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Abstract. We show how to consider similarity between
features for calculation of similarity of objects in the Vec-
tor Space Model (VSM) for machine learning algorithms
and other classes of methods that involve similarity be-
tween objects. Unlike LSA, we assume that similarity
between features is known (say, from a synonym dictio-
nary) and does not need to be learned from the data.
We call the proposed similarity measure soft similarity.
Similarity between features is common, for example, in
natural language processing: words, n-grams, or syn-
tactic n-grams can be somewhat different (which makes
them different features) but still have much in common:
for example, words “play” and “game” are different but
related. When there is no similarity between features
then our soft similarity measure is equal to the standard
similarity. For this, we generalize the well-known cosine
similarity measure in VSM by introducing what we call
“soft cosine measure”. We propose various formulas
for exact or approximate calculation of the soft cosine
measure. For example, in one of them we consider
for VSM a new feature space consisting of pairs of
the original features weighted by their similarity. Again,
for features that bear no similarity to each other, our
formulas reduce to the standard cosine measure. Our
experiments show that our soft cosine measure provides
better performance in our case study: entrance exams
question answering task at CLEF. In these experiments,
we use syntactic n-grams as features and Levenshtein
distance as the similarity between n-grams, measured
either in characters or in elements of n-grams.

Keywords. Soft similarity, soft cosine measure, vector
space model, similarity between features, Levenshtein
distance, n-grams, syntactic n-grams.

1 Introduction

Computation of similarity of specific objects is a basic
task of many methods applied in various problems in
natural language processing and many other fields. In
natural language processing, text similarity plays crucial
role in many tasks from plagiarism detection [18] and
question answering [3] to sentiment analysis [14–16].

The most common manner to represent objects is
the Vector Space Model (VSM) [17]. In this model, the
objects are represented as vectors of values of features.
The features characterize each object and have numeric
values. If by their nature the features have symbolic
values, then they are mapped to numeric values in some
manner. Each feature corresponds to a dimension in
the VSM. Construction of VSM is in a way subjective,
because we decide which features should be used and
what scales their values should have. Nevertheless,
once constructed, the calculation of similarity of the vec-
tors is exact and automatic. VSM allows comparison of
any types of objects represented as values of features.
VSM is especially actively used for representing objects
in machine learning methods.

In the field of natural language processing, the objects
usually are various types of texts. The most widely
used features are words and n-grams. In particular, re-
cently we have proposed a concept of syntactic n-grams,
i.e., n-grams constructed by following paths in syntactic
trees [19, 21]. These n-grams allow taking into account
syntactic information for VSM representation (and, thus,
for use with machine learning algorithms as well). There
are various types of n-grams and syntactic n-grams ac-
cording to types of elements they are built of: lexical units
(words, stems, lemmas), POS tags, SR tags (names of
syntactic relations), characters, etc. Depending on the
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task, there are also mixed syntactic n-grams that are
combinations of various types of elements, for example,
ones that include names of syntactic relations [20]. The
values of the features are usually some variants of the
well-known tf-idf measure.

In Vector Space Model, traditional cosine mea-
sure [17] is commonly used to determine the similarity
between two objects represented as vectors. The co-
sine is calculated as normalized dot-product of the two
vectors. The normalization is usually Euclidean, i.e., the
value is normalized to vectors of unit Euclidean length.
For positive values, the cosine is in the range from 0 to 1.
Given two vectors a and b, the cosine similarity measure
between them is calculated as follows: the dot product is
calculated as

a · b =
N∑
i=1

aibi, (1)

the norm is defined as

||x|| =
√
x · x, (2)

and then the cosine similarity measure is defined as

cosine(a, b) =
a · b

||a|| × ||b|| , (3)

which given (1) and (2) becomes

cosine(a, b) =

∑N
i=1 aibi√∑N

i=1 a
2
i

√∑N
i=1 b

2
i

. (4)

Applied to a pair of N -dimensional vectors, this for-
mula has both time and memory complexity O(N).

In a similar way, the same VSM is used by machine
learning algorithms. They are applied, for example,
for grouping, separation, or classification of objects by
learning weights of features or by choosing most signifi-
cant features.

Traditional cosine measure and traditional similarity
measures consider VSM features as independent or in
some sense completely different; mathematically speak-
ing, the formula (1) considers the vectors in the VSM as
expressed in an orthonormal basis. In some applications
this is a reasonable approximation, but far too often it is
not so.

For example, in the field of natural language pro-
cessing the similarity between features is quite intuitive.
Indeed, words or n-grams can be quite similar, though
different enough to be considered as different features.
For example, words “play” and “game” are of course
different words and thus should be mapped to different
dimensions in SVM; yet it is obvious that they are related

semantically. This also can be interpreted in information-
theoretic way (when one speaks of playing, speaking
of a game is less surprising) or in probabilistic way
(conditional probability of the word “game” increases in
the context of “play”). That is, these dimensions are not
independent. Similarity between words is very important
in many applications of natural language processing and
information retrieval.

In this paper, we propose considering such similarity
of features in VSM, which allows generalization of the
concepts of cosine measure and similarity. We describe
our experiments that show that the measure that takes
into account similarity between features yields better
results for a question answering task we worked with.

Some methods, such as LSA, can learn the similarity
between features from the data. In contrast, we assume
that similarity between features is known—say, from a
synonym dictionary—and does not need to be learned
from the data. Thus our method can be used even when
there is no sufficient data to learn the similarity between
features from statistics.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the soft cosine measure and the idea
of the soft similarity. Section 3 describes the question
answering task for entrance exams at CLEF and the
method that we applied in it. Section 4 presents appli-
cation of the soft cosine similarity (the experiments) and
discussion of the results. Section 5 concludes the paper.

2 Soft Similarity and Soft Cosine
Measure

Consider an example of using words as features in
a Vector Space Model. Suppose that we have two
texts: (1) play, game, (2) player, gamer. It defines
a 4-dimensional VSM with the following features: play,
player, game, gamer. We have two vectors a and b:
a = [1, 0, 1, 0] and b = [0, 1, 0, 1]. The traditional cosine
similarity of these two vectors is 0. But if we take into
consideration the similarity of words, it turned out that
these vectors are quite similar. There is special proce-
dure called ‘stemming’ in natural language processing
aimed to take into account this kind of similarity between
words, but it is a specific ad hoc procedure. A more
general question is: how can we take into account the
similarity between features in Vector Space Model? The
traditional similarity does not consider this question, i.e.,
all features are considered different.

The cosine measure is widely applied and usually is
taken for granted. We found two papers that suggest
its modification. In [7] the authors claim that the cosine
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similarity is overly biased by features with higher values
and does not care much about how many features two
vectors share, i.e., how many values are zeroes. They
propose a modification of the cosine measure called the
distance weighted cosine measure (dw-cosine). The
dw-cosine is calculated by averaging the cosine similarity
with the Hamming distance. The Hamming distance
counts how many features two vectors do not share. In
this way, they try to decrease the similarity value of the
two vectors that share less features or have high values.
It is an attempt “to tune” the traditional cosine measure.

The other paper, Mikawa et al. [8], proposes “ex-
tended cosine measure”, which is in a some way similar
to our proposal: they consider Mahalanobis distance
for similarity of features. They do not generalize the
concept of similarity, they just modify the cosine for this
specific measure. Also, it is not obvious how to measure
Mahalanobis distance in many situations (we propose to
use much more clear Levenshtein distance, see below).

Our idea is more general: we propose to modify the
manner of calculation of similarity in Vector Space Model
taking into account similarity of features. If we apply
this idea to the cosine measure, then the “soft cosine
measure” is introduced, as opposed to traditional “hard
cosine”, which ignores similarity of features. Note that
when we consider similarity of each pair of features, it
is equivalent to introducing new features in the VSM.
Essentially, we have a matrix of similarity between pairs
of features and all these features represent new dimen-
sions in the VSM.

Note that if the same idea is applied to similarity
while using machine learning algorithms in Vector Space
Model, then the similarity is transformed into “soft sim-
ilarity”. Again, new dimensions (features) are added
to the VSM. The values of the new features can be ob-
tained, say, by taking the mean value of the two features
of the same vector multiplied by the similarity of these
two features. It is the most obvious suggestion, other
possibilities can be explored.

The idea to take into account the similarity of features
was also proposed in [4, 5], but it was applied to the
concept of cardinality. The authors introduced the “soft
cardinality”, i.e., the cardinality that can obtain different
values depending on similarity of features. In their case,
this idea does not have the clear manner of calculation of
the new cardinality and does not generalize any impor-
tant concept. We use the term “soft” following their idea
of soft cardinality.

The next question is how to measure similarity be-
tween features. In general, the measuring of similarity
depends on the nature of the features. In our case,
we compare features using the Levenshtein distance [6],

taking advantage of the fact that they are usually strings
in case of natural language processing.

Recall that the Levenshtein distance is the number
of operations (insertions, deletions, rearrangements)
needed to convert a string into another sting. In our
case, the Levenshtein distance is a good measure for
string comparison, but other measures can be exploited
as well. So, if our objects are texts then the traditional
features are words, n-grams or syntactic n-grams and
their corresponding values are based on the tf-idf mea-
sure. In case of the Levenshtein distance if we use
n-grams or syntactic n-grams then there are two possi-
bilities for string comparison: directly compare character
transformations or consider each element of n-grams as
a unit for comparison. We explored both possibilities in
the experiments. In case of words as features, only first
possibility is applicable. In case of word, say, WordNet
similarity functions can be used.

In what follows we will present several formulas that
take into account similarity between features. We will
show that the soft cosine measure performs better than
the conventional cosine (4) in most cases for a version of
question answering task—a classical natural language
processing problem. Namely, both our exact and simpli-
fied expressions for soft cosine measure obtained better
experimental results as compared to the standard cosine
measure in the majority of cases.

2.1 Feature Similarity as a Non-orthogonality
of the VSM Basis

We assume that we deal with objects, say, documents,
that are modeled in a VSM as vectors whose coordinates
correspond to features, say, words. For example, in the
bag-of-words model, documents

a : a player will play a game they like to play

b : they play the game they like

are represented by vectors

a = (2, 1, 1, 2, 1, 1, 1, 1, 0), (5)

b = (0, 0, 0, 1, 1, 2, 1, 0, 1), (6)

where the coordinates correspond to the frequencies of
the words a, player, will, play, game, they, like, to, the
in each document; e.g., a and play appear in the first
document twice. Now we can measure the similarity
between these texts as cosine(a, b).
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However, the basis vectors of this representation, i.e.,

e1 = (1, 0, 0, . . . , 0)

e2 = (0, 1, 0, . . . , 0)

· · ·

eN = (0, 0, 0, . . . , 1)

are also objects (one-word documents, i.e., words) in this
vector space. Saying that they are orthogonal,

cosine(ei, ej) = 0, (7)

is equivalent to saying that they are independent, or that
there is no similarity whatsoever between them.

However, as we have discussed, in fact almost al-
ways there is some similarity, which can be identified
independently from the VSM—e.g., using a dictionary of
synonyms for words. In our example, game is obviously
related to play.

In this paper we make a natural assumption that this
similarity can be modeled as cosine between these ob-
jects:

cosine(ei, ej) = sij = sim(fi, fj), (8)

where fi and fj are the features corresponding to these
basis vectors, and sim(·) is a similarity measure, such as
synonymy. There exist numerous ways of quantitatively
measuring similarity (or relatedness) between words.
For example, the well-known WordNet::Similarity pro-
vides eight different ways of calculating word related-
ness.

Thus, we consider the basis in which we initially ob-
tained the vectors, such as (5) in the above example, to
be non-orthogonal.

Still our goal is to be able to calculate the cosine
cosine(a, b) between vectors initially given in such a
basis:

a =
∑N

i=1
aie

i, (9)

b =
∑N

i=1
bie

i. (10)

Since dot product is bilinear, we have:

a · b =
(∑N

i=1
aie

i
)
·
(∑N

i=1
bie

i
)

(11)

=
∑∑N

i,j=1
aibj(e

i · ej) (12)

=
∑∑N

i,j=1
sijaibj , (13)

where sij are given by (8). We obtain instead of the
classical (4) our main formula:

soft cosine1(a, b) =

∑∑N
i,j sijaibj√∑∑N

i,j sijaiaj

√∑∑N
i,j sijbibj

,

(14)

where sij = sim(fi, fj).
Obviously, if there is no similarity between features

(sii = 1, sij = 0 for i 6= j), (14) is equivalent to the
conventional formula (4).

This formula computes the cosine of a pair of vectors
in time O(N2).

2.2 Simplified Formula

While the formula (14) gives mathematically correct
result, in practice existing software packages for ma-
chine learning and natural language processing, such as
WEKA, might not be designed to handle comparisons of
the data vectors via a matrix (sij). Instead, they apply a
built-in expression (4) with dot-product (1).

Our goal now will be to transform the data vectors in
such a way that the cosine measure (14) be calculated
via the conventional expression of the form (4). One way
of achieving it is to map our data vectors a, b to a space
with orthonormal basis.

Our first attempt is to use a space of dimension N2.
We will map the data vectors a = (ai), b = (bi) to
a new N2-dimensional vectors (aij), (bij) by averaging
different coordinates:

aij =
√
sij

ai + aj

2
, bij =

√
sij

bi + bj
2

, (15)

where sij = sim(fi, fj) are given by (8). In these
new coordinates, we compare our data points using the
classical expression (4), which in this case takes the form

soft cosine2(a, b) =

∑∑N
i,j=1 aijbij√∑∑N

i,j=1 a
2
ij

√∑∑N
i,j=1 b

2
ij

.

(16)

This formula has a simple interpretation: we consider
each pair of features as a new feature with a “weight” or
“importance” being the similarity of the two features, thus
the normalizing coefficients in (15).

An advantage of the formula (16) over (14) is its
simplicity and the fact that it can be used with exist-
ing machine-learning tools without change, by only re-
calculating the data vectors.

A disadvantage is the size of the obtained vectors:
N2 instead of N , which makes it suitable only for small
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feature sets. Time complexity of this formula is still
O(N2).

Another disadvantage is that this simplified formula
does not provide correct value for the cosine, as we
will see in Section 2.4. However, our experiments show
that this approximate value gives quite good results,
comparable within the natural fluctuation of data to the
correct formula (14). This suggests that the simplified
formula (16) is worth trying in practice.

In particular, if there is no similarity between fea-
tures, (16) is equivalent to the conventional formula (4).

In our experiments reported below, we used this for-
mula as soft cosine2.

2.3 Dimensionality Reduction

In practice, VSM often has high dimensionality N ; for
example, in natural language processing tasks hundreds
of thousands of dimensions is common. In case of n-
grams as features the dimensionality of the VSM can be
especially high. In this case, forming N2-dimensional
vectors or operating with N ×N matrices is impractical.

However, to use our formulas it is not necessary to
operate with all N2 elements of matrices or feed all N2

coordinates of vectors (15) into a machine learning soft-
ware package such as WEKA. Instead, it is enough to
identify a small number of highly similar pairs of features,
that is, only keep sij greater than some threshold t,
otherwise consider sij = 0.

If the similarity between features is given by some list,
such as a dictionary of synonyms, then automatically
only a small number of sij 6= 0. For n-grams with
the Levenshtein distance as a similarity measure (see
Section 2.6), only a small number of n-grams will have
any nonzero similarity.

With this, the matrix sij can be easily stored and
operated upon as a sparse matrix. What is more, in
our simplified formula, only a small number of additional
dimensions is to be stored form which sij > t, i 6= j
(since sii = 1, at least N dimensions are always stored).

While the simplified formula apparently implies a
frightening N2 dimensions of vectors, in practice one
can choose to add very few data columns to the feature
vectors, which makes this simple formula quite affordable
in practice.

2.4 Corrected Formula, Dimensionality N2

As we have mentioned, the expression (16) does not
exactly compute cosine between two vectors. Indeed,
substituting aij , bij in (16)

a · b =
∑∑N

i,j
aijbij (17)

with (15) and removing parentheses, we obtain (taking
into account that the similarity values are symmetric,
sij = sji):

a · b =
∑∑N

i,j
aijbij

=
1

4

∑∑N

i,j
sij(ai + aj)(bi + bj)

=
1

2

(∑∑N

i,j

sij + sji
2

aibi

+
∑∑N

i,j

sij + sji
2

aibj
)

=
1

2

(∑∑N

i,j
sijaibi +

∑∑N

i,j
sijaibj

)
=

1

2

(
N∑
i

(
N∑
k

sik

)
aibi +

∑∑N

i,j
sijaibj

)

=
1

2

(∑∑N

i,j

({∑N
k sik, i = j

0, i 6= j

)
aibj

+
∑∑N

i,j
sijaibj

)
=

1

2

∑∑N

i,j

({
sij +

∑N
k sik, i = j

sij , i 6= j

)
aibj .

Comparing this with (14), we see that the supposed
value of the dot product is half the correct one, but this
is not important because due to normalization in (3) it
does not affect the cosine. What is important is that the
coefficient at aibi is has an extra summand equal to the
sum of a row (or column) in the matrix (sij), thus the
value of the expression is, generally speaking, incorrect.

This is simple to repair by changing the coefficients
in (15): let it be now

aij =
√

2cij
ai + aj

2
, bij =

√
2cij

bi + bj
2

(18)

(2 is here to compensate for 1
2

in the derivation above,
though it does not affect the cosine in any way). Com-
paring the last obtained equation (using in it cij instead
of sij) with the correct formula (14) gives the equations{

cii +
∑N

k=1 cik = sii,

cij = sij , i 6= j,
(19)
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which gives

cij =

{
sii−

∑
k 6=i sik
2

, i = j,

sij , i 6= j.
(20)

Together with (18) and (16), the latter formula gives
a data transformation almost as simple as our
soft cosine2, but as correct as soft cosine1. It still
has the disadvantage of dimensionality N2 and time
complexity O(N2).

Obviously, in terms of precision and recall all ex-
perimental results for this formula are the same as for
soft cosine2.

2.5 Formula with Dimensionality N

It is possible, however, to construct a transformation of
the basis of the vector space that gives the correct result
with the same dimensionality N of the vectors and with
linear complexity O(N) of computing the cosine of a pair
of vectors.

Namely, we will transform the input data vectors to be
expressed in an orthonormal basis. For this, we need
to represent the basis vectors {ej} in some orthonormal
basis of the same space. The matrix of the coordinates
of these basis vectors ej = (ej1, . . . , e

j
N ) in the orthonor-

mal basis is the transition matrix to re-calculate the input
data points.

Denote this matrix E = (eji ) and the matrix of similar-
ities S = (sij). Since we interpret the similarities as
cosine between the basis vectors and given that they
have unit length, we have a non-linear system of N2

equations on N2 unknown values eji :

ei · ej = sij , (21)

or

EET = S, (22)

where ET is the transpose of E. The algorithm that we
describe below finds a solution of this system in the form
of a triangular matrix E.

From the geometric point of view, we will implicitly
construct an orthonormal basis and find the coordinates
of our initial basis vectors ei in this new basis. If we know
the coordinates of the basis vectors, we can easily find
the coordinates of each data point in this new orthonor-
mal basis by multiplying the data vectors by the transition
matrix (eji ).

We consider an orthonormal basis such that for each
k, the first k vectors of this basis form an (orthonormal)

basis or the space generated by the first k original basis
vectors ei.

Obviously, in such a basis matrix E of coordinates of
the vectors ei is a lower-triangular matrix:

e1 = (e11, 0, 0, 0, . . . , 0 )
e2 = (e21, e

2
2, 0, 0, . . . , 0 )

e3 = (e31, e
3
2, e

3
3, 0, . . . , 0 )

e4 = (e41, e
4
2, e

4
3, e

4
4, . . . , 0 )

· · ·
eN =(eN1 ,eN2 ,eN3 ,eN4 ,. . . ,eNN ).

Assume that we have found the coordinates of first
k vectors ej . The next vector ek+1 forms the angles
with the known cosines sij = sim(fi, fj) with the first
k vectors ej . Denote xi = ek+1

i . All vectors ej have unit
length, thus cosine(ei, ej) = ei ·ej . Since by construction
all coordinates eji = 0 for i > k, we have:

ej · ek+1 =
∑k

i=1
ejixi = si,k+1, j = 1, . . . , k. (23)

Recall that we consider the similarity values sij to be the
cosines between the basis vectors.

This is a square system of linear equations. It has a
solution given that the coefficients are linearly indepen-
dent, which is by assumption because they are coordi-
nates of our basis vectors; we assume that the similarity
measure obeys the triangle inequality: a thing cannot be
too similar to two very different things at the same time.

This system can be solved, for example, by Gaussian
elimination in time O(N3).

Since the vector ek+1 has unit length, we have∑k+1

i=1
x2
i = 1, (24)

As soon as we found the first k of xi = ek+1
i from (23),

we obtain

ek+1
k+1 = xk+1 =

√
1−

∑k

i=1

(
ek+1
i

)2
. (25)

Finally, all the coordinates ek+1
i = 0 for i > k + 1. This

completely defines the coordinates of the vector ek+1.
The above expressions naturally give

e1 = (1, 0, . . . , 0) (26)

for k = 0. Starting from this value, in N steps we can
find the coordinates of all ei, that is, the transition matrix
to transform our input data to an orthonormal basis, in
which the cosine measure has the usual expression (4)
built into existing machine-learning programs. The com-
plexity of the algorithm is O(N4). However, the transition
matrix does not depend on the data and thus can be
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Fig. 1. Behavior of the similarity functions based on Levenshtein distance: sim as a function of d (m = 9).

computed once for the given feature set and feature
similarities. Then this matrix is used as a pre-processing
stage to re-calculate the input data vectors before using
any machine-learning software package.

The dimensionality of the data vectors remains the
same, N , and once the vectors have been transformed,
cosine is computed in time O(N), so that our soft cosine
measure has no effect on the complexity of the algo-
rithms that use it.

We believe that this is the most promising way of cal-
culating the soft cosine measure (14) for large datasets
of high dimensionality, though it is somewhat more com-
plicated in implementation.

2.6 Similarity between n-grams

We experimented with a natural language processing
task using n-grams as features. Given that n-grams
can share elements, it is important to take into account
similarity between them.

As a measure of difference, or distance, between two
n-grams fi, fj we used their Levenshtein distance (edit

distance). We tried various ways to convert this distance
into its inverse, similarity:

sim(fi, fj) =
1

1 + d
, (27)

sim(fi, fj) = 1− d

m
, (28)

sim(fi, fj) =

√
1− d

m
, (29)

sim(fi, fj) =

(
1− d

m

)2
, (30)

where d = Levenshtein distance(fi, fj) and m is the
maximum possible Levenshtein distance for two strings
of the same length as the two given ones, which is the
length of the longer of the two strings.

In our experiments, the expression (27) gave slightly
better results, though the choice of the best expres-
sions still needs more research. Below we report the
experimental results for similarity calculated using the
expression (27).

A graphical representation of these expressions is
given in Figure 1, which shows the similarity (Y axis) vs.
the Levenshtein distance d (X axis). In the future we plan
to try other expressions for calculation of similarity from
distance.
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(a ) I'm going to share with you the story as to how I have become an HIV/AIDS campaigner

(c ) In November of 2003 I was invited to take part in the launch of Nelson Mandela's 46664 Foundation

(b ) And this is the name of my campaign, SING Campaign

Fig. 2. Dependency trees of the first three sentences of the text using word POS combination for the nodes and
dependency labels for the edges

3 Case Study: Entrance Exams
Question Answering Task

3.1 Description of the Entrance Exams Task

In this section we describe the task, where we applied
the proposed soft cosine measure. The only reasons
why we chose this task are: (1) we applied in it the
traditional cosine measure (so we can compare it), and
(2) we participated in it in 2014, thus, we had all the data
at hand. Our aim was to apply the soft cosine measure
with various parameters and compare its performance
with the traditional cosine measure.

The entrance exam task was first proposed in 2013 as
a pilot task [12] in the Question Answering for Machine
Reading Evaluation (QA4MRE) lab, which has been

offered at the CLEF conference1 since 2011 [10, 11].
The entrance exam task evaluates systems in the same
situation, in which high school students are evaluated for
entering a university. The challenge consists in reading
a small document (≈500-1,000 words) and identifying
answers (from multiple choices) for a set of questions
about the information that is expressed or implied in the
text. The task is very difficult for an automatic system
and ideally implies deep semantic analysis of the text.
We proposed a methodology for its solution, built the
corresponding system, and participated in the task (eval-
uation).

The test set 2013 based on the entrance exams task is
composed of tests for reading comprehension taken from
the Japanese Center Test (a nation-wide achievement

1Conference and Labs of the Evaluation Forum; see
http://www.clef-initiative.eu/
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Fig. 3. Integrated Syntactic Graph of the paragraph presented in Figure 2

test for admission in Japanese universities). The data
set is composed of the following elements:

— 12 test documents,

— 60 questions (5 questions for each document),

— 240 choices/options (4 for each question).

The principal measure used in the evaluation of the
task is c@1, which is defined as shown in (31). This
measure was defined in the QA4MRE task at CLEF
2011 with the purpose of allowing the systems to decide
whether or not to answer a given question. The aim
of this procedure is to reduce the amount of incorrect
answers, maintaining the number of the correct ones,
i.e., a system is penalized for answering incorrectly and
it is better not to answer at all if not sure:

c@1 =
1

n

(
nR + nU

nR

n

)
, (31)

where nR is the number of the correctly answered ques-
tions, nU is the number of the unanswered questions,
and n is the total number of questions.

3.2 Our Method for the Entrance Exam Task

Our system formulates several candidate “answer hy-
potheses” as the improved versions of the original ques-
tion, removing the cue words associated with the ques-
tions, such as who, where, which, and replacing them
with one of the possible answers given in the test data.
So, we have several “answer hypotheses”, which are
then validated in order to determine the one that best
matches, i.e., has the major similarity with the document
itself. In the task we applied the traditional cosine mea-
sure, which we now substitute with the soft cosine.

For performing this, the text is transformed into an
Integrated Syntactic Graph (explained in Section 3.3) for
both the reference document and each of the answer
hypotheses. We validated each one of these answer
hypotheses by comparing their similarity with the refer-
ence document. The hypothesis that obtains the highest
score is the one selected as the correct answer for
the given question. Previously, we used the traditional
cosine measure for the task evaluation and now we tried
both equations for calculation of the soft cosine measure.
The results show that the soft cosine similarity performs
better in most cases.
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Table 1. Configurations of the graphs representation and the extracted features

Representation schemes Extracted features

System W
or

ds

P
O

S
ta

gs

D
ep

en
de

nc
y

ta
gs

S
te

m
m

in
g

Fr
eq

ue
nc

y

W
or

ds

P
O

S
ta

gs

D
ep

en
de

nc
y

ta
gs

cicnlp-1 X X X X X
cicnlp-2 X X X X X X
cicnlp-3 X X X X X X
cicnlp-4 X X X X X X X
cicnlp-5 X X X X X X
cicnlp-6 X X X X X X X
cicnlp-7 X X X X X X X
cicnlp-8 X X X X X X X X

In the next sections we present a brief description
of the Integrated Syntactic Graph (ISG) and the feature
extraction process that we used in the task.

3.3 Construction of the Integrated Syntactic
Graph

We construct the Integrated Syntactic Graph following
the methodology presented in the research work [13].
The ISG can represent a sentence, a paragraph, a do-
cument or a collection of documents. Figure 2 shows
the dependency trees of the first three sentences of the
text. The construction of the graph starts with the first
sentence of the text. We apply the dependency parser2

and obtain the dependency tree of the first sentence.
The parser generates a tree with the generic root node
(ROOT), in which the rest of the sentences are attached
in order to conform the integrated syntactic graph. Each
node of the tree is augmented with other annotations,
such as the combination of lemma (or word) and POS
tags (lemma POS).

After this, we perform similar actions for the second
sentence of the text (Fig. 2b), using the dependency
parser and attaching the obtained parsed tree to the
ROOT. If there exists a repeated node, then, at the time
of attaching the new tree, this node is not duplicated.
Instead, the repeated node contracts with the existing
node (i.e., in Figure 3, the node “of IN” appears only
once and all the relationships in the second and third

2In this work, we used the output generated by the Stanford
parser: http://nlp.stanford.edu/software/lex-parser.

shtml

sentences are compressed into it). In this way, we create
new connections of nodes (containing the same lemmas
(or words) and POS tags) from different sentences that
would not have existed otherwise.

In addition, we can expand the ISG using paradig-
matic semantic relations. The graph expansion results
in the overlap of the higher nodes, when we compare
two different graphs. The most widely used paradigmatic
semantic relations are: antonymy, synonymy, inclusion
of classes, part-whole, and case [1]. In order to extract
semantic relations of words in a text, we used the Word-
Net taxonomy [9]. For instance, in Figure 3, the node
“foundation NNP” can be expanded with the synonyms:
“institution NNP” and “endowment NNP”, which are then
linked to the same vertices in the graph corresponding
to the original node “foundation NNP”, direction of the
edges is kept.

3.4 Feature Extraction from the ISG

We use shortest path walks in the graph for feature
extraction. Note that the idea of using syntactic paths
is similar to extraction of syntactic n-grams [19, 21]. So,
we use syntactic n-grams of various types as features.
The procedure starts by selecting the root node of the
graph as the initial node for the path traversal, whereas
the final nodes correspond to the remaining nodes of the
graph reachable from the initial node.

We used the Dijkstra algorithm [2] for finding the
shortest path between the initial and the final nodes.
While traversing the shortest paths, we construct the
syntactic n-gram with the linguistic features found in
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Table 2. Results (c@1) using the Dijkstra path

Levenshtein dist. Levenshtein dist.
(for characters) (for n-grams)

Run soft cosine1 soft cosine2 soft cosine1 soft cosine2 cosine
cicnlp-1 0.17 0.28 0.27 0.30 0.23
cicnlp-2 0.23 0.23 0.23 0.22 0.27
cicnlp-3 0.13 0.27 0.20 0.28 0.23
cicnlp-4 0.20 0.20 0.22 0.17 0.23
cicnlp-5 0.30 0.27 0.22 0.32 0.23
cicnlp-6 0.27 0.27 0.25 0.28 0.23
cicnlp-7 0.30 0.25 0.20 0.30 0.23
cicnlp-8 0.22 0.22 0.23 0.28 0.23

Table 3. Results (c@1) using all shortest paths

Levenshtein dist. Levenshtein dist.
(for characters) (for n-grams)

Run soft cosine1 soft cosine2 soft cosine1 soft cosine2 cosine
cicnlp-1 0.20 0.25 0.22 0.25 0.22
cicnlp-2 0.25 0.30 0.20 0.27 0.30
cicnlp-3 0.10 0.25 0.20 0.28 0.22
cicnlp-4 0.23 0.22 0.23 0.18 0.23
cicnlp-5 0.28 0.27 0.17 0.28 0.23
cicnlp-6 0.32 0.27 0.25 0.30 0.25
cicnlp-7 0.32 0.22 0.17 0.30 0.23
cicnlp-8 0.23 0.18 0.22 0.30 0.23

the current path (including words (or lemmas), POS
tags and dependency tags). For example, in Figure 3
the shortest path between the node “ROOT-0” and the
node “the DT ” is the path: “ROOT-0”, “name NN” and
“the DT”. So, the syntactic n-gram is: ROOT-0 root
name NN nsubj the DT. Note that we include relation
names (dependency tags) in syntactic n-grams, i.e, in
fact, we use mixed syntactic n-grams with names of
syntactic relations [20].

4 Experimental Results

We presented eight versions of our method/system
(eight runs) in the competition using various sets of
features. Table 1 shows the features included in the ISG
and which of those features were used in the feature
extraction process for each of the eight configurations.

In the system cicnlp-1 we included for the nodes of
the graph combination of words and POS tags and the
dependency tags for the edges. The system cicnlp-2

uses stems of words for the nodes. The systems cicnlp-
4 and cicnlp-5 contain in addition the frequency of the
repeated pair of the initial and the final nodes, which are
counted at the moment of the graph construction. The
configurations of the systems cicnlp-5 to cicnlp-8 differ
from the first one in the type of features extracted. The
systems cicnlp-1 to cicnlp-4 use only POS tags and
dependency tags for the n-gram conformation, while the
systems cicnlp-5 to cicnlp-8 in addition include words
for forming n-grams.

In Table 2, we observe the results, when the features
were extracted using the Dijkstra algorithm for obtaining
the shortest paths. The values are obtained using tradi-
tional cosine measure and the two soft cosine measures
with both variants of the Levenshtein distance: mea-
sured in characters and in elements of n-grams. It shows
that the soft cosine similarity obtain better results in most
of the experiments. There were only two systems that
could not achieve better performance than the traditional
cosine measure: cicnlp-2 and cicnlp-4.
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Table 4. Results (c@1) using the expansion with synonyms

Levenshtein dist. Levenshtein dist.
(for characters) (for n-grams)

Run soft cosine1 soft cosine2 soft cosine1 soft cosine2 cosine
cicnlp-1 0.35 0.32 0.28 0.35 0.28
cicnlp-2 0.45 0.37 0.33 0.37 0.33
cicnlp-3 0.27 0.28 0.18 0.35 0.25
cicnlp-4 0.30 0.40 0.28 0.35 0.25
cicnlp-5 0.37 0.30 0.30 0.33 0.22
cicnlp-6 0.42 0.40 0.33 0.35 0.25
cicnlp-7 0.40 0.30 0.37 0.33 0.23
cicnlp-8 0.40 0.38 0.35 0.37 0.25

Table 5. Results (c@1) using the expansion with hypernyms

Levenshtein dist. Levenshtein dist.
(for characters) (for n-grams)

Run soft cosine1 soft cosine2 soft cosine1 soft cosine2 cosine
cicnlp-1 0.30 0.35 0.28 0.40 0.37
cicnlp-2 0.33 0.40 0.30 0.35 0.40
cicnlp-3 0.28 0.35 0.28 0.37 0.33
cicnlp-4 0.32 0.35 0.25 0.35 0.27
cicnlp-5 0.37 0.37 0.33 0.32 0.30
cicnlp-6 0.27 0.30 0.32 0.37 0.27
cicnlp-7 0.38 0.37 0.28 0.33 0.28
cicnlp-8 0.25 0.30 0.30 0.32 0.25

There can be several shortest paths in the graphs
between the initial and the final nodes, i.e., several paths
have the same length. Table 3 shows the results, when
we use all shortest paths. In this set of experiments the
systems built with the soft cosine measure were better
(or equal) than the systems using the traditional cosine
in all cases.

As we mentioned before, the graphs can be expanded
with semantic paradigmatic relations. We expanded the
graph with synonyms and conducted more experiments.
We used the Dijkstra algorithm for obtaining the shortest
paths. Table 4 presents the obtained results. The sys-
tems that use the soft cosine overcome the systems with
traditional cosine.

We obtained here a very promising result: the best
result of the competition was 0.42 [12], while one of
our systems got 0.45. So, this system got the best
performance in the competition. Let us remind that it was
obtained only by using the soft cosine measure instead
of the traditional cosine measure.

We also expanded the graphs used in these experi-
ments with hypernyms. Here we also used the Dijkstra
algorithm for obtaining the shortest paths. The results
are shown in Table 5. The soft cosine measure is better
(or equal) than the traditional cosine in all cases.

5 Conclusion and Future Work

Calculation of similarity is the most used metric in infor-
mation retrieval and natural language processing. Usu-
ally, it is used with the representation based on the
Vector Space Model. In this case, if we calculate the sim-
ilarity directly between objects, then the cosine measure
is used. Note that we can also apply machine learning
algorithms that interpret the Vector Space Model as a
metric for similarity.

These models are quite effective, but it turns out that
they can be improved if we take into account the similar-
ity of features in Vector Space Model. Traditional VSM
considers that all features are completely different. It is
not true in many tasks, for example, in natural language
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processing: words and n-grams can have a certain de-
gree of similarity.

In this paper, we have proposed the concepts of the
soft similarity and the soft cosine measure, which are
calculated precisely taking into account similarity of fea-
tures. Essentially, we add to the Vector Space Model
new features by calculation of similarity of each pair of
the already existing features, i.e., we construct the matrix
of similarity for each pair of features and then use it. We
proposed two equations for the soft cosine measure and
tried several manners for measuring similarity using the
Levenshtein distance. Note that if the features are similar
only to themselves, i.e., the matrix of similarity has 1s
only at the diagonal, then these equations are equal to
the traditional cosine equation.

We made a study of applicability of the soft cosine
measure for a specific question answering task: en-
trance exams task at CLEF. The soft cosine measure
obtained better results as compared with the traditional
cosine measure in the majority of cases. In our experi-
ments, this measure even obtained the best score for the
competition (it is not the official score, though, because
it was obtained after the competition).

In future, we would like to experiment with more types
of similarity functions, for example, add the well-known
WordNet similarity functions. It should be analyzed also
which features benefit from the soft cosine measures,
and which do not.

References

1. Bejar, I., Chaffin, R., & Embretson, S. (1991).
Cognitive and psychometric analysis of analogical
problem solving. Recent research in psychology.
Springer-Verlag.

2. Dijkstra, E. W. (1959). A note on two problems
in connexion with graphs. Numerische mathematik,
1(1), 269–271.

3. Gmez-Adorno, H., Sidorov, G., Pinto, D., & Gel-
bukh, A. (2014). Graph-based approach to the
question answering task based on entrance exams.
Cappellato, L., Ferro, N., Halvey, M., & Kraaij,
W., editors, Notebook for PAN at CLEF 2014. CLEF
2014. CLEF2014 Working Notes, volume 1180 of
CEUR Workshop Proceedings, CEUR-WS.org, pp.
1395–1403.

4. Jimenez, S., Gonzalez, F., & Gelbukh, A. (2010).
Text comparison using soft cardinality. Chavez, E.
& Lonardi, S., editors, String Processing and Infor-
mation Retrieval, volume 6393 of Lecture Notes in
Computer Science, Springer, pp. 297–302.

5. Jimenez Vargas, S. & Gelbukh, A. (2012). Base-
lines for natural language processing tasks based
on soft cardinality spectra. International Journal
of Applied and Computational Mathematics, 11(2),
180–199.

6. Levenshtein, V. I. (1966). Binary codes capable
of correcting deletions, insertions, and reversals.
Soviet Physics Doklady, 10(8), 707–710.

7. Li, B. & Han, L. (2013). Distance weighted cosine
similarity measure for text classification. Yin, H.,
Tang, K., Gao, Y., Klawonn, F., Lee, M., Weise,
T., Li, B., & Yao, X., editors, IDEAL, volume 8206 of
Lecture Notes in Computer Science, Springer, pp.
611–618.

8. Mikawa, K., Ishida, T., & Goto, M. (2011). A
proposal of extended cosine measure for distance
metric learning in text classification. Systems, Man,
and Cybernetics (SMC), IEEE, pp. 1741–1746.

9. Miller, G. A. (1995). WordNet: A lexical database for
English. Communications of the ACM, 38, 39–41.
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11. Peñas, A., Hovy, E. H., Forner, P., Rodrigo, Á.,
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