

Modified Makagonov’s Method for Testing Word Similarity

and its Application to Constructing Word Frequency Lists

Xavier Blanco,
1
 Mikhail Alexandrov,

1,2
 and Alexander Gelbukh

2

1 Department of French and Romance Philology, Autonomous University of Barcelona
dyner1950@mail.ru, Xavier.Blanco@uab.es

2 Center for Computing Research, National Polytechnic Institute (IPN), Mexico
dyner@cic.ipn.mx; www.Gelbukh.com

Abstract. By (morphologically) similar wordforms we understand wordforms

(strings) that have the same base meaning (roughly, the same root), such as
sadly and sadden. The task of deciding whether two given strings are similar (in
this sense) has numerous applications in text processing, e.g., in information re-
trieval, for which usually stemming is employed as an intermediate step. Maka-
gonov has suggested a weakly supervised approach for testing word similarity,
based on empirical formulae comparing the number of equal and different let-
ters in the two strings. This method gives good results on English, Russian, and

a number of Romance languages. However, his approach does not deal well
with slight morphological alterations in the stem, such as Spanish pensar vs.
pienso. We propose a simple modification of the method using n-grams instead
of letters. We also consider four algorithms for compiling a word frequency list
relying on these formulae. Examples from Spanish and English are presented.

1 Introduction

Given a large text or text corpus and a pair of wordforms (strings), we consider the
task of guessing whether these two words have the same root and thus the same base

meaning. We call this (morphological) word similarity: two words are similar if they

have the same root. This relation permits grouping together the words having the

same root, e.g., sad, sadly, sadness, sadden, saddened, etc. This task has numerous

applications, such as constructing word frequency lists. Our motivation is to improve

information retrieval and similar practical applications. Consequently, our goal is to

provide a reasonably accurate statistical-based algorithm (tolerating certain error rate)

and not a precise linguistic analysis.
For grouping together the words with the same root, two morphology-based meth-

ods are usually used: lemmatization and stemming. Lemmatization reduces words to

the base form: having → have; stemming truncates words to their stems: having →
hav- (often lemmatization task is also referred to as stemming).

Stemming or lemmatization can be used for testing the (morphological) similarity

between two words: both words are first reduced to lemmas or stems; if the resulting
strings are equal then the two given words are declared similar. This gives a symmet-

ric, reflexive, and transitive relation that can be perfectly used for grouping together

words with the same base meaning.

The stemming or lemmatizing algorithms using morphological rules and a large

morphological dictionary provide practically 100% accuracy on known words and

good accuracy on the words absent in the dictionary [4, 5]. The algorithms relying

only on lists of suffixes and suffix removal rules, but no dictionaries, in spite of being

much simpler, provide relatively high accuracy, often greater than 90%. The most

popular algorithm is Porter stemmer [9] (actually, a lemmatizer). Both methods are
strongly language-dependent. This becomes a problem in large-scale analysis of mul-

tilingual, multi-thematic document collections.

Makagonov et al. [7] suggested another approach to testing word similarity. It does

not rely on a (language-dependent) intermediate step of reducing the two given words

to a stem or lemma. Instead, it uses empirical formulae to compare the given strings

directly. These formulae use the number of the coincident initial letters and non-

coincident final letters in the two words. Such formulae are constructed by

Ivakhnenko’s [6] inductive method of model self-organization. In our paper [1] we

have given more details on this method, investigated the sensibility of the formulae to

different languages, and analyzed the typical errors of the method. The main advan-

tage of this knowledge-poor approach is its simplicity and flexibility. It does not rely

on any manually compiled morphological rules, dictionaries, suffix lists, or rule sys-
tems. To adapt the method to a new language or a new subject domain, only the pa-

rameters of the formula are to be automatically adjusted.

However, this method is sensitive to small differences in initial parts of similar

words: an additional letter in one of these words may prevent the method from detect-

ing their similarity. This affects mostly Romance languages with their irregular verbs:

e.g., Spanish: pienso ‘(I) think’ – pensaba ‘thought’, entiendo ‘(I) understand’ –

entender ‘(to) understand’. Obviously, this increases the rate of false negatives (fail-

ing to give a positive answer on a pair of words that are in fact similar). To avoid this,

we propose here to use n-grams (3-grams) instead of letters in the original formula. N-

grams have been already used for comparing words [10]. However, the work [10]

concerns only evaluation of word importance but not their similarity. Nevertheless, it

stimulated the research presented in this paper.
Another drawback of the approach from [7] is that the obtained relation is not tran-

sitive: if the formula reports the words a and b to be similar, as well as b and c, it does

not necessarily report a and c to be similar. Strictly speaking, this prevents from using

such a relation to group words together. However, [7] suggested a heuristic algorithm

relying on these formulae for constructing word frequency lists (actually, for grouping

words; the algorithm gives different results than a simple transitive closure).

We found, though, that this algorithm gives higher level of false negatives in com-

parison with the formulae themselves. We propose other algorithms, taking into ac-

count mentioned non-transitivity of our heuristic relation.

The paper is organized as follows. In Section 2, we explain the original algorithm

and its empirical formulae. In Section 3, we present our modifications to the formula.
We formally define the notion of n-gram as used by our algorithm and operations on

such n-grams and then present the new formula and its training process. In Section 4,

we introduce four algorithms for constructing word frequency lists and present ex-

perimental results. Section 5 concludes the paper and mentions some future work.

2 Testing Word Similarity Using Letters

2.1 Empirical Formulae

The empirical formulae from [7] test a hypothesis about word similarity. The pro-

posed approach is applied only for suffixal inflective languages, i.e., the languages

where the word base (morphologically invariant part) is located at the beginning of
the word—which is generally true for the majority of European languages.

The formula relies on the following characteristics of the pair of words:

y: the length of the common initial substring (y standing for yes),

n: the total number of final letters differing in the two words (n for no),

s: the total number of letters in the two words (s for sum),

so that 2y + n = s. For example, for the words sadly and sadness, the maximal com-

mon initial substring is sad-, thus the differing final parts are -ly and -ness, so that n =

6, y = 3, and s = 12.

The authors of [7] considered the following class of models for making decisions

about word similarity: two words are similar if and only if

s

n ≤ F (y), F(y) = a + b1y + b2y
2 + ... + bky

k
, (1)

where F(y) is the model function; a and bi are constants (parameters of the formula).

Such a function is general enough because any continuous function can be repre-

sented as a convergent polynomial series. The parameter k represents the model com-

plexity.
To find the best model function, i.e., the model of optimum complexity, [7] used

the inductive method of model self-organization. This method compares step-by-step

the models of increasing complexity and stops this process when the optimum of an

external criterion of model quality is reached [6]. This method relies on a set of

examples, which are used to calculate the model parameters and evaluate the model

quality; thus, the method is weakly supervised since the requited set of examples is
very small. These examples are prepared by the user of the program for a specific

language or genere.

With this method, the formulae for testing word similarity shown in Table 1 were

constructed for different languages [1].

Table 1. Formulae for different languages.

French Italian Portuguese Spanish

n/s ≤ 0.48– 0.024 y n/s ≤ 0.57–0.035 y n/s ≤ 0.53 – 0.029 y n/s ≤ 0.55– 0.029 y

Basing on all examples prepared for four languages, the authors determined the gen-
eralized formula:

n / s ≤ 0.53 – 0.029 y (2)

This formula can be considered an initial approximation for further tuning on other

romance languages.

2.2 Discussion

Since the empirical formula is based on statistical regularities of a language, it leads

to the errors of the two kinds (false positive and false negative; this can be rephrased

in terms of precision and recall—see Sections 3.4 and 4.2). Varying the threshold

function F between –1 and +1 we can control the balance between precision and re-

call. Our goal is to find the function that gives their acceptable combination; for ex-
ample, the formula (2) gives rather acceptable results. Note that the formula’s pa-
rameters depend not only on the language but also on a specific genre or domain. E.g.,

the formula n/s ≤ 0.55– 0.029 y is optimal for general lexis in Spanish; however, for the

texts on mortgage and crediting the best parameters proved to be n/s ≤ 0.53– 0.026 y.

Certain questions arise as to the obtained model function

s

n ≤ a + by (3)

where a > 0, b < 0. This is a linear formula with two degrees of liberty where the

threshold (the right-hand part) is lower for longer words. What does it mean from

linguistics point of view?

(1) Our formula has in fact two degrees of liberty with respect to the parameters n, y,

and s, since s = n + 2y. One can also consider a model in the form n/s ≤ F (y/s),
which has only one degree of liberty since y / s = (1 – n/s) / 2. It allows taking

into account separately the statistics of both the initial and the final part of a

given word.
(2) The linear approximation of the original formula F(y) ~ a + by indicates high

complexity of the real model we want to evaluate. Our model can reflect only the

tendency (b is the first derivative of the model function) but not the shape of the
function.

(3) All obtained formulas give lower threshold for longer words with the same rela-

tive number of non-coincident letters. This discrimination of long words reflects

the following statistical property of a language: the length of the final part of

similar words on average is similar for both long and short words. This property

was noted in [8] and makes sense linguistically: the length of word endings (non-

root morphemes) is the same for long and short words.

3 Testing Word Similarity Using n-grams

3.1 Limitation of the Original Approach

Our approach for testing word similarity is not applicable to words with irregular

forms. Indeed, no simple formula can detect any similarity between irregular verbs

such as buy and bought, because these words have only one common letter in the

initial part of the string. Similar examples are there in Romance languages, e.g., Span-
ish saber ‘know’ vs. supo ‘knew’. Obviously, this limitation leads to false negatives.

The other difficulty is related with the rigid comparison used in the formula.

Namely, ‘common part’ means that both words have exactly equal initial substrings;

slight changes in the common part dramatically reduce the size of the initial common

substring recognized by the formula, so word similarity is not detected, e.g.: Spanish

pienso vs. pensar, parezco and parecer.
In the paper, we address the latter problem. We assume that the common initial

part of both words may have small differences. In the paper, we limit these differ-

ences to one letter.

3.2 3-grams and Operations with them

Speaking about possible differences in common part of two words, we face a task of

determination of the boundary of this common part. If we deal with one-letter “de-

fects”, then this task can be solved with 3-grams.

Definition 1. N-gram of letters is a substring of N letters. A word of n has of m = n –

N + 1 N-grams. Example: The 3-grams for the word revolution are {rev, evo, vol, olu,

lut, uti, tio, ion}.

Definition 2. N-gram associated with i-th position of a given word w is N-gram start-

ing at i-th position. Truncated N-grams are added by attaching new “undefined” sym-

bols to the words. All undefined symbols are supposed to be different, even though

we denote them with the same letter X; i.e., X ≠ X. A word of n-letters has exactly n
different associated N-grams. Example: The 3-grams associated with the first and last

letters of the word revolution are {rev, nXX}. Here X are the “undefined” symbols.

Definition 3. Full set of N-grams of letters for a given word w is all associated N-

grams of this word. Example: The full set of 3-grams for the word bill are {bil, ill,

llX, lXX}.

We will work with 3-grams, though similar definitions can be introduced for any
N-grams. All comparisons are lexicographic. The definitions below can be rephrased

in terms of Levenshtein distance, though we find them easier to understand in the

form given here.

Definition 4. 3-grams A and B are equal with the level 1 if they are equal as strings.

Example: 3-grams pas and pas are equal, while pas and sap are not.

Definition 5. 3-grams A and B are equal with the level 2/3 if two letters of one of

them are found in the other one in the same order. Examples: 3-grams pas and asp as

well as ars and aps are equal with the level 2/3, while sra and aps are not.

Definition 6. 3-grams A and B are equal with the level 1/3 if a letter of one of them is

found in the other one. Examples: 3-grams sra and ars (sra and ars, sra and ars) are

equal with the level 1/3, while pas and wre are not. Note that in the former case, both
3-grams contain the same letters but their order does not allow for equality with levels

2/3 or 1.

3-grams with undefined symbols X are compared taking into account that all such

symbols are different: X ≠ X. Examples:

– 3-grams klX and Xkl are equal with the level 2/3.

– 3-grams klX and kXX are equal with the level 1/3.

– 3-grams X|X|X and X|X|X are not equal.

Definition 7. Two strings are equal by 3-grams with the level Q if they have equal 3-

grams for all positions with the level Q. Obviously, if Q = 1 then these two strings are

just equal as strings.

Examples: Strings assenr and reasse are equal by 3-grams with the level 1/3 and

assenr and yssien with the level 2/3.

3.3 Constructing of Empirical Formula for 3-grams

We use the model described in Section 2.1, but instead of letters, our model operates

on 3-grams. I.e., we declare two words similar if and only if

s

n ≤ F (y) (4)

where y is the total number of 3-grams of the common initial substring, n is the total

number of 3-grams in final substrings of the two words, s ia the total number of 3-
grams in the two words, and F is the model function, so that 2y + n = s. Since we use

here all associated 3-grams (see Definition 3), the total number of n-grams is equal to

the total number of letters in the two words.
Common substring is defined as the maximum common part of the two initial sub-

strings, which have the same first letter and which are equal by 3-grams with the level

no less than 2/3 (Definition 7). According to Definitions 4 and 5, this allows having

one incompatible letter in the common part.

Examples:

a) For sadly and sadness (Section 2.1), 3-grams are: sadly = {sad, adl, dly, lyX,

yXX}, sadness = {sad, adn, dne, nes, ess, ssX, sXX }; n = 8, s = 12, y = 2.
b) For Spanish comiendo and comer, 3-grams are: comiendo = {com, omi, mie, ien,

end, ndo, doX, oXX}, comer = {com, ome, mer, erX, rXX}; n = 7, s = 13, y = 3.

In this paper we will not try to find the optimum shape of the model function F by

the inductive method of model self-organization. Instead, extrapolating the results of

experiments with traditional model, we will assume that the model to be constructed

will be the linear. Thus, we will look for the optimum parameters for the formula (3).

3.4 Training Procedure for Spanish

The formula to be constructed has two unknown parameters, a and b. To find them we

should prepare the set of examples and use the least squares method. It is well known

from the theory of experiments that the number of examples must be at least 3 times

greater then the number of parameters to be evaluated, which provides the relative

error of 10%. Thus for our case we will need at least 6 pairs of similar words.

The examples we used for model construction are pairs of similar words with:

(a) short and long initial common part, (b) short and long final parts, and (c) “defects”

at the beginning and at the end of words; see Table 2.

The solution of this system gives the criterion:

n / s ≤ 0.63 – 0.036 y (5)

Table 2. Examples for training formula.

Examples Parameters Equations
Circo Circense n = 7, s = 13, y = 3 7/13 = a + 3b

Creado Creacion n = 8, s = 14, y = 3 8/14 = a + 3b
Sentimentales Sentimentalismo n = 8, s = 28, y = 10 8/28 = a + 10b
Necesario Necesariamente n = 9, s = 23, y = 7 9/23 = a + 7b
Pensar Pienso n = 6, s = 12, y = 3 6/12 = a + 3b
Entender Entiendo n = 6, s = 16, y = 5 6/16 = a + 5b

This formula should be considered only as a first approximation and may be later
tuned on the texts from a given domain, since our examples selected for training for-

mula only reflect some general regularities of a language.

We compared the work of traditional and modified algorithm on document collec-

tion on economic problems; see Table 3. The total number of words considered was

320 (numbers and words with less than 4 letters were excluded). The original algo-

rithm used the formula (2); the algorithm based on 3-grams used the formula (5). The

algorithm compared the pairs of words adjacent in the alphabetically ordered list, i.e.,

319 comparisons were made. By false positive (negative) rate Pp (Pn) we understand

the number of pairs incorrectly reported by the program as similar (not similar), di-

vided by the number of really similar pairs in the corpus. Viewing the task as retrieval

of similar pairs among all considered pairs, we can also represent the quality of the
algorithm via precision P and recall R; obviously, R = 1 – Pn; P = R / (R + Pp).

Table 3. Comparison of both methods

 Traditional algorithm Modified algorithm

False positive Pp 4.9% 5.4%
False negative Pn 12.9% 10.6%

Total errors Perr 17.8% 16.0%

Precision P 94.7% 94.3%
Recall R 87.1% 89.4%

F-measure 90.7% 91.8%

3.5 Discussion

We did not consider the words containing less than 4 letters, since these are mostly

prepositions, conjunctives, and pronouns.

We neither considered the other n-grams, for example, 2-grams, 4-grams, etc. The

only reason was that we wanted to implement the simplest principle of voting while

detecting one-letter “defects”. 3-grams were the minimum n-gram that allows doing

it. However, in the future it is necessary to check N-grams with other N.
The formula we used reflected the statistical regularities of a language, with the er-

ror rate given in Table 3. By using n-grams we tried to reveal similar words having a

“defect” in their common part, which led to decreased rate of false negatives. Al-

though false positives rate slightly increased, the experiments showed that the overall

error rate decreased.

4 Constructing Word Frequency Lists

4.1 Main Algorithms

The first algorithm oriented on application of empirical formula was very simple and

consisted of the following steps [7]. Initially, the text collection is considered as a bag

of words. With every word in this sequence, a counter is associated and initially set
to 1. The algorithm proceeds as follows:

1. All words are ordered alphabetically; literally equal words are joined together, and

their counts are summed up (e.g., 3 occurrences of the string ask with counters 2,

3, and 1 are replaced by one occurrence with the counter 6).

2. The similarity for each pair of adjacent words is tested according the criterion

described above; namely, the 1-st word is compared with the 2-nd one, 3-rd with
the 4-th, etc. If a pair of words is similar then these two words are replaced with

one new “word”—their common initial part, with the counter set to the sum of the

counters of the two original words. If the list has an odd number of words, then the

last word is compared with the immediately preceding one (or with the result of

substitution of the last word pair).

3. Step 2 is repeated until no changes are made at Step 2.

This multi-pass algorithm worked quickly but it proved to have a defect: it often

omitted similar words in adjacent pairs. Therefore, we had to consider the algorithm

in more detail. Note that the word similarity relation implemented in the present paper

is not transitive, i.e., that two words are similar to a third one does not mean that the

first two ones are similar. Thus, our algorithms for constructing word frequency lists

tare sensitive to the order of comparison. We consider here two algorithms, which are

applied to lists of alphabetically ordered words:

1. Algorithm where joining of adjacent similar words is used;

2. Algorithm where both adjacent and not adjacent words are considered.

Both algorithms start with Step 1 of the algorithm described above.

Algorithm 1

It is one-pass algorithm consisting of the following steps:

1. Starting from the first word from the list, the algorithm searches for a pair of

similar words, considering the words from the next one just after it.

– If such a pair is not found, then the algorithm stops.
– Otherwise, these two words are substituted by a new one—their initial com-

mon part. Its counter is the sum of the counters of the two joined words.

2. The procedure is repeated with the next position.

Algorithm 2

It is a multi-pass algorithm, which checks for similarity of each word to each another

word. It consists of the following steps:

1. Starting from the first word in the list, the algorithm searches for the first similar

word among all words with the same initial letter (not necessary adjacent).

– If such a word is not found, the process is repeated from the second word.

– In case of success, the first word is substituted by the new one—their com-

mon initial part. Its counter is the sum of the counters of the two joined

words. The second word from the pair is eliminated from the list. From the

position of the eliminated word, the algorithm searches for a word similar to

the new first one among the words with the same initial letter.

2. The process is repeated from the second word of the corrected list.

Any of the two algorithms can be implemented in two variants:

– As a direct pass algorithm: the list is processed from the beginning to the end;

– As a reverse pass algorithm: the list is processed from the end to the beginning.

These implementations give different results.

4.2 Experimental Results

For the experiments, we took Spanish texts on mortgage and crediting. This topic is

narrow enough to provide a representative set of similar words. The total number of

words considered was 560 (numbers and words with less then 4 letters were ex-
cluded); again, only alphabetically adjacent pairs were considered. For the experi-

ments, we used the formula (5). Both direct and reverse pass version of the algorithms

were tested. The results proved to be rather similar; Table 4 shows the results for of

Algorithm 1.

Table 4. Experimental results.

 Direct pass Reverse pass

Recall R 92.5% 95.4%

Precision P 89.4% 95.0%

F-measure 90.9% 95.2%

4.3 Discussion

Reverse pass implementation proved gave better results for both algorithms. This is

because the length of the common part of the similar words in an alphabetically or-

dered list increases on average. With a direct pass algorithm, the formula fails to de-

tect similarity of words at the beginning and the end of a group of similar words. A

reverse pass algorithm gives strong compensatory effect for truncation of common

part of similar words, increasing the probability of their joining.

Algorithm 2 seems to give better results on texts from some narrow domains,

where many similar words are separated by others in the lexicographic order and

therefore can not be joined by Algorithm 1. However, testing this hypothesis requires

more experiments.

5 Conclusions and Future Work

We have suggested a modification of Makagonov’s method [7] for testing (morpho-

logical) word similarity. His approach is based on an empirical formula trained on a

small number of examples. Our proposed modification uses 3-grams instead of letters

in this formula. In the paper, we have introduced operations of comparison on n-

grams, used by the algorithm. Experiments show improvement of the suggested modi-

fication over the original algorithm. The suggested modification keeps all properties
of the original method: empirical formula does not require any morphological diction-
aries of the given language and can be tuned manually (or trained on a small number

of examples) on a given language or topic.

In the future, we plan to construct other empirical formulae taking into account sta-

tistical regularities of words extracted from the training corpus. We also plan to com-

pare our results using n-grams with n other than 3.

References

1. Alexandrov, M., Blanco, X., Makagonov, P. (2004). Testing Word Similarity: Language

Independent Approach with Examples from Romance. In Natural Language Processing
and Information Systems, Lecture Notes in Computer Science 3136, Springer, pp. 223-234.

2. Baeza-Yates, R., Ribero-Neto, B. (1999). Modern Information Retrieval. Addison Wesley.

3. Cramer, H. (1946): Mathematical methods of statistics. Cambridge.
4. Gelbukh, A., Sidorov, G. (2002): Morphological Analysis of Inflective Languages through

Generation. Procesamiento de Lenguaje Natural, No 29, 2002, p. 105–112.

5. Gelbukh, A., Sidorov, G. (2003): Approach to construction of automatic morphological

analysis systems for inflective languages with little effort. In: Computational Linguistics
and Intelligent Text Processing (CICLing-2003), Lecture Notes in Computer Science,
Springer, No 2588, pp. 215–220.

6. Ivahnenko, A. (1980): Manual on typical algorithms of modeling. Tehnika Publ., Kiev (in
Russian).

7. Makagonov, P., Alexandrov, M. (2002): Empirical Formula for Testing Word Similarity

and its Application for Constructing a Word Frequency List. In: Computational Linguis-
tics and Intelligent Text Processing (CICLing-2002), Lecture Notes in Computer Science,
Springer, No 2276, pp. 425–432.

8. Makagonov, P., M. Alexandrov, M., Gelbukh, A. (2004): Formulae for Testing Word
Similarity trained on examples. In: Corpus Linguistics-2004. Proc. of linguistics seminar
of Sankt-Petersburg University, Russia, 15 pp. (in Russian).

9. Porter, M. (1980): An algorithm for suffix stripping. Program, 14, pp. 130–137.

10. Renz, I., Ficzay, A., Hitzler, H. (2003): Keyword Extraction for Text Categorization. In:
In: Natural Language Processing and Information Systems, Lecture Notes in Informatics,
GI-Edition Germany, No 129, pp. 228–234.

