted to it; its sub-branches correspond to paper titles 
published in these journals or conferences, etc. 

There exist a variety of methods for automatically extract 
ontologies from texts. E.g., Hearst (1992) looks for 
patterns such as France and other European countries to 
extract the fact that France is a European country from 
texts. Paşca (2004) reports an experiment on application 
of a similar method to a corpus of 500 million web pages. 
However, the amount of texts available on a narrow 
technical domain is insufficient for such methods. Our 
approach, on the contrary, can cope with a relatively 
small amount of data. On the other hand, existing 
methods for extracting narrow-domain ontologies either 
require manual effort (Martins et al., 2004) or can extract 
a very small number of words. Our observation on the 
usefulness of the hierarchical text structure provides an 
alternative (or—as a future work—an additional) source 
of information on relations between words. 

Thus the aim of this work is to construct a hierarchy of 
topics and subtopics in a given domain by extracting it 
from a hierarchically structured text corpus so that the 
subordination relationships between words in the 
ontology mirror those between the text segments in the 
text hierarchy where the given words occur. In particular, 
the levels in the constructed ontology are in a one-to-one 
correspondence with the levels in the text hierarchy. 

Though the idea looks quite simple, there are a number of 
details to consider in order for this idea to work in 
practice. In what follows we define the main notions used 
in our algorithm: Section 2 describes the input data used 
for ontology construction and Section 3 the data structure 
that the algorithm constructs. In Section 4 we describe the 
algorithm itself, and in Section 5 we present the 
experimental results. Section 6 concludes the paper and 
discusses future work directions. 
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2.  Input Data: Text Corpus 

Most of existing texts are hierarchically structured in such 
a way that some their segments (which can be very short, 
e.g., titles) are marked as “more general” than others. We 
build our ontology hierarchy using such a text, as well as 
some sources of statistical information, as described 
below. 

Hierarchically structured text is any text partitioned 
into segments that are arranged in a tree (or, more 
generally, in an acyclic directed graph) so that the “upper-
level” segments contain meta-information with respect to 
their subordinated text segments. For simplicity we also 
refer to such text segments as texts. 

For example, in a book, the root is the book title (which is 
a short text); the intermediate levels are formed by part 
titles, then chapter titles, section titles, etc.; finally, the 
full text of each section is a leaf below the corresponding 
section title. 

Another example is any HTML-encoded webpage 
partitioned into subordinated text segments (titles and 
main text) by the <h1> to <h6> tags that mark the 
headers, sub-headers, sub-sub-headers, etc., with the main 
text (text outside of such tags) corresponding to the leaves 
of the tree. 

In the experiments reported in this paper we used a 
collection of abstracts of papers presented at conferences 
on a specific domain, namely, on parallel, concurrent, 
distributed, and simultaneous computing. Note that we 
did not have access to the full texts of the papers but only 
to the abstracts; this is because unlike the full texts, the 
abstracts are freely available for download from the 
Internet. Thus the collection had a three-level tree 
structure, with the root level added for convenience, see 
Figure 1. In the figure, the domain description consists of 
its name: Parallel, concurrent, distributed, and 
simultaneous computing. 

Domain is a narrow technical topic, which in our case 
was parallel computing. Narrow-domain texts include 
three types of words: 

– General-lexicon words appearing in any text. Such 
words include articles, prepositions, or the words like 
have, give, see, number, etc. Any information on such 
words can be easily found in existing dictionaries. 

– Technical terms used in a wider area of knowledge 
and not only in the given narrow domain. For the 
narrow domain of parallel computing these are words 
used also in texts on other areas of computing, such 
as program or execution. 

– Terms specific for the selected domain, such as clock, 
monitor, or semaphore for the parallel computing 
domain. 

In domain ontology we are only interested in the latter 
type of words: domain-specific terms. These terms have 
the following special properties as compared with the 
general words or wider-domain terms: 

– They are not homonymous (polysemous), i.e., they 
are unambiguous. While in general-topic text the 
word parallel can refer to two straight lines or two 
similar ideas,  in the chosen narrow domain it only 
can mean simultaneous. 

– They usually are not synonymous. While in general-
topic text clock can be substituted with watch, 
chronometer, or timer, in the chosen domain no word 
other than clock can be used to refer to this device. 
However, some synonyms still exist in narrow-
domain texts, e.g., parallel, concurrent, distributed, 
and simultaneous computing are near-synonyms. 
Though our algorithm does not detect such rare cases 
of synonymy explicitly, it handles them almost 
correctly (see below). 

While our method can easily be used to build a general-
topic ontology, these properties of domain-specific text 
greatly alleviate linguistic problems in their automatic 

Level 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Level 1. . . . . . . . . . . . . . . . . . 

Level 2. . . . . . . . . 

Level 3. . . . . . . . . 

Domain description 

Conference title Conference title . . . 

Paper title Paper title Paper title Paper title . . . . . . 

Paper 
abstract 

Paper 
abstract 

Paper 
abstract 

Paper 
abstract  

Figure 1. Hierarchy of text segments in our corpus. 
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statistical analysis and allow us to omit many of such 
complications both in our implementation in the 
discussion presented here. In particular, they allow us to 
avoid addressing word sense disambiguation (WSD) and 
detection and handling synonymy—the two main 
problems preventing from obtaining accurate statistics on 
the word usage in general texts. However, we have to deal 
with other linguistic phenomena such as morphology and 
multi-word expressions, as described in Section 3. 

Data sources used in our algorithm are: a hierarchically 
structured domain corpus, a corpus of a wider area, and a 
frequency dictionary for the given language. The latter 
two sources are used only to provide negative examples 
for the classification of words into domain-specific and 
non-domain-specific terms. 

As a domain corpus, we have constructed a corpus of 
conference papers belonging to a quite narrow domain of 
parallel computing, see Figure 1. As a source of negative 
examples for selecting domain-specific words, we used a 
corpus on software engineering. The frequency dictionary 
is needed only because the wider-domain corpus may not 
contain reliable statistics for some words, while collecting 
a very large corpus of open-topic texts is relatively easy. 
Thus we used a large general-topic corpus to learn the 
frequencies of words in general language use. 

3.  Output Structure: Ontology 

The ontology consists of concepts (roughly, words) of a 
chosen domain, interrelated to form a hierarchy (roughly, 
a tree). Below we discuss these notions in more detail. 

Relationship reflected in our ontology is, informally, 
subordination between topics and subtopics in a given 
domain. Since such topics and subtopics are described 
through words, so finally what are arranged into a 
hierarchy are words. 

The resulting relationship between words differs from the 
is-a relationship (Socrates is a man) often considered in 
ontologies in that the corresponding words neither 
substitute each other in a context (Socrates died ⇒ a man 
died) nor inherit properties of others (men are mortal ⇒ 
Socrates is mortal). Instead, the relationship we are 
interested in here can be called involvement. It resembles 
the holonym / meronym (whole / part) relationship: 
higher-level words describe situations that involve—
include as their (possible) parts—the situations described 
by the lower-level words. For example, evaluation 
involves measurement (which in turn involves value and 
calculation) as a part of the process; processor involves 
memory as part of its typical functioning, and involves 
register as its physical part. 

Word is a semantically meaningful token in the text. The 
most relevant linguistic phenomena related to words are 
morphological variation and multiword expressions. 

As to morphological variation (e.g., do, did, does, done, 
doing), we consider all such variants as representatives of 
one and the same unit (lexeme), which we hereafter refer 
to simply as a word. Thus, the above list simply mentions 
the word do five times, even if in different morphological 
variants. 

Multiword expressions are defined as word combinations 
(roughly, frequent word bigrams) referring to a single 
entity that cannot be referred to with only one of the 
words, e.g., mutual exclusion, cf. hot dog, New York. 
Unlike multiword expressions, other types of word 
combinations refer to hyponyms of one of the words: 
mutual love is love which is mutual; little dog is a dog 
which is little. Multiword terms are even more frequent in 
narrow-domain texts than in general-topic ones. 
Accordingly, in our algorithm such expressions are 
identified and treated in the same way as single words. 
For simplicity, we will also refer to such expressions as 
(compound) words. 

Concept is an elementary entry in our ontology. It is an 
individual word or a cluster of words that are very 
frequently used in the same text, e.g., {clock, mutual 
exclusion, monitor} (recall that these words are 
unambiguous within our narrow domain and note that 
multiword expressions such as mutual exclusion are 
considered in the same way as single words). Note that by 
definition, each word belongs to only one concept 
(cluster); this is possible because we consider all words 
unambiguous. 

Indeed, all statistical properties of such frequently co-
occurring words are practically identical, so there is no 
point to distinguish them in an automatically constructed 
ontology. On the other hand, grouping together highly co-
occurring words reduces the dimensionality of the task 
and thus improves statistical significance of the results, 
though at the cost of their granularity. 

There are other dimensionality reduction methods, such as 
Latent Semantic Indexing (LSI). However, in LSI the 
resulting units are linear combinations difficult to 
understand by the human users of the ontology and with 
unclear linguistic meaning. This is why we opted for 
simple word clusters. In the future we can, though, 
consider weighting the words in a cluster in a way similar 
to LSI. 

The representation of an elementary entry of an ontology 
as a set of words resembles the familiar WordNet synsets. 
However, there is a crucial difference between synsets 
and co-occurrence clusters. The words combined in a 
synset are different variants of referring to the same entity 
or idea (interchangeable in every context). Thus, a text 
mentioning n1 times the first word in the synset, ..., nk 
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times the last word in the synset, can be considered as 
mentioning the corresponding entity n = n1 + ... + nk 
times, i.e., the frequency of the entry (synset) in a text is 
the sum of the frequencies of its member words. 

The words included in our clusters are, on the contrary, 
the names of different participants of the same situation 
(such as parts of the same device, parameters and tools 
used in the same measurement, etc.). A text mentioning 
one of them would mention, or at least imply, all others: 
e.g., a text on parallel computing mentioning mutual 
exclusion of processes would necessarily mention (or 
imply) the presence of a monitor for its handling and of a 
clock used by the latter. Thus, all k words in the cluster 
refer to the corresponding situation only once, each one 
predicting the presence of the rest. In such ideal case the 
frequency n of the concept (cluster) would be the 
frequency n1 of one its representative, with all the other 
words being ignored. Since in practice some of the words 
can be implied, we define the frequency of the cluster in a 
text as the average frequency of its member words: n = 
(n1 + ... + nk) / k. 

Note that the claim on predictability of words in the 
cluster is valid only for narrow-domain texts, where the 
words unambiguously refer to a standard situation and 
thus clearly predict the presence of each other. What is 
more, since synonymy nearly does not exist in narrow-
domain text, we ignore its possible presence. To handle it 
seriously (e.g., in open-topic texts) we would need to use 
synsets instead of words:  

{(clock, watch), 
(mutual exclusion, avoidance), 
(monitor, supervisor)}, (1) 

summing up the word frequencies within synsets and 
averaging the results over all synsets. However, in this 
paper we do not consider such complications. 

Those (rare) synonyms that do exist in narrow-domain 
texts happen to be mapped into the same concept. The 
reason for this is that they co-occur with the same words 

in texts. Since concepts are clusters of highly co-
occurring words, synonyms are mapped to the same 
cluster because they all stick to the same words with 
which they co-occur, even if they do not co-occur with 
each other, see Figure 2. Note that unlike (1), the structure 
of the cluster is flat: {clock, watch, mutual exclusion, 
avoidance, monitor, supervisor}, so that it is not known 
which word is a synonym of which. This leads to 
incorrect calculation of frequencies: frequencies of all 
words in the cluster are averaged instead of summing up 
the frequencies of synonyms. However, we do not 
consider this a big problem, since (a) there are few 
synonyms in narrow-domain texts and (b) they nearly 
never appear in the same text together since one author 
usually uses only one variant of the term. 

Topic is a cluster of concepts discussed above, grouped 
according to their co-occurrence in texts: e.g, {{clock, 
mutual exclusion, monitor}, {thread, semaphore}}. The 
co-occurrence frequency threshold for clustering in this 
case is lower than for the case of clustering words into 
concepts, so such clusters are fuzzier than concepts—that 
is, they correspond to broader ideas than concepts, which 
refer to one specific situation or thing. This allows for 
reliable statistics even over very short texts. 

Note that such topics are not just “fuzzier” variants of 
concepts. Indeed, clustering concepts (word clusters) is 
not the same as clustering individual words. Recall that 
the frequency of occurrence of a concept in a text is the 
average of the frequencies of its member words: a text 
mentioning clock and monitor contains only one 
occurrence of the concept {clock, mutual exclusion, 
monitor}. 

Thus, finding such topics is a two-step process: first, 
individual words are clustered into concepts (with a high 
co-occurrence threshold), and then the resulting units are 
clustered again, but with lower threshold. The practice 
shows that the resulting grouping differs from a one-step 
grouping with the lower threshold. The clusters at the 
second step are identified more reliably due to 
dimensionality reduction resulting from the first step. For 
the reasons discussed above, the result of such a two-step 
clustering procedure is linguistically more plausible. 

Again, by definition each concept (and thus each word) 
belongs to only one topic. 

Ontology is an acyclic directed graph with one source 
(root)—in practice, almost a rooted tree, with rare nodes 
having multiple parents. We maintain a layered structure 
in the graph: if a node has multiple parents, all of them 
belong to the same level (i.e., at the same distance from 
the root). 

The leaf nodes of the graph are concepts described above. 
However, non-terminal nodes are topics. This is because 
of two reasons. One is that since the ontology is (almost) 

 

 

parallel 

simultaneous 

concurrent 

distributed computing 

program 

system 

calculation 

Cluster 

Figure 2. Synonyms are mapped in one cluster. 
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a tree, for its usability we need fewer nodes at higher 
levels of the tree. The second reason is purely technical: 
reliability of statistics of relationships between N nodes is 
O(1/N2); thus with many nodes at the lower levels and 
many nodes at the higher levels it is difficult to gather 
reliable statistics of their relationships. Considering fewer 
(though fuzzier) clusters at the higher levels leads to 
desirable dimensionality reduction while still preserving 
detailed classification at the lower levels. 

The subordination relationship between nodes is 
interpreted as the involvement (topic/subtopic) 
relationship as described above, while the layers of nodes 
correspond to intuitively perceived levels of abstractness 
of topics. The latter intuition is expressed in the layered 
structure of the hierarchical text corpus shown in 
Figure 1. 

4.  Algorithm 

For each node of the ontology hierarchy, our algorithm 
recursively constructs the subordinated nodes of the 
words used at the next level of the text hierarchy that 
frequently co-occur with the words of the given node. 
Figure 3 outlines the algorithm; the details are explained 
below. 

Corpus pre-processing. Using the keywords assigned to 
the root, we search in the Internet for texts containing 
these words in their titles (in our case, these were 
conferences; then we downloaded the abstracts of the 
papers presented at each found conference). The obtained 
texts are stemmed (we used the stemmer described by 
Gelbukh et al., (2004); Porter stemmer (Porter, 1980) can 
also be used) and multiword expressions are identified 
(we identified them as the most frequent bigrams of 
content words) (Makagonov et al., 2000). In what follows 
the term word refers to stemmed words or multiword 
expressions. 

Root formation. The words identifying the domain of 
interest in the most abstract way (in our case, parallel 
computing, concurrent computing, distributed computing, 

simultaneous computing) are assigned to the root of the 
ontology as the most general topic of the domain. The 
root is at level L = 0 of the hierarchy. 

Recursion by nodes. The following steps are performed 
for each non-terminal node. The process starts with the 
root node just mentioned, and is performed for each 
newly constructed node, except for the nodes of the leaf 
level. The aim of these steps is, given a topic (node) t at a 
level L – 1 in the ontology, to construct its subordinated 
nodes (of level L). The recursion must be organized level-
by-level (all nodes of a level L are constructed before we 
proceed with constructing the nodes of level L + 1), since 
at each step we need to know whether a concept belongs 
to a higher-level topic. 

Sub-corpus selection. Given a topic t of level L – 1, all 
texts of the next level containing this topic are selected. 
By a text of level L, we mean a hood in the text hierarchy 
(Figure 1) rooted by a fragment of level L (a hood rooted 
by a node x is the set of nodes directly or indirectly 
subordinated to x, including x itself). For example, if t 
belongs to level 1 (conference titles in Figure 1), then as 
texts we consider all individual papers, i.e., a 
concatenation of an abstract with its title. We say that a 
text contains a topic if it contains any word belonging to 
this topic. 

Vocabulary selection. Only words whose frequency in 
the selected sub-corpus is k = 3 times higher than their 
frequency in the general language use, in the wider-topic 
corpus, or in the rest of the initial corpus (outside the sub-
corpus just built) are selected as topic-specific terms. All 
other words are ignored and do not participate in any 
further operations for the given topic t. We also exclude 
from consideration all words already assigned to the 
nodes of higher levels (less than L). 

Document aggregation. For calculating word co-
occurrences in documents at the next step, we could 
consider each text fragment at each level of the text 
hierarchy (Figure 1) as individual document. However, 
such “documents” at the higher levels of the hierarchy are 
very short. To reduce sparseness, we concatenate all 
sibling short texts. For example, all conference titles in 
our experiments were merged into a single “document”; 
similarly, all paper titles within each conference were 
merged together. Note that each paper abstract was thus 
considered as an individual document, which is not a 
problem because the abstracts are longer than titles. 

Concept formation. Given a sub-corpus of N documents 
containing W different words (types), we consider an 
N × W term frequency matrix F = |fdw|, where fdw is the 
number of occurrences of the word w in the document d, 

Pre-process the text in the corpus 
Create the root of the hierarchy 
For each level of the hierarchy from root until leaves do 
 For each node t at this level do 
  Select texts containing the words from t 
  Select words specific for the topic t 
  Cluster these words to form concepts 
  Select frequent concepts from next level text fragments 
  If they are not leafs then 
   Cluster these concepts to form topics 
  Add these topics (or concepts) to hierarchy as sons of t 

Figure 3. Algorithm for constructing the ontology. 
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and a W × W term co-occurrence matrix C = |cij|, where cij 
is a cosine measure between the corresponding rows of F 
(mutual information can also be used as a co-occurrence 
measure). To form concepts, the words are clustered 
according to the measure cij using any algorithm that 
allows for a threshold α = 0.9 on the inter-cluster 
relatedness; see details in (Makagonov and Figueroa, 

2005). Note that most of the clusters consist of only one 
word, which is not a problem. 

Concept selection. We consider all concepts present in 
the highest-level fragments of the texts in the sub-corpus 
(in the previous examples these are the titles of the papers 

{parallel, concurrent, distributed, simultaneous (computing)}. 
 

 

{analysi, network, vlsi}, 
 

{graphic, model, securit, 
communicat, test},  

 

 

frontier,  
massive,  
optic,  

real,  
reliabilit,  
reliabl; 

 

 fault,  
orient,  
transaction,  

volum,  
toleran; 

{autonom, defect, discret, event, foundation, generat, grid, 
integrat, interact, storag, technologi, tool},  

{circuit, date, evolvabl, interconnect, languag, requirement}, 
knowledg,  
object. 

 

 

 {allocat, spar},  
barri,  
board,  
network,  
critic,  
 

 efficient,  
execut,  
orient,  
reliabl 

 {fault_toleranc},
 inject,  
object,  
system 

adapt, 
adaptat, 
alternat, 
amplifi, 
analog, 
communicat, 
control, 
 

controller, 
cost,  
determin,  
enhanc,  
etern, 
evolut, 
filter 
 

flexibl,  
immun,  
java,  
motor,  
path,  
platform,  
schedul,  
 

 test,  
tool,  
trigger, 
upgrad 
 

 

 

 [{corrupt, delay, deploy, exceed, 
fabr, manifest, potential, 
referenc, sensor, switch, 
transient}], 

[{defect, mutat, successful, useful}, 
allow],  

[present, {designer, developer, 
guidanc, numer, option, 
researcher, statistic}],  

[{binar, blind, budd, complexit, 
effective, eliminat, feasibl, mesh, 
request, spot, statu, uniqu}, 
obtain, {clock, fuzz, inferenc, 
obtainabl, represent, resolut}], 

 [{bandwidth, challeng, decad, disk, 
expens, optic, pron}, {crisis, 
intuit, ironical, lowlevel, 
rediscover}, {accurat, arra, 
drastical, fast, fault, fouri, 
hartmann, reliabl, round, 
transform}, network],  

[novel, {cell, imag, mobil, video}],  
[advantag, bist, built, constitut, 

solut, techniqu, window}, practic, 
{attract, requir}] 

 account,  
system,  
chip,  
critic,  
threshold,  
memor,  
approach,  
design,  
experiment,  
allocat,  
efficienc,  
convention,  
schem,  
frequenc,  
scalabilit, 
 monitor,  
achiev,  
analyz,  
throughput,  
distribut,  
sequenc,  
test,  
efficient,  
previ 

[{abilit, compromis, incurr, interfer, presum, spar}, {attitud, 
choic, determinat, genet, grain, utilis}], 

[{accompany, dependabl, handicapp, interv, intrus, match, 
vector}],  

[emplo, realis, predict, {borrow, cult, lowest, occasional}, 
{alarm, analog, attain, budget, contrast, full, incorporat, 
minimiz, safet, statistic, tapp, widespread}],  

[{bind, comparison, cycl, dominant, interact, overall, 
technologi}, sign],  

[platform, {admit, clair, compatibl, explain, preliminar, 
principl, systemat, tangu}, {acycl, encounter, entail, 
impractic, mann, medium, partition, pipelin, recess, stem, 
tackl, telecom}],  

[{elia, heath, interpos, java, packet, quinn}, communicat, 
requir],  

[{consumpt, elongat, multimedia, peak, purpos, tradeoff}, 
execut],  

[{evolut, joint, migrat}, volum, advantag, introduc, {chia, 
collect, garbag, heap, mark, morri, sweep}],  

[exploit, fault, exam, {inject, radiat, suitabl, upset}], 
[{extern, orient, smart}],  
[{bist, feedback, hazard, insert, scann}, pari, {ipdp, tabu, 

thread}, {alternat, earl, enhanc, front, modest, redundanc, 
reliabilit, stuck, tripl, verif}],  

[utilizat, {condit, prioriti, quantit}, averag, object, indicat],  
[properti, path, failur, demonstrat, {combinat, divers, 

diversit, duplicat, flipflop, integrit, mitra, primar}] 
 

 

1990–1997 
1998–2004 

1990–1997 
1998–2004 

1990–1997 

1998–2004 

(Other branches are not shown 
  for lack of space) 

 
Figure 4. Examples of the obrtained ontology for two periods. 
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but not their abstracts). Again, we say that a concept is 
present in a text if at least one of its words is present in 
this text. To reduce noise, of these concepts only those 
that occur more than λt = ln Nt times are selected. 

Topic formation. Unless L is the leaf level, the selected 
concepts are clustered into topics. This is done in the 
same way as words are clustered into concepts, but with a 
lower threshold β = 0.5 (it can be manually adjusted). 
Trivial clusters (those of only one element) are not 
allowed here. As a corpus to measure co-occurrence 
between concepts, we use the same corpus as we used for 
concept creation above (and not the sub-corpus used in 
the previous step). As a number of occurrences of a 
concept in a document (cf. the matrix C above) we 
consider the average number of occurrences of its 
member words; cf. the discussion on the difference 
between a synset and a concept in Section 3. Each newly 
constructed topic (or concept in case of leaf level) 
becomes a new node subordinated to the topic t. 

5.  Experimental Results 

Our initial motivation was to detect trends in computer 
science development over time. Accordingly, we 
experimented with two sets of abstracts of conference 
proceedings (Figure 1) corresponding to the periods of 
1990–1997 and 1998–2004. Figure 4 shows some 
examples from the two constructed ontologies. The words 
are represented by stems (not by normal form), for 
example, toleran corresponds to tolerance and tolerant. 
Non-trivial concepts are shown using {...}, and non-trivial 
topics using [...]. 

Because of lack of space in the paper, we only show a 
very small excerpt of the total ontology. Namely, we 
show the root, the first level below the root, and the nodes 
located in the tree below two selected nodes of the first 
level: the node {analysi, network, vlsi} and the node 
toleran. Other nodes have a similar number of sons (not 
shown here). 

In our experiments, 80% of concept clusters consisted of 
only one word; 25% of all words belonged to such trivial 
clusters, while the remaining non-trivial clusters 
contained 75% of all words; the number of clusters was 
ca. 20% of that of words. 

While the analysis of the trends in the development of the 
corresponding areas over time will be presented in a 
future publication, these trends are clearly visible—which 
can be considered an evidence of usefulness of our 
approach, in addition to intuitive appropriateness of the 
words listed in the ontology. 

For evaluation of the obtained ontology, we compared it 
with the structure of existing textbooks on the 
corresponding topics (the textbooks with the title 

corresponding to a concept). We noted that the concepts 
below the given one in the tree matched well the chapters 
and sections of the textbooks. Note that we could do this 
only with an ontology corresponding to a period in a 
rather remote past for which textbook already exist, while 
for the currently active research areas the textbooks will 
appear only in the future (actually, as we have seen, our 
ontology reflects the structure of such a future textbook). 
However, more rigorous evaluation is still a topic of our 
future work. 

6.  Conclusions and Future Work 

The hierarchical structure of technical documents is 
useful for automatic learning of a narrow-domain 
ontology from a relatively small corpus of scientific 
papers, as a sole or an additional source of information. 
The method presented here can potentially be applied to 
any hierarchically structured texts, for example, HTML 
web pages. 

Experimental results show that the constructed ontology 
is meaningful. Specifically, it can be used for comparative 
analysis of the state and development of a branch of 
science over different time spans; we will report the 
results of such analysis elsewhere. However, the most 
probable use of the method, as that of many other 
automatic ontology learning methods, is rapid prototyping 
of an ontology, with manual post-editing for higher-
quality results (IRBIS; Makagonov and Figueroa, 2005). 

There are many possible future work directions, most of 
which have been mentioned in the text. To improve fully 
automatic functioning of the method, proper handling of 
synonymy and, probably, homonymy (word sense 
disambiguation) can be useful. On the other hand, 
integration with a visual user interface will be useful for 
manual correction of parameters (such as thresholds) in 
semi-automatic mode. Finally, we plan to develop on our 
idea of the two-step clustering of words into concepts and 
of concepts into topics, which in our opinion can be used 
in many clustering and natural language processing 
applications other than ontology construction. 
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