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ABSTRACT
This paper presents a novel evolutionary approach to solve numer-
ical optimization problems, called Adaptive Evolution (AEv). AEv
is a new micro-population-like technique because it uses small pop-
ulations (less than 10 individuals). The two main mechanisms of
AEv are elitism and adaptive behavior. It has an adaptive parameter
to adjust the balance between global exploration, local exploitation
and elitism. Its two crossover operators allow a newly-generated
offspring to be parent of other offspring in the same generation.
AEv requires the fine-tuning of two parameters (several state-of-
the-art approaches use at least three). AEv is tested on a set of
10 benchmark functions with 30 decision variables and it is com-
pared with respect to some state-of-the-art algorithms to show its
competitive performance.
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1. ALGORITHM DESCRIPTION
AEv is a population-based stochastic optimizer based on a micro-

population evolutionary algorithm. The two main mechanisms of
AEv are: (1) elitism and (2) adaptive behavior. These mechanisms
are mixed in a novel way within mutation, crossover and replace-
ment operators. Algorithm 1 describes an AEv iteration. The fea-
tures of AEv are:

1. Elitism, which has a great influence in the proccess. It is
integrated in the crossover and replacement operators.

2. Adaptive parameters, which adjust: (1) elitism influences on
the operators, (2) the step size used by the mutation operator,
(3) the number of individuals generated in each crossover
and, finally, (4) the restart mechanism. The three adaptive
parameters are: (1) ambient pressure (C, C ∈ [1, P ]), (2)
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step size for mutation operator (~b, ~bi ∈ [0.0, 1.0], i ∈ [i, N ])
and (3) crossover balance (CR, CR ∈ [1, P − 1]).

3. The mutation operator works in a similar way to those mech-
anisms used in a hill-climber search algorithms.

4. The two crossover operators allow an offspring to be a parent
in the same generation. Parent selection is controlled by C,
forcing the selection of the elite when C = P .

5. The replacement mechanism is combined with a reinitializa-
tion mechanism. Partial or total population restarts are al-
lowed on each generations and controlled by C. Elitism is
always ensured in replacement.

6. AEv requires the configuration of two user-defined param-
eters: Population size (P, P ≥ 3) and initial step size (B,
B ∈ [0.0, 1.0]) required by the mutation operator. In the
experiments performed in this paper, AEv did not present a
significant sensitivity to its parameter values.

Algorithm 1: Algorithm for any g iteration of AEv.

Recalculation of the three adaptive parameters;1
Copy Xg (population) into ng (offspring);2
Perform mutation [5] to each ng individual;3
for i = CR To P do4

ng
i = Xg

[1,P−C+1] + ng
[1,P ] + Xg

[1,P ];5

for i = 1 To CR do6
c1 = [0.0, 1.0], c2 = [0.0, 1.0− c1], c3 = 1.0− c2 − c1;7
ng

i = c1 × ng
[1,P−C+1] + c2 ×Xg

[1,P−C+1] + c3 × ng
[1,P ];8

Evaluate the new ng individuals;9

Replace the first C individuals of Xg+1 with the best ones of10

Xg ∪ ng . Replace the remaining individuals of Xg+1 with
random ones from ng;

C parameter controls the number of individuals to be affected
by local exploitation vs. global exploration. ~b is a vector of size
N that contains the step size used by the mutation operator. CR
controls the number of times each crossover operator is used. C and
~b depend on the success of AEv search process. CR depends on
the success of each crossover operator. The adaptive nature of AEv
allows the algorithm to reach the vicinity of the global optimum
with a high convergence speed even in complex problems.

The performance and features of AEv are shown by testing it
in a set of 10 well-known functions with 30 variables taken from
the specialized literature [2, 4] and detailed in Table 2. Table 1



Figure 1: Convergence graphs of AEvP=5, EEv, µ-PSO and DE/rand/1/bin for fsph, fras and fack with N = 30

Table 1: Results obtained by each compared algorithm. Normalized error values are shown in problems with 30 variables. Best
results are remarked with boldface.

AEvP=5 EEv AEVP=30 µ-PSO µ-GA DE G3+PCX
F1 2.10E + 00 5.48E + 01 3.13E + 03 1.53E + 06 1.48E + 15 1.00E + 00 9.10E + 00
F2 1.35E + 09 7.66E + 09 8.16E + 12 1.80E + 10 6.57E + 14 2.05E + 10 1.00E + 00
F3 9.98E + 02 8.66E + 02 2.52E + 03 8.50E + 03 4.77E + 04 3.39E + 03 1.00E + 00
F4 7.65E + 02 1.07E + 03 5.74E + 02 3.90E + 01 1.14E + 02 1.00E + 00 1.69E + 03

fsch 4.28E + 00 1.37E + 01 1.21E + 01 1.28E + 01 1.00E + 00 1.13E + 01 3.42E + 01
fras 1.00E + 00 1.23E + 01 1.49E + 13 4.61E + 13 6.96E + 13 4.71E + 14 1.26E + 15
fros 8.96E + 00 4.94E + 00 1.00E + 00 1.26E + 01 3.88E + 02 1.29E + 00 1.41E + 00
fack 1.00E + 00 2.48E + 01 1.50E + 08 1.05E + 04 7.76E + 08 2.05E + 06 3.99E + 09

fpen1 1.00E + 00 2.87E + 00 1.01E + 22 1.77E + 14 1.14E + 24 1.71E + 24 1.27E + 25
fwhit 1.00E + 00 1.22E + 00 3.48E + 00 6.27E + 00 3.65E + 07 1.90E + 01 3.92E + 01

µ() 1.35E + 08 7.66E + 08 1.01E + 21 2.23E + 13 1.14E + 23 1.71E + 23 1.27E + 24

presents a comparison of results among AEV with P = 5 and
P = 30, µ-GA [6], µ-PSO [7], DE/Rand/1/Bin [3], G3+PCX [1]
and a variant of AEv using only one crossover operator (EEv) to
show AEv’ efficiency. Fixed parameter values for all techniques on
all the tests were used. 30 independent runs per each algorithm per
each function were performed. All the experiments were run using
a Pentium 4 PC with 512 MB of RAM, in C Linux environment.
Figure 1 shows convergence graphs of AEvP=5, EEv, µ-PSO and
DE/rand/1/bin for three test functions: fsph, fras and fack with 30
variables.

Test results obtained show that AEv provided a better perfor-
mance with a small population P = 5 in most of the test problems.
It is a competitive approach, it have an smaller mean error value
than the other techniques in the comparison. The two crossover ap-
proach have an slightly better performance than the one crossover
approach, more studies and refinement of mechanisms will be con-
ducted on both approaches.
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