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Abstract. This paper presents a rule-based technique for recognizing textual entailment. The method exploits 

lexical similarity, semantic similarity and dependency relations for this purpose. First, dependency parsing is 

applied on a text–hypothesis (T–H) pair to produce a directed dependency graph each for the text and the 

hypothesis. The proposed method compares the hypothesis dependency graph with the corresponding text 

dependency graph to check whether the hypothesis can be inferred from the text. For each dependency triplet of 

the hypothesis, the method tries to find out a matching dependency triplet of the text. This matching is carried 

out on the basis of a number of matching rules which have been designed after a thorough and detailed analysis 

of the RTE development sets. Upon finding a successful match for a hypothesis triplet RH(W1,W2) with any of 

the text triplets, a matching score in the range of [-1, +1] is assigned to the corresponding dependent node (W2) 

associated with that particular arc in the hypothesis graph. The match score is computed based on the lexical or 

semantic similarity between the corresponding text–hypothesis governor words or the dependent words 

associated with the matching pair of dependency triplets. If for any hypothesis dependency triplet, no 

corresponding matching triplet is found in the text, a 0 score is assigned to W2. Finally the hypothesis 

dependency graph is traversed in level order fashion starting from the bottommost level from where the scores 

of the nodes are accumulated and propagated to the upper levels. This traversal process stops at the topmost 

level where the final entailment score between the T–H pair is obtained at the root node.  This similarity score is 

then compared against a predetermined threshold value to take the final entailment decision. The threshold 

values were tuned on the task specific splits of the RTE development sets using a hill climbing approach. 

Experimental results on the RTE datasets show 60.5%, 64.4%, 62.8% and 61.5% accuracy for the RTE1, RTE2, 

RTE3 and RTE4 testsets respectively on the 2–way entailment task. The method attains an accuracy of 54.3% 

for the 3–way TE task on the RTE4 testset.     

Keywords: Textual entailment, Dependency parsing, lexical matching, semantic similarity, dependency relation 

matching, rules, RTE datasets.   

 

1. Introduction  

Recognizing Textual Entailment (RTE) can be defined as the task of taking a pair of text fragments as input and 

deciding whether the meaning of one fragment (termed as hypothesis) can be inferred from the meaning of the 

other fragment (termed as text) or not. The task of RTE has attracted the attention of many researchers in the 

natural language processing (NLP) community over the last few decades as it has important applications in 

many NLP tasks ranging from Information Extraction (IE), Information Retrieval (IR), Question Answering 



(QA), Summarization (SUM), Paraphrase Acquisition (PP), Machine Translation (MT), Reading 

Comprehension (RC) etc. Due to the huge impact in many application areas, PASCAL (Pattern Analysis, 

Statistical Modelling and Computational Learning) has organized a number of RTE challenges over the last few 

years.  

Textual Entailment is a directional relationship between a pair of text (T) and hypothesis (H). If T textually 

entails H, then the meaning of H can be inferred from T, however, the reverse may not be true always. Let us 

consider the following example T–H pair taken from the RTE1 dataset.  

Example 1:  

<pair id="122" value="TRUE" task="IR"> 

 <t>The Daily Telegraph, most prized asset in Lord Conrad Black’s crumbling media empire, has been 

sold to Britain’s Barclay twins.</t> 

 <h>Daily telegraph is sold.</h> 

</pair> 

From the T–H pair shown in Example 1, it is clear that the meaning of the hypothesis (contained in <h></h> in 

the example) can easily be inferred from that of the text (contained in <t></t> in the example). However, since 

the text contains some additional information other than those contained in H, therefore, one cannot say that the 

truth of T can be derived from that of H. Therefore, TE is a unidirectional relation that holds only from T to H, 

but not in the reverse direction. Textual entailment is a 2 way classification task which means that a given T–H 

pair may be labelled either as a case of YES entailment or NO entailment. This 2 way entailment task has been 

later extended to 3 way task in the 4th RTE challenge organized by PASCAL. The 3 way RTE task marks a 

given T–H pair with one of three possible labels - ENTAILMENT, CONTRADICTION and UNKNOWN. The 

following example taken from RTE4 dataset depicts a case of CONTRADICTION.    

Example 2:  

<pairid="45"entailment="CONTRADICTION" task="IR"> 

<t>As German voters go to the polls on Sunday, unemployment will be a key issue. Despite tough labour 

market reforms, the number of unemployed has risen to 5m. And Germany's jobless are getting despondent.</t> 

<h>Germany's jobless rate decreases.</h> 

</pair> 

 

A human reading of the T–H pair in Example 2 reveals that the fact conveyed by the hypothesis totally opposes 

or contradicts the information stated in the text. Therefore, it should be marked as a case of CONTRADICTION 

rather straightforwardly.  

Another example T–H pair from the RTE4 dataset is presented in Example 3 which indicates a case of 

UNKNOWN.  

Example 3:  

<pairid="61"entailment="UNKNOWN" task="IR"> 

<t>Fifty one persons were killed today when two trains travelling on the same track collided in northern Egypt 

in the country's deadliest rail crash in four years. Two carriages were derailed in a tangle of torn metal as one 

train slammed into the back of another.</t> 

<h>A French train crash killed children.</h> 

 

The truth of the hypothesis of Example 3 cannot be inferred from the given text. The text simply conveys that 

fifty one persons were killed from which we cannot conclude whether any children were killed or not. Therefore, 

this is evident that this T–H pair depicts an UNKNOWN case for TE due to the absence of relevant or 

supporting information in the text to verify the truth of the hypothesis.   



In this paper, we presented a rule-based approach to recognizing textual entailment which combines lexical, 

syntactic and as well as semantic features. First the T–H pair is subjected to a number of preprocessing 

operations and then it is passed to a dependency parsing module. This module produces a set of dependency 

triplets from which a dependency graph is constructed separately for each of the text and hypothesis. The 

method next tries to align the hypothesis tokens with the text tokens on the basis of a number of WordNet based 

lexical relations. After the text and the hypothesis tokens have been aligned, each dependency triplet of the 

hypothesis is searched against all the text dependency triplets in order to establish its corresponding matching 

triplet. This matching is carried out on the basis of a number of dependency triplet matching rules which exhibit 

mainly syntactic divergences between the lexically aligned tokens. On finding a successful matching text 

dependency triplet, a matching score is assigned to the child node of that branch of the hypothesis dependency 

graph which constitutes the particular dependency triplet. These matching rules were synthesized after a detailed 

and minute study of the various RTE development sets. A set of equivalent relation pairs were identified by 

analysing the development sets of the RTE datasets. These equivalent relation pairs are largely universal and can 

be applied to any dataset for the task of recognizing textual entailment. If for any hypothesis dependency triplet, 

one of the tokens is not aligned with any of the text tokens, the semantic similarity module is invoked to align 

the unaligned hypothesis token with semantically the most similar token in the text. Finally the hypothesis 

dependency graph is traversed in level order and the scores of all the nodes are calculated in a bottom up fashion 

by accumulating the scores of the nodes belonging to a particular level and then propagating it to the upper 

level. The traversal continues till the final entailment score between the T–H pair is obtained at the root node at 

the topmost level of the graph. This score is then compared with a predetermined threshold value above which a 

YES entailment decision is taken, otherwise a NO entailment decision is made. The threshold values are learnt 

from the development sets. Our method is also able to correctly label a good number of T–H pairs of the RTE4 

dataset for the 3 class TE problem. The rest of the paper is organized as follows: Section 2 reviews works 

related to RTE. Section 3 presents the modularized architecture of our method. The details of the datasets on 

which we performed our experiments are discussed in section 4. The experiments and the results are reported in 

section 5. Section 6 provides an analysis of the degree of effectiveness of the synthesized matching rules in 

overall performance and also an in depth error analysis. Section 7 concludes and provides avenues for future 

works.  

2. Related Work 

Over the years, several methods have been proposed to solve the problem of recognizing textual entailment. 

Some of them represent the text and hypothesis as syntactic or dependency parse trees and take the entailment 

decision based on how much of the hypothesis dependency tree is included in the text tree. Many systems 

simply use some form of lexical matching such as n-gram matching, percentage of word overlap, finding longest 

common subsequence, skip gram matching, etc. Recently machine learning based classification algorithms have 

been used extensively by many researchers for the textual entailment task. Many systems also use some form of 

semantic techniques such as semantic role labelling, atomic propositions, inference rules, universal networking 

language augmented with semantic similarity measures, etc.  

Here we have mainly focused on the works based on tree structure of a sentence using syntactic or dependency 

tree representation. 

Herrera et al. (2006) parses the T–H pair using Lin’s Minipar and then finds a lexical entailment between each 

word in the hypothesis with some word in the text on the basis of several WordNet relations such as synonym, 

hyponym, antonym etc. The system then checks whether the dependency tree of the hypothesis is completely or 

partially included in the text tree to conclude how semantically similar are the two text snippets. The degree of 

inclusion of the hypothesis tree into the text tree determines the entailment decision.  

The main idea behind the work described in (Rios and Gelbukh, 2012; Kouylekov and Magnini, 2005) is based 

on the assumption that a given T–H pair holds an entailment relation if a finite sequence of edit operations such 

as insertion, deletion or substitution can be performed on T to produce H with an overall cost below a certain 

threshold. 



Marsi et al. (2006) adopted a dynamic programming approach to establish the concept of normalized alignment 

of the text and hypothesis dependency trees for predicting the entailment decision. The tree alignment algorithm 

calculates a matching score between each node in the hypothesis dependency tree with each node in the text 

dependency tree. However the matching score between any pair of nodes does not depend on the similarity of 

those nodes only, rather it is computed recursively based on the scores of the best matching pairs of their 

descendents.  

The main motivation behind the work presented in (Snow et al., 2006) is to recognize false entailment. The 

textual entailment recognition system parses the given T–H pair by NLPwin parser and then represent them as 

graphs of syntactic dependencies. Each node in H is attempted to be aligned with a node in T using a set of 

syntactic heuristics such as exact and synonym match, numeric value match, acronym match etc. Then it is 

checked whether the alignment between any pair of text–hypothesis node belong to another set of syntactic 

heuristics such as antonym match, negation mismatch, superlative mismatch etc. On satisfying any of these 

heuristics, the given T–H pair is predicted as false entailment. 

Haghighi et al. (2005) adopted a graph based representation of sentences and used a learned graph matching 

approach to measure the semantic overlap of text. Each vertex of the hypothesis graph is attempted to be 

mapped with some text vertex by using exact match, stem match, synonym match, hypernym match etc. The 

entailment decision between the T–H pair is taken by measuring the number of matching text–hypothesis 

vertices as well as to what extent the relationships between the vertices of the hypothesis are preserved in their 

text counterpart. The relation or the path between any two vertices is tried to be matched by exact match, partial 

match, ancestor match etc. Finally weights are learnt according to the relative importance of the vertex and 

relationship matches to approximate the amount of semantic content in the hypothesis which is contained in the 

text. 

The aim behind the work in (Blake, 2007) is to explore the degree to which the sentence structure plays a role in 

detecting textual entailment. Each of the text fragments of a given T–H pair is individually parsed by the 

Stanford parser to generate a typed dependency tree. After collapsing the preposition paths in the generated 

trees, the system uses a number of base level sentence features such as subject, object, verb, proposition and 

some derived sentence features such as subject–subject, verb–verb, subject–verb to record the number of 

matches and the percentage of matches for each hypothesis sentence supported by the text sentences. The final 

entailment decision is taken by combining the derived features by using a decision tree learning algorithm. 

A dependency parser based textual entailment system is described in (Pakray et al., 2010a). The system extracts 

syntactic structures from the T–H pair by CCG and Stanford parser separately. Successively, the hypothesis 

relations are compared with the text relations on the basis of different features like subject, object, noun, verb 

etc and different weights are assigned for exact and partial matches. Finally, all these weights are summed up 

and checked against a threshold value to take the final entailment decision. 

Pakray et al. (2010b) reported a syntactic textual entailment system that extracts the dependency relations from 

T and H using Stanford parser. Each of the hypothesis relations is then compared with the text relations to find 

for a complete match or partial match based on some comparisons such as subject–subject, subject–verb, object–

verb comparisons etc. Different weights learnt from the development set are assigned on finding a complete or 

partial match. An optimal threshold has been set on the fraction of matching hypothesis relations based on the 

development set and it is then applied on the test set to decide the presence or absence of entailments. 

The TE recognition systems in (Pakray et al., 2011a,b) use semantic features based on universal networking 

language (UNL) to predict the entailment decision. UNL expresses information or knowledge in the form of 

semantic network made up of a set of binary relations. The T–H pairs are first converted to UNL expression 

using the UNL En-Converter. Each hypothesis UNL relation is then compared with the text UNL relations on 

the basis of a number of expanded UNL relations, several rules such as Relation Grouping rule, Named Entity 

Rule etc and some WordNet relations. Different matching scores are considered upon satisfying the matching 

rules. The final obtained score above a certain threshold indicates a YES entailment, otherwise a NO entailment 

decision is taken. 



Dinu and Wang (2009) proposed an inference rule based technique for recognizing textual entailment. They 

start with a collection of inference rules acquired automatically based on the distributional hypothesis and 

propose methods to refine it and obtain more rules using a hand-crafted lexical resource. A dependency based 

structure representation from the texts is used to provide a proper base for the inference rule application. 

Basak et al. (2015) illustrated a method that takes the entailment decision by comparing the dependency tree 

structures of T and H based on a number of dependency triplet matching rules. The matching rules are 

synthesized by minutely analysing the PETE dataset. On finding a matching text triplet for a hypothesis 

dependency triplet, a matching score of 1 is assigned to the dependent node associated with that hypothesis 

triplet. Finally the hypothesis dependency tree is traversed in post order fashion to accumulate the score of the 

nodes belonging to one level and then propagating it to the upper levels. The entailment score between the T–H 

pair is obtained at the root node of the tree at the end of the traversal process. However, the aim behind this 

work is just to emphasize the role of dependency parser alone in the task of RTE. Therefore no other knowledge 

sources or NLP tools are embedded in the system. The motivation behind our present work is largely influenced 

by this particular work and we present a significantly extended version of this method augmented with lexical 

resources, semantic similarity measures and a large set of matching rules. 

 

3. The Method 

This section describes our proposed method. Figure. 1 shows the schematic diagram of the method. The 

components of the method are illustrated in the following subsections. 



                      

Figure. 1. Modularized System Architecture 

3.1 Pre-processing 

Before the actual textual entailment detection process is invoked, the T−H pairs are subjected to various pre-

processing operations T–H which are described below. 

3.1.1 Breaking of Hyphenated-words 

There are several T–H pairs in the RTE datasets where either T or H contains one or more hyphenated words 

while the other does not, which creates problems in lexically aligning the hypothesis tokens to the text tokens. 

This step breaks such hyphenated words into their component words by removing the hyphens. 

3.1.2 Normalization  

This step involves normalization of numeric expressions which replaces the occurrence of comma from a 

numeric value (e.g., 8,568 → 8568).  

Pre-processing 

POS tagging 

Dependency 

parsing 

Stemming 

Lexical 

Alignment 

Dependency Graph 

Representation 

Comparison of 

Dependency 

Graphs 

Entailment Score 

Calculation 

Entailment 

Decision 

Set of 

matching rules 

RiTa WordNet 2.1 

T H 

Yes No 

POS tagger 
 Dependency 

Parser 

Semantic similarity 

module 



3.1.3 Replacement of some special symbols  

This pre-processing step replaces the occurrences of some special symbols with their corresponding expanded 

forms. A few of such special symbols and their corresponding expanded forms are presented in Table 1. 

Table 1: Special symbols and their expanded forms 

Symbol Expanded form 

$ Dollar 

£ Pound 

% Percent 

m million/meter 

bn Billion 

km Kilometre 

 

A symbol is replaced in the text (or hypothesis) if its corresponding expanded form is present in the hypothesis 

(or text). Otherwise, the symbol is left unaltered. Replacement of the symbols based on the presence of their 

expanded forms in the T–H pair counterpart also makes the ambiguous case of 'm' (meter or million) trivial. 

3.1.4 Expansion of contracted tokens  

This step checks for the presence of any contracted tokens in a given T–H pair and replaces the contracted 

tokens with their corresponding expanded forms. A few such tokens and their expanded forms are listed in 

Table 2. 

                                       Table 2: Contracted tokens and their expanded forms 

Contracted tokens Expanded forms 

I’ve I have 

we’ll we will 

can’t cannot 

won’t will not 

we’d we would 

                                             

3.1.5 Merging of multiple sentences 

Generally the length of the text is greater than the hypothesis and it is very often the case that the text consists of 

multiple sentences resulting in a short paragraph. This pre-processing step merges all those sentences in the 

paragraph by removing the intermediate end of sentence markers (i.e. full stops ‘.’) by hyphens (‘–’). An 

example text fragment from the RTE dataset is given below to illustrate the process. 

Text: Today about 75 percent of people live in cities or towns. Art and culture are an important part of France. 

After merging the two sentences by a hyphen, it takes the following form. 

Text: Today about 75 percent of people live in cities or towns – Art and culture are an important part of France. 

As mentioned earlier, the proposed RTE method is based on dependency graph matching. In order to explain the 

significance of this pre-processing step, the outputs of the Stanford dependency parser1 before and after merging 

the sentences are presented in Table 3.  

                                                           
1  http://nlp.stanford.edu/software/stanford-dependencies.shtml 

 

http://nlp.stanford.edu/software/stanford-dependencies.shtml


Table 3: Output of Stanford dependency parser 

Before merging After merging 

[tmod(live-7, Today-1) 

quantmod(75-3, about-2) 

num(percent-4, 75-3) 

nsubj(live-7, percent-4) 

prep_of(percent-4, people-6) 

root(ROOT-0, live-7) 

prep_in(live-7, cities-9) 

prep_in(live-7, towns-11)  

conj_or(cities-9, towns-11)] 

[nsubj(part-7, Art-1) 

conj_and(Art-1, culture-3) 

nsubj(part-7, culture-3) 

cop(part-7, are-4) 

det(part-7, an-5) 

amod(part-7, important-6) 

root(ROOT-0, part-7) 

prep_of(part-7, France-9)] 

[dep(live-7, Today-1) 

quantmod(75-3, about-2) 

num(percent-4, 75-3) 

nsubj(live-7, percent-4) 

prep_of(percent-4, people-6) 

root(ROOT-0, live-7) 

prep_in(live-7, cities-9) 

nn(Art-12, towns-11) 

prep_in(live-7, Art-12) 

conj_or(cities-9, Art-12) 

nsubj(part-18, culture-14) 

cop(part-18, are-15) 

det(part-18, an-16) 

amod(part-18, important-17) 

conj_and(live-7, part-18) 

prep_of(part-18, France-20)] 

 

                                              

The numbers next to the tokens in the dependency triplets play a vital role in generating the dependency graph 

structure (cf. Section 3.6). It can be noticed from the first column in Table 3 that for each sentence in the 

paragraph, the token numbers in the generated triplets start again from 0 at the ROOT. This duplication of the 

token numbers creates problems while combining these dependency triplets to form the dependency graph. To 

eliminate this problem of duplicate token numbers, we merge the sentences by removing the intermediate end of 

sentence markers by hyphens. After merging the sentences, the Stanford dependency parser produces the 

outputs as shown in the second column in Table 3. Since the token numbers are unique in this case, the 

dependency graph generation becomes easy.    

Due to the ambiguous presence of dot (.) in acronyms, decimal fraction, abbreviated names, urls etc., it is hard 

to detect which dots signify the full stops (.) or the end markers of the sentences. Therefore, we cannot directly 

replace the occurrence of the dots by hyphens (–). In order to resolve this ambiguity, the sentences are first 

parsed by the dependency parser to identify where a particular sentence is ended. A few example T–H pairs with 

such ambiguous presence of dots are presented in Table 4 with the dotted tokens being highlighted in bold fonts. 

  

 

Table 4: Example of sentences with ambiguous dots 

Sentence Tokens with ambiguous dots 

Crude oil for April delivery traded at $37.80 a barrel, down 28 cents. 37.80 (decimal fraction) 

Larry Lawrence is the head of the U.S. Embassy in Switzerland. U.S. (acronym) 

John J. Famalaro is accused of having killed Denise A. Huber. J. , A. (abbreviated names) 

My Global Image LLC, announces the future of online networking through 

video streaming technology with the launch of www.HelloDemoTour.com 

URL 

 

 3.2 Parts-Of-Speech tagging  

The processed T–H pairs are then POS-tagged by a POS tagger. This phase plays a significant role in the 

subsequent stemming phase described in subsection 3.4.  

3.3 Dependency Parsing  

http://www.hellodemotour.com/


This phase takes each of the text fragments of the T–H pair, individually, as input and produces a set of 

dependency triplets as output. The dependency parser produces the triplets in the form of R(W1, W2). A 

dependency triplet R(WG, WD) represents a dependency relation (R) between two words - the governor (WG) and 

the dependent (WD). 

3.4 Stemming  

After the T–H pair is parsed, the generated tokens and their corresponding POS tags are fed into this phase. The 

stemming operation is performed in two steps.  

In the first step, the Stanford stemmer2 is invoked to produce the stem of each token. However, it was noticed 

that tokens belonging to several POS categories after being passed to the Stanford stemmer remain same as they 

were before being subjected to stemming. Therefore, for those categories of POS, the tokens are then passed on 

to another module RiTa3 to obtain the true stems.  

An example from the RTE3 devset is provided in Example 4 to show that the actual problem arises with the 

POS tagger rather than the stemmer itself. Finally, the RiTa stemmer is invoked for obtaining the actual stem.  

Example 4:  

<pair id="231" entailment="YES" task="IR" length="short" > 

 <t>Catastrophic floods in Europe endanger lives and cause human tragedy as well as heavy economic 

losses.</t> 

 <h>Flooding in Europe causes major economic losses.</h> 

</pair> 

 

The token ‘floods’ as highlighted in the text of the above pair belongs to the POS category NNS as tagged by 

the Stanford POS tagger 4  for which the Stanford stemmer produces the correct stem ‘flood’. The token 

‘Flooding’ in the hypothesis is tagged as NN by the POS tagger. The Stanford stemmer does not produce the 

actual stem ‘flood’ for this token; rather the token ‘Flooding’ remains same after stemming operation. 

Therefore, the RiTa stemmer is invoked in the next step to get the true stem ‘flood’.   

3.5 Lexical Alignment   

This phase tries to lexically align each stemmed token WH
i of the hypothesis with some token(s) WT

j of the text. 

WordNet 2.15 was used as the lexical database and RiTa was employed to extract the lexical relations from the 

underlying database. Lexical alignment was carried out on the basis of a set of lexical relations listed in Table 5. 

Table 5: WordNet Relations 

Relation# WordNet Relation 

WR1 Stem match / direct match 

WR2 Synonym 

WR3 Hypernym 

WR4 Hyponym/Troponym 

WR5 Derivationally Related forms 

WR6 Entailment 

                                                           
2  http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html 

3 https://rednoise.org/rita/reference/RiWordNet.html  

4  http://nlp.stanford.edu/software/tagger.shtml 
 
5  https://wordnet.princeton.edu/ 
 

http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
https://rednoise.org/rita/reference/RiWordNet.html
http://nlp.stanford.edu/software/tagger.shtml
https://wordnet.princeton.edu/


WR7 Causes 

WR8 Antonyms 

 

The output of this lexical alignment process is a set of token pairs (𝑊𝐻
𝑖 , 𝑊𝑇

𝑗
) where the hypothesis token 𝑊𝐻

𝑖  is 

aligned with the text token 𝑊𝑇
𝑗
 by any of the above mentioned WordNet relations.   

An example is presented below to demonstrate the lexical alignment process.  

Let us consider the following pair of sentence. 

Example 5:  

T: The students learn good morals from the teacher. 

H: The person teaches good lessons to the pupils.  

Figure. 2 shows the stemmed tokens of the two sentences and their corresponding alignment. The arrows 

represent the alignments and the different colours represent the different WordNet relations by which the text 

and hypothesis tokens are aligned. Table 6 shows the aligned T–H token pairs along with the matching criteria 

(i.e., WordNet relations). It is evident from Figure. 2 that a hypothesis token can be aligned with more than one 

token in the text, and vice-versa. The one-to-one mappings are indicated by thick arrows and the one-to-many 

and many-to-one mappings are indicated by dashed arrows in Figure 2.     

 

                        

Figure. 2. Lexical alignment between text and hypothesis tokens 

 

Table 6: Alignment of the T–H token pairs through WordNet relations 

Hypothesis  

tokens (W#) 

Aligned text 

tokens (W’#) 

WordNet 

Relations 

WH
1 

 

WT
1  WR1 

WT
7 WR1 

WH
2 WT

2  WR4 

WT
8            WR4 

WH
3 WT

3 WR7 

WT
8 WR5 

WH
4 WT

4 WR1 

The student learn good moral from the 

The person teach good lesson to the pupil 

teacher 

  WT
1        WT

2            WT
3        WT

4        WT
5       WT

6       WT
7        WT

8 

WH
1       WH

2        WH
3       WH

4        WH
5       WH

6      WH
7       WH

8 

Direct match     Hyponym     Causes   Derivationally related forms      Synonym 



WH
5 WT

5 WR2 

WH
6 Nil –  

WH
7 WT

1 WR1 

WT
7            WR1 

WH
8 WT

2 WR2 

 

3.6 Dependency Graph representation  

After the text and the hypothesis are dependency parsed, the generated triplets are combined together to form a 

dependency graph structure for both the text and the hypothesis. Each triplet in form of R(W1, W2) is represented 

by a directed edge labelled by the relation (R) from the node containing the governor (W1) to the node 

containing the dependent word (W2) in the dependency graph.  

Figure. 3.a depicts a particular branch of the dependency graph. Since a particular node may have multiple 

predecessors, we considered a dependency graph instead of a dependency tree. Figure. 3.b shows that a node 

(W) in the graph can have multiple predecessors as well as multiple successors. For the sake of simplicity, only 

2 predecessors (W1 and W2) and 2 successors (W3 and W4) of the node W are depicted in the figure and the rest 

of the links are shown in dotted lines. In general, each node can have N (where N≥0) number of predecessors 

and/or successors resulting in a complex graph structure.  

                                                                                                                             

Figure. 3.a. Representation of the triplet R(W1, W2) in the dependency graph 

                                                                                                              

Figure. 3.b. Graph Structure  

 

3.7 Comparing Dependency Graphs  

Once the dependency graphs are constructed for the text (T) and the hypothesis (H), this module compares the 

two dependency graphs to determine whether H can be inferred from the corresponding graph structure of T. To 

accomplish this, each hypothesis triplet R(W1, W2) is compared with every text triplets to search for a 

corresponding match. If a match is found according to any of the matching criterions stated below, a matching 

score in the range of [-1, 1] is assigned to the child node W2 of that particular triplet. If none of the matching 

rules is satisfied, a score of 0 is assigned to W2. This graph comparison module can be categorized into the 

following two types - lexical triplet matching module and semantic similarity module, which are described in 

the following subsections.  

W 

W1 W2 

W3 W4 

W2 

R 

W1 



Before going into the detailed description of several categories of matching rules, the different score 

components of each hypothesis node of the dependency graph are presented below. Each hypothesis node has 

the following components. 

 Vector of predecessor_score (P) 

 Average of the predecessor_score vector (A) 

 Child_score (C) 

 Total_score (T) 

This particular graph comparison module assigns a matching score to the P vector component of every 

hypothesis node. Apart from these 4 score components, each hypothesis node also contains 2 bits: an antonym 

bit (ant_bit) and a negation bit (neg_bit). Both of them are set to 0 initially. The significance of each of the 4 

scoring components and the 2 specified bits are explained in subsection 3.8 where the dependency graph 

traversal process is described.  

3.7.1 Lexical Triplet Matching Module   

The lexical triplet matching module considers matching of the governor and the dependent words at the lexical 

level. This module can be broadly classified into the following two categories.  

 Single triplet dependency (STD): A hypothesis dependency triplet is inferred from only one text 

dependency triplet.   

 Joint triplet dependency (JTD): A hypothesis dependency triplet is inferred jointly from two or more text 

dependency triplets, or, one text dependency triplet infers two or more dependency triplets.   

 

 

 Single triplet dependency For every dependency triplet of the hypothesis, the STD category tries to 

identify one matching triplet in the text. The matching of the hypothesis triplets with the text triplets is 

carried out in the present study following several rules. The matching rules which have been developed 

under this category are presented below. These rules, although have been mined by analysing the RTE 

datasets, are largely universal and can be applied to any sentence pair irrespective of the nature of the 

dataset. 

Rule 1. This rule searches for a complete matching triplet. If the two nodes W1 and W2 of a hypothesis triplet 

RH(W1,W2) are lexically aligned with two nodes W1ʹ and W2ʹ respectively of a text triplet RT(W1ʹ,W2ʹ) and the 

relations RT and RH are identical, then the two triplets are identical to each other. Upon finding such a complete 

match, a matching score of 1 is assigned to the P vector component of the child node W2 for that particular arc 

in the hypothesis dependency graph. Figure. 4 depicts this rule and a few examples from the RTE devsets are 

presented in Table 7 to illustrate the matching rule.   

                                                                

Figure. 4. Rule 1 

Table 7: Examples satisfying matching rule 1 

RT and 

RH 

T–H pairs Dependency triplets Lexically aligned tokens 

Token pair Related By 

RH 

RT 

W1' 

W2' 

 

W1 

 

aligned 

matched 

aligned 
W2 

 



nsubj T: Ostriches put their heads into the 

sand to avoid the wind. 

H: Ostriches bury their heads in the 

sand. 

nsubj(put-2, Ostriches-1)  

 

 

nsubj(bury-2, Ostriches-1) 

put-bury hypernym 

nsubjpass T: Yemen, too, was reunified in 

1990. 

H: Yemen was reunited in 1990 

nsubjpass(reunified-6,Yemen-1) 

 

nsubjpass(reunited-3, Yemen-1) 

reunify-

reunite 

synset 

dobj T: Trained volunteers are collecting 

baseline data on water quality. 

H: Volunteers gather baseline data.  

dobj(collecting-4, data-6) 

 

dobj(gather-2, data-4) 

collect-

gather 

synset 

 

Rule 2. If for any hypothesis triplet RH(W1,W2), the two tokens W1 and W2 lexically align with the text tokens 

W1ʹ and W2ʹ respectively connected by a text triplet RT(W1ʹ,W2ʹ) and the relations RT and RH are equivalent to 

each other belonging to this category of matching rule, then a matching score of 1 is assigned to the P vector 

component of the node W2 in the hypothesis dependency graph. A total of 75 such equivalent relation pairs of 

this category were identified by a thorough analysis of RTE1, RTE2 and RTE3 devsets. A few examples 

satisfying this category are presented in Table 8. The highlighted tokens in bold fonts are lexically aligned with 

each other by some WordNet relations as listed in Table 5 other than WR1 and those relations are mentioned in 

the last column of Table 8. The matching rule is depicted in Figure. 5. 

                                                              

Figure. 5.  Rule 2 

 

Table 8: Examples satisfying matching rule 2 

RT RH T–H pairs Equivalent dependency triples Related By 

Nsubjpass dobj T: Lennon was murdered by Mark David 

Chapman outside the Dakota. 

H: Mark David Chapman killed Lennon. 

nsubjpass(murdered-3, Lennon-1)  

 

dobj(killed-4, Lennon-5) 

Hypernym 

 

 

prep_of nsubjpass T: Hydroponics is the growth of plants in 

a substance other than soil with water. 

H: Plants are grown in substances other 

than soil.  

prep_of(growth-4, plants-6) 

 

nsubjpass(grown-3, Plants-1) 

Derivationally 

Related 

 

 

Nsubj nn T: The recent 14% hike in third class 

postage rates, accompanied by 

simultaneous double-digit paper price 

increases, has hit smaller catalogers 

especially hard. 

H: The cost of paper is rising.  

nn(increases-18, price-17) 

 

 

 

nsubj(rising-6, cost-2) 

 

Synonym 

prep_in amod T: The biggest newspaper in Norway, 

Verdens Gang, prints a letter to the editor 

written by Joe Harrington and myself. 

H: Verdens Gang is a Norwegian 

newspaper.  

prep_in(newspaper-3, Norway-5) 

 

 

amod(newspaper-6, Norwegian-5) 
 

 

Derivationally 

Related 

Dobj prep_of T: Bukowski attracted the attention of John 

Martin who founded Black Sparrow Press 

dobj(founded-9, Press-12) 

 

Derivationally 

Related 

RH 

RT 

W1' 

W2' 

 

W1 

 

aligned 

aligned W2 

 



in 1965 specifically to publish him. 

H: John Martin is the founder of Black 

Sparrow Press.  

 

prep_of(founder-5, Press-9) 

 

 

 

 

            

Rule 3. If the two tokens W1 and W2 connected by a hypothesis triplet RH(W1,W2) are aligned to the text tokens 

W1ʹ and W2ʹ respectively connected by a text triplet RT(W2ʹ,W1ʹ) and the relations RT and RH are equivalent to 

each other under this particular category of matching rule, then a matching score of 1 is assigned to the P  vector 

component of the child node W2 of the hypothesis relation. 26 such equivalent relation pairs were generated by 

analysing the RTE development sets. A few examples adhering to this rule are presented in Table 9. Figure. 6 

depicts the matching rule.  

 

                                                            

Figure. 6. Rule 3 

 

Table 9: Examples satisfying matching rule 3 

RT RH T–H pairs Equivalent dependency triples 

partmod nsubjpass T: This case of rabies in western Newfoundland is the 

first case confirmed on the island since 1989. 

H: A case of rabies was confirmed.  

partmod(case-11,confirmed-12)  

 

nsubjpass(confirmed-6, case-2) 

amod dobj T: Democrat Culbert L. Olson, elected governor of 

California in 1938, was a loyal supporter of Roosevelt's 

New Deal. 

H: Democrat Culbert L. Olson was elected governor of 

California. 

amod(governor-7, elected-6) 

 

dobj(elected-6, governor-7) 

 

amod nsubjpass T: Environment Minister David Anderson announced 

his decision regarding the environmental assessment of 

the proposed Toulnustouc Hydroelectric Project. 

H: A hydroelectric project is proposed or is under 

construction. 

amod(Project-17, proposed-14) 

 

nsubjpass(proposed-5, project-3) 

 

rcmod nsubjpass T: In clashes between Israeli forces and gunmen, one 

Palestinian was killed and 10 wounded. 

H: A Palestinian was killed and other people were 

wounded.  

nsubjpass(killed-4, Palestinian-2) 

 

rcmod(Palestinian-10, killed-12) 
 

partmod dobj T: Eye injuries caused by fireworks are extremely 

serious and can permanently damage eyesight. 

H: Fireworks may cause serious injuries.  

partmod(injuries-2, caused-3) 

 

dobj(cause-3, injuries-5) 

 

Rule 4. This rule is specifically designed for handling antonyms. There are two subcategories under this rule, 

which are described below.  

     Category 1. If for a hypothesis triplet RH(W1,W2), there exists a text triplet RT(W1
A,W2ʹ) such that the word 

pair W1–W1
A are antonyms of each other, the word pair W2–W2ʹ are lexically aligned and the relations RH–

RT are equivalent to each other according to matching rule 2 as stated earlier, then a score of -1 is assigned 

aligned 

RH 

RT 

W2' 

W1' 

 

W1 

 

aligned W2 

 



to the P vector component of the child node W2 of the hypothesis triplet. Similarly, if the hypothesis triplet 

RH(W1,W2) matches with a text triplet RT(W2ʹ, W1
A), where the relations RH and RT are equivalent to each 

other as per rule 3, in that case also a score of -1 is assigned to the P vector component of the node W2 of 

the hypothesis dependency graph. As this particular category indicates contradiction, a negative score is 

assigned. Figure. 7.a and Figure. 7.b depict the above mentioned two cases pictorially. A few examples 

under this category are presented in Table 10.   

                                                

 

 

Table 10: Examples satisfying category 1 of matching rule 4 

                                       

     Category 2. The hypothesis triplet RH(W1,W2) is searched for a corresponding matching text triplet 

RT(W1ʹ,W2
A) such that tokens W2–W2

A are antonyms, W1–W1ʹ are lexically aligned and the relation pair 

RT–RH is equivalent according to rule 2. If such a hypothesis–text triplet pair can be found, then the ant_bit 

of W2 is set to 1. The same action is performed where the hypothesis triplet RH(W1,W2) matches with a text 

triplet RT(W2
A, W1ʹ), where the relation pair RT–RH is equivalent as per matching rule 3. Figure. 8.a and 8.b 

depict these two cases. Examples satisfying this category are presented in Table 11. It is to be noted that no 

examples were found in the RTE development sets which match with the case depicted in Figure. 8.b. 

 

                                             

      

Table 11: Examples satisfying category 2 of matching rule 4 

    RT RH T–H pairs Dependency triples 

amod amod T: He bought a new car. 

H: He bought an old car. 

amod(car-5, new-4) 

amod(car-5, old-4)  

RT RH T–H pairs Dependency triples 

nsubj nsubj T: Doug Lawrence bought the impressionist oil landscape by J. 

Ottis Adams in the mid-1970s at a Fort Wayne antiques dealer. 

H: Doug Lawrence sold the impressionist oil landscape by J. Ottis 

Adams. 

nsubj(bought-3,Lawrence-2)  

 

nsubj(sold-3, Lawrence-2) 

 

nsubj amod T: Newspapers choke on rising paper costs and falling revenue. 

H: The cost of paper is falling. 

amod(costs-6, rising-4) 

nsubj(falling-6, cost-2) 
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Figure. 8.a. Depicting case 1 of category 2 of rule 4 Figure. 8.b. Depicting case 2 of category 2 of rule 4 

Figure. 7.a.Case 1 of category 1 of rule 4   Figure. 7.b. Case 2 of category 1 of rule 4 

 



nsubj nsubj T: The boy won the game. 

H: The girl won the game.  

nsubj(won-3, boy-2) 

nsubj(won-3, girl-2) 

 

 

 

Rule 5. This particular rule was developed for handling negations.  

 Category 1. For each dependency triplet RH(W1,W2), all the text triplets are searched for a matching pair 

RT(W1ʹ,W2ʹ) such that the token pairs W1–W1ʹ and W2–W2ʹ are lexically aligned with some relations other 

than the antonym relation and the relation pair RH–RT is equivalent according to matching rule 2. Now, if 

any one of the two triplets RH(W1,W2) and RT
1(W1ʹ,W2ʹ) has a negation relation RN associated with it, then  

the neg_bit value of the parent node W1 of the particular branch of the hypothesis dependency tree is set to 

1. Figure. 9.a. and 9.b illustrate this category 1 of rule 5. WN denotes the node containing the negative terms 

such as “not”, “never”, “no”, etc.  

However, if both of the text and hypothesis triplets are associated with a negation relation, then the negation 

rule is not applicable and a matching score of 1 is assigned to the P vector component of the child node W2 

of that particular branch of the hypothesis dependency tree. Figure. 9.c depicts this particular case. 

 

                   

Figure. 9.a. Case 1 of category 1 of rule 5                           Figure. 9.b. Case 2 of category 1 of rule 5 

                                              

Figure. 9.c. Rule 5 is not applied 

 Category 2. If a hypothesis dependency triplet RH(W1,W2) matches with a text triplet RT(W2ʹ,W1ʹ) such that 

the token pairs W1–W1ʹ and W2–W2ʹ are lexically aligned through some relations other than the antonym 

relation and the relation pair RH–RT is equivalent according to matching rule 3 and any of the 2 triplets is 

involved in a negation relation RN, then the neg_bit value of the parent node W1 of that particular branch of 

the hypothesis dependency tree is set to 1. Figure. 10.a and 10.b. illustrate the category 2 of this rule 

diagrammatically. A few examples satisfying this rule are presented in Table 12. 
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Figure. 10.c. Rule 5 is not applied 

Table 12: Examples satisfying matching rule 5 

    RT RH T–H pairs Dependency triples 

amod amod T: Clinton’s new book is not big seller here. 
 

 

H: Clinton’s book is a big seller. 

neg(seller-8,not-6)  

amod(seller-8, big-7)  

 

amod(seller-7, big-6) 

dobj dobj T: Mohandas Karamchand Gandhi never received the 

Nobel Peace Prize, though he was nominated for it five 

times between 1937 and 1948. 

H: Mohandas received the Nobel Prize in 1989. 

neg(received-5, never-4) 

dobj(received-5, Prize-9) 

 

dobj(received-2, Prize-5) 

nsubjpass dobj T: Lennon was murdered by Mark David Chapman 

outside the Dakota. 

 

H: Mark David Chapman did not kill Lennon. 

nsubjpass(murdered-3, Lennon-1)  

 

dobj(kill-6, Lennon-7) 

neg(kill-6, not-5) 

amod nsubj T: Newspapers choke on falling paper costs. 

 

 

H: The cost of paper is not falling.  

amod(costs-6, falling-4) 

 

nsubj(falling-7, cost-2) 

neg(falling-7, not-6) 

det – T: No weapons of Mass Destruction Found in Iraq Yet. 

H: Weapons of Mass Destruction Found in Iraq.  

det(weapons-2, No-1) 

                – 

 

Figure. 9.c. and 10.c depict the cases where this rule is not applicable. Let us consider the example T–H pair 

below.  

Example 6:  

T: He did not buy a car. 

H: He did not purchase a car.  

Since the word pair buy–purchase in Example 6 is lexically aligned by the synonym relation in the WordNet 

and both of them are negated, both the text and the hypothesis express the same meaning. Therefore rule 5 is not 
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Figure. 10.a.  Case 1 of category 2 of rule 5 Figure. 10.b. Case 2 of category 2 of rule 5 



applicable to such cases where both the text and hypothesis dependency triplets are associated with negation 

relations.  

One more example sentence pair with negation relations is presented in Example 7.  

Example 7:  

T: Everything is permanent in life. 

H: Nothing is permanent in life.  

For the given pair of Example 6, the dependency parser generates two triplets nsubj(permanent-3, Everything-1) 

and nsubj(permanent-3, Nothing-1) for the text and hypothesis respectively. The token “nothing” indicates a 

negation relation associated to the token “permanent” in the hypothesis. However, the text is free from any 

negation relation. Therefore according to the scoring mechanism of this rule, the neg_bit value of the hypothesis 

node containing the token “permanent” is set to 1.  

In this way, the method can correctly handle the sentence pairs involving words like something–nothing, 

somebody–nobody, everyone–none, somewhere–nowhere, etc. These types of cases, although not found 

in the RTE datasets, are also handled to improve completeness and robustness of the method.  

 

Rule 6. This rule was synthesized for the cases where negations and antonym relations are combined.  

    Category 1 and Category 2. If for any hypothesis dependency triplet RH(W1,W2), a triplet RT(WAʹ,W2ʹ) or 

RT(W1ʹ,WAʹ) is found in the text where the token pair W1–WAʹ or W2–WAʹ are antonyms of each other, the 

W2–W2ʹ or W1–W1ʹ word pairs are lexically aligned with each other, the relation pair RH–RT is equivalent 

according to matching rule 2 and a negation relation RN is attached to any of the text or hypothesis triplet,  

then they convey the same meaning and a matching score of 1.0 is assigned to the P vector component of 

the hypothesis node W2 that corresponds to the triplet RH(W1, W2). Figure. 11.a, 11.b. and Figure. 12.a, 12.b 

depict these categories diagrammatically. It is to be noted that no T–H pair was found in the RTE datasets 

which satisfies this category of matching rule. The rule has been designed for the completeness of the 

method and to make it general to the highest possible extent. Therefore, some random T–H pairs have been 

provided in Tables 13 and 14 satisfying categories 1 and 2.    
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Figure. 11.a. Depicting case 1 of category 1 of rule 6 Figure. 11.b. Depicting case 2 of category 1 of rule 6 



Figure. 11.c. Depicting case 3 of category 1 of rule 6 

Table 13: Examples satisfying category 1 of rule 6 

Pair Id#     RT RH T–H pairs Dependency triples 

1 nsubj nsubj T: We are not interested about the matter. 

 

 

H: We are uninterested about the matter. 

nsubj(interested-4, We-1) 

neg(interested-4, not-3) 

 

nsubj(uninterested-3, We-1) 

2 nsubj nsubj T: They are unable to do the task. 

 

 

H: They are not able to do the task. 

nsubj(unable-3, They-1) 

 

nsubj(able-4, They-1) 

neg(able-4, not-3) 

3 nsubj nsubj T: He did not pass in the exam. 

 

 

H: He failed in the exam. 

nsubj(pass-4, He-1) 

neg(pass-4, not-3) 

 

nsubj(failed-2, He-1) 

4 amod amod T: He is an honest person. 

 

 

H: He is not a dishonest person. 

amod(honest-4, person-5) 

 

amod(dishonest-5, person-6) 

neg(dishonest-5, not-3) 

5 nsubj nsubj T: John loves Mary. 

 

H: John does not hate Mary. 

nsubj(loves-2, John-1) 

nsubj(hate-4, John-1) 

neg(hate-4, not-3) 

  

               

 

                                          

Figure. 12.c. Depicting case 3 of category 2 of rule 6 

Table 14: Examples satisfying category 2 of rule 6 

Pair Id#     RT RH T–H pairs Dependency triples 

1 advmod advmod T: I help them unselfishly.  

 

 

H: I do not help them selfishly. 

advmod(help-2, unselfishly-4) 

 

advmod(help-4, selfishly-6) 

neg(help-4, not-3) 

2 amod amod T: This would not be an ethical task to do. 

 

H: This would be an unethical task. 

amod(task-7, ethical-6) 

neg(task-7, not-3) 

amod(task-6, unethical-5) 

RT
N 

 
RH 

RT 

WA' 

W2
' 

 

W1 

 

aligned 

antonym 
W2 

 

WN 

 

WN 

 

RH
N 

 

RH 

RT 

W1' 

WA
' 

 

W1 

 

aligned 

antonym 
W2 

 

WN 

 

 RH
N 

 

RH 

RT 

W1' 

WA
' 

 

W1 

 

aligned 

antonym 
W2 

 

WN 

 

RT
N 

 

Figure. 12.a. Depicting case 1 of category 2 of rule 6 Figure. 12.b. Depicting case 2 of category 1 of rule 6 



 

However, if both the text and hypothesis triplets are associated with negation relations, then it indicates 

contradiction and according to the rule of handling antonyms a matching score of -1.0 is assigned to the P vector 

component of the hypothesis node W2 (illustrated in Figure. 11.c and 12.c). Let us consider the following T–H 

pair. 

 

 

Example 8:  

T: He did not pass in the exam. 

H: He did not fail in the exam. 

In this pair of text and hypothesis, the words pass and fail are antonyms of each other and both of them are 

negated. Therefore unlike the pairs presented in Tables 13 and 14, this T–H pair expresses the opposite 

meaning. Since the token pass on applying negation becomes fail and the token fail on getting negated becomes 

pass, the T–H pair in Example 8 is equivalent to the following pair: 

T: He failed in the exam. 

H: He passed in the exam. 

Therefore, according to rule 4 of handling antonym, a score of -1 is assigned to the P vector component of the 

word pass in the hypothesis dependency graph.  

 Category 3 and 4. If for any hypothesis dependency triplet RH(W1,W2), a text triplet RT(W2ʹ,WAʹ) or 

RT(WAʹ,W1ʹ) can be found such that the tokens W1–WA' or W2–WAʹ are aligned by antonym relation, W2–

W2ʹ or W1–W1ʹ are aligned with each other by any other lexical relation, the relations RH and RT are 

equivalent to each other as per matching rule 3 and any of the text or hypothesis triplets is associated with a 

negation relation RN, then a matching score of 1.0 is assigned to the P vector component of the hypothesis 

node W1 corresponding to the triplet RH(W1,W2). The Figure. 13.a, 13.b and Figure. 14.a, 14.b illustrate the 

different cases of the categories pictorially. It is to be noted that no examples were found for category 4 

depicted in Figure. 14.a and 14.b. Table 15 shows some T–H pairs satisfying this category.  
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Figure. 13.a. Depicting case 1 of category 3 of rule 6 Figure. 13.b. Depicting case 2 of category 3 of rule 6 



                                                        

                                                  Figure. 13.c. Depicting case 3 of category 3 of rule 6  

Table 15: Examples satisfying category 3 of rule 6 

    RT RH T–H pairs Dependency triples 

amod nsubj T: Newspapers choke on falling paper costs. 

 

H: The cost of paper is not rising. 

amod(costs-6, falling-4) 

 

nsubj(rising-7, cost-2) 

neg(rising-7, not-6) 

infmod nsubjpass T: The report catalogues 10 missed opportunities within 

the CIA and FBI to uncover pieces of the September 11 

plot. 

 

H: Ten missed opportunities within the CIA and FBI are 

not covered in the report. 

infmod(opportunities-6, 

uncover-13) 

 

nsubjpass(covered-11, 

opportunities-3) 

neg(covered-11, not-10) 

 

                      



                                            

Figure. 14.c. Depicting case 3 of category 4 of rule 6 

If both the text and hypothesis triplets are associated with a negation relation each, then a score of -1.0 is 

assigned to P vector component of the hypothesis node W2 as it represents contradiction. Figure. 13.c and 14.c 

depict the cases. Table 16 presents some cases where this rule is not applicable.  

Table 16: Examples where Rule 6 is not applicable 

Pair id#     RT RH T–H pairs Dependency triples 
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Figure. 14.a. Depicting case 1 of category 4 of rule 6 Figure. 14.b. Depicting case 2 of category 4 of rule 6 



1 nsubj nsubj T: He did not buy a car. 

 

 

H: He sold a car. 

nsubj(buy-4, He-1) 

neg(buy-4, not-3) 

 

nsubj(sold-2, He-1) 

2 nsubjpass nsubj T: He was not born in California. 

 

 

H: He died in California. 

nsubjpass(born-4, He-1) 

neg(born-4, not-3) 

 

nsubj(died-2, He-1) 

3 dobj dobj T: She teaches her brother. 

 

 

H: She does not teach her sister. 

dobj(teaches-2, brother-4) 

 

dobj(teach-4, sister-6) 

neg(teach-4, not-3) 

4 nsubj nsubj T: John does not love Mary. 

 

 

H: John hates Mary.  

nsubj(love-4, John-1) 

neg(love-4, not-3) 

 

nsubj(hates-2, John-1) 

 

For the 1st pair presented in the above table, although buy and sell are antonyms of each other, however this rule 

is still not applicable. If X did not buy a car, then it cannot be said that X sold a car. Similarly for the 2nd case, if 

X was not born in California, then it does not imply that X died in California. For the third sentence pair, despite 

brother and sister being antonyms of each other, if X teaches her brother, then it does not entail that X does not 

teach her sister. They totally contradict each other in meaning.  

In the last sentence pair (pair ID 4), although love and hate are antonyms of each other, still it cannot be implied 

that A hates B if A does not love B. If A does not love B, it does not always mean that A hates B, because A may 

be neutral to B or even A may be unknown to B. But the reverse of this particular case, pair ID 5 in Table 13 

satisfies this rule.  In the reverse direction, if A loves B, then obviously it implies A does not hate B.   

Therefore, it is evident from the examples that verb pairs buy-sell, die-born, love-hate are not absolute antonyms 

as far as textual entailment is concerned. This rule can only be successfully applied  to those T–H pairs where 

absolute antonym word pairs such as pass-fail, able-unable, ethical-unethical, rise-fall, etc. are negated as 

presented in Tables 13, 14 and 15. However, the lexical database WordNet 2.1 embedded in our method does 

not contain any relevant information by which we can distinguish the absolute antonyms from the others. 

Therefore, the method shows a limitation to correctly apply this matching rule to triplets containing absolute 

antonym pairs only.       

Rule 7. A few insignificant relations were also identified by analyzing the RTE development sets. These are 

{det, expl, aux, auxpass, cop, mark, prt, predet}. If for any triplet RH(W1,W2) of the hypothesis, the relation RH 

belongs to this relation set, then a matching score of 1 is assigned to the  P vector component of the node W2 of 

that arc in the dependency graph. These relations, although of less importance, if not considered and properly 

not taken care of, may result in inappropriate entailment scores leading to incorrect entailment decisions. A few 

example sentences involving dependency relations belonging to this category are presented in Table 17.  

     Table 17: Examples satisfying matching rule 7 

RH Hypothesis Dependency triples 

det A case of rabies was confirmed. det(case-2, A-1) 

expl There is a territorial waters dispute. expl(is-2, There-1) 

auxpass A civilian policeman was killed. auxpass(killed-5, was-4) 

 

 Joint Triplet Dependency (JTD) If for any triplet RH(W1,W2) of the hypothesis, no corresponding 

matching triplet is found in the text, this category tries to find two dependency triplets of the text that can 

jointly infer RH(W1,W2). Although more than two text triplets together can imply a single hypothesis triplet, 

we considered up to a maximum of 2 text triplets to keep the method less complex; however, the method is 



generic and can be extended to consider more than two text triplets. On finding two text triplets jointly 

inferring the hypothesis dependency triplet RH(W1,W2), a matching score of 1 is assigned to the P  vector 

component of the node W1 of the hypothesis dependency graph. The JTD category can again be classified 

into 6 types each of which are discussed below with suitable diagrams and examples. After analysing the 

RTE development sets, we identified a number of relations which fall under a specific category which we 

refer to as Joint Dependency Compatible (JDC) relations. The significance of JDC relations is explained 

later.  

 

 Category 1. For a particular triplet RH(W1,W2) of the hypothesis, this category tries to find two text triplets 

RT
1(W1ʹ,W) and RT

2(W,W2ʹ) so that the two tokens W1 and W2 in the hypothesis triplet are lexically aligned 

with the tokens W1' and W2', respectively, associated with the two text triplets. RH is either identical or 

equivalent to RT
1 according to Rule 2 of the STD category and RT

2 must belong to the JDC category. 

Figure. 15 depicts this rule diagrammatically. A few examples satisfying this rule are presented in Table 18. 

The highlighted tokens in the table indicate that they are aligned to each other by some WordNet relations 

other than direct/stem match. For this particular case, ̒ kill̓ ̓ and ̒ murder ̓ are synonyms to each other. The 

table shows which relations belong to JDC category and which relations are equivalent to RH.  

 

                                 

Figure. 15. Depicting Category 1 of JTD 

 

Table 18: Examples satisfying category 1 of JTD 

RH RT
1 RT

2 (JDC) T–H pairs Dependency triples 

prep_in prep_at poss T: The Rolling Stones kicked off their latest 

tour on Sunday with a concert at Boston's 

Fenway Park. 
H: The Rolling Stones have begun their latest 

tour with a concert in Boston. 

prep_at(concert-13, Park-18) 

poss(Park-18, Boston-15) 

 

prep_in(concert-11, Boston-13) 

nsubjpass nsubj appos T: Alleged terrorists today, killed Dolores 

Hinostroza, the mayor of Mulqui district, 

shooting her five times. 
H: The mayor of Mulqui district was 

murdered with a firearm. 

nsubj(killed-5, Hinostroza-7)  

appos(Hinostroza-7, mayor-10) 

 

nsubjpass(murdered-7,mayor-2) 

 

      

 Category 2. This category searches all the text triplets to identify 2 text triplets RT
1(W1ʹ,W) and RT

2(W, 

W2ʹ) that can jointly infer a triplet RH(W1,W2) of the hypothesis. Here RT
2 must be same or equivalent to RH 

according to the matching criterion of Rule 2 of STD. Whereas RT
1 should belong to the JDC category of 

relations. Diagrammatic representation of this category 2 type JTD is shown in Figure. 16 and an example 

T–H pair satisfying this category is presented in Table 19.  

RH 

aligned 

RT
1 W W 

W1' 

 

W1 

 

W2' 

 

RT
2  

(JDC) 

aligned equivalent 

W2 

 



                                        

                                                         Figure. 16. Depicting Category 2 of JTD 

Table 19: Example satisfying category 2 of JTD 

RH RT
1 RT

2 (JDC) T–H pairs Dependency triples 

nsubj prep_by Appos T: Norway's most famous painting, 'The Scream' by 

Edvard Munch, was recovered Saturday, almost three 

months after it was stolen from an Oslo museum. 

H: Edvard Munch painted 'The Scream'. 

prep_by(Scream-9, Munch-13 

appos(painting-5, Scream-9) 

 

nsubj(painted-3, Munch-2) 

 

 Category 3. For a particular hypothesis dependency triplet RH(W1,W2), this category tries to find two text 

triplets RT
1(W2ʹ,W) and RT

2(W,W1ʹ) where RH is equivalent to RT
2 according to rule 3 of STD and RT

1 

belongs to JDC type relations. Figure. 17 depicts this category and an example T–H pair is provided in 

Table 20 to illustrate the matching rule.  

                                       

Figure. 17. Depicting Category 3 of JTD 

Table 20: Example satisfying category 3 of JTD 

RH RT
2 RT

1(JDC) T–H pairs Dependency triples 

nsubjpass amod Appos T: Democrat Culbert L. Olson, elected governor of 

California in 1938, was a loyal supporter of 

Roosevelt's New Deal. 

H: Democrat Culbert L. Olson was elected governor of 

California. 

amod(governor-7, elected-6)  

appos(Olson-4, governor-7) 

 

nsubjpass(elected-6, Olson-4) 

 

 

 Category 4. If two text triplets RT
1(W2ʹ,W) and RT

2(W,W1ʹ) can jointly infer a single hypothesis triplet 

RH(W1,W2), then category 4 is satisfied. Here RH should be identical or equivalent to RT
1 as per Rule 3 of 

STD and RT
2 must belong to JDC category. This category is depicted in Figure. 18 and an example T–H 

pair satisfying this rule is presented in Table 21.   
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Figure. 18. Depicting Category 4 of JTD 

Table 21: Example satisfying category 4 of JTD 

RH RT
1 RT

2(JDC) T–H pairs Dependency triples 

nsubj appos Appos T: Black Tigers are selected for their discipline and 

their loyalty to Vilupillai Prabhakaran, 41, the 

elusive leader of the LTTE. 

H: Vilupillai Prabhakaran is the elusive leader of 

the LTTE. 

appos(Prabhakaran-13, 41-15)  

appos(41-15, leader-19)  

 

nsubj(leader-6, Prabhakaran-2)  

 

 Category 5. This category of JTD searches all the text triplets to find out two triplets RT
1(W,W1) and 

RT
2(W,W2ʹ)  that can jointly infer a single hypothesis dependency triplet RH(W1,W2). Here RH should be 

equivalent to any of RT
1 or RT

2 and the other one should belong to the JDC type relation. Figure. 19 

diagrammatically depicts this rule and Table 22 presents some examples of T–H pairs satisfying this 

category.  

                                                                        

Figure. 19. Depicting Category 5 of JTD 

Table 22: Examples satisfying category 5 of JTD 

RH RT
1 RT

2(JDC) T–H pairs Dependency triples 

prep_of nn Nn T: In support of the Earth Island Institute rebuttal, 

Greenpeace founder Don White made the following - 

unfortunately prophetic - public statement on 

8/18/93. 

H: Don White is the founder of Greenpeace. 

nn(White-13, Greenpeace-10),  

nn(White-13, founder-11) 

 

prep_of(founder-5, Greenpeace-7) 

 

Nn nn Nn T: Herceptin was already approved to treat the 

sickest breast cancer patients, and the company said, 

Monday, it will discuss with federal regulators the 

possibility of prescribing the drug for more breast 

cancer patients. 

nn(patients-11,breast-9), 

nn(patients-11, cancer-10) 

 

 

nn(cancer-8, breast-7) 
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H: Herceptin can be used to treat breast cancer. 

  

 Category 6. This final category of JTD identifies 2 text triplets RT
1(W, W1) and RT

2(W, W2ʹ) that together 

imply a single triplet RH(W1,W2) of the hypothesis. The hypothesis tokens W1 and W2 are lexically aligned 

with the text tokens W1ʹ and W2ʹ, respectively. Figure. 20 depicts this category. In this particular case, no 

equivalent relations to RH or any Joint Dependency Compatible (JDC) relations are indicated. A few T–H 

pairs satisfying this category are presented in Table 23.   

                                                                                            

Figure. 20. Depicting Category 6 of JTD 

Table 23: Examples satisfying category 6 of JTD 

RH RT
1 RT

2 T–H pairs Dependency triples 

nsubj dobj nsubj T: Blair has sympathy for anyone who has lost their 

lives in Iraq. 

H: Blair is sympathetic to anyone who has lost their 

lives in Iraq. 

nsubj(has-2, Blair-1) 

dobj(has-2, sympathy-3) 

 

nsubj(sympathetic-3, Blair-1) 

poss dobj nsubj T: The Sears Tower has 110 stories compared to the 

twin buildings of 88 stories each.  

H: The twin buildings are 88 stories each, compared 

with the Sears Tower's 110 stories. 

nsubj(has-4, Tower-3) 

dobj(has-4, stories-6) 

 

poss(stories-16, Tower-13) 

 

  Reverse JTD: It may also be the case that two hypothesis dependency triplets RH
1(W1, W) and RH

2(W, W2) 

can be inferred from one text triplet RT(W1ʹ,W2ʹ). For each of the six categories of JTD presented earlier, we 

also consider the reverse case. However, due to space constraints, only the reverse case of category 1 JTD is 

depicted with diagram (Figure. 21) and Table 24 presents some example T–H pairs from the RTE datasets 

satisfying this reverse category. On satisfying this reverse category of JTD, a matching score of 1 is 

assigned to the P vector component of both the dependent nodes W and W2 associated with the hypothesis 

triplets as stated above.   

 

Figure. 21. Depicting Reverse of Category 1 JTD 
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Table 24: Examples satisfying the reverse of category 1 JTD 

RT RH
1 RH

2(JDC) T–H pairs Dependency Triplets 

agent agent nn T: Miller died Thursday night, of congestive heart 

failure, at his home in Roxbury, Conn., surrounded 

by his family, his assistant, Julia Bolus, said Friday. 

H: Miller died Thursday night, of heart failure, 

surrounded by family members. 

agent(surrounded-19, family-22) 

 

agent(surrounded-10, members-13) 

nn(members-13, family-12) 

nsubj prep_in nn T: Lebanon is in a period of mourning after a 

massive car bomb killed the former Prime Minister, 

Rafik Hariri, on Tuesday. 

H: Mr. Hariri was killed in a bomb explosion. 

nsubj(killed-13, bomb-12) 

 

prep_in(killed-4, explosion-8) 

nn(explosion-8, bomb-7) 

dobj nsubjpass num T: On 12 August, the San Carlos Battalion came 

across mines placed in their path and one soldier was 

killed while two were seriously injured. Meanwhile 

on 10 August, urban commandos took a patrol car by 

surprise and dropped a grenade inside the car, 

injuring four and partially destroying the vehicle. 

H: Four people were injured by a grenade. 

dobj(injuring-22, four-23) 

 

nsubjpass(injured-4, people-2) 

num(people-2, Four-1) 

                                        

     Negation handling on JTD: For each of the six categories of JTD presented earlier, negation relation is 

handled with a different scoring mechanism. Table 25 presents an example T–H pair from the RTE1 devset 

which belongs to category 1 of JTD and having a negation relation associated with the text. If the text token 

W is associated with a negation relation, then the neg_bit value of the governor node W1 of the hypothesis 

triplet RH(W1, W2) is set to 1.   

 

Table 25: Example of negation for category 1 of JTD 

 

3.7.2 Semantic Similarity Matching Module: If any hypothesis triplet RH(W1,W2) cannot be inferred from any 

text triplet(s) either jointly (JTD) or individually (STD), this semantic similarity matching module is invoked. 

This semantic similarity module generates a semantic similarity score for any given pair of words. 

WordNet::Similarity6 package is used to achieve this purpose for the present study. Eight different similarity 

metrics are available in the WordNet::Similarity package - HirstStOnge, LeacockChodorow, Lesk, WuPalmer, 

Resnik, JiangConrath, Lin and Path based. For the present study, we considered the WuPalmer metric as the 

semantic similarity measure.  

Two categories were considered under the semantic similarity module which are described below along with 

suitable diagrams.  

 Category 1. For a particular hypothesis triplet RH(W1,W2), all the text triplets RT(WSʹ,W2ʹ) are identified 

such that the tokens W2–W2ʹ are lexically aligned to each other by any WordNet relations other than 

antonyms and the relation pair RT–RH  are equivalent according to matching rule 2 of STD. Successively, 

the semantic similarity module is invoked to generate the semantic similarity scores between the hypothesis 

                                                           
6  http://wn-similarity.sourceforge.net 

RH RT
1 RT

2 (JDC) T–H pair Dependency Triplets 

nsubj nsubjpass prep_of T: No stockpiles of weapons of mass 

destruction have been found in Iraq since 

Saddam’s regime was toppled in a US-led 

invasion last year. 

H: Weapons of mass destruction found in 

Iraq. 

nsubjpass(found-10, stockpiles-2)  

prep_of(stockpiles-2, weapons-4) 

det(stockpiles-2,No-1) 

 

nsubj(found-5, Weapons-1) 



token W1 and the text token WSʹ associated with the identified text triplets RT(WSʹ,W2ʹ). The highest among 

these semantic similarity scores is stored in a variable, say S1. Figure. 22.a depicts this case pictorially.  

 

Next, the text triplets in the form of RT(W2ʹ,WSʹ) are also identified where W2–W2ʹ are lexically aligned by 

other than the antonym relation and the relation pair RT–RH are equivalent as per matching rule 3 of STD. 

Again the semantic similarity module is invoked to compute the semantic similarity scores between all pairs 

of the tokens WSʹ–W1 of the identified text triplets and the maximum of these scores is stored in another 

variable, say S2. This case is illustrated in Figure. 22.b.  

 

Finally the greater among the two scores, score1 and score2 is considered and assigned in the P vector of 

the child node W2 of the particular branch RH(W1,W2) in the hypothesis dependency tree. 

 

 Category 2. This category determines all possible text triplets RT(W1ʹ,WSʹ) for a particular hypothesis 

triplet RH(W1,W2) where the tokens W1–W1ʹ are lexically aligned by any WordNet relations other than 

antonyms and the relations RT–RH are equivalent according to matching rule 2 of STD.  Semantic similarity 

is computed for all pair of words W2–WSʹ and the highest score is stored in S1. Figure. 23.a 

diagrammatically depicts this case.  

 

Next, the text triplets of the form RT(WSʹ,W1ʹ) are identified where RT-RH  pair is equivalent as per 

matching rule 3 of STD and W1–W1ʹ are lexically aligned. Then the semantic similarity scores between the 

token pairs W2–WSʹ are calculated and the highest among them is stored in S2. The diagrammatic 

representation is shown in Figure. 23.b.  

 

The greater among S1 and S2 is assigned to the node W2 of the hypothesis dependency graph.    

                                                 

     

                                             

 

                          

However, we noticed that the Wu-Palmer metric generates semantic similarity scores greater than 1 for some 

word pairs. For example, it produces a score of 1.333 for the word pair scientist-patient. For such cases the 

semantic similarity score is rounded off to 1 before it is assigned to a node. Unless the semantic similarity scores 

are upper bounded by 1, the final entailment score between a T–H pair may exceed the upper bound of 1. 

Let us consider the following example T–H pair from the RTE1 development set. 
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Figure. 23. a. Case 1 of Category 2 Figure. 23. b. Case 2 of Category 2 

Figure. 22. a. Case 1 of Category 1 Figure. 22. b. Case 2 of Category 1 



Example 9:  

<pair id="154" value="TRUE" task="RC"> 

 <t>A male gorilla escaped from his cage in the Berlin zoo and sent terrified visitors running for cover, 

the zoo said yesterday.</t> 

 <h>A gorilla escaped from his cage in a zoo in Germany.</h> 

</pair> 

 

Table 26 lists the dependency triplets for the above T–H pair in Example 9. Only a few of the triplets are 

presented due to space constraints.  

Table 26: Dependency triplets produced by Stanford dependency parser for T–H pair in Example 9 

Text triplets Hypothesis triplets 

T1: det(gorilla-3, A-1)  

T2: amod(gorilla-3, male-2)  

T3: nsubj(escaped-4, gorilla-3)  

T4: poss(cage-7, his-6) 

T5: prep_from(escaped-4, cage-7)  

T6: det(zoo-11, the-9) 

T7: nn(zoo-11, Berlin-10) 

T8: prep_in(escaped-4, zoo-11) 

T9: root(ROOT-0, said-22)  

H1: det(gorilla-2, A-1)  

H2: nsubj(escaped-3, gorilla-2)  

H3: root(ROOT-0, escaped-3)  

H4: poss(cage-6, his-5)  

H5: prep_from(escaped-3, cage-6)  

H6: det(zoo-9, a-8) 

H7: prep_in(escaped-3, zoo-9) 

H8: prep_in(zoo-9, Germany-11) 

 

From the above table it can be noted that the hypothesis triplets H1, H2, H4, H5 and H7 directly match with the 

text triplets T1, T3, T4, T5 and T8, respectively following matching rule 1. Triplet H6 follows the STD 

matching rule 7. Only H8 do not directly match with any of the generated text triplets. Therefore, the semantic 

similarity module tries to find out the set of all relations RT of the text which are equivalent to prep_in (RH). In 

triplet T7, the relation nn is equivalent to prep_in according to matching rule 2 of the STD category and the 

corresponding hypothesis governor word zoo directly matches with the corresponding text governor word. 

However, the corresponding dependent words (i.e., Berlin and Germany) do not match. Therefore, semantic 

similarity score is computed for the word pair Berlin and Germany. The WordNet::Similarity package 

implementation of the WuPalmer metric returns a score of 0.5 for the given word pair which is then assigned to 

the token Germany of the hypothesis dependency graph.     

A few more examples from the different RTE development sets are presented in Table 27 and their 

corresponding dependency triplets, only the relevant ones with respect to semantic similarity, are provided in 

Table 28 to depict how the semantic similarity scores are assigned to dependency triplet pairs. 

Apart from the WordNet::Similarity package, we also explored another semantic similarity measuring tool 

gensim7 which is based on Word2Vec [33], a distributional semantics model based on vector representation of 

words (i.e., word embeddings). The main working principle behind Word2vec is that words appearing in the 

similar context have similar meaning. The Word2vec model takes a large text corpus as input and produces a 

vector space as output with each distinct word in the corpus being represented as a vector in that space. The 

similarity between a word pair is calculated by measuring the cosine of the angle between their corresponding 

word vectors. The lower the angle between the two vectors, the more similar the two words are. For our 

experimental purpose, we have used 1.5 GB GoogleNews corpus as the underlying corpus on which the models 

of Word2vec are trained. Word2Vec contains two distinct models – the Continuous Bag-of-words (CBOW) and 

skip-gram, each with two different training methods. The CBOW model predicts the target words from the 

source context words and the skip-gram model predicts the source context words from the target words. 

However, due to low scores produced by this tool, we did not embed it in our method as the optimal 

performance was achieved by the WordNet::Similarity package.  

                                                           
7 https://radimrehurek.com/gensim/ 
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Table 27: Example T–H pairs relevant for semantic similarity matching module 

Pair Id # Dataset T–H pairs 

1 RTE1 dev1 T: Guerrillas killed a peasant in the city of Flores 

H: Guerrillas killed a civilian. 

2 RTE1 dev1 T: Swedish massage is used to help relax muscles, increase circulation, remove 

metabolic waste products, help the recipient obtain a feeling of connectedness, a 

better awareness of their body and the way they use and position it. 

H: Swedish massage loosens tense muscles. 

3 RTE3 dev T: Airbus could site a design engineering centre in the Midlands region of the UK to 

take advantage of the availability of skilled engineering staff following the demise of 

MG Rover, the collapsed UK carmaker. 

H: Airbus plans a design engineering centre. 

 

 

 

 

 

Table 28: Dependency triplets relevant to semantic similarity for the T–H pairs in Table 27 

Paid 

Id # 

Text dependency triplets  

(equivalent to the hypothesis triplets) 

Hypothesis triplets 

 (for which semantic similarity module is invoked) 

1 dobj(killed-2, peasant-4) 

prep_in(killed-2, city-7) 

 dobj(killed-2, civilian-4) 

2 amod(massage-2,Swedish-1),  

nsubjpass(used-4, massage-2) 

dobj(relax-7, muscles-8) 

 nsubj(loosens-3, massage-2) 

 

amod(muscles-5, tense-4) 

3 nsubj(site-3, Airbus-1) nsubj(plans-2, Airbus-1) 

 

For the three T–H pairs in Table 27, the semantic similarity scores between the concerned tokens and the final 

score assigned to the nodes of the hypothesis graphs are depicted in the Table 29. To compare the two semantic 

similarity models and their effects on the textual entailment decision, scores generated by both the gensim tool 

and the WordNet::Similarity package based Wu-Palmer measure are presented in the table. It is evident from the 

table that the gensim scores are much lower than the ones produced by WordNet::Similarity package. Therefore 

for optimal performance we have only considered the Wu-Palmer scores.  

Table 29: Illustrating semantic score calculation 

Pair 

Id# 

Equivalent  

RH-RT pair 

Equivalent 

according to 

STD matching 

rule # 

Token pair for 

semantic score 

calculation 

gensim 

score 

Wu-Palmer 

score 

Final 

score 

assigned 

 

Score 

assigned 

on node 

1 dobj-dobj 1 peasant͢-civilian 0.1981613 0.727273  

0.727273 

 

civilian dobj-prep_in 2 city-civilian 0.1902787 0.533333 

2 nsubj- amod 3 loosen-swedish 0.01978217 0.0  

0.4 

 

massage nsubj-nsubjpass 2 loosen-use 0.22086817 0.4 

amod-dobj 3 tense-relax 0.21001716 0.5 0.5 tense 

3 nsubj-nsubj 1 plan-site 0.20739367 0.285714 0.285714 Airbus 

   

3.8 Entailment score calculation 



As mentioned earlier, each node in the hypothesis dependency graph maintains 2 bits: antonym bit (ant_bit) and 

negation bit (neg_bit) and four scoring components listed as follows. 

 The predecessor_score vector (P) 

 The average of predecessor_score vector (A) 

 The child_score (C) 

 The total_score (T)  

Since the dependency triplets when combined together form a graph with some nodes having more than one 

predecessor, the P vector component of each node is represented as a vector rather than a single variable. The 

dependency graph comparison module (cf. Section 3.7) assigns a matching score in the range of [-1, 1] to the P 

vector component of the nodes in the hypothesis graph. Each component of the P vector of a particular node 

represents the similarity score between each of its predecessor and its corresponding aligned token in the text. If 

a hypothesis–text token pair is lexically aligned to each other by any WordNet relation, a complete matching 

score of 1 is assigned. However, if the token pair is aligned by antonym relation, a score of -1 is assigned to 

indicate contradiction. Finally a semantic similarity score is calculated between the corresponding token pair if 

they cannot be aligned to each other by any of the given WordNet relations provided in Table 5. As a node can 

have multiple predecessors, the values of the P vector are averaged and assigned to the score component A. Like 

predecessors, a node can have multiple successors or children as well. The C score component of a node is 

calculated by summing up the T score of all its children and then normalizing it by the number of children. As in 

a graph there are only 2 constituents of a node: the predecessors and the successors, finally the T score 

component of the node is calculated by taking the average of the values of A score and C score. This T score 

indicates the sum total or the effective score of a node. Since the final entailment score obtained at the end of the 

graph traversal process is upper bounded by the value of 1, each of the score components of A, C and T of the 

nodes in the graph are normalized in each step to lie below 1.      

After scores have been assigned to each node, the hypothesis dependency graph is traversed in level order 

fashion from the bottommost level to the topmost level. During this process of traversal, the scores of the nodes 

belonging to a particular level are accumulated and gradually propagated to the next higher levels till it reaches 

the root node at the topmost level. Table 30 illustrates how the score components of the several categories of 

nodes in the dependency graph are computed. The topmost node in the graph which is connected to the dummy 

ROOT node is assigned a value of 0 in its A score since it has no valid predecessor. Therefore the T score of this 

node is directly set to the value of its C score. Since the leaf nodes have no branch or children, their C score is 

set to 0 and consequently their T score is assigned to the value of their A score directly. For each non-leaf node 

in the graph, the C score is calculated by taking the average of the T score of all its children and the T score 

component is set to the average of its C score and A score values. The scores of the nodes in a graph are 

computed and propagated in a bottom-up fashion till the final score for the entire graph is obtained at the ROOT 

node. This final score is considered as the entailment score for the given T–H pair. This score is then fed to the 

subsequent module which takes the final decision about whether it is a case of YES or NO entailment.  

Table 30: Scoring mechanism for the various nodes in the hypothesis dependency graph 

Types of Nodes P score vector A score C score T score 

Leaf nodes Scores assigned in 

the matching module 

Average of all the P score 

vector components 

0 A score 

Non-leaf non-root 

nodes 

Scores assigned in 

the matching module 

Average of all the P score 

vector components 

Average of T score 

of all its children 

1

2
(A score+C 

score) 

Topmost node 

immediate to ROOT 

0 0 Average of T score 

of all its children 

C score 

 

However, the scoring mechanism as depicted in Table 30 is applicable only to the nodes which have their 

ant_bit and neg_bit values both set to 0. If any of the two bits for a particular node is set to 1, then the above 

scoring mechanism is not applied to them. During the traversal of the hypothesis dependency graph from the 



bottommost level to the top level, if any node is encountered with either of their ant_bit or neg_bit value set to 1, 

the T score component of that node is directly set to a value of -1 without going into the above process of 

calculation of the score components. The motivation behind this is to neutralize the effect of the computed score 

of its children nodes traversed so far.    

An example T–H pair from the RTE1-dev1 set is provided in Example 10 and the corresponding graph structure 

of the hypothesis is presented in Figure. 24 to illustrate the matching process and the scoring mechanism. 

Example 10:   

T: The report catalogues 10 missed opportunities within the CIA and FBI to uncover pieces of the September 11 

plot.                                                                                                                                                                          

H: Ten missed opportunities within the CIA and FBI are uncovered in the report. 

Table 31 presents the dependency triplets for the T–H pair in Example 10. The matching of the hypothesis 

triplets with the text triplets according to the comparison module (cf. Section 3.7) is presented in Table 32.   

 

 

Table 31: Dependency triplets of the T–H pair in Example 10 

Text Dependency Triplets Hypothesis Dependency Triplets 

T1: det(report-2, The-1)  

T2: nsubj(catalogues-3, report-2)  

T3: root(ROOT-0, catalogues-3)  

T4: num(opportunities-6, 10-4) 

T5: amod(opportunities-6, missed-5)  

T6: dobj(catalogues-3, opportunities-6) 

T7: det(CIA-9, the-8)  

T8:prep_within(opportunities-6,CIA-9) 

T9: prep_within(opportunities-6, FBI-11)  

T10: conj_and(CIA-9, FBI-11)  

T11:aux(uncover-13, to-12)  

T12: infmod(opportunities-6, uncover-13)  

T13: dobj(uncover-13, pieces-14)  

T14: det(plot-19, the-16)  

T15: nn(plot-19, September-17)  

T16: num(plot-19, 11-18) 

T17: prep_of(pieces-14, plot-19) 

 

 

H1: num(opportunities-3, Ten-1) 

H2:amod(opportunities-3,missed-2) 

H3:nsubjpass(uncovered-10,opportunities-3) 

H4: det(CIA-6, the-5) 

H5:prep_within(opportunities-3,CIA-6) 

H6:prep_within(opportunities-3, FBI-8)  

H7: conj_and(CIA-6, FBI-8) 

H8: auxpass(uncovered-10,are-9)  

H9: root(ROOT-0, uncovered-10) 

H10: det(report-13, the-12)  

H11: prep_in(uncovered-10, report-13) 

   

Table 32: Matching between dependency triplets of the T–H pair of Example 10 according to the matching rules 

 

Hypothesis 

Dependency 

Triplet # 

Lexical Match with Semantic Match with 

Text  

Dependency 

Triplet# 

Satisfying 

matching 

rule# 

Assigned 

Score 

P score 

assigned 

on node  

Text 

Dependency 

Triplet# 

Word pair 

for semantic 

similarity 

measurement 

Assigned 

semantic 

score 

(WuPalmer) 

P score 

assigned 

on node 

H1 T4 1 1.0 Ten – – – – 
H2 T5 1 1.0 Missed – – – – 
H3 T12 3 1.0 Opportunity – – – – 
H4 T7 1 1.0 The – – – – 
H5 T8 1 1.0 CIA – – – – 
H6 T9 1 1.0 FBI – – – – 
H7 T10 1 1.0 FBI – – – – 
H8 – 7 1.0 Are – – – – 



H9 – – 0 Uncover – – – – 
H10 T1 1 1.0 The – – – – 
H11 – – – – T2 catalogue-

uncover 

0.2222 report 

 

Figure. 24.  Component scores of the dependency graph 

The various score components of each node in the hypothesis dependency graph are shown Table 33. 

Table 33: Different score components of the hypothesis graph in Figure. 24 

Node P score vector A score C score T score 

Ten {1.0} 1.0 0 1 

Missed {1.0} 1.0 0 1 

opportunity {1.0} 1.0 1 1 

The {1.0} 1.0 0 1 

CIA {1.0} 1.0 1 1 

FBI {1.0,1.0} 1.0 0 1 

Are {1.0} 1.0 0 1 

uncover {0} 0 0.87037 0.87037 

The {1.0} {1.0} 0 1 

Report {0.222} 0.222 1.0 0.6111 

 

amod prep_within 

conj_and 

root 

auxpass 

det 

det 

nsubjpass 

ROOT 

uncover 

CIA 

num 

prep_in 

prep_within 

P={1.0, 1.0}                             

A=  (1.0+1.0)/2=1.0          

C= 0                                

T= A=1 

P= {1.0}                     

A= 1.0                   

C= 0                    

T= A =1 

P={1.0}                 

A=  1.0 

C=(1+1)/2=1                      

T= (1+1)/2=1 

P= {1.0}                     

A= 1.0                       

C= 0                        

T= A=1  

P= {1.0}                               

A=  1.0        

C=(1+1+1+1)/4=1                        

T= (1+1)/2=1                                               

P= {0}                                             

A=  0         

C=(1+1+0.6111)/3=0.87037                                                  

T= C=0.87037 

P= {1.0}                

A=  1.0                

C= 0                       

T= A=1 

are 

FBI 

Entailment score= 0.87037 

opportunity 

the 

miss 

the 

P= {1.0}                          

A=  1.0                            

C= 0                                

T= A =1 

report 

P= {0.222}                            

A=  0.2222                     

C=1.0              

T=(1+0.222)/2=0.6111 

ten P= {1.0}                   

A= 1.0                    

C= 0                        

T= A =1 



To illustrate the Rule 4 for handling antonyms, let us consider the T–H pair of Example 10 with a slight 

modification as follows:  

 

 

Example 11:  

T: The report catalogues 10 missed opportunities within the CIA and FBI to cover pieces of the September 11 

plot.                                                                                                                                                                          

H: Ten missed opportunities within the CIA and FBI are uncovered in the report. 

The word ̒ uncover ̓ in the text of the previous T–H pair has been changed to its antonym, ̒ cover ̓, as highlighted 

in the above text. Table 34 shows the various score components of the nodes in the hypothesis dependency 

graph. 

Table 34: Different score components of the hypothesis graph for Example 11 

Node P score vector A score C score T score 

Ten {1.0} 1.0 0 1 

Missed {1.0} 1.0 0 1 

opportunity {-1.0} -1.0 1 0 

The {1.0} 1.0 0 1 

CIA {1.0} 1.0 1 1 

FBI {1.0,1.0} 1.0 0 1 

Are {1.0} 1.0 0 1 

Cover {0} 0 0.537 0.537 

The {1.0} {1.0} 0 1 

Report {0.222} 0.222 1.0 0.6111 

 

3.9 Entailment Decision The entailment score obtained from the previous step for a particular T–H pair is 

passed into this module. This score is then compared with various predetermined threshold values to take the 

final entailment decision. A score below the threshold indicates a NO entailment and a score above the threshold 

indicates a YES entailment. The thresholds were trained on various development datasets. The threshold for 

which the method results in the maximum accuracy for a development set is then applied on the corresponding 

RTE testsets.  

4. Datasets 

We performed our experiments on the RTE datasets from RTE1 to RTE4. The development set of RTE1 is 

divided into 2 parts. Devset 1 and devset 2 consist of 287 and 280 T–H pairs, respectively, divided into 7 tasks 

as Comparable Documents (CD), Information Extraction (IE), Information Retrieval (IR), Machine Translation 

(MT), Question Answering (QA), Reading Comprehension (RC) and Paraphrase Acquisition (PP). RTE1 testset 

contains 800 T–H pairs divided into the same 7 tasks as before. The RTE2 and RTE3 datasets contain 1600 T–H 

pairs each equally divided into a development set and a testset. The RTE4 dataset does not contain any 

development set; only a testset is provided with 1000 T–H pairs. The T–H pairs of RTE2, RTE3 and RTE4 

datasets are divided into 4 tasks of IE, IR, QA and Summarization (SUM). The T–H pairs of the RTE1, RTE2 

and RTE3 datasets are all classified for the 2 way entailment task; i.e they are labelled either as cases of YES 

entailment or NO entailment. However, the T–H pairs of the RTE4 dataset are marked for the 3 way 

classification task as ENTAILMENT, CONTRADICTION and UNKNOWN. Together CONTRADICTION and 

UNKNOWN classes are grouped under the case of NO entailments in the gold standard output of the RTE4 

testset. Table 35 presents the statistics of the development and test sets of each of the datasets used here for 

experimental purpose.     



 

 

 

 

Table 35. Statistics of the RTE datasets 

 Dataset Taskwise division  

IE IR QA SUM CD MT PP RC Total   

RTE 1 dev1 20 50 50 – 50 8 58 51 287 

dev2 50 20 40 – 48 46 24 52 280 

test 120 90 130 – 150 120 50 140 800 

RTE2  dev 200 200 200 200 – – – – 800 

test 200 200 200 200 – – – – 800 

RTE3  dev 200 200 200 200 – – – – 800 

test 200 200 200 200 – – – – 800 

RTE4  test 300 300 200 200 – – – – 1000 

 

5. Experiments and Results 

This section presents the results obtained from the experiments performed on various datasets ranging from 

RTE1 to RTE4. The thresholds were trained on 4 development sets, 2 devsets of RTE1 dataset and 1 devset each 

for RTE2 and RTE3 dataset. For each development set, learning curve experiments were carried out using 

varying thresholds for each task. The threshold that produces the optimum result on a particular development set 

is used to evaluate the performance of the method on the corresponding testset.  

The method was evaluated in terms of accuracy which is defined as equation (1), where TP and TN refer to true 

positives and true negatives, respectively. 

                                                               𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷+𝑻𝑵

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑻−𝑯 𝒑𝒂𝒊𝒓𝒔 
∗ 𝟏𝟎𝟎    (1) 

Results obtained by the learning curve experiments on RTE1 dev1 set and RTE1 dev2 set are presented in 

Tables 36 and 37 respectively. Task specific highest scores are shown in bold in Tables 36 and 37. As can be 

observed from Table 36, task–wise highest accuracy varies between 60% to 70% . The method attains the 

highest accuracy for the tasks of CD and IE while the lowest accuracy is produced for the task of IR. The 

highest value of the overall accuracy for the RTE1 dev1 set is 62.02% obtained for two thresholds, 0.6 and 0.7.   

Table 36: Accuracy of the method for the different tasks for different thresholds on RTE1- dev1 set 

Task Thresholds 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 

CD 60 60 60 68 70 66 66 66 66 62 58 58 64 62 62 

 

IE 60 60 60 55 55 55 60 60 55 65 70 65 65 65 60 

 

IR 52 48 50 48 50 54 54 58 58 60 60 58 56 58 58 

 

MT 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 50 37.5 62.5 50 

 

QA 48 52 52 54 58 64 64 66 62 64 60 64 64 62 58 

 



RC 58.82 60.78 58.82 60.78 56.86 56.86 58.82 60.78 54.90 58.82 60.78 54.90 52.94 56.86 56.86 

 

PP 53.45 55.17 60.34 58.62 55.17 55.17 60.34 60.34 63.79 63.79 62.07 63.79 60.34 62.07 56.89 

 

Overall 55.05 55.75 56.79 57.84 57.84 58.89 60.63 62.02 60.63 62.02 60.98 59.93 59.23 60.63 58.19 

 

 

Table 37: Accuracy of the method for the different tasks for different thresholds on RTE1- dev2 set 

Task Thresholds 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 

CD 56.25 58.33 58.33 60.41 54.16 56.25 58.33 60.41 64.58 58.33 58.33 58.33 58.33 60.41 58.33 

 

IE 54 54 54 54 54 54 52 50 48 52 54 56 50 56 54 

 

IR 65 60 55 55 50 50 45 40 40 40 45 50 55 55 55 

 

MT 52.17 50 50 47.83 52.17 50 50 54.35 50 45.65 47.83 47.83 45.65 45.65 47.83 

 

QA 47.5 45 45 45 40 32.5 37.5 35 35 35 37.5 37.5 32.5 35 37.5 

 

RC 51.92 53.85 53.85 53.85 55.77 53.85 53.85 57.69 51.92 57.69 50 50 51.92 59.62 59.62 

 
PP 50 50 50 50 50 50 58.33 58.33 58.33 54.17 62.5 62.5 66.67 62.5 62.5 

 

Overall 53.21 52.86 52.5 52.5 51.43 50 51.07 51.79 50.36 50 50.71 51.43 50.71 52.86 53.21 

 

Table 37 shows that task–wise highest accuracy varies from 47.5% to 66.67% with the highest accuracy 

obtained for the PP task and the lowest accuracy for the QA task. The overall accuracy for this devset reaches 

the highest value of 53.21% for two threshold values of 0.25 and 0.95.    

Figure. 26 and 27 show the results of the learning curve experiments for each of the tasks on the RTE1 dev1 and 

RTE1 dev2 datasets, respectively. The x–axis of the graph represents the threshold values and the system 

accuracies (in percentage) are plotted along the y–axis .  



 

Figure. 26. Results of learning curve experiments on the RTE1 dev1 set 

Figure. 26 shows that the accuracy reaches the peak value for the tasks of CD and IE. However, the curve for 

the task MT drops abruptly at threshold 0.85. There are only 8 T–H pairs belonging to the MT task in the 

RTE1–dev1 set, thus one pair accounts for 12.5% accuracy. At threshold 0.75, only 3 and 2 T–H pairs are 

identified as true positive and true negative, respectively, thus generating an accuracy of 62.5%. A change in the 

threshold from 0.75 to 0.8 causes the number of true positive pairs to decrease from 3 to 2 resulting in a high 

fluctuation in accuracy from 62.5% to 50%. Again at threshold 0.85, the number of true positives decreases by 1 

causing a further drop of 12.5% in accuracy. The number of true negative pairs remains fixed in this threshold 

range. For threshold 0.9, the number of true negative pairs increases from 2 to 4 thereby producing a sudden 

raise in accuracy to 62.5% again. Therefore, it is clear that this curve exhibits abrupt rise and fall due to very 

small number of T–H pairs present in the dataset. A slight change in the number of true positive and/or true 

negative T–H pairs for successive thresholds causes the accuracy of the method to deviate in an unexpected 

manner.       



 

 

Figure. 27. Results of learning curve experiments on the RTE1 dev2 set 

From the diagram Figure. 27, it is clearly observed that the method exhibits the highest and lowest accuracy for 

the PP and QA task respectively for the RTE1-dev2 dataset. The overall accuracy reaches the peak value for two 

extreme thresholds 0.25 and 0.95.  

The two optimal thresholds obtained from the 2 development sets of RTE1 are then used to calculate the 

accuracy on the RTE1 testset. The performance of the method in terms of precision, recall and F-score for each 

of the 7 tasks are presented in Table 38. Although the accuracy of the method for the testset is measured on the 

basis of the optimal thresholds learned from the development set, it was observed that the accuracy attains the 

highest value for some thresholds which are different from the optimal threshold values obtained from the 

devsets. Table 38, in addition, shows the optimal results obtained by the proposed method on the RTE1 testset 

for each of the tasks and the corresponding threshold values. It was observed that the method performs the best 

for the task of CD and the worst performance is produced for the task of QA. Moreover, for the task of MT the 

method shows the best accuracy for two different thresholds, 0.25 and 0.85. The overall accuracy of the method 

for this testset attains a value of 60.5%.  

Table 38: Evaluation results on the RTE1 testset   

Task Devset Optimum 

threshold 

Positive TE Negative TE Overall 

Accuracy Pr Re F Pr Re F 

CD RTE1 dev1 0.45 0.65 0.893 0.752 0.829 0.52 0.639 0.706 

RTE1 dev2 0.65 0.831 0.72 0.772 0.753 0.853 0.799 0.787 

– 0.65 0.831 0.72 0.772 0.753 0.853 0.799 0.787 

IE RTE1 dev1 0.75 0.519 0.467 0.492 0.515 0.566 0.539 0.516 

RTE1 dev2 0.8 0.548 0.383 0.451 0.526 0.683 0.594 0.533 

– 0.85 0.613 0.317 0.418 0.539 0.8 0.644 0.558 

IR RTE1 dev1 0.7 0.5 0.356 0.416 0.5 0.64 0.561 0.5 



RTE1 dev2 0.25 0.526 0.91 0.667 0.667 0.178 0.281 0.544 

– 0.3 0.533 0.889 0.666 0.667 0.22 0.331 0.556 

MT RTE1 dev1 0.25 0.525 0.88 0.658 0.632 0.2 0.304 0.542 

RTE1 dev2 0.6 0.49 0.417 0.451 0.493 0.567 0.527 0.492 

– 0.85 0.692 0.15 0.247 0.523 0.933 0.67 0.542 

QA RTE1 dev1 0.6 0.435 0.462 0.448 0.426 0.4 0.413 0.431 

RTE1 dev2 0.25 0.496 0.862 0.629 0.471 0.123 0.195 0.492 

– 0.3 0.5 0.846 0.629 0.5 0.154 0.235 0.5 

RC RTE1 dev1 0.3 0.511 0.957 0.666 0.667 0.086 0.152 0.521 

RTE1 dev2 0.95 0.758 0.357 0.485 0.579 0.886 0.7 0.621 

– 0.95 0.758 0.357 0.485 0.579 0.886 0.7 0.621 

PP RTE1 dev1 0.7 0.652 0.6 0.625 0.629 0.68 0.654 0.64 

RTE1 dev2 0.85 0.538 0.28 0.368 0.514 0.76 0.613 0.52 

– 0.7 0.652 0.6 0.625 0.629 0.68 0.654 0.64 

Overall RTE1-dev1 – 0.537 0.689 0.604 0.669 0.409 0.508 0.549 

RTE1-dev2 – 0.584 0.576 0.58 0.584 0.591 0.588 0.584 

– – 0.619 0.541 0.578 0.594 0.668 0.629 0.605 

 

Comparison of our experimental results with the submitted systems in the First PASCAL Recognizing Textual 

Entailment Challenge8 (RTE 1) [35] shows that among the 28 submissions, only 2 works presented in [36] and 

[37] surpass the accuracy of our proposed method by attaining overall accuracy values of 60.6% and 70% 

respectively.  

Table 39 presents the results obtained for different threshold values on the RTE2 development set for each of 

the tasks. It can be observed from the table that the method exhibits the highest accuracy for the SUM task 

attaining an accuracy of 75% and the lowest score is obtained for the IE task with an accuracy of 57.5%. It was 

observed that the overall accuracy reaches its peak value of 63.5% for the threshold value 0.65. The maximum 

accuracies for each of the four tasks are highlighted in bold fonts in Table 39. The threshold vs. accuracy graph 

for the RTE2 devset is presented in Figure. 28.   

 

Table 39: Accuracy of the method for the different tasks for different thresholds on RTE2- dev set 

Task Thresholds 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 

IE 50.5 51.5 50.5 53  53  53  56  57.5  53.5  51.5  47.5  45.5  50  50  51  

IR 56.5 56.5 56 57.5 57.5 57.5 57.5 60 59.5 59 57 59 58.5 59 57.5 

QA 
55 55 55.5 56 58 61 63.5 64.5 66 66.5 69.5 69.5 72.5 69 71 

SUM 57.5  60  59.5  62  66.5  69  69  71.5  75  71  71.5  69.5  66  62  58.5  

Overall 

54.88 55.75 55.38 57.13 58.75 60.13 61.5 63.38 63.5 62 61.38 60.88 61.75 60 

59.38 

 

                                                           
8 http://u.cs.biu.ac.il/~nlp/RTE1/Proceedings/ 



  

Figure. 28. Results of learning curve experiments on the RTE2 dev set 

From the learning curve experiments (cf. Table 40 and Figure. 28), it is evident that the accuracy attains the 

highest value for the SUM task and the lowest accuracy is resulted for the IE task. The overall accuracy of the 

method reaches its peak value for the threshold 0.65.  

The thresholds for which the method resulted in the best performance for each of the tasks on the RTE2 

development set were applied on the corresponding testset tasks. Table 40 presents the performance of the 

method for each of the tasks in RTE2 testset in terms of precision, recall and F-score. In addition to the scores 

obtained with the thresholds learnt from the RTE2 devset, it also shows the optimal performances that can be 

obtained with the proposed method. The overall accuracy has reached the value of 64.5% for this testset.    

 

 

 

 

Table 40: Evaluation results on the RTE2 testset   

Task Devset Optimum 

threshold 

Positive TE Negative TE Overall 

Accuracy Pr Re F Pr Re F 

IE RTE2 0.6 0.551 0.75 0.635 0.609 0.39 0.475 0.57 

– 0.55 0.558 0.82 0.664 0.66 0.35 0.457 0.585 

IR RTE2 0.6 0.569 0.7 0.628 0.61 0.47 0.53 0.585 

– 0.75 0.691 0.56 0.618 0.63 0.75 0.685 0.655 

QA RTE2 0.85 0.634 0.64 0.637 0.636 0.63 0.633 0.635 



– 0.8 0.626 0.72 0.669 0.671 0.57 0.616 0.645 

SUM RTE2 0.65 0.67 0.59 0.627 0.634 0.71 0.669 0.65 

– 0.55 0.659 0.81 0.727 0.753 0.58 0.655 0.695 

Overall RTE2 – 0.598 0.67 0.632 0.625 0.55 0.585 0.61 

–  0.624 0.727 0.672 0.674 0.563 0.614 0.645 

 

Among a total of 41 participating system submissions in the Second PASCAL Recognizing Textual Entailment 

Challenge9 (RTE 2) [38], only 2 systems described in [39] and [40] exhibited better performance than our 

proposed method with accuracy values of 75.38% and 73.75% respectively. However, these systems made use 

of many rich and complex resources and techniques such as Semantic Role Labeller, Logical Inference, 

Paraphrasing, corpus/web–based statistics in order to solve the TE problem. Our proposed method is much 

lighter than those in terms of prerequisite resources.   

The accuracy of the method was also checked with the RTE3 development set with different threshold values 

the results of which are presented in Table 41. The highest accuracies of the various tasks lie within the range of 

53.5% to 71% with the maximum score obtained for the QA task and the minimum for the IE task. The highest 

overall accuracy of the method came out to be 63.38%. Figure. 29 presents the threshold versus accuracy graph 

for the RTE3 devset.  

Table 41: Accuracy of the method for the different tasks for different thresholds on RTE3 - dev set 

Task Thresholds 

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 

 

IE 52.5  51.5  53.5  54  54  50.5  51  49  50.5  53  53  52  52  50.5  49.5 

IR 50.5  51.5  55.5  57.5  58.5  57  60  59.5  65  66.5  65.5  67  65.5  65  63 

QA 56 55.5 56 58 60 61 64.5 69 70 71 70 70 69.5 68.5 66.5 

SUM 57.5  58  61.5  61.5  61  61.5  63.5  64.5  64.5  63  62  57  55  54.5  54.5 

Overall 
54.13 54.13 56.63 57.75 58.38 57.5 59.75 60.5 62.5 63.38 62.63 61.5 60.5 59.63 58.38 

                                                           
9 http://u.cs.biu.ac.il/~nlp/RTE2/Proceedings/ 



 

 

Figure. 29. Results of learning curve experiments on the RTE3 devset 

Results of Learning curve experiments shown in Figure. 29 reveal that the accuracy of the method reaches the 

maximum value for the QA task and the minimum accuracy is produced for the IE task. At threshold 0.7, the 

overall accuracy attains its peak value.   

The optimal thresholds for which the method produced the highest score for each of the tasks in RTE3 devset 

were applied on the corresponding task in the testset to evaluate the performance. Table 42 presents the 

performance of the method for the various tasks in terms of precision, recall and F-score. Apart from the optimal 

thresholds learned from the development set, the oracle performances on the testset are also provided in the 

table for each of the tasks. The accuracy reaches its peak value for the task QA and the overall accuracy attained 

by the method for this particular testset is 62.8%.   

Table 42: Evaluation Results on the RTE3 testset 

Task Devset Optimum 

threshold 

Positive TE Negative TE Overall 

Accuracy Pr Re F Pr Re F 

IE RTE3 0.45 0.54 0.895 0.674 0.577 0.158 0.248 0.545 

– 0.35 0.54 0.952 0.689 0.67 0.105 0.182 0.55 

IR RTE3 0.8 0.593 0.218 0.319 0.595 0.885 0.712 0.595 

– 0.6 0.575 0.483 0.525 0.646 0.726 0.684 0.62 

QA RTE3 0.7 0.748 0.755 0.751 0.72 0.713 0.716 0.735 

– 0.7 0.748 0.755 0.751 0.72 0.713 0.716 0.735 

SUM RTE3 0.6 0.612 0.732 0.667 0.545 0.41 0.468 0.59 

– 0.55 0.612 0.804 0.695 0.585 0.352 0.439 0.605 

Overall RTE3 – 0.615 0.67 0.641 0.618 0.559 0.587 0.616 

– – 0.609 0.761 0.677 0.659 0.487 0.56 0.628 



Comparison of our obtained scores with the results reported in the Third PASCAL Recognizing Textual 

Entailment Challenge (RTE 3) [41] reveals that out of total 45 system submissions, 19 systems are ahead of us 

in terms of accuracy.  

Since RTE4 dataset does not contain any development set, the optimal thresholds on the RTE2 and RTE3 

development sets were used to evaluate the performance of the method on the RTE4 testset. Evaluation results 

of 2–way TE task on the RTE4 testset are presented in Table 43. In addition to the performances using the 

optimal thresholds on the RTE2 and RTE3 devsets, oracle performances on the RTE4 testset for each of the 4 

tasks are also provided in Table 43. It was observed that the highest and lowest scores were obtained for the IR 

and IE tasks respectively with the overall accuracy reaching a value of 61.5% for this testset.  

Table 43: Evaluation results on the RTE4 testset   

Task Devset Optimum 

threshold 

Positive TE Negative TE Overall 

Accuracy Pr Re F Pr Re F 

IE RTE2 0.6 0.542 0.647 0.589 0.562 0.453 0.502 0.55 

RTE3 0.45 0.533 0.853 0.656 0.633 0.253 0.362 0.553 

– 0.5 0.541 0.833 0.656 0.638 0.293 0.402 0.563 

IR RTE2 0.6 0.642 0.587 0.613 0.619 0.673 0.645 0.63 

RTE3 0.8 0.806 0.36 0.498 0.588 0.913 0.715 0.637 

– 0.65 0.689 0.56 0.618 0.629 0.747 0.683 0.653 

QA RTE2 0.85 0.696 0.32 0.438 0.558 0.86 0.677 0.59 

RTE3 0.7 0.598 0.55 0.573 0.583 0.63 0.606 0.59 

– 0.75 0.645 0.49 0.557 0.589 0.73 0.652 0.61 

SUM RTE2 0.65 0.675 0.52 0.587 0.61 0.75 0.673 0.635 

RTE3 0.6 0.656 0.59 0.621 0.627 0.69 0.657 0.64 

– 0.5 0.613 0.76 0.679 0.684 0.52 0.591 0.64 

Overall RTE2 – 0.613 0.538 0.573 0.588 0.66 0.622 0.599 

RTE3 – 0.605 0.592 0.598 0.601 0.614 0.607 0.603 

– – 0.604 0.668 0.634 0.629 0.562 0.594 0.615 

 

Comparison of the proposed system performance with the systems submitted in the Fourth PASCAL 

Recognizing Textual Entailment Challenge10 (RTE 4) [42] in measuring 2–way entailment task reveals that 

among 45 submissions only 7 systems exhibited higher accuracy than our method.  

The T–H pairs in the RTE4 testset are also classified for the 3–way RTE task with 3 class levels: 

ENTAILMENT (E), CONTRADICTION (C), and UNKNOWN (U). Table 44 shows the performance of the 

method in labelling the T–H pairs in 3-way RTE task. In order to label the T–H pairs for 3–way classification, 

we set 2 threshold values THU and THL. The entailment score generated for any T–H pair is compared against 

THU first. If the entailment score exceeds THU, the given T–H pair is marked as E. Otherwise, the score is then 

compared against THL. If the score falls below THL, the given pair is marked as a case of C. A score lying in 

between THL and THU marks the pair as U. THU was already learned from Table 43. The value of THL is varied 

in the range of -0.9 and -0.1. The optimal performance obtained for the 3–way entailment classification task on 

the RTE4 testset is summarized in Table 44.  

 

                                                           
10 http://tac.nist.gov/publications/2008/index.html 



Table 44: Evaluation results on RTE4 testset for the 3–way entailment task (Th: Threshold, T: Total, C: 

Correctly labelled, Acc: Accuracy)  

Task Th_U Th_L Entailment Contradiction Unknown Overall 

T C Acc T C 

 

Acc T C 

 

Acc T C 

 

Acc 

IR 0.65 -0.2 150 84 0.56 45 10 0.22 105 77 0.73 300 171 0.57 

QA 0.75 -0.5 100 49 0.49 30 2 0.067 70 49 0.7 200 100 0.5 

SUM 0.5 -0.5 100 75 0.75 30 8 0.27 70 36 0.514 200 119 0.595 

IE 0.5 -0.3 150 125 0.83 45 3 0.06 105 25 0.238 300 153 0.51 

Overall - - 500 333 0.67 150 23 0.153 350 187 0.534 1000 543 0.543 

 

As can be observed from Table 44, the method exhibits accuracy of 67%, 15.3% and 53.4% for the 

ENTAILMENT, CONTRADICTION and UNKNOWN classes, respectively, thus attaining an overall accuracy 

of 54.3% for the 3– way TE problem.  

Out of total 66 submissions in RTE4 challenge [42], 33 systems addressed the problem of the 3–way TE task. 

Out of those 33, 16 systems show better performance than our method.    

It is evident from Table 44 that the accuracy for the CONTRADICTION class came out to be very low 

compared to the ENTAILMENT and UNKNOWN classes. In order to specifically handle the contradictory 

cases, Rule 4 was designed under the Single Triplet Dependency (STD) category. However, this rule can be 

successfully applied where two dependency triplets related to each other have an antonym token pair directly 

associated within them. A thorough analysis of the T–H pairs belonging to the CONTRADICTION class in the 

RTE4 testset revealed that the way the T–H pairs express the contradiction are very hard to be detected by a 

dependency parser based method resulting in very low score for this particular class.     

6. Analysis 

This section comprises of two parts. The first subsection analyses the effectiveness of the various rules designed 

under lexical triplet matching module (cf. subsection 3.7.1) and semantic similarity matching module (cf. 

subsection 3.7.2) on the overall performance of the method. The second subsection provides an in-depth error 

analysis of the proposed method.   

6.1 Analysis of several matching rules in overall performance of the method 

In order to show the contribution of the matching rules designed under several categories in overall performance 

of the method, we built 5 different models and tested our method on the RTE3 dataset using each of these 5 

models. The 5 models are described in Table 45.  

                                                     Table 45. Selection of models 

Model # Combination of Components 

Model 1 Only identical triplets matching; no rules are applied. 

Model 2 All rules of the STD category  

Model 3 Model 2 + All rules of  the JTD category 

Model 4 Model 1+ Rules belonging to semantic similarity matching module 

Model 5 The entire system comprising all rules 

 

The T–H pairs of the RTE3 devset are subjected to each of the 5 models separately and the method accuracy is 

measured varying the threshold between 0.05 and 0.95. Table 46 presents the highest accuracy for each of the 4 

tasks as well as the overall performance obtained from applying each of the 5 models. Task specific highest 



accuracies obtained from the 5 models are shown in bold in Table 46. The performance analysis using bar 

graphs are shown in Figure. 30. 

 Table 46. Task-wise highest accuracies for different models on the RTE3 devset 

Task Model 1 Model 2 Model 3 Model 4 Model 5 

IE 46.5 55.5 54 53.5 53.5 

IR 63 67.5 69.5 67 66.5 

QA 73 72.5 72.5 67.5 71 

SUM 65.5 65 63.5 65 64.5 

Overall 60.38 63.25 64 60.5 63.38 

 

Figure. 30:  Task-wise Performance Analysis on the RTE3 development set 

As Model 1 considers only identical triplet matching and does not make use of any rules, it serves as our 

baseline model and hypothetically it should perform the poorest among all the 5 models, which is indeed the 

case. However, as Figure. 30 shows, this model produces the best results for the QA and SUM tasks. Model 2 

significantly improves the overall performance which indicates the effectiveness of the rules in the STD 

category. Model 2 also produces the best score for the IE task. Model 3 slightly improves over Model 2 and it 

produces the overall best performance among all the models which denotes the worthiness of the rules under the 

JTD category. Model 3 also yields in the best scores for the IR task. Model 4 performs marginally better than 

the baseline model, however, it performs significantly poorer than Model 2 and Model 3. This suggests that the 

rules belonging to semantic similarity matching module are also useful, but not as much as the STD and JTD 

rules on the RTE3 devset. The fact that Models 2, 3 and 4 improve over the baseline model (i.e., Model 1) 

corroborates the contribution of the rules synthesized under the STD, JTD and semantic similarity matching 

modules. Although according to our philosophy, Model 5, comprising of all the modules, should achieve the 

highest performance, it was observed that Model 5 performs poorer than Model3. This might be an indication 

that the combination of STD-JTD and semantic similarity matching rules seems to be hurting the performance 

of the method on the RTE3 devset. 



Each of the 5 models as stated were also applied separately on the RTE3 test set and the task–wise highest 

performance from the different models and the overall performance are presented in Table 47. Figure. 31 gives a 

pictorial representation of Table 47 using bar graphs.   

Table 47. Task wise highest accuracies using 5 models on RTE3 testset 

Task Model 1 Model 2 Model 3 Model 4 Model 5 

IE 51 54.5 56 54 55 

IR 60.5 60.5 61.5 63 62 

QA 65 66 69 65.5 73.5 

SUM 58 61.5 59 62.5 60.5 

Overall 58 58.63 59.25 58.88 62.8 

                                    

 

Figure. 31: Task-wise Performance Analysis on RTE3 test set 

As can be observed from Figure. 31, Model 2 performs better than Model 1 for almost all the tasks. Model 3 

improves the overall method performance over Model 2. Model 4 improves over the baseline model. In contrast 

to the results on the RTE3 devset, Model 4 provides better results than Model 2 on the RTE3 test set. Similarly, 

unlike in case of the RTE3 devset, Model 5 produces the overall best performance.  

6.2 Error Analysis  

We manually analyzed a subset of the T–H pairs in the development sets and test sets for which the method 

resulted in false positives and false negatives, which in turn diminish the performance of the method. We 

observed three sources of errors which are discussed below. 



 Errors in RTE datasets  

 Errors of the embedded tools 

 Error of the proposed method 

6.2.1 Errors in RTE datasets There are many typographical errors scattered among several data pairs in the 

RTE datasets. An example data pair from the RTE2 development set containing such error is shown below with 

the erroneous word highlighted in bold font. The adverse effects of such errors on calculating the entailment 

score for a particular T–H pair finally leading to diminishing the ultimate method accuracy is also illustrated.  

Example 12:  

<pair id="80" entailment="YES" task="QA"> 

<t>About 33.5 million people live in this massive conurbation. I would guess that 95% of the 5,000 officially 

foreign-capital firms in Japan are based in Tokyo.</t> 

<h>About 33.5 miilion people live in Tokyo.</h> 

</pair> 

Due to the presence of such typing mistakes in the dataset, the dependency parser also generates erroneous 

outputs. Table 45 shows some of the relevant text and hypothesis dependency triplets for the above T–H pair as 

produced by the dependency parser.  

Table 45: Dependency triplets produced for the T–H pair in Example 12 

Text dependency triplets Hypothesis dependency triplets 

quantmod(million-3, About-1)  

number(million-3, 33.5-2)  

num(people-4, million-3) 

quantmod(33.5-2, About-1) 

num(people-4, 33.5-2) 

nn(people-4, miilion-3) 

 

Since in the given T–H pair, the text (T) is free from typos, the corresponding text dependency triplets as shown 

in the first column of Table 45 are all correct. However, the typographical error existing in the hypothesis 

permeates in dependency parsing resulting in incorrect triplets as shown in the second column of the table, 

which do not match with any of the text triplets leading to generating a low entailment score (0.45) which falls 

below the threshold value. Therefore, the method incorrectly labels the above T–H pair as a case of NO 

entailment. It is evident that this type of error occurs entirely due to the problems in the dataset itself and not 

due to the proposed method.   

Since the RTE datasets serve as standard datasets, for a fair comparison we tested the method on the dataset 

without making any corrections to these erroneous words or using any text normalizer. Therefore, the presence 

of such typographical errors decreases the accuracy of our method to a certain extent despite the fact that this is 

not a drawback of our method per se. A few examples having such typing errors from the various RTE datasets 

are provided in Table 46 with the erroneous words highlighted in bold fonts.  

Table 46: Examples of erroneous T–H pairs in the RTE datasets 

RTE 

dataset# 

T–H pair 

RTE1 dev1 <pair id="56" value="TRUE" task="IR"> 

<t>Euro-Scandinavian media cheer Denmark v Sweden draw.</t> 

<h>Denmark and Sweden tie.</h> 

</pair> 

RTE2 dev <pair id="436" entailment="YES" task="QA"> 

<t>Edward VIII shocked the world in 1936 when he gave up his throne to marry an American 

divorcee, Wallis Simpson.</t> 

<h>King Edward VIII abdictated in 1936.</h> 

</pair> 

RTE2 dev <pair id="740" entailment="YES" task="QA"> 



<t>Edwin Hubble is recongized as having been one of the foremost astronomers of the modern 

era.</t> 

<h>Edwin Hubble was an astronomer. </h> 

</pair> 

RTE2 dev <pair id="664" entailment="YES" task="SUM"> 

<t>Radical Jordanian cleric, Abu Qatada, and nine other foreign nationals said to pose a threat 

to the UK's security, have been detained, pending deportation.</t> 

<h>10 foreign nationals were a threat to Britian's national security. </h> 

</pair> 

RTE2 dev <pair id="15" entailment="YES" task="IR"> 

<t>A juvenile hacker who crippled an airport tower for six hours, damaged atown's phone 

system, and broke into pharmacy records has been charged in afirst-ever federal prosecution, 

the U.S. Attorney's office announcedtoday. </t> 

<h>Non-authorized personnel illegally entered into computer networks.</h> 

</pair> 

RTE2 dev <pair id="630" entailment="YES" task="IR"> 

<t>These early men learned to make fire. They traveled over land bridges from Africa, and 

began to populate the world, about 1 million years ago. </t> 

<h>Humans existed 10,000 years ago.</h> 

</pair> 

RTE3 dev <pair id="728" entailment="YES" task="SUM" length="short" > 

<t>The Arak plant, along with the discovery of a secret Iranian enrichment program in 2003, 

Tehran's refusal to cease uranium enrichment and findings by IAEA inspectors have increased 

suspicions about Iran s program.</t> 

<h>Iran's program is under suspicion because of the findings by IAEA inspectors.</h> 

</pair> 

 

6.2.2 Errors of the embedded tools The proposed method makes use of the following NLP tools.  

 Stanford dependency parser 

 Stanford POS tagger 

 Stanford stemmer 

 WordNet 2.1 

 RiTa  

 WordNet::Similarity package 

Some of these tools produce some incorrect outputs for some cases which ultimately degrades the accuracy of 

the proposed method. A few example T–H pairs from the RTE datasets are provided in Table 47 for which the 

Stanford dependency parser produces erroneous output. 

Table 47: Examples of T–H pairs for which dependency parser makes mistakes 

 

 

 

 

Pair Id# Dataset T–H pairs 

1 RTE1-dev2 T: Blair has sympathy for anyone who has lost their lives in Iraq. 

H: Blair is sympathetic to anyone who has lost their lives in Iraq. 

2 RTE2-dev T: American illusionist, James Randi, offered $1m to anyone able to prove, under 

observed conditions in a laboratory, that homeopathic remedies can really cure people. 

H: Illusionist James Randi offered a million dollars to anyone able to prove that 

homeopathy cures. 

3 RTE3-dev T: India and Pakistan have agreed to release hundreds of fishermen and other civilians in 

each other's jails, a goodwill measure that comes as part of a peace process between the 

two countries. 

H: India and Pakistan have decided to free hundreds of civilian prisoners in each others 

jails. 



Table 48: Outputs of the Stanford dependency parser for the examples in Table 47 

 

                                

Table 48 presents a few of the dependency triplets produced by the Stanford parser for the T–H pairs presented 

in Table 47 with the erroneous dependency triplets shown in bold fonts. The reason behind generating these 

wrong dependency triplets by the Stanford parser is errors made by the Stanford POS tagger which propagate in 

dependency parsing. The POS-tagged outputs of the Stanford POS tagger are also shown in Table 49 with the 

wrong POS tags being highlighted in bold fonts.  

Due to the incorrect dependency triplets generated by the parser, the correct hypothesis triplets H2 and H3 of 

Pair id 1 do not match with any of the text dependency triplets. For the same reason the incorrect hypothesis 

triplets H1 and H2 of pair id 2 do not satisfy any matching criterion for match with any of the correct text 

dependency triplets. The same holds true for pair id 3. Therefore, the errors of the embedded tools ultimately 

propagate to the final step where the entailment decision is taken.  

WordNet 2.1, the lexical database which has been used as the underlying lexical resource in our method, does 

not provide sufficient coverage for antonym relations. A few example T–H pairs from the RTE devsets are 

provided in Table 49 to illustrate the effect of this on our method. 

Table 49: Example T–H pairs from RTE datasets 

RTE dataset# T–H pair 

RTE1 dev1 <pair id="148" value="FALSE" task="RC"> 

<t>The Philippine Stock Exchange Composite Index rose 0.1 percent to 1573.65.</t> 

<h>The Philippine Stock Exchange Composite Index dropped.</h> 

</pair> 

RTE1 dev2 <pair id="1950" value="FALSE" task="IE"> 

<t>Crude oil dips below $43 on news that Russia’s justice ministry will not force Yukos to 

halt sales.</t> 

<h>Crude oil rises.</h> 

</pair> 

 

The tokens which are highlighted in bold fonts in the T–H pairs in Table 49 are antonyms of each other. 

However, due to inadequate coverage of antonyms in WordNet 2.1, they cannot be lexically aligned with each 

other. The WordNet::Similarity package is invoked which returns Wu-Palmer semantic scores of 0.35 and 0.33 

for the word pairs rise–drop and dip–rise respectively. If those word pairs can be lexically aligned to each other 

by the antonym relation, then rule 4 designed under the STD category (cf. subsection 3.7.1) can be applied to 

assign the scores for these cases and the final entailment scores for the above two T–H pairs would be much less 

than the threshold which would correctly label the pairs as cases of NO entailment.   

6.2.3 Error of the method  

The errors made the proposed method can be classified into two types: false positives, where the method 

incorrectly labels a T–H pair as a case of YES entailment, and false negatives, where a T–H pair is incorrectly 

Pair 

id # 

Text Dependency triplets POS-tagged 

text tokens 

Hypothesis Dependency triplets POS-tagged 

hypothesis 

tokens 

1 T1: nsubj(has-2, Blair-1)  

T2: dobj(has-2, sympathy-3) 

T3: nsubj(lost-8, sympathy-3) 

T4: rcmod(sympathy-3, lost-8)  

lost-VBN 

sympathy-NN 

H1:nsubj(sympathetic-3, Blair-1) 

H2: nsubj(lost-8, anyone-5)  

H3: rcmod(anyone-5, lost-8) 

 

lost-VBN 

sympathetic-JJ 

2 T1:amod(remedies-25, homeopathic-24)  

T2: nsubj(cure-28, remedies-25) 

remedies-NNS 

cure- VB 

H1:amod(cures-15,homeopathy-14)  

H2:dobj(prove-12, cures-15) 

cures-NNS 

prove-VB 

3 T1: xcomp(agreed-5, release-7) 

T2: dobj(release-7, hundreds-8) 

agreed-VBN 

release-VB 

H1:amod(hundreds-8, free-7) 

H2:prep_to(decided-5, hundreds-8) 

free-JJ 

decided-VBN 



labelled as a case of NO entailment. The reasons behind these two types of errors are explained with suitable 

examples.  

 False positive: There are many T–H pairs in the RTE datasets where each and every dependency triplet of 

the hypothesis matches with some text triplets satisfying any of the matching criterions (cf. section 3.7), 

resulting in a very high entailment score. Such high scores above the threshold value incorrectly label those 

T–H pairs as cases of YES entailments. An example T–H pair from the RTE1-dev1 set is provided below 

and the corresponding dependency parser outputs are presented in Table 50.   

 

Example 13:  

 

<pair id="1902" value="FALSE" task="IE"> 

 <t>Sonia Gandhi can be defeated in the next elections in India by BJP.</t> 

 <h>Sonia Gandhi is defeated by BJP.</h> 

</pair>   

Table 50: Sample dependency triplets for the T–H pair in Example 13 

Text dependency triplets Hypothesis dependency triplets 

T1: nn(Gandhi-2, Sonia-1) 

T2: nsubjpass(defeated-5, Gandhi-2) 

T3: aux(defeated-5, can-3) 

T4: auxpass(defeated-5, be-4) 

T5: root(ROOT-0, defeated-5) 

T6: det(elections-9, the-7) 

T7: amod(elections-9, next-8) 

T8: prep_in(defeated-5, elections-9) 

T9: prep_in(elections-9, India-11) 

T10:agent(defeated-5, BJP-13) 

 

 

H1: nn(Gandhi-2, Sonia-1) 

H2: nsubjpass(defeated-4, Gandhi-2) 

H3: auxpass(defeated-4, is-3) 

H4: root(ROOT-0, defeated-4) 

H5: agent(defeated-4, BJP-6) 

 

Table 51: Simulation of matching rules  

Hypothesis 

 triplet# 

Lexically matched 

with Text triplet# 

According to 

matching rule# 

Score assigned 

to P vector 

Score assigned 

on node 

H1 T1 1 1.0 Sonia 

H2 T2 1 1.0 Gandhi 

H3 T4 1 1.0 Is 

H4 NA (ROOT node) – 0 Defeat 

H5 T10 1 1.0 BJP 

 

Figure. 30 depicts the hypothesis graph where each node is assigned a value of 1.0 in its P score component 

according to the matching as shown in Table 51. The score components of each node are shown as an ordered 

set of quadruple where the 4 values in sequence represent {P, A, C, T} respectively (cf. Section 3.8).  

It is evident from the diagram that this T–H pair is marked as a case of YES entailment since the final 

entailment score accumulated at the ROOT node is 1.0. A few more examples of such T–H pairs for which the 

method generates false positives are given in Table 52. The proposed method cannot correctly detect these pairs 

as cases of NO entailments as each and every hypothesis dependency triplet finds its corresponding matching 

text triplet thereby assigning a P score of 1.0 to all the nodes of the hypothesis graph.  



                           

Figure. 30.  Hypothesis graph scoring for the T–H pair in Example 13  

Table 52: Examples T–H pairs in RTE datasets resulting in false positives 

Pair Id# RTE dataset # T–H pair 

1 RTE1-dev2 <pair id="2065" value="FALSE" task="QA"> 

<t>The slender tower is the second tallest building in Japan.</t> 

<h>The slender tower is the tallest building in Japan.</h> 

</pair> 

2 RTE1-dev2 <pair id="2064" value="FALSE" task="QA"> 

<t>The Osaka World Trade Center is the tallest building in Western Japan.</t> 

<h>The Osaka World Trade Center is the tallest building in Japan.</h> 

</pair> 

3 RTE2 dev <pair id="54" entailment="NO" task="IR"> 

<t>By the time a case of rabies is confirmed, the disease may have taken hold in 

the area. </t> 

<h>A case of rabies was confirmed.</h> 

</pair> 

4 RTE1 dev2 <pair id="2080" value="FALSE" task="QA"> 

<t>VCU School of the Arts In Qatar is located in Doha, the capital city of 

Qatar.</t> 

<h>Qatar is located in Doha.</h> 

</pair> 

5 RTE2 dev <pair id="406" entailment="NO" task="QA"> 

<t>In 2000 there were 10,578 divorces in Bulgaria, which represents 301 

divorces per 1000 marriages or a 1.3% divorce rate per 1000 inhabitants. </t> 

<h>In 2000 there were 301 divorces in Bulgaria.</h> 

</pair> 

6 RTE2 dev <pair id="413" entailment="NO" task="QA"> 

<t>A male rabbit is called a buck and a female rabbit is called a doe, just like 

deer.</t> 

<h>A female rabbit is called a buck. </h> 

</pair> 

 

auxpass 

is BJP 

Sonia 

root 

nsubjpass agent 

nn 

{1.0, 1.0, 0, 1.0} {1.0, 1.0, 0, 1.0} 

{1.0, 1.0, 0, 1.0} 

{1.0, 1.0, 1.0, 1.0} Gandhi 

{0, 0, (1+1+1)/3=1.0, 1.0} 

Entailment score=1.0 
ROOT 

defeat 



For the pair id 1 in Table 52, the superlative token tallest is associated with a modifier second in the text which 

is not present in the hypothesis. Similarly for the pair id 2, the argument Japan of the superlative word tallest is 

associated with the word western as a modifier in the text which is not present in the hypothesis. The text in the 

pair id 3 imparts a probabilistic situation by the highlighted phrase “may have” which is not captured by the 

method. In pair id 4, the entire hypothesis is contained within the text as highlighted. For each of the cases in 

pair id 5 and 6, although the text conveys different meaning from the hypothesis, all the hypothesis dependency 

triplets generated can be found in the text. For each of the T–H pairs listed in Table 52, all the hypothesis triplets 

match with some text triplets, finally generating an entailment score of 1. Therefore, the method incorrectly 

labels each of the above pairs as cases of YES entailments. N–gram matching or finding the longest common 

subsequence from a given T–H pair might be able to handle this problem to a certain extent.    

The JTD category which was designed under the lexical triplet matching module (cf. subsection 3.7.1) also 

produces some false positive outputs. To illustrate this issue, an example T–H pair from the RTE dataset is 

presented in Table 53.  

Table 53: Examples of false positive T–H pairs under JTD category  

RH RT
1 RT

2 (JDC) T–H pairs Dependency triples 

nsubjpass nsubjpass nn <pair id="2084" value="FALSE" task="QA"> 

<t>Microsoft Israel was founded in 1989 and 

became one of the first Microsoft branches 

outside the USA.</t> 

<h>Microsoft was established in 1989.</h> 

</pair> 

nsubjpass(founded-4, Israel-2) 

nn(Israel-2, Microsoft-1) 

 

nsubjpass(established-3, 

Microsoft-1) 

 

Although the relation nn has been identified as a Joint Dependency Compatible (JDC) relation under the JTD 

category 1, for this particular case (cf. Table 53), the method incorrectly labels it as a case of YES entailment.   

 False negatives There are also cases of T–H pairs for which the method cannot capture the similarity in 

dependencies properly and assigns unduly low scores which fall below the threshold value and therefore 

marks such T–H pairs as cases of NO entailments. One such example from the RTE1 dev1 set is given 

below. 

Example 14: 

 

<pair id="58" value="TRUE" task="IR"> 

 <t>Iraqi militants said Sunday they would behead Kim Sun-Il, a 33-year-old translator, within 24 hours 

unless plans to dispatch thousands of South Korean troops to Iraq were abandoned.</t> 

 <h>translator kidnapped in Iraq</h> 

</pair> 

 

Although a human reading of the text of the above T–H pair passively infers that the translator has been 

kidnapped but this fact is not clearly conveyed in the text to be easily understood by a dependency parsing 

based method. A close look at the corresponding T–H dependency triplets provided in Table 54 indicates 

that none of the hypothesis dependency triplets H1, H2 and H3 matches with any of those in the text, finally 

generating an entailment score of 0.  

Table 54: Dependency triplets produced by the Stanford parser for the T–H pair in Example 14   

Text dependency triplets Hypothesis dependency triplets 

 amod(militants-2, Iraqi-1) 

 nsubj(said-3, militants-2) 

 root(ROOT-0, said-3) 

 tmod(said-3, Sunday-4) 

 nsubj(behead-7, they-5) 

 aux(behead-7, would-6) 

 dep(said-3, behead-7) 

  

 

 

H1:nsubj(kidnapped-2, translator-1) 

H2:root(ROOT-0, kidnapped-2) 

H3:prep_in(kidnapped-2, Iraq-4) 



 nn(Sun-Il-9, Kim-8) 

 dobj(behead-7, Sun-Il-9) 

 det(translator-13, a-11) 

 amod(translator-13, 33-year-old-12) 

 appos(Sun-Il-9, translator-13) 

 num(hours-17, 24-16) 

 prep_within(Sun-Il-9, hours-17) 

 mark(abandoned-30, unless-18) 

 nsubjpass(abandoned-30, plans-19) 

 aux(dispatch-21, to-20) 

 infmod(plans-19, dispatch-21) 

 dobj(dispatch-21, thousands-22) 

 amod(Korean-25, South-24) 

 amod(troops-26, Korean-25) 

 prep_of(thousands-22, troops-26) 

 prep_to(dispatch-21, Iraq-28) 

 auxpass(abandoned-30, were-29) 

 advcl(behead-7, abandoned-30) 

 

There are many cases where the proposed method generates low entailment scores due to the reason stated 

above and thus fails to correctly label those T–H pairs as cases of YES entailments. A few such examples 

are provided in Table 55.  

 

Table 55: T–H pairs in RTE datasets that result in false negatives 

RTE dataset # T–H pair 

RTE1 dev1 <pair id="85" value="TRUE" task="IR"> 

<t>The country’s largest private employer, Wal-Mart Stores Inc., is being sued by a 

number of its female employees who claim they were kept out of jobs in management 

because they are women.</t> 

<h>Wal-Mart sued for sexual discrimination</h> 

</pair> 

RTE1 dev2 <pair id="1658" value="TRUE" task="IE"> 

<t>DAYTON, Ohio. A cargo plane bound for Montreal with a small quantity of 

hazardous chemicals crashed and exploded shortly after takeoff.</t> 

<h>Dayton is located in Ohio.</h> 

</pair> 

RTE1 dev1 <pair id="64" value="TRUE" task="IR"> 

<t>The wait time for a green card has risen from 21 months to 33 months in those same 

regions.</t> 

<h>It takes longer to get green card.</h> 

</pair> 

RTE2 dev <pair id="94" entailment="YES" task="IR"> 

<t>If legalization reduced current narcotics enforcement costs by one-third to one-fourth, 

it might save $6 - $9 billion per year. </t> 

<h>Drug legalization has benefits.</h> 

</pair> 

 

For each of the pairs listed in the table above, the text conveys the same meaning as that of the hypothesis, 

but in a totally different way which is very hard to be detected by a machine. Therefore, they result in false 

negatives.  

 

In the lexical alignment phase (cf. section 3.5), we considered only one WordNet lexical relation to align a 

token of the hypothesis with any text token. However, there are some cases where a combination of 2 or 

more lexical relations can align a token pair. An example T–H pair from the RTE dataset is presented in 

Table 56 to demonstrate this phenomenon.  

 



Table 56: Example T–H pair depicting the need of combining lexical relations for alignment of tokens  

RTE dataset# T–H pair Dependency triplets 

RTE1 dev1 <pair id="570" value="TRUE" task="QA"> 

<t>“I guess you have to expect this in a growing 

community”; said Mardelle Kean, who lives across the 

street from John Joseph Famalaro, charged in the death 

of Denise A. Huber, who was 23 when she disappeared 

in 1991.</t> 

<h>John J. Famalaro is accused of having killed Denise 

A. Huber.</h> 

</pair> 

prep_of(death-32, Huber-36) 

 

 

dobj(killed-8, Huber-11) 

 

The words ̒ ̓kill̓
̓
 ̓ and ̒ death ̓ as highlighted in the above table can be aligned to each other in the following 

way as depicted in the Figure. 31. Although the relations ̒ prep_of ̓ and ̒ dobj ̓ of the generated dependency 

triplets are equivalent to each other by the matching rule 2 under STD category (cf. subsection 3.7.1), still 

the triplets do not match with each other as the token pair kill–death cannot be lexically aligned in a single 

step.   

                                     
Figure. 31. Combining lexical relations for alignment of tokens 

  

There are many T–H pairs in the RTE datasets which can be properly labelled as cases of YES entailments 

only with the help of some logic driven methods like First Order Predicate Logic (FOPL) or employing 

some inference rule based techniques such as DIRT (Discovery of Inference Rules from Text) [34] etc. It is 

very difficult for a dependency parser based method alone to solve these cases correctly. A few examples 

are presented in Table 57 which can only be properly tackled by methods based on logical inferences.  

Table 57: Example of T–H pairs that can be handled by logic driven techniques 

RTE dataset# T–H pair 

RTE2 dev <pair id="231" entailment="YES" task="IE"> 

<t>Speaking of Jean Charles de Menezes, who was chased by armed officers into the 

station and shot five times at close range, his cousin, Alex Pereira, hinted today that his 

family would sue Scotland Yard over the killing.</t> 

<h>Jean Charles de Menezes is related to Alex Pereira.</h> 

</pair> 

RTE2 dev <pair id="290" entailment="YES" task="IE"> 

<t>Kaspars Ruklis, press official at the United States Embassy, told the Baltic News 

Service that Mrs. Bush chose to visit Latvia's Occupation.</t> 

<h>Kaspars Ruklis works for the United States Embassy.</h> 

</pair> 

RTE2 dev <pair id="332" entailment="YES" task="IE"> 

<t>Kevin Whitaker, who heads the Cuban affairs office at the Department of State, 

spoke with Lazo on two occasions about the effort to give his sons visas.</t> 

<h>Kevin Whitaker is a manager of the Department of State.</h> 

</pair> 

 

In the first example in Table 57, it is hard to detect for the method that if A is the cousin of B then A is related to 

B. Similarly in the 2nd example, if A is the press official at B, only a logic driven tool can determine that A works 

for B. In the 3rd case, the fact that A is a manager of the company B cannot be inferred from the statement A 

heads the company B by a dependency parser based method.  

The proposed method also faces problems in aligning multi-word expressions (MWE). Some examples are 

provided in Table 58 to illustrate the issue. The MWEs in the given T–H pairs are highlighted in bold fonts. In 

Derivationally 

related 
kil

l 

die 
Causes 

death 



spite of the existence of these MWEs in the WordNet, the lexical resource which has been used in the present 

work for the purpose of lexical alignment, problems still arise because of the presence of ambiguous entities. 

Table 58: Examples of T–H pair containing multi-word expressions 

Pair Id# RTE 

dataset# 

T–H pair 

1 RTE1 dev1 <pair id="131" value="TRUE" task="IR"> 

<t>Wasp and bee stings can be life threatening if you are allergic to the venom.</t> 

<h>bee stings can be fatal.</h> 

</pair> 

2 RTE2 dev <pair id="585" entailment="YES" task="IR"> 

<t>Since the fear of death is virtually a universal phenomenon, the death penalty is 

an unparalleled deterrent for people considering a crime.</t> 

<h>Capital punishment is a deterrent to crime.</h> 

</pair> 

3 RTE1- dev1 <pair id="570" value="TRUE" task="QA"> 

<t>“I guess you have to expect this in a growing community”; said Mardelle Kean, 

who lives across the street from John Joseph Famalaro, charged in the death of 

Denise A. Huber, who was 23 when she disappeared in 1991.</t> 

<h>John J. Famalaro is accused of having killed Denise A. Huber.</h> 

</pair> 

 

For the pair id 1 in Table 58, the two tokens life and threatening both are individual entities themselves. Since 

the dependency parser does not provide any information about MWEs, it is hard to detect life threatening as an 

MWE. If life threatening is identified as an MWE, then it becomes trivial to compute the semantic similarity 

between life threatening and fatal and align them accordingly. For the paid id 2, both capital punishment and 

death penalty are MWEs and are present in the WordNet as synonyms; still they cannot be lexically aligned 

since the dependency parsing based method cannot detect them as MWEs. Finally for the pair id 3, both the 

MWEs refer to the same named entity. However, since the name is abbreviated in the hypothesis, it cannot be 

aligned with its full form in the text. In addition to MWE detection, this T–H pair requires entity disambiguation 

module to correctly classify this pair.   

For this same reason as stated above, problem arises in matching acronyms to their corresponding expanded 

forms. Although WordNet contains some acronyms, however, there are many acronyms scattered in the various 

RTE datasets which are not available in the WordNet. Irrespective of whether the acronyms are present in the 

WordNet or not, the dependency relation based method cannot align these acronyms to their corresponding full 

forms. A few example T–H pairs from the RTE datasets containing such acronyms are shown in Table 59. The 

abbreviated forms and their corresponding expanded forms are highlighted in bold font.   

Table 59: Examples of T–H pairs containing acronyms 

RTE dataset # T–H pair Existence in 

WordNet 

RTE1 dev1 <pair id="569" value="TRUE" task="QA"> 

<t>Government forces killed the head of the Armed Islamic Group, or GIA, 

which has claimed responsibility for killing 61 foreigners in the last year.</t> 

<h>The abbreviation GIA stands for Armed Islamic Group.</h> 

</pair> 

Yes 

RTE1 dev1 <pair id="357" value="TRUE" task="MT"> 

<t>The funeral procession headed to the headquarters of the United Nations 

Development Programme in Baghdad, where funeral goers held banners 

denouncing the Americans as “Enemies of God”.</t> 

<h>The funeral procession had been directed to the UNDP headquarters in 

Baghdad, where signs denouncing Americans as “enemies of God” were 

seen.</h> 

</pair> 

No 



RTE1 dev1 <pair id="520" value="TRUE" task="PP"> 

<t>Only 18 states, including Massachusetts, have specific provisions that 

allow women who quit their jobs due to domestic violence to qualify for 

UI.</t> 

<h>18 states have provisions that permit women who quit their jobs because 

of domestic violence to collect unemployment insurance.</h> 

</pair> 

No 

RTE3 dev <pair id="754" entailment="YES" task="SUM" length="short" > 

<t>A team from the U.S. Centers for Disease Control boarded the ship when 

it docked in St. Maarten to oversee the cleaning operation and try to determine 

what caused the outbreak, Carnival said.</t> 

<h>The causes of the outbreak were searched for by a team from the U.S. 

CDC.</h> 

</pair> 

Yes 

RTE1 dev2 <pair id="2170" value="FALSE" task="CD"> 

<t>Hacking reported his wife missing on July 19, a Monday.</t> 

<h>Mark Hacking was booked into the Salt Lake County Jail on 

Monday.</h> 

</pair> 

Named Entity 

 

7. Conclusions and Future work We presented a dependency graph based textual entailment recognition 

method which combines lexical, syntactic and semantic features. After being subjected to a number of 

preprocessing operations, each of the text fragments of the T–H pair is individually parsed by a dependency 

parser to generate a dependency graph.  The stemmed hypothesis tokens are then aligned with one or more 

stemmed text tokens based on WordNet relations. Each of the generated hypothesis dependency triplet is 

compared against all the text triplets to find a corresponding matching pair. This matching operation is carried 

out on the basis of a set of matching rules which differ from each other on the basis of syntactic divergence 

between the lexically aligned tokens. However, if for any matched pair of dependency triplets, either of the 

governor and dependent text-hypothesis token pair is not aligned with each with other, semantic similarity 

module is invoked to find the most similar text token for that hypothesis token. After this matching module 

assigns a matching score (lying in the range of -1 to 1) to each node of the hypothesis dependency graph, the 

graph is traversed in level order fashion by accumulating the scores of the nodes starting from the bottommost 

level, gradually propagating the scores to the next higher levels until it reaches the topmost level where the final 

entailment score between the T–H pair is obtained at the root node. The score above a predetermined threshold 

labels the T–H pair as a case of YES entailment, otherwise it is marked as NO entailment. The experimental 

results show that our proposed method, being a combination of lexico-syntactic-semantic approach, is quite 

efficient in correctly taking the entailment decisions for a large portion of the RTE datasets. The method, 

although essentially a rule-based one, surpasses the accuracy of many methods which use other techniques such 

as semantic role labelling, logic driven tools, UNL dependency parser and machine learning based approaches 

found in the literature.  

The efficiency of the method can be further improved by overcoming the present limitations of aligning the 

multi word expressions, matching abbreviated named entities, handling the superlative degrees, combining 

multiple WordNet relations for lexical alignment of the tokens, mapping the acronyms to their corresponding 

expanded forms, etc. We would also integrate coreference resolution in our method for replacing the occurrence 

of the anaphors with their corresponding referring nouns or named entities. Due to memory constraints of the 

machine, we were not able to employ this tool for this present work. Moreover we have limited the maximum 

number of text dependency triplets jointly inferring one hypothesis triplet to two only which can be extended 

later to three or even more. In future, we plan to augment the method with MWE identification and entity 

disambiguation modules in order to efficiently handle the problem of aligning multiword expressions. We would 

also like to augment the method with logic driven tools to improve performance.  

Moreover, the rigorous effort which has been put to synthesize the matching rules will not be limited to this 

particular work only; rather experiments are being carried out for fruitful extension of this work to supervised 



machine learning framework where these developed matching rules are being used as sophisticated features for 

the classification task.  
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