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BASELINES FOR NATURAL LANGUAGE PROCESSING TASKS
BASED ON SOFT CARDINALITY SPECTRA

SERGIO JIMENEZ1, ALEXANDER GELBUKH2

Abstract. Soft-cardinality spectra (SC spectra) is a new method of approximation for text
strings in linear time, which divides text strings into character q-grams of different sizes. The
method allows simultaneous use of weighting at term and q-gram levels. SC spectra in combina-
tion with resemblance coefficients allows the construction of a family of text similarity functions
that only use the surface information of the texts and weights obtained in the same text collec-
tion. These similarity measures can be used in various tasks of natural language processing as
baseline for other methods that exploit the hidden syntactic and/or semantic structure using
resources based on knowledge, inference of large corpora. The proposed method was evaluated
on 22 data sets to address the tasks of information retrieval, entity matching, paraphrase and
textual entailment recognition. The results raised the bar near to the best published results in
the used data sets. We claim that any method that uses any resource or information external to
a particular data set should outperform our method. We found that our method is an effective
and challenging baseline for the evaluated tasks.
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1. Introduction

The assessment of similarity is the ability to balance commonalities and differences between
two objects to produce a similarity judgment. People and most animals have this intrinsic capac-
ity, which makes this an important requirement for artificial intelligence systems. Although, the
computational exact comparison of any two object representations is trivial, approximate com-
parison has to deal with issues such as noise, nuance and ambiguity. Therefore, the agreement
of computer-generated and human similarity judgments is a challenge for artificial intelligence
systems.

In natural language processing, text similarity functions are basic components in many par-
ticular tasks [26] namely, textual entailment, question answering, summarization, paraphrasing,
semantic text similarity assessment, entity resolution, information retrieval, text classification,
text clustering, etc. For instance, the entity resolution task consists of finding co-referential
names in a couple of lists of names, dealing with misspellings, homonyms, initialisms, aliases,
typos, and other issues. A text similarity function can be used to obtain a ranking of the most
similar pairs as candidates to be the same entity. The results above a threshold are evaluated
against a gold standard built with human judgments.

Similarly, many information retrieval approaches aim to reproduce the human relevance judg-
ments building similarity functions that compare queries and documents using similarity scores
as evidence of relevance. In paraphrase and textual entailment recognition, text similarity
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functions have been used to compare pairs of texts to determine whether a particular pair is
semantically similar enough to be a valid paraphrase or entailment pair. In this paper, we ex-
plore the usefulness of a new text similarity function in the following tasks: entity resolution (or
name matching), information retrieval, paraphrase and textual entailment recognition.

The current text comparison methods can be classified by the level of granularity in which the
texts are divided for comparison. For example, characters are used as comparison unit in the
family of methods derived from the edit distance [28]. The granularity gradually decreases in
the methods based on q-grams of characters [25]. Q-grams, also known as kmers or n-grams, are
consecutive substrings of length q that overlap q − 1 characters. Even coarser, methods such as
the vector space model (VSM) [38] and the resemblance coefficients applied to text [39] make use
of the terms (i.e., words or symbols) as subdivision unit. The methods that have achieved the
best performance on the task of entity resolution are those that combine term-level comparisons
with comparisons of character or q-gram level. Some examples of these hybrid approaches are
the Monge-Elkan measure [32], SoftTFIDF [8], fuzzy match similarity [5], meta-Levenshtein [33]
and the soft cardinality (SC) [22]. The method proposed in this paper combines information
from several text subdivisions ranging from characters, q-grams to terms levels in a new approach
based on the idea of soft cardinality.

Text similarity functions can also be classified by the information used to calculate their
similarity scores. The simplest approach is to use static similarity functions, which only use
the information contained in the surface of the pair of texts that are being compared, e.g.
edit distance(A,B) [28]. The adaptive similarity functions are the next category, because in
addition to the information used by the static ones they use the entire collection of text being
compared. For instance, the function cosine tf idf(A,B,collection) [38] requires the entire text
collection (as third parameter) to obtain the tf-idf weights of the terms in texts A and B. In
general, adaptive similarity functions recombine information of the text collection to produce
the similarity score for any pair of texts. The third category is the semantic similarity functions,
which make use of any additional resources based on large corpora, knowledge or combinations
of them, e.g. POS-taggers, parsers, dictionaries, thesaurus, semantic networks (e.g. WordNet,
ontologies), structured corpus (e.g. Wikipedia), annotated corpus (e.g. BNC1, NY Times cor-
pus), unlabeled corpus, parallel corpus (e.g. English-French Canadian Parliament hansards), the
Web, etc. For instance, the weighted bilingual dictionary proposed in [40] can be used to lever-
age a similarity function that compares texts in two different languages with statistics gathered
in large corpora. Other approaches that reveal from scratch the latent semantic structure of a
text collection (e.g. LSA [16]) are a specialization of the adaptive similarity functions. However,
these approaches are not being considered in this paper.

Given the amount of information and knowledge used by each one of the previous categories
it is expected that each stage could be used as a baseline for the next. For example, if a static
function outperforms an adaptive function in a particular task, it makes no sense to use the
latter. Similarly, the semantic similarity functions should outperform static and adaptive ones
to justify the use of their resources, which are generally complex in time and storage space. The
method proposed in this paper can be whether static or adaptive depending on the used weighting
scheme. We used a static version for the entity resolution (ER) and information retrieval (IR)
tasks, and we compared its results against other adaptive approaches. The proposed static
approach reached performances close to that of the adaptive approaches, and in some cases
better results. For paraphrase and textual entailment recognition we used an adaptive version
and its results were compared against other semantic methods. In this scenario, our method
achieved performances close to the best results already published, and in some cases better than
many semantic approaches.

The proposed method is based on the soft cardinality [22]. The soft cardinality is a set-
based method for comparing objects that softens the rigid count of elements that makes the
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classical set cardinality by considering the similarities among elements. The definition of the soft
cardinality requires the calculation of 2m intersections for a set with m elements. An approach to
approximate the soft cardinality using only m2 computations of an auxiliary similarity measure
that compares pairs of elements is proposed in [22]. The soft cardinality can be used to compare
texts considering texts as sets of terms.

In this paper, we propose a new method for approximating the soft cardinality that, unlike
the current approach, does not require any auxiliary similarity measure. Furthermore, the new
method allows the simultaneous comparison of unigrams (i.e., characters), bigrams or trigrams
by combining any range of them. We call these combinations soft-cardinality spectra (or SC
spectra for shorter). SC spectra can be computed in linear time allowing the use of soft cardi-
nality with relatively large texts that are used in applications such as information retrieval.

We tested SC-spectra with 11 entity resolution data sets [8], 9 classical information retrieval
collections [2], the MSR paraphrase corpus [15] and the RTE-3 textual entailment data set [18].
The proposed approach overcame all baselines and provided quite good results compared to
other baselines and methods.

The remainder of this paper is organized as follows: Section 2 describes the cosine TF-IDF
and softTFIDF measures. Section 3 briefly summarizes the soft cardinality method for text
comparison. The proposed soft-cardinality spectra (SC spectra) method is presented in Section
4. Section 5 describes how to build similarity functions using the proposed cardinality. In
Section 6, the proposed method is experimentally evaluated and a brief discussion is provided
for each tested task. Related work is presented in Section 7. Finally, conclusions are drawn in
Section 8.

2. Cosine TF-IDF and softTFIDF

The cosine TF-IDF measure [38] was proposed almost three decades ago and today is still
considered an effective method for text comparison. For using this measure a pair of texts A and
B are represented as vectors in a space indexed by the vocabulary of A∩B. The values on each
dimension of the vectors are the weights that determine the relative importance of the terms.
These weights are obtained by combining evidence from the text (i.e. tf term frequency) and
from the entire collection (i.e. idf inverse document frequency). Tf-idf weights are calculated
using the following expressions:

idf (ai) = log
(

M

mai

)
(2.1)

tfidf(D, ai) = tf(D, ai)× idf(ai), (2.2)

where M is the number of texts in the data set, mai is the number of texts where the term
ai occurs and tf(D, ai) is the count of the term ai in the document D. The similarity score
between two texts is obtained by the cosine of the angle between both vectors:

TFIDF (A,B) =
∑

t∈A∩B

(
tfidf (A, t)

K(A)
× tfidf (B, t)

K(B)

)
, (2.3)

where K(A) is a normalization factor K(A) =
√∑

t′∈A tfidf (A, t′)2. This notation allows a
better comparison with the softTFIDF measure [8]. SoftTFIDF addresses the problem of term
interdependence by extending the set of terms that contributes to the commonalities from the
terms in A∩B to those pairs of terms that surpassed a threshold θ of similarity provided by an
auxiliary similarity function sim (ta, tb):
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softTFIDF (A,B, θ) =
∑

ta ∈ A
tb ∈ B

sim(ta, tb) > θ

(
tfidf (A, ta)

K(A)
× tfidf (B, t)

K(B)
× sim (ta, tb)

)
(2.4)

The auxiliary similarity function sim (ta, tb) can be any measure fulfilling the postulate of
identity (i.e. sim (t, t) = 1) and alternatively other metric-space postulates such as symmetry,
triangle inequality, and positiveness. In [8] the Jaro-Winkler measure [44] was used as auxiliary
similarity function with a threshold θ = 0.9.

3. Soft cardinality for text comparison

The classical set cardinality is a function of a set that counts the number of different elements
in that set. When a text is represented as a bag of words, the cardinality of the bag is the
size of the vocabulary of terms, i.e. the number of different terms used. The cardinality can
be used with resemblance coefficients to provide similarity measures that compare pairs of sets.
Examples of these measures are Jaccard (|A∩B|/|A∪B), Dice (2|A∩B|/(|A|+ |B|)) and cosine
(|A∩B|/

√
|A||B|) coefficients. The effect of the cardinality function in these measures is to count

the number of common elements and to compress the repeated elements in a single instance.
Based on an information-theoretical definition of similarity proposed in [29], a compression
distance [7], which explicitly takes advantage of this feature, was shown to be useful in text
applications.

However, the compression provided by classical set cardinality is rigid. That is, while only
identical elements in a set are counted once, two nearly identical elements are counted twice.
The soft cardinality addresses this issue taking into account the similarities between the elements
of the set. The intuition of the soft cardinality is as follows: the elements that have similarities
with other elements contribute less to the total cardinality than unique elements. Therefore, the
soft cardinality takes into account not only the elements that are identical but also the elements
that are similar.

3.1. Definition of soft cardinality. The soft cardinality of a set is the cardinality of the
union of its elements treated (themselves) as sets. Thus, for a set A =

{
a1, a2, . . . , a|A|

}
, the

soft cardinality of A is:
|A|′ =

∣∣∣⋃|A|
i=1ai

∣∣∣ (3.1)

This set-based definition allows to provide the following expressions:

|A ∪B|
′
=
∣∣∣(⋃|A|

i=1ai

)
∪
(⋃|B|

i=1bi

)∣∣∣
|A ∩B|

′
= |A|

′
+ |B|

′
− |A ∪B|

′

Given that the elements ai of the set A are also sets, they have their own “sub”-elements
(i.e. the elements of the elements) and cardinalities. These cardinalities are the number of
different “sub”-elements in any ai element, making trivial the computation of |A|

′
. However, the

cardinality of each element |ai| can also be associated with the relative weight (or importance) of
ai in A. Besides, the cardinality of the intersections among the elements ai of the set A can also
be provided by information sources different from the common “sub”-elements of the elements
ai.

Let us consider the example depicted in Figure 3.1 in which two Spanish proper names are
represented as sets A and B. The term elements ai, bj , and the intersections are represented as
Venn diagrams. In this example, all elements are equally weighted and the represented inter-
sections could be derivated from any information source such an edit-distance-based similarity
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Figure 3.1. Example of soft cardinality with equally weighted terms.
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Figure 3.2. Example of soft cardinality using weighted terms.

function [28]. The Figure 3.2 shows a similar scenario but with differently weighted terms de-
picted as circles with different radii. These weights could be derived from tf-idf weights [38]
that reflect the fact that “Alexander” is a commoner term than “Gelbukh” in a name database.
In this graphic methaphor, the soft cardinality of sets A, B and A ∩ B are represented as the
interior of the resulting cloud shaped border.

Obviously, in the scenarios described in the previous examples the expression 3.1 cannot be
computed directly. That is, when the cardinalities |ai| and the cardinalities of the interseccions
among elements ai are provided by an external information source. Alternatively, it is possible to
use properties of the classical set cardinality to compute 3.1 using only the cardinalities provided
by the external information source. For instance, in Figure 3.1 a1 = “Sergio”, a2 = “Gonzalo”
and a3 = “Vargas”, thus the soft cardinality of A is |A|

′
= |a1 ∪ a2 ∪ a3|,

|A|
′
= |a1|+ |a2|+ |a3| − |a1 ∩ a2| − |a2 ∩ a3| − |a1 ∩ a3|+ |a1 ∩ a2 ∩ a3| (3.2)

It is important to note that, the cardinalities of the right side in 3.2 can be provided by term
weighting approaches and auxiliarly similarity functions.

3.2. SC approximation with similarity functions. The approach proposed in the previous
example using 3.2 is not practical because the number of terms in 3.2 increases exponentially
with the number of elements in A. Alternatively, 3.1 can be approximated by using only pair
wise intersections of the elements of A using the following expression proposed in [22]:

|A|′α '
n∑
i

wai ×

 n∑
j

α(ai, aj)p

−1 , (3.3)
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where wai = |ai| and the function α is an auxiliary similarity function that can compare any
pair of elements in A. This function α must return scores in the range [0, 1] satisfying at least
identity ∀x : α(x, x) = 1 and symmetry ∀x, y : α(x, y) = α(y, x) postulates. In fact, when
α is a rigid comparator (i.e., returns 1 when the elements are identical and 0 otherwise) and
weights wai are equal to 1, |A|′α becomes the classical cardinality |A|. Finally, the exponent p is a
tuning parameter investigated in [22], obtaining good results using p = 2 in an entity-resolution
task. The parameter p controls the “softness” of the cardinality, so that when p → ∞, then
|A|′α →

∑|A|
i=1 wai . Similarly, when 0← p, then |A|′α → 1

|A|
∑|A|

i=1 wai .
Note that the computational order of the approximation proposed in 3.3 is quadratic O(n2).

Although, the complexity of this approach is far better than the exponential approach used for
the example in 3.2, the usage of 3.3 is constrained to relatively short texts.

4. Computing soft cardinality using sub-strings

The soft cardinality approximation shown in 3.3 is quite general since the function of similarity
between pairs of terms α can be any measure that may or may not use the surface representation
of both strings. For example, the edit distance [28] is based on a surface representation of
characters, in contrast to the semantic relatedness functions [34] that may be based on contexts
in a large corpus or on a semantic network. However, the proposed approach is entirely static
since the idea is to approximate the soft cardinality of a text represented as a set of terms by
subdividing the terms into q-grams of characters.

Several comparative studies have shown the benefits of hybrid approaches that first tokenize
(split into terms) a text string and then make comparisons between the terms at character or
q-gram level [8, 4, 6, 35, 22]. Similarly, the soft cardinality approximation in 3.3 is based on
an initial tokenization and an implicit further subdivision made by the function α for assessing
similarities and differences between pairs of terms. The intuition of the new proposed soft
cardinality approximation is to conduct an initial tokenization of the text, then to divide each
term into q-grams, to make a list of all the different q-grams, and finally, calculate a weighted sum
of the sub-strings with weights that depends on the number of substrings in each term. Besides,
the proposed method also considers importance weights for each term and q-gram occurrence.

4.1. Soft cardinality based on q-grams. Q-grams are consecutive overlapped subsequences
of length q in a string [41]. Q-grams provides the ability to maintain a partial order in text
representations based on unordered structures such as bags or sets. Although text can be
represented as sets of q-grams at term or character levels, in this paper we only considered
q-grams at character level.

The q-gram character subdivision of a word can be enriched with padding characters [24].
These padding characters are especial characters added at the beginning and end of each term
before being divided into q-grams. These characters distinguish the heading and trailing q-grams
from those that are in the middle of the term. The number of padding characters added can be
1 (single padding) or q−1 (full padding). For instance, the term “sunday” divided into trigrams
using not padding, single padding and full padding are respectively {sun, und, nda, day}, {/su,
sun, und, nda, day, ay.} and {//s, /su, sun, und, nda, day, ay., y..}. It is also possible to
consider the smallest 1-grams (or unigrams) subdivision in which no padding characters are
allowed, i.e. {s, u, n, d, a, y}. When q is greater than the length in characters of the term the
q-gram subdivision is the term itself. For example, the 4-grams (or quadgrams) subdivision of
the term “sun” is {sun}.

The soft cardinality of a text represented as a set of terms can be approximated representing
each term as a set of q-grams in order to apply the definition 3.1. Consider the following example
with the Spanish name “Gonzalo Gonzalez”, A ={“Gonzalo”,“Gonzalez”}, a1 =“Gonzalo” and
a2 =“Gonzalez”. Using bigrams with padding characters as subdivision unit, the pair of terms
can be represented as: a

[2]
1 ={/G, Go, on, nz, za, al, lo, o.} and a

[2]
2 ={/G, Go, on, nz, za, al, le,
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ez, z.}. The exponent in square brackets means the size q of the q-gram subdivision. Let A[2]

be the set with all different bigrams A[2] = a
[2]
1 ∪ a

[2]
2 ={/G, Go, on, nz, za, al, lo, o., le, ez, z.},

and its classical cardinality is
∣∣A[2]

∣∣ = ∣∣∣a[2]
1 ∪ a

[2]
2

∣∣∣ = 11. Similarly,
∣∣∣a[2]

1 \ a
[2]
2

∣∣∣ = 2,
∣∣∣a[2]

2 \ a
[2]
1

∣∣∣ = 3

and
∣∣∣a[2]

1 ∩ a
[2]
2

∣∣∣ = 6.

Similar to |A|, which provides an integer count of the number of terms in A, |A|
′
provides a

real number that represent the “soft” count of the number of terms in A. In our running example
|A|

′
must be a number in between 1.0 and 2.0. Thus, each one of the elements of A[2] adds a

contribution to the total soft cardinality of A. The cardinality of A[2] represents the number of
bigrams in A, in order to make it represent the “soft” number of terms in A the cardinalities
of the bigrams in A[2] need to be adjusted. Now, let us denote A

[2]
i as a bigram such that

A
[2]
j ∈ A[2]. The cardinalities of the non-common bigrams between a

[2]
1 and a

[2]
2 are adjusted by∣∣∣A[2]

j

∣∣∣ = 1∣∣∣a[2]
1

∣∣∣ ;∀A[2]
j ∈

(
a

[2]
1 \ a

[2]
2

)
and

∣∣∣A[2]
j

∣∣∣ = 1∣∣∣a[2]
2

∣∣∣ ;∀A[2]
j ∈

(
a

[2]
2 \ a

[2]
1

)
, that is the contribution

of each bigram is inverse to the number of bigrams in the term. Similarly, the cardinality of the
common bigrams is adjusted by the average

∣∣∣A[2]
j

∣∣∣ = 0.5× 1∣∣∣a[2]
1

∣∣∣ +0.5× 1∣∣∣a[2]
2

∣∣∣ ;∀A[2]
j ∈

(
a

[2]
1 ∪ a

[2]
2

)
.

In our example, 1∣∣∣a[2]
1

∣∣∣ = 0.125, 1∣∣∣a[2]
2

∣∣∣ = 0.111̄ and 0.5 × 1∣∣∣a[2]
1

∣∣∣ + 0.5 × 1∣∣∣a[2]
1

∣∣∣ = 0.118. Finally,

given that there are 6 common bigrams between a
[2]
1 and a

[2]
2 , 2 bigrams exclusively in a

[2]
1 and 3

bigrams exclusively in a
[2]
2 , the final soft cardinality for this example is |A|′ ' 0.118×6+0.125×

2 + 0.111̄× 3 = 1.292. The soft cardinality of A reflects the fact that a1 and a2 are very similar
in contrast to the classical cardinality that obtains |A| = 2

4.2. Soft cardinality q-spectrum. In the previous example we obtained an approximation
of the soft cardinality using a partition of bigrams. The soft cardinality of any text string
represented as a set of terms A can be approximated by the partition A[q] =

⋃|A|
i=1a

[q]
i of A in

q-grams, where a
[q]
i is the partition of i-th term in A into q-grams. Clearly, each one of the

q-grams A
[q]
j in A[q] can occur in various terms ai in A. The indices i satisfying A

[q]
j ∈ a

[q]
i

indexes all the terms ai in A where the q-gram A
[q]
j occurs. The number of terms in A in which

the q-gram A
[q]
j occurs is denoted by KAj . The contribution of a particular q-gram A

[q]
j to the

total soft cardinality is the arithmetic average of the weights 1∣∣∣a[q]
i

∣∣∣ for each one of its occurrences

in the text. The expression for the q-spectrum soft cardinality is:

|A|′[q] '
|A[q]|∑
j=1

 1
KAj

×
∑

i:A
[q]
j ∈a

[q]
i

 1∣∣∣a[q]
i

∣∣∣

 (4.1)

The approximation |A|′[q] obtained from the 4.1 using q-grams is the soft cardinality (SC)
q-spectrum of A. Note that this cardinality expression depends only on the information in the
set A, so any similarity measure derived from 4.1 is a static measure.

The soft cardinality of a text provides a “soft” count of the number or terms in the text
equally weighting all terms. However, it is already known that in a particular text some of its
terms convey more information than others (see Section 2). The term weights obtained with 2.2
can also be integrated to the SC q-spectrum expression as follows:
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|A|′[q] '
|A[q]|∑
j=1

 1
KAj

×
∑

i:A
[q]
j ∈a

[q]
i

 tfidf(A, ai)∣∣∣a[q]
i

∣∣∣

 (4.2)

Note that tf-idf weights used in 4.2 are obtained from statistics gathered from the entire
collection of texts being compared. Thus, any similarity measure derived of the use of 4.2 is an
adaptive measure.

Furthermore, the idea of weighting can also be also applied at q-gram level to discriminate
substrings according with the amount of information that each q-gram conveys. This amount
of information can be associated with the frequency of the q-gram in a large corpus or in a
particular text collection. For instance, in the English language the character bigram “th” is
considerably more frequent than the bigram “xy”. Thus, the former conveys less information
than the latter. We adopt a weighting scheme similar to that used in 2.1 for idf to weight
q-grams based on the frequency of occurrence. Thus, the weight for a particular q-gram A

[q]
j is:

qidf(A[q]
j ) = log

N

n
A

[q]
j

, (4.3)

where N is the total number of terms (words) in the collection of texts and n
A

[q]
j

is the number

of terms in which the q-gram A
[q]
j occurs. Considering that the number of q-grams per term may

be significatively less than the number of terms per document, the effect of repeated q-grams in
a term is low, so we do not consider tf -like weights at q-gram level. As idf , qidf weights can
also be integrated to the SC q-spectrum expression as follows:

|A|′[q] '
|A[q]|∑
j=1

 1
KAj

×
∑

i:A
[q]
j ∈a

[q]
i

 tfidf(A, ai)× qidf(A[q]
j )∣∣∣a[q]

i

∣∣∣

 (4.4)

The similarity measures derived from the use of 4.4 are adaptive measures, but their adap-
tiveness is made simultaneously at term and q-gram levels.

The inner expression
tfidf(A,ai)×qidf(A

[q]
j )∣∣∣a[q]

i

∣∣∣ in 4.4 is the weight associated with each q-gram in

each term in the text A. This weighting expression depends on the weight of the term given the
text collection (i.e. term weights tfidf(A, ai)), the weight of the q-gram given the term collection
(i.e. q-gram weights qidf(A[q]

j )) and on the number of q-grams in the term (i.e. context q-gram

weights 1/
∣∣∣a[q]

i

∣∣∣). The expression in 4.4 first averages the q-gram weights for repeated occurrences
of all q-grams in the text and next it makes the sum of those averages. Clearly, the term and
q-gram weighting functions tfidf() and qidf() can be replaced by any weighting mechanism.

In the experimental evaluation provided in Section 6 different combinations of term and q-
gram weighting mechanisms will be tested for different natural language processing tasks.

4.3. Soft-cardinality spectra. A partition of q-grams allows the construction of similarity
measures with its associated soft cardinality q-spectrum. The most fine-grained substring par-
tition corresponds to q = 1 (i.e. characters or unigrams) and the coarsest is the partition into
terms. While partitions such as unigrams, bigrams and trigrams are used in tasks such as en-
tity resolution, the partition into terms is preferred for information retrieval, text classification
and other tasks. Intuitively, the finer partitions seem to be suitable for short texts and term
partitions seem to be more suitable for long texts.

However, as it was shown in [43, 23] the more convenient partitions for text comparison ranged
from trigrams to heptagrams depending on the used similarity function and on the data set. It
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was also shown that in general the performance of the similarity function decreases considerably
when q < 3 or q > 7. Although their experimental results suggested that there is a single value
of q for maximum performance for any pair {similarity function, data set}, there is not a method
to unsupervisedly determine such optimal value of q.

The proposed method aims to combine a series of partitions with different q in order to
obtain an aggregate score close to the optimum selection of q. For instance, in Figure 6.1 b) the
performance of a particular similarity measure in the IR collection ADI is shown for different
q-gram partition sizes. It is difficult to unsupervisedly determine that pentagrams (i.e. q = 5) is
the best partition size to use. Nevertheless, it is possible to guess a range such as q1 = 2, q2 = 8
just by considering the features of the documents and the similarity to other reference collections.
Moreover, the aggregation of different text representations derived from various q-gram sizes can
provide a better final performance in the task taking into account the fundamental reasons why
ensemble models may work better than the single ones, that is statistical, computational and
representational reasons (see [13]).

As we mentioned, the combination of several contiguous partition granularities can be useful
for comparing texts in a particular dataset. Since each SC q-spectrum provides a measure of
the compressed amount of terms in a text, several SC q-spectrum can be averaged or added to
get a combined measure. SC [qs : qe]-spectra is defined as the aggregation of a series of several
q-spectrum from qs to qe, having qs ≤ qe. For example, the SC [2 : 4]-spectra uses simultaneously
bigrams, trigrams and quadgrams to get an approximation the soft cardinality of a bag of words.
Thus, the SC spectra expression is:

|A|′[qs:qe]
=

e∑
i=s

|A|′[qi]
. (4.5)

5. Building text similarity functions

Once the SC spectra function is provided, text similarity functions can be constructed re-
placing the classical set cardinality by SC spectra in resemblance coefficients. Resemblance
coefficients are binary similarity measures that compare two sets A and B by the ratio between
the cardinality of the commonalities (i.e. |A ∩B|) and the aggregation of the cardinalities of
the two sets, e.g. Jaccard [20] and Dice [12] coefficients. The aggregation of |A| and |B| can be
made using the generalized mean, which control the aggregation by a parameter p. We call this
resemblance coefficient as the generalized mean coefficient :

SIM(A,B) =
|A ∩B|

(0.5× |A|p + 0.5× |B|p)
1
p

(5.1)

This coefficient can also be considered as a derivation for similarity of the Minkowski distance
D(x, y) = (|x1 − y1|p + |x2 − y2|p)

1
p ; note that vertical lines in this expression denotes absolute

values rather than cardinalities. The generalized mean coefficient is similar to the coefficient
proposed in [21] because it models the asymmetric selection of the referent for comparison. That
is, when −∞ ← p and p → ∞ the denominator in 1 becomes min (|A| , |B|) and max (|A| , |B|)
respectively. Different values of p in 5.1 produce a family of resemblance coefficients some values
of p correspond to some already known coefficients (see Table 1).

Several text similarity functions can be proposed using the generalized mean coefficient and
the SC spectra function proposed in Section 4. For instance, using p = −1 in 5.1 (i.e. harmonic
coefficient) and SC spectra the following expression can be obtained:

sim(A,B) = 1 +
1
2
×

(
|A|′[qs:qe]

|B|′[qs:qe]

+
|B|′[qs:qe]

|A|′[qs:qe]

−
|A ∪B|′[qs:qe]

|A|′[qs:qe]

−
|A ∪B|′[qs:qe]

|B|′[qs:qe]

)
. (5.2)

In the following evaluation section several text similarity functions obtained using different p
values were tested.
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Table 1. Different instances of the generalized mean coefficient.

p Name Expression
1 Dice coefficient 2×|A∩B|

|A|+|B|
p→ 0 cosine coefficient |A∩B|√

|A|×|B|

2 quadratic coefficient |A∩B|√
0.5×(|A|2+|B|2)

−∞← p overlap coefficient |A∩B|
min(|A|,|B|)

−1 harmonic coefficient |A∩B|×(|A|+|B|)
2×|A|×|B|

Table 2. Naming convention for the weighting schemes used in experiments.

Convention name Expression Type Level
none 1 static n/a

c 1∣∣∣a[q]
i

∣∣∣ static character q-grams

idf idf(ai) adaptive terms
qidf qidf(A[q]

j ) adaptive character q-grams
c.idf idf(ai)∣∣∣a[q]

i

∣∣∣ adaptive character q-grams & terms

c.qidf
qidf(A

[q]
j )∣∣∣a[q]

i

∣∣∣ adaptive character q-grams

idf.qidf idf(ai)× qidf(A[q]
j ) adaptive character q-grams & terms

c.idf.qidf
idf(ai)×qidf(A

[q]
j )∣∣∣a[q]

i

∣∣∣ adaptive character q-grams & terms

6. Experimental evaluation

The proposed experiments aim to evaluate the text similarity functions based on SC spectra
as baselines for several natural processing tasks, namely: information retrieval (IR) and entity
resolution (ER) in subsection 6.1, paraphrase and textual entailment recognition in subsection
6.2. In addition, the experiments also intend to address the following issues: (i) to determine
which of the different q-gram padding approaches are better suited for different tasks, (ii) to
determine the suitability of the different weighting schemes at term and q-gram level, (iv) to de-
termine whether the SC spectra aggregation is more convenient than individual SC q-spectrum,
and (v) to compare the soft-cardinality spectra approach versus other approaches.

The different weighting schemes in the inner expression in 4.4 used in all experiments are
listed using the naming convention given in Table 2.

6.1. Information retrieval and entity resolution. The classical information retrieval task
is to find a ranked list of relevant documents for a set of queries (or information needs). The
entity resolution task consists of given a pair of relations containing entities, finding all entity
pairs that refer the same object. The entities are commonly represented as names or names
extended with addresses and other information.

Information retrieval and entity resolution tasks usually involve large collections of documents
and databases. Furthermore, using a naive approach these tasks involve the evaluation of a text
similarity measure on the Cartesian product on the sets of queries and documents, or on the
pair entity relations to be reconciled. Therefore, the use of semantic measures is restricted due
to the considerable amount of resources that these measures require. The common practice is
to use adaptive measures such as cosine TF-IDF. Besides, a static similarity measures such as
the cosine similarity using Boolean weights is considered a baseline for these tasks.
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6.1.1. Data sets . For the experimental evaluation, two groups of data sets were used for entity
resolution and information retrieval tasks. The first group, called ER, consists of 11 data sets
collected from different sources by the secondstring framework2 creators. The second group,
called IR, is composed of 9 “classical” collections described in [2]3. Each data set consists of
two series of texts and a gold-standard relation that associates pairs from both sets. The gold
standard in all data sets was obtained from human judgments excluding census data set, which
was built making random edit operations into a list of people names. In the ER data sets, the
gold-standard relationship means identity equivalence and in IR data sets, it means relevance
between a query and a document.

Texts in all data sets were divided into terms (i.e., tokenized) with a simple approach using
as separator the space bar, punctuation characters, parenthesis and others special characters
such as slash, hyphen, currency, tab, etc. Characters in all data sets were converted to their
lowercase equivalents. Besides, no stop words removal or stemming was used either at ER or IR
data sets.

6.1.2. Performance measure. The quality of the similarity function proposed in 5.2 can be mea-
sured quantitatively using various existing performance metrics for ER and IR tasks. We pre-
ferred to use interpolated average precision (IAP) because it is a performance measure that has
been used at both tasks (see [2] for a detailed description). IAP allows to measure the two-ways
classification performance (match vs. not-match and relevant vs. not relevant) of a ranked list of
text pairs. While in IR, IAP reports the average measured in a different rank for each query, in
ER a single rank for each data set is used. The reason for this is that the entity pairs in ER are
texts of the same type, differently to the IR task where texts are whether queries or documents.
Thus, while in IR it makes sense to evaluate the retrieved documents for each particular query;
in ER it is more important to evaluate the ability of the similarity measure to separate the
entire dataset into two groups of correct and incorrect pairs. In order to provide a consistent
evaluation measure we used a single rank for both IR and ER tasks.

The ranking of text pairs is provided by ordering them from most to least similar using the
similarity score obtained using the text similarity function to be evaluated. Precision at the
position i in such ranking is precision(i) = c(i)

i , where c(i) is the number of correct pairs ranked
before position i. Recall at the position i is recall(i) = c(i)

m , where m is the total number of
correct pairs. Interpolated precision at recall r is maxi (precision(i)), where max is taken over
all ranks i such that recall(i) ≥ r. Values of interpolated precision are obtained at eleven evenly
separated recall points: 0.0, 0.1, ..., 1.0. The obtained values can be used to plot a recall-
precision curve such as those shown in Figure 6.2. Finally, interpolated average precision (IAP)
is the area under the resulting recall-precision curve that can be obtained averaging the eleven
interpolated precision values.

6.1.3. Experiments. For the experiments, 55 similarity functions were constructed with all pos-
sible SC spectra using q-spectrum ranging q from 1 to 10 in combination with 5.2. The weighting
mechanism used in all experiments was weighting by local context, i.e. c in Table 2. Therefore,
all the used measures based on SC spectra in this subsection were static measures.

Each similarity measure obtained was evaluated using all text pairs throughout the Cartesian
product between both text sets in the 18 data sets. In addition, the following three padding
approaches were tested: single padding, full padding and not padding.

For each one of the 2,970 (55 SC [qs : qe]-spectra by 18 data sets by 3 padding approaches)
experiments carried out the IAP performance measure was calculated. Figure 6.1 shows a
sample of the results for two data sets (hotels and adi) using single padding and not padding
configurations respectively.

2http://secondstring.sourceforge.net/
3http://people.ischool.berkeley.edu/˜hearst/irbook/
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Figure 6.1. IAP performance for all SC [qs : qe]-spectra form qs = 1 to qe = 10
for data sets hotels and adi. Spectra with single q-spectrum are depicted with
black squares (e.g. [3 : 3]). Wider SC spectra are depicted with horizontal colored
bars.

Table 3. Results for best SC spectra using ER data sets

full padding single padding not padding

DATA SET spectra IAP spectra IAP spectra IAP

birds-scott1 [1:2]* 0.9091 [1:2]* 0.9091 [1:2]* 0.9091
birds-scott2 [7:8]* 0.9005 [6:10] 0.9027 [5:9] 0.9007
birds-kunkel [5:7]* 0.8804 [6:6] 0.8995 [4:4] 0.8947
birds-nybird [4:6] 0.7746 [1:7] 0.7850 [4:5] 0.7528

business [1:3] 0.7812 [1:4] 0.7879 [1:4] 0.7846
demos [2:2] 0.8514 [2:2] 0.8514 [1:3] 0.8468
parks [2:2] 0.8823 [1:9] 0.8879 [2:4] 0.8911

restaurant [1:6] 0.9056 [3:7] 0.9074 [1:6] 0.9074
ucd-people [1:2]* 0.9091 [1:2]* 0.9091 [1:2]* 0.9091

hotels [3:4] 0.7279 [4:7] 0.8083 [2:5] 0.8147
census [2:2] 0.8045 [1:2] 0.8110 [1:2] 0.7642

Average 0.8478 0.8599 0.8522

* Asterisks indicate that another wider SC-spectra also got the same
IAP performance.

6.1.4. Results. Tables 3 and 4 show the best SC spectra for each data set using the three
proposed padding approaches. Figure 6.2 shows comparison of recall-precision curves for SC
spectra against other measures. The series named “ best SC spectra c” is the average of the
best SC spectra for each data set using single padding for ER and not padding for IR. The
SoftTFIDF measure was used with the same configuration proposed in [8]: θ = 0.9 and the
Jaro-Winkler measure as auxiliary similarity function. The series labeled “Soft Cardinality”
in Figure 6.2 a) used 3.3 with p = 2 and the auxiliary inter-term similarity function was the
Jaccard coefficient of the set of character bigrams for each term. The series labeled as “Cosine
boolean” and “SoftTFIDF boolean” are the measures described in Section 2 but using Boolean
instead of tf-idf weights.
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Table 4. Results for best SC spectra using IR collections.

full padding single padding not padding

DATA SET spectra IAP spectra IAP spectra IAP

cran [7:9] 0.0070 [3:4] 0.0064 [3:3] 0.0051
med [4:5] 0.2939 [5:7]* 0.3735 [4:6] 0.3553
cacm [4:5] 0.1337 [2:5] 0.1312 [2:4] 0.1268
cisi [1:10] 0.1368 [5:8] 0.1544 [5:5] 0.1573
adi [3:4] 0.2140 [5:10] 0.2913 [3:10] 0.3037
lisa [3:5] 0.1052 [5:8] 0.1244 [4:6] 0.1266
npl [7:8] 0.0756 [3:10] 0.1529 [3:6] 0.1547
time [1:1] 0.0077 [8:8] 0.0080 [6:10] 0.0091
cf [7:9] 0.1574 [5:10] 0.1986 [4:5] 0.2044

Average 0.1257 0.1601 0.1603

* Asterisks indicate that another wider SC-spectra also got the same
IAP performance.
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Figure 6.2. Recall-precision curves of SC spectra compared with other measures.

Tables 5 and 6 present the results of different weighting schemes listed in Table 2 for each of
the data sets in the ER and IR groups. A single spectrum similarity measure SC [4 : 4]-spectra
(i.e. SC 4-spectrum or quadgrams) was used to obtain all the results in both tables.

6.1.5. Discussion. Results Tables 3 and 4 indicate that the use of a single padding character
seem to be more useful in ER data sets than in IR collections. Apparently, the effect of the
addition of padding characters is important only in collections with relatively short texts.

Best performance settings (shown in bold in the tables) were reached in most cases (15 over
18) using SC spectra instead of a single SC q-spectrum. This result can also be observed in
Figure 6.1, where SC spectra results (represented as horizontal bars) tended to overcome SC
q-spectrum (represented as small black squares). The average relative improvement of the best
SC spectra for each data set compared to the best SC q-spectrum was 1.33% for ER data sets
and 4.48% for IR collections. In addition, Figure 6.1 qualitatively shows that the SC spectra
measures outperformed the SC q-spectrum measures. For instance, SC [7 : 9]-spectra at adi
collection outperforms all SC 7-spectrum, SC 8-spectrum and SC 9-spectrum measures.
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Table 5. IAP results in entity resolution (ER) data sets for different weighting
schemas using quadgrams.

DATA SET c.idf c.idf.qidf c.qidf idf.qidf idf c qidf none
birds-scott1 0.9132 0.9181 0.9140 0.9167 0.9135 0.9136 0.9143 0.9180
birds-scott2 0.9419 0.9372 0.9331 0.9070 0.9082 0.9288 0.9106 0.9115
birds-kunkel 0.9205 0.9445 0.9014 0.8880 0.8703 0.7117 0.8592 0.8113
birds-nybird 0.7971 0.7908 0.7817 0.7312 0.7633 0.8077 0.7222 0.7531

business 0.8126 0.8038 0.8006 0.7793 0.7231 0.7385 0.7115 0.4948
demos 0.4530 0.4481 0.4518 0.4503 0.4184 0.4485 0.4226 0.4120
parks 0.9320 0.9427 0.9144 0.9304 0.9230 0.8531 0.9214 0.9024

restaurant 0.9752 0.9820 0.9614 0.9791 0.9530 0.9102 0.9311 0.8836
ucd-people 1.0000 1.0000 0.9980 0.9818 0.9755 0.9729 0.9720 0.9606

hotels 0.7369 0.7303 0.7229 0.7572 0.7651 0.6721 0.7558 0.7322
census 0.6253 0.6049 0.6225 0.4927 0.4985 0.6474 0.4808 0.4788

Average 0.8280 0.8275 0.8184 0.8012 0.7920 0.7822 0.7820 0.7508

Table 6. IAP results in information retrieval (IR) data sets for different weight-
ing schemes using quadgrams.

DATA SET qidf c.idf.qidf c.idf none idf.qidf c.qidf idf c
cf 0.2135 0.2346 0.2320 0.2006 0.2205 0.1848 0.2149 0.1659

cacm 0.1383 0.1112 0.1082 0.0847 0.0854 0.1367 0.0839 0.1220
cisi 0.1584 0.1087 0.1089 0.1526 0.0939 0.1526 0.0873 0.1438
adi 0.3255 0.2848 0.2979 0.3056 0.3197 0.2631 0.3006 0.1896
cran 0.0028 0.0028 0.0028 0.0027 0.0029 0.0035 0.0029 0.0040
lisa 0.1473 0.1609 0.1519 0.1302 0.1684 0.1155 0.1600 0.1044
med 0.3389 0.3484 0.3412 0.3287 0.3127 0.3173 0.2995 0.2868
time 0.0058 0.0060 0.0060 0.0060 0.0063 0.0063 0.0064 0.0065

Average 0.1663 0.1572 0.1561 0.1514 0.1512 0.1475 0.1445 0.1279

In recall-precision curves, better measures are closer to the upper bound precision level of 1.
As shown in Figure 6.2 a) the similarity measures obtained using the best SC spectra for each
data set overcame the other tested measures in ER data sets. As for IR, Figure 6.2 b) shows
that SC spectra reached almost the same performance than cosine tf-idf. This result is also
remarkable because we are reaching equivalent performance using considerably less information
(not term weighting). Finally, the series for ER show that SC spectra is a better soft cardinality
approximation than the approximation using 3.3. Besides, SC spectra require considerably less
computational effort than that approximation (linear versus quadratic complexity). The results
obtained with the SC spectra approach showed that it is possible to recombine the information
contained only in the pair of texts being compared (static approach) in a better way to reach a
performance equivalent (or even better in ER) in comparison with approaches that use additional
information gathered from the entire text collection (adaptive approach).

The results obtained with the ER data sets for the different weighting criteria (Table 5) were
ranked as it was expected to be. That is, the approaches that combined two or three weighting
evidences (c.idf, c.idf.qidf, c.qidf and idf.qidf ) outperformed the approaches that used only one
evidence (idf, c and qidf ), and in turn the approach that did not use weights at all (none)
obtained the lowest performance. Unlike ER, the results using IR collections (Table 6) were
less predictable. However, the approach that combined all the proposed weighting evidences
(c.idf.qidf ) reached the second best performance proving effective in this unexpected scenario.
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6.2. Paraphrase and textual entailment recognition. Paraphrase and textual entailment
recognition are tasks in which a pair of text passages is considered and it is necessary to decide
whether one text is a paraphrase of the other, or if one text is entailed by the other. While
paraphrasing is a symmetrical task, in the textual entailment task one the texts is labeled as
“T” (the entailing text) and the other as “H” (the entailed text). Thus, “T” entails “H” if a
human reading “T” would infer that “H” is probably true. Each text pair is provided with a
gold standard obtained from human judgments.

Given that those tasks require a higher “understanding” of the text that may require infor-
mation not included in the surface text information, the methods that deal with those tasks
generally use semantic approaches. For these tasks, static and adaptive approaches are con-
sidered as baselines because they cannot reveal any underlying semantic structure hidden in
the text. Semantic methods aim to reveal that structure using an assortment of resources that
exploit statistical evidence (e.g. large corpora) and/or knowledge (e.g. parsers, semantic net-
works).

To evaluate the baseline role of the measures outlined in Section 2 and the SC spectra ap-
proach, we used standard data sets for the tasks and compared our results against the results
already published.

6.2.1. Data sets. The data sets selected for evaluation were the Microsoft Research Paraphrase
Corpus [15] (MSR paraphrase) and the RTE-3 data set [18] from the third PASCAL recognizing
textual entailment challenge (2007). Both data sets have been extensively studied and dozens
of papers have reported results using them. See [15, 18] for a comprehensive description of the
data sets. We used the test partition of the RTE-3 to allow comparison of performance with the
results published in [18].

Both data sets were preprocessed by tokenizing, lowercase character conversion and stemming
using the Porter stemmer [36]. Besides, q-gram partitions were obtained using not padding
because this approach is the simplest and it obtained the best results for the IR task, whose
text type (documents) is similar to those used in paraphrase and textual entailment.

6.2.2. Performance measure. The similarity scores provided a ranking of text pairs where higher
scores were considered as valid paraphrases and entailments. Accuracy, precision, recall and
F-measure [2] standard metrics were calculated at each position on the ranking using a gold
standard. The results are reported on the ranking position with the best F-measure (i.e. F1-
score). The main performance measure for comparison was accuracy, i.e. the number or correct
predictions over the total number of predictions.

6.2.3. Experiments. The used q-gram partition in all experiments was SC [1 : 4]-spectra using
not padding approach. The generalized mean coefficient 5.1 was used as similarity measure and
the parameter p was adjusted to obtain the best performance. That is, p = 10 for paraphrase
and p = −1.5 for textual entailment. We present the results only for the idf weighting scheme
for SC spectra because this approach slightly outperformed the tf-idf weights in all experiments.

We also tested two additional adaptive baselines such as softTFIDF and cosine TF-IDF.
SoftTFIDF had the same configuration used in the previous subsection, but using the threshold
θ = 0.7, which was the threshold with the best results.

6.2.4. Results. Table 7 shows the accuracies obtained for the different weighting schemas listed
in Table 2. Table 8 shows a sorted summary of the published results for the MSR paraphrase
corpus (extracted in part from [1]) including the best results obtained using SC [1 : 4]-spectra,
softTFIDF and cosine TF-IDF.

Table 9 shows a summary (extracted from [18]) of the accuracies and resources used to ob-
tain each listed result. The table shows only the participating systems in the third PASCAL
recognizing textual entailment challenge (2007) that included in the used resources a similarity
measures based on q-grams or words.
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Table 7. Accuracy results in paraphrase and textual entailment recognition data
sets for different weighting schemes using SC [1 : 4]-spectra.

DATA SET c.idf.qidf idf.qidf qidf none idf c.idf c.qidf c
MSR paraphrase 0.7252 0.7102 0.7064 0.7045 0.7128 0.7250 0.7232 0.7331

RTE-3 0.6688 0.6800 0.6825 0.6800 0.6713 0.6575 0.6575 0.6275
Average 0.6970 0.6951 0.6945 0.6923 0.6920 0.6913 0.6903 0.6803

Table 8. Paraphrase recognition SC spectra results in MSR-paraphrase corpus
compared with published results.

Method accu. prec. recall F1 Used resources
Malakasiotis [31] 0.762 0.794 0.868 0.829 WordNet, ML, dependency parser
Das & Smith [10] 0.761 0.796 0.861 0.829 dependency grammars, ML
Wan et al. [42] 0.756 0.770 0.900 0.830 syntactic dependencies, ML
Finch et al. [17] 0.750 0.766 0.898 0.827 machine translation, POS tagger, ML
SC [1 : 4]-spectra (c) 0.733 0.739 0.931 0.824 surface text (this paper)
SC [1 : 4]-spectra (c.idf.qidf ) 0.725 0.726 0.951 0.823 surface text (this paper)
Lintean et al. [30] 0.724 0.739 0.903 0.672 dependency parser, WordNet
Qiu et al. [37] 0.720 0.725 0.934 0.816 syntactic parser, thesaurus, ML
Zhang & Patrick [45] 0.719 0.743 0.882 0.807 text canonicalization, ML
softTFIDF [8] 0.716 0.717 0.955 0.819 surface text (this paper)
Coreley & Mihalcea [9] 0.715 0.723 0.925 0.812 WordNet, BNC statistics
Do et al. [14] 0.711 0.748 0.861 0.800 WordNet
cosine TF-IDF [38] 0.707 0.706 0.968 0.816 surface text (this paper)

6.2.5. Discussion. The results in Table 7 show that, even though c and qidf obtained the higher
accuracy using MSR paraphrase and RTE-3 respectively, in average the c.idf.qidf and idf.qidf
combination obtained the best results, i.e. average accuracies of 0.6970 and 0.6951 respectively.
This result showed that adaptiveness combined at term and q-gram level is an effective approach.
It is interesting to note that, even though the q-gram context weighting approach c obtained
the lowest average accuracy, it contributed to the highest accuracy obtained by c.idf.qidf. Also
it is important to note that, the adaptiveness at character q-gram level (qidf ) overcame the
adaptiveness at term level (idf ). This result is remarkable because (to the best fo our knowledge)
while the weighting at term level is a common practice, this is the first attempt to use weighting
at character q-gram level on these tasks. Gravano et al. [19] tested bigrams and trigrams as
tokens instead of terms in the softTFIDF measure, but they obtained worse results using q-
grams than using terms as tokens.

The comparison of the results obtained by SC [1 : 4]-spectra (Table 8) against the already
published results for the MSR paraphrase data set are encouraging. The measure SC [1 : 4]-
spectra (c), which is A static approach, obtained a result with a difference of only 0.029 in
accuracy versus the best results published to the date. Besides, our approach used considerably
less information and its computation and reproducibility is rather simple (linear complexity).
Our static and adaptive baselines also outperformed the other tested baselines softTFIDF and
cosine TF-IDF.

The proposed baselines used in the RTE-3 data set also obtained encouraging results. As
Table 9 shows, SC [1 : 4]-spectra (qidf ) which is an adaptive measure, outperformed most of the
other approaches that also included “q-gram\word similarity” in their resources. In fact, our
measure only used that resource.
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Table 9. Textual entailment recognition on RTE-3 data set.
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Hickl 0.8000 × × × × × ×
SC [1 : 4]-spectra (qidf ) 0.6825 ×
Adams 0.6700 × × × ×
SoftTFIDF (idf ) 0.6638 ×
Ferrandez 0.6563 × × ×
Li 0.6400 × × ×
cosine TF-IDF (idf ) 0.6325 ×
Rodrigo 0.6312 × × × ×
Roth 0.6262 × × ×
Settembre 0.6262 × × ×
Malakasiotis 0.6175 × ×
Ferrándes 0.6150 × × ×
Montejo-Ráez 0.6038 × × × ×
Burek 0.5500 × ×

7. Related work

The proposed weighting scheme that gives smaller weights to q-grams according to the length
in characters of each term (c) is similar to the approach proposed in [11] that assigned a variable
cost to character edit operations to Levenshtein edit distance. Using this approach in a text
classification task an improved performance was obtained versus the original edit distance. This
approach is equivalent to ours because the contribution of each q-gram to the soft cardinality
depends on the total number of q-grams in the term, which in turn depends on the length in
characters of the term.

The approach of aggregating information from sets of subsequences of different sizes was re-
cently proposed in [3] using time series sequences. Even though, the application of this approach
was considerably different, our approach of aggregating q-grams of different sizes is analogous.

Leslie et al. [27] proposed a k-spectrum kernel for comparing sequences using substrings of
k-length in a protein classification task. Similarly to them, we use the same metaphor to name
our approach.

8. Conclusions

We found that the proposed SC spectra method offers good baselines for various tasks of
natural language processing. In particular, when using local context q-gram weights, the SC
spectra approach provided a new static measure that outperformed other static baselines such
as the cosine similarity with binary vectors. This new static baseline, which only used the
surface information in the pair of texts being compared, obtained better performance than other
adaptive approaches that used weights collected from the entire text collection (e.g. cosine tf-
idf ).
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For the paraphrase and textual entailment recognition tasks, which involve semantics, we
proposed a SC spectra adaptive baseline. This new text similarity measure used a weighting
mechanism at character q-gram level based on a combination of evidence from: i) the local
context of the q-gram, ii) the idf weight of the term in which the q-gram occurred, and iii)
idf -like weights at q-gram level. This combined weighting scheme obtained better results in
both tasks when compared with weighting approaches based on single evidence. In addition,
the proposed adaptive measure was a fairly good baseline for other semantic measures that
used additional linguistic resources based on knowledge and/or large corpora. The proposed
baseline reached performances close to the best published results while outperformed many
other semantic approaches.

We have shown that the soft cardinality spectra (SC spectra) approach has the necessary
characteristics to be a good baseline method: simplicity, speed (linear complexity in the length
of the text being compared) and performance.
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