
Music Composition Based on Linguistic Approach

Horacio Alberto García Salas,1 Alexander Gelbukh,1 Hiram Calvo 1,2

1 Natural Language Laboratory, Computing Research Center,
National Polytechnic Institute, 07738, DF, Mexico

2 Computational Linguistics Laboratory,
Nara Institute of Science and Technology,
Takayama, Ikoma, Nara 630-0192, Japan

itztzin|@|gmail.com, gelbukh|@|gelbukh.com,
hiramcalvo|@|gmail.com, calvo@is.naist.jp

Abstract. Music is a form of expression. Since machines have limited
capabilities in this sense, our main goal is to model musical composition
process, to allow machines to express themselves musically. Our model is
based on a linguistic approach. It describes music as a language composed of
sequences of symbols that form melodies, with lexical symbols being sounds
and silences with their duration in time. We determine functions to describe the
probability distribution of these sequences of musical notes and use them for
automatic music generation.

Keywords: Affective computing, evolutionary systems, evolutionary matrix,
generative music, generative grammars.

1 Introduction

Machine emotional intelligence is part of the objectives of affective computing
research [20]. Music is one of the fine arts and represents a form of expression. A
desirable feature for machines is that they could express musically since they do not
yet have this ability [2]. The problem is how to teach machines to compose music.

Computers represent a musical instrument capable of generating a number of
sounds. Development of computational models applied to humanistic branches as fine
arts, especially music, has its results in generative music, music generated from
algorithms. Different models have been applied in development of automatic music
composers, for example, those ones based on neural networks [11], on genetic
algorithms [21], on swarms [4], etc., resulting in a wide range of applications

Our work is to characterize music and find its patterns so it can be explained in
terms of algorithms to model the process of musical composition. A notes’ sequence
has certain probability of appearing in a melody. There are certain sequences that
occur more regularly that forms characteristic patterns for each musical composition.
The likelihood for these patterns to appear is used by our algorithm to generate a
musical composition automatically.

It is possible to develop computational tools to automate composition process
using our model. The following are possible applications of such systems:

– Have a personal music composer.
– Create new music styles by finding different patterns styles and mixing them.
– Help people without musical knowledge to compose music. Providing tools to

allow users edit generated compositions, resulting user’s composition.
– Enable computers to have the capacity to carry out a process until now reserved

for humans. Making this, machines will get human characteristics creating
another way of human-machine communication.

– Offer another alternative for creation of music; as a consequence, other
alternatives of music are possible to be listened.

– Have machinery for the generation of live music for restaurants, offices, shops,
etc. with compositions created in real time by indefatigable musicians.

– Provide tools to allow children from a very young age to have direct contact with
musical composition process, which stimulates their minds for better
performance in human activities.

This paper is organized as follows. In Section 2 we describe different algorithms to
develop the same task we do. In Section 3 we explain our system. In Section 4 we
present some results and a discussion about how we can improve our model. Section 5
is the future work we endeavor to accomplish. Then we present some conclusions.

2 Related Work

The works [19] and [12] provide a comprehensive study of different methods that
have been used to develop music composition systems based on: noise [5],
knowledge, cellular automata, grammars [18], evolutionary methods, fractals, genetic
algorithms [1], case based reasoning [14], agents [16] and neural networks [6, 11].
Some systems are called hybrid since they combine several of these techniques.

For example, Harmonet [11] is a system based on connectionist networks, which
has been trained to produce coral style of J. S. Bach. It focuses on the essence of
musical information, rather than restrictions on music structure. The authors of [6]
believe that music composed by recurrent neural networks lacks structure, as they do
not maintain memory of distant events, and developed a model based on LSTM (Long
Short Term Memory) to represent the overall and local music structure, generating
blues compositions.

The work [13] describes a system for automatic music genre recognition based on
signal’s audio content, focusing only on melodies of three music genres: classical,
metal and dance. The work [3] presents a system to recognize through the contents of
a music database, which includes audio files (MIDI), with the idea to make search
based on music contours, i.e. in a relative changes representation in a melody
frequencies, regardless of tone or time.

There is a number of works based on evolutionary ideas for music composition.
For example, [18] used generative context-free grammars for modeling the melody,
through genetic algorithms making grammar evolve to improve the melody and
produce a composition. GenJam [1] is a system based on a genetic algorithm that

models a novice jazz musician learning to improvise. Musical phrases are generated at
random and user feedbacks the system, generating new compositions improving
through several generations. In [21] a genetic algorithm with coevolution, learning
and rules is used in a music composer system. In it, male individuals produce music
and female critics evaluate it to mate with suitable males creating new melodies
generations.

3 Music Composer

A melody is a structure made up of other structures built over time. These structures
are notes sequences. How many times a musical note is used after another reflects
patterns of notes’ sequences in a melody. A personal characteristic of each author is
the use of certain notes’ patterns with more regularity. We focus on finding these
patterns over monophonic music to characterize it probabilistically.

Our model is built based on a linguistic approach [8]. It describes music as a
language composed of sequences of symbols, which lexical items are sounds and
silences throughout time. Each melody is made of phrases of this language. Notes of a
melody represent sounds or silences. Sequences of notes form phrases of sounds.

ComposerMental

Interpretative Interpreter
Expressiveness
(time, frequency)

Auditory Listener

Grammar
(sad, happy)

Fig. 1. Model of Music Process

Music process involves three main levels, mental, interpretative and auditory [15].
The process of musical composition is a mental process that involves the conception
of an idea to be expressed in sounds and silences. The result of composition process is
a musical composition and can be shaped in a score or in a sound file. In our model
the language that represents the score is represented by a grammar. The performer
turns the musical work into sound, adding his personal traits of expressiveness. The
sound reaches the audience who gives meaning to the music according to how is
perceived. Our model focuses on the mental level, see Fig. 1.

To model the process of musical composition we rely on the concept of
evolutionary systems [7], which states that systems evolve as a result of constant
change caused by the flow of matter, energy and information [9]. Evolutionary
systems interrelate with their environment finding rules to describe phenomena, they
use functions that allow them to learn and adapt to changes that come before them.
These rules can be expressed in the form of grammars. A generative grammar G (Vn,
Vt, S, R), where Vn is the set of non-terminal symbols, Vt is the set of terminal

symbols or alphabet, which are the musical notes, the initial symbol S and a set of
rules R.

Each genre, style and musical author has its own rules of composition. Not all rules
are described in music theory. So to make automatic music composition we use an
evolutionary system to find the rules that determine the form of each melody in
unsupervised manner. The scheme of our model is shown in Fig. 2.

Recognizer
(FE, FS, Cl) Composer

Request

Generated
Music

Music

Rules

Unknown
Request

Fig. 2. Scheme of our model

A characteristic of our model is the ability to learn from examples of music mi.
From each example probabilistic grammars Gi are generated to describe patterns that
characterize musical expressiveness of each melody. These learned rules are used to
generate melody mi+1 automatically. The function R called recognizer generates
production rules of grammar G from each musical melody, thereby creating an image
of reality in musical terms.

R(mi) = G

It is possible to construct a function C(G). C is called a musical composer and uses
G, a generative grammar to produce a novel melody m.

C(G) = m

In this paper we are dealing with Composer and Recognizer Functions. To hear the
music composition it must exist a function I called musical interpreter or performer
that generates the sound of melody m. I recognize the lexical-semantic symbols of G
that make the expressiveness of melody m.

I(m) = sound

3.1 R Function Recognizer: Music Learning Module

Our model is modified according to each new melody. For every melody a musical
language is generated that represents it. This is equivalent to generate a different
automaton or a new compiler. Each example makes the model to restructure and to
adapt to changes getting more musical knowledge.

We are working with melodies, monophonic music, modeling frequencies and
times of notes, the two more important variables of expressivity in music. Each of
these variables forms a sequence along the melody. We construct a probability
function for each sequence using a matrix. This matrix can be transformed into a

probabilistic grammar. In 3.3 Matrix and Grammar we explain and algorithm to make
this transformation.

We are going to explain how the frequency matrix works. Time’s matrix works the
same way. For example, Fig. 3 is a frequencies sequence of a melody. Where Vt={b,
d#, e, f#, g, a, b2, d2, e2, g2} are the terminal symbols or alphabet of this melody. Each
of these symbols of the alphabet corresponds to each note in a chromatic scale: A, A#,
B, C, C#, D, D#, E, F, F#, G, G#.

El cóndor pasa (Peruvian song)
b e d# e f# g f# g a b2 d2 b2 e2 d2 b2 a g e g e
b e d# e f# g f# g a b2 d2 b2 e2 d2 b2 a g e g e
b2 e2 d2 e2 d2 e2 g2 e2 d2 e2 d2 b2 g e2 d2 e2 d2
e2 g2 e2 d2 e2 d2 b2 a g e g e

Fig. 3. Example of a monophonic melody

Let Notes[n] to be an array in which are stored the numbers corresponding to
melody notes. Where n is the index which refers to each array element. Let Mi,j be a
matrix with i rows and j columns. Fig. 4 shows the learning algorithm we use to
generate frequency distribution matrix of Fig. 5.

for each i ∈ Notes[n], j ∈ Notes[n+1] do
 Mi,j = Mi,j + 1

Fig. 4. Learning algorithm

We use a matrix of 60 rows and 60 columns representing 5 musical octaves to store
frequency’s sequences. 5 musical octaves are 60 chromatic notes. Frequencies
matrix’s tags of rows and columns are the notes (a, a#, b, c, c#, d, d#, e, f, f# g, g#, a2,
a2#,…,g5, g5#). A matrix of 7 rows and 7 columns is used to store time’s sequences
corresponding to whole note (semibreve), half note (minim), quarter note (crotchet),
eighth note (quaver), sixteenth note (semiquaver), thirty-second note
(demisemiquaver) and sixty-fourth note (hemidemisemiquaver).

Fig. 5. Frequency distribution matrix

Each number stored in frequency matrix represents how many times a row note
was followed by a column note. An S row should be added to store the first note of
each melody. S represents the axiom or initial symbol. Fig. 5 shows frequency
distribution matrix after applying the learning algorithm to melody of Fig. 3. Matrix
of Fig. 5 only nonzero contains columns and rows.

Fig. 6. Frequency distribution of e note

Rows of matrix of Fig. 5 represent frequency distribution of each note. In Fig. 6 we
show as example the frequency distribution of e row. How many times a note is
followed by another note can be used to calculate its probability distribution.

3.2 C Function Composer: Music Generator Module

C (Composer) function generates a note sequence based on probabilities determined
from frequency distribution matrix. From each note is possible to go only to certain
notes according to frequency distribution for each note. The most probable notes form
characteristic musical patterns.

To determine the probability that a note follows another note, we need to determine
the cumulative sum of each matrix row of Fig. 5. Let Mi,j to be a matrix, with i rows
and j columns. We calculate the cumulative sum for each i row such that Mi,j ≠ 0. The
partial i row sum is stored in each non-zero cell. We add a column T where the total
cumulative sum for each row i is stored.

for each i ∈ M do
 for each j ∈ M do
 Ti = Ti + Mi,j

Mi,j = Ti for each Mi,j ≠ 0

Fig. 7. Cumulative frequency distribution algorithm

With each new melody mi matrix Mi,j is modified. This means that world’s
representation of our model has changed. It has more music knowledge. Fig. 8 is
cumulative frequency distribution matrix after applying cumulative frequency
distribution algorithm Fig. 7 to frequency distribution matrix Fig. 5.

For music generation is necessary to decide next note of the melody. To take this
decision a human composer bases in his musical knowledge. In our model this
decision is made based on the cumulative frequency distribution matrix using the note
generator algorithm Fig. 9.

Fig. 8. Cumulative frequency distribution matrix

For example let us generate a melody based on matrix of Fig. 8. Music generation
begins choosing the first composition note. We choose one of possible beginning
notes, that is, notes which are first notes of melodies examples. S row of matrix of
Fig. 8 contains all beginning notes. In our example, applying note generator algorithm
Fig. 9 there is only one possible note to choose. This first note represents an i row of
Mi,j which we use to determine the next note. The same happens with second note.
Only e note can be chosen from the first note b.

while(not end)
 p=random(Ti)

 while(Mi,j < p)
 j++
 new_note = j
 i=j

Fig. 9. Note generator algorithm

The first two notes of this new melody are mi+1 = {b, e}. Applying the note
generator algorithm to determine the third note: We take the value of column Te = 9.
A p random number between zero and 9 is generated, p = 6. To find next note we
compare p random number with each non-zero value of the E row until one greater
than or equal to this number is found. Then column g is this next note since Me,g = 8 is
greater than p=6. The column j=g is where it is stored this number that indicates the
following composition note and the i following row to be processed. The third note of
new melody mi+1 is g. So mi+1 = {b, e, g,…}. Then to determine the fourth note we
must apply the note generator algorithm to i = g row.

Since each non-zero value of i represents notes that were used to follow the i note,
then can use them to generate patterns found in melodies examples. Generated music
reflects these patterns learned from music examples.

 While the system generates a musical composition with each note it modifies
itself, increasing the likelihood for that note to be generated again. This is another
way the system evolves. Besides we added a forgetting mechanism to ensure that the
values do not overflow, which causes the notes played the least, lesser probability to
be played again even they are not forgotten.

3.3 Matrix and Grammar

There are different ways to obtain a generative grammar G. A particular unsupervised
case is an evolutionary matrix [10]. The algorithms described in Figs. 4, 7 and 9 of
functions R and C represent an evolutionary matrix. An evolutionary matrix is a way
of knowledge representation. From frequency distribution matrix and the T total
column Fig. 8 is possible to generate a probabilistic generative grammar.

 for each i ∈ M do
 for each j ∈ M do
 if Mi,j ≠ 0
 Mi,j= Mi,j / Ti

Fig. 10. Probability algorithm

To apply the algorithm, we need to determine probability matrix from frequency
distribution matrix of Fig. 8. Probability matrix is calculated with the probability
algorithm of Fig. 10.

Fig. 11. Probability matrix

Exist a grammar G{Vn, Vt, S, R} such that G can be generated from M, where M is
the probability matrix Fig. 11. Vn is the set of no-terminals symbols, Vt is the set of all
terminal symbols or alphabet; in this particular case the alphabet represents melody’s
notes. S is the axiom or initial symbol and R is the set of rules generated. To
transform matrix of Fig. 11 into grammar of Fig. 13 we use the following algorithm:

– We substitute each tag row of M with a no-terminal symbol of grammar G,
Fig. 12.

– Each column tag must be substituted by its note and its non-terminal symbol,
Fig. 12.

– For each i row and each j column such that Mi,j ≠ 0, j column represents a
terminal symbol and a Xn no-terminal symbol with probability p = Mi,j / Ti to
occur. Then rules are of the form Vn → Vt Vn(p).

In this way the grammar is G{Vn,Vt, S, R}. Vn={S, X1, X2 X3, X4, X5, X6, X7, X8,
X9, X10} is the set of no-terminals symbols. Vt={b, d#, e, f#, g, a, b2, d2, e2, g2} is the
set of all terminal symbols or alphabet. S is the axiom or initial symbol. Rules R are
listed in Fig. 13.

Fig. 12. Transition matrix

S → b X1(1)
X1 → e X2(1)
X2 → e X3(1)
X3 → b X1(1/9) | d# X2(2/9)| f# X4(2/9) | g X5(3/9) | b2 X7(1/9)
X4 → g X5(1)
X5 → e X3(6/11) | f# X4(2/11) | a X6(2/11) | e2 X9(1/11)
X6 → g X5(3/5) | b2 X7(2/5)
X7 → g X5(1/9) | a X6(3/9) | d2 X8(2/9) | e2 X9(3/9)
X8 → b2 X7(6/12) | g2 X10(6/12)
X9 → d2 X8(10/12) | g2 X10(2/12)
X10 → e2 X9(1)

Fig. 13. Probabilistic generative grammar

4 Results and discussion

Examples of music generated by our system can be found at www.olincuicatl.com.
To evaluate whether our algorithm is generating music or not, we decided to

conduct a Turing-like test. 26 participants of the test had to tell us if they like music
generated by our model, knowing anything about that but it was automatically music
generated.

We compiled 10 melodies, 5 of them generated by our model and another 5 by
human composers and we asked 26 human subjects to rank melodies according to
whether they liked them or not, with numbers between 1 and 10 being number 1 the
most they liked. None of subjects knew about the order of music compositions. These
10 melodies were presented as in table 1.

Table 1. Order of melodies as they were presented to subjects

ID Melody Author ID Melody Author
A Zanya (generated) F Dali Astrix
B Fell Nathan Fake G Ritual Cibernetico (generated)
C Alucin (generated) H Feelin' Electro Rob Mooney
D Idiot James Holden I Infinito (generated)
E Ciclos (generated) J Lost Town Kraftwerk

Test results were encouraging: since automatically generated melodies were ranked
at 3rd and 4th place above human compositions of very famous bands. Table 2 shows
the ranking of melodies as a result of the Turing-like test we conducted.

Table 2. Order of melodies obtained after the like Turing test

ID Ranking Melody Author
B 1 Fell Nathan Fake
D 2 Idiot James Holden
C 3 Alucín (generated)
A 4 Zanya (generated)
F 5 Dali Astrix
H 6 Feelin' Electro Rob Mooney
J 7 Lost Town Kraftwerk
E 8 Ciclos (generated)
G 9 Ritual Cibernético (generated)
I 10 Infinito (generated)

We have obtained novelty results comparable with those obtained by other

developments [21, 1], modeling frequency and time of a melody with simple
algorithms.

To the ears of musicians compositions generated by our system sound similar to
the used examples. However we are developing other algorithms in order to shape the
musical structure [17]. We consider if a larger corpus is used the results will
considerably improve.

It is necessary to develop more sophisticated forgetting functions to improve the
method.

5 Conclusions and Future Work

We have developed a model for music composition process. A way to represent music
based on an evolving matrix [10] a paradigm for knowledge representation.

We developed an algorithm to transform a matrix where we represent music into a
grammar, what it is a linguistic representation of music.

Generative music presents new forms that not always match with traditional rules
of music. This feature is perhaps one of the attractions of these new forms of music
which breaks with preset patterns.

Transition patterns are measured statistically to determine the probability of
moving from one musical note to another. This process can be model with a grammar,
automata, matrix, etc. We propose a model, regardless of the modeling tool, for
characterize music composition process.

In our future work we will characterize different types of music, from sad to happy,
from classic to electronic in order to determine functions for generating any kind of
music.

We are currently developing systems to improve using matrices of 3, 4 or n
dimensions, which may reflect the many variables involved in a musical work. To
model more music variables will be reflected in music expression.

We plan to make matrices evolve into some other matrices to produce music
morphing. Also, we are interested in develop a polyphonic model. Finally, it is
necessary to develop better forgetting functions.

Acknowledgements. The work was done under partial support of Mexican
Government (CONACYT 50206-H, IPN-SIP 20100773, IPN-COFAA, IPN-PIFI,
SNI, CONACYT scholarship for Sabbatical stay to the second author) and the
Japanese Government (JSPS). The third author is a JSPS fellow.

References

1. Biles, J. A. (2001) GenJam: Evolution of a jazz improviser. Source. Creative evolutionary
systems. Section: Evolutionary music. Pages: 165–187. Morgan Kaufmann Publishers
Inc. San Francisco, CA, USA.

2. Birchfield, D. (2003). Generative model for the creation of musical emotion, meaning and
form. Source International Multimedia Conference. Proceedings of the 2003 ACM
SIGMM workshop on Experiential telepresence. Berkeley, California SESSION: Playing
experience. Pages: 99–104. ACM New York, NY, USA.

3. Blackburm, S. and DeRoure, D. (1998). A tool for content based navigation of music.
Source International Multimedia Conference. Proceedings of the sixth ACM international
conference on Multimedia. Bristol, United Kingdom. pp. 361–368.

4. Blackwell, T. (2007). Swarming and Music. Evolutionary Computer Music. Springer
London. pp. 194–217. Subject Collection: Informática. In SpringerLink since 12 October
2007.

5. Bulmer, M. (2000). Music From Fractal Noise. University of Queensland. Proceedings of
the Mathematics 2000 Festival, Melbourne, 10–13 January 2000.

6. Eck, D. Schmidhuber, J. (2002). A First Look at Music Composition using LSTM
Recurrent Neural Networks. Source Technical Report: IDSIA-07-02. Istituto Dalle Molle
Di Studi Sull Intelligenza Artificiale.

7. Galindo Soria, F. (1991). Sistemas Evolutivos: Nuevo Paradigma de la Informática.
Memorias XVII Conferencia Latinoamericana de Informática, Caracas Venezuela, July
1991.

8. Galindo Soria, F. (1994). Enfoque Lingüístico. Instituto Politécnico Nacional UPIICSA
ESCOM.

9. Galindo Soria, F. (1997). Teoría y Práctica de los Sistemas Evolutivos. Mexico. Editor
Jesús Manuel Olivares Ceja.

10. Galindo Soria, F. (1998). Matrices Evolutivas. La Revista Científica, ESIME del IPN, #8
de 1998, pp. 17–22. Cuarta Conferencia de Ingeniería Eléctrica CIE/98, CINVESTAV-
IPN, Cd. de México, September 1998.

11. Hild, H. Feulner, J. Menzel, W. Harmonet. Harmonet: A Neural Net for Harmonizing
Chorales in the Style of J.S.Bach. in in Neural Information Processing 4 (NIPS 4), pp.
267–274, R.P. Lippmann, J.E. Moody, D.S. Touretzky (eds.), Morgan.
Kaufmann.Universität Karlsruhe, Germany.

12. Järveläinen, H. (2000). Algorithmic Musical Composition. April 7, 2000. Tik-111.080
Seminar on content creation Art@Science. Helsinki University of Technology Laboratory
of Acoustics and Audio Signal Processing.

13. Kosina, K. (2002). Music Genre Recognition.. Diplomarbeit. Eingereicht am
Fachhochschul-Studiengang. Mediente Chnik und Design in Hagenberg. June 2002.

14. Maarten, G. J. A. López. M. R. (2006). A Case Based Approach to Expressivity-Aware
Tempo Transformation. Source Machine Learning Volume 65, Issue 2–3 (December
2006). pp. 411–437. Kluwer Academic Publishers Hingham, MA, USA.

15. Miranda E. R., Jesus L. A., Barros B. (2006). Music Knowledge Analysis: Towards an
Efficient Representation for Composition. Springer Berlin/Heidelberg, Vol. 4177. Current
Topics in Artificial Intelligence. Selected Papers from the 11th Conference of the Spanish
Association for Artificial Intelligence (CAEPIA 2005). pp. 331–341. Subject Collection:
Informática. In SpringerLink since 13 October 2006.

16. Minsky, M. (1981). Music, Mind, and Meaning. Computer Music Journal, Fall 1981,
Vol. 5, Number 3.

17. Namunu, M. Changsheng, X. Mohan, S K. Shao, X. (2004). Content-based music structure
analysis with applications to music semantics understanding. Source International
Multimedia Conference. Proceedings of the 12th annual ACM international conference on
Multimedia. Technical session 3: Audio Processing. pp. 112–119. ACM New York, NY,
USA.

18. Ortega, A. P. Sánchez, A. R. Alfonseca M. M. (2002). Automatic composition of music by
means of Grammatical Evolution. ACM SIGAPL APL. Volume 32, issue 4 (June 2002)
pp. 148–155. ACM New York, NY, USA.

19. Papadopoulos, G., Wiggins, G. AI Methods for Algorithmic Composition: A Survey, a
Critical View and Future Prospects. AISB Symposium on Musical Creativity 1999, pp.
110–117. School of Artificial Intelligence, Division of Informatics, University of
Edinburgh.

20. Picard, R. W., Vyzas, E., Healey, J. (2001). Toward Machine Emotional Intelligence:
Analysis of Affective Physiological State. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 23, No. 10, October 2001.

21. Todd, P.M. & Werner, G. M (1999). Frankensteinian Methods for Evolutionary Music
Composition. Musical networks. p. 385. Editors: Niall Griffith, Peter M. Todd. MIT
Press, Cambridge, MA, USA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

