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Abstract 
 

Artificial Neural Networks are processing models 
widely explored due to the inherent parallelism. 
Recently, Spiking Neural Networks (SNNs) have been 
studied. These models have the advantage of reducing 
the bandwidth needed for interchanging information 
among the processing elements, due to the 
communication scheme based on digital spikes. Many 
hardware architectures for artificial neural networks 
have been proposed as an alternative to 
implementations based on personal computers. In this 
work, efficient hardware implementation of SNN is 
addressed. A research overview is presented and some 
preliminary results as well. 
 
1. Introduction 
 

Artificial Neural Networks (ANNs) are parallel 
computational models comprised of densely 
interconnected, simple, adaptive processing units, 
characterized by an inherent propensity for storing 
experiential knowledge [1]. ANNs are widely used in a 
number of applications in which the Neural Networks 
are usually implemented as a software program on an 
ordinary digital computer. However, software 
implementations cannot utilize the essential property of 
parallelism found in biological Neural Networks. 

Spiking neurons differ from traditional 
connectionist models in the sense that the information 
is transmitted by means of pulses (or spikes), rather 
than by average firing rates, allowing spiking neurons 
to have richer dynamics and to exploit the temporal 
domain to encode or retrieve information in the 
exchanged spikes. 
 
2. Motivation 
 

Designing hardware architectures for simulating 
artificial neural networks is a great challenge because 

the computational complexity, area greedy, non linear 
operators and highly dense interconnection shown by 
these models. The biologically inspired parallelism of 
ANNs, is lost when ANNs are implemented in modern 
digital computers as software programs, due to their 
sequential processing scheme. 

Exploring new alternatives with respect to neural 
networks models is a current research area because 
recently new neuronal models has been proposed, 
specifically Spiking Neural Models (SNMs), which 
represent an alternative to classical models. In [3], the 
computational power of SNMs has been tested, which 
is comparable with the classical models, but SNMs 
requires less hardware resources. SNMs can do the 
same processing with less processing elements, which 
is a great advantage when implementing SNN in 
hardware. It is feasible to explore all the parallelism 
desired by implementing hardware architectures using 
Spiking Neuron Models, allowing improving the 
performance of many SNN applications. For fully 
exploiting the potential of SNN it would be necessary 
to develop efficient hardware implementation 
techniques. In the hardware domain, the challenge is to 
follow the biological and mathematical trends. 

High-performance hardware architectures could be 
a very interesting research area, due to the high volume 
of data that demands a high computational capability 
of neural networks. In [4], a comparison of neural 
networks implementations in different hardware 
platform has been made, and only one of the tested 
hardware platforms has proven to have enough 
computational power for simulating SNNs. Thus, it is 
required further investigation to find ways to map 
efficiently SNN on efficient parallel architectures. 

For building high density systems restricted to 
speed/power consumption, it is necessary to investigate 
architectural innovations and signal representations to 
efficiently exploit the abilities of SNN in real world 
applications where efficient hardware solutions are 
needed.  



3. State of the art 
 
The most interesting spiking neural networks 

implementations are described below. In [5], a simple 
model of the neuron is implemented in hardware, but 
simple neurons lack of representation power and this 
must be compensated by a higher number of neurons. 
Adaptation of synaptic weights is implemented with 
hebbian learning.  

In [6], SNNs topologies are explored using genetic 
algorithms. The neuron model implemented is based in 
the Leaky-Integrate and Fire model, which exhibits a 
reduced connectionism schema and low hardware 
resources requirements. A hardware architecture that 
used the Dynamic Partial Reconfiguration feature of 
Xilinx FPGAs is proposed, which allows the reusing of 
internal logic resources.  

In [7], neuron and interconnection architecture in a 
spiking neural network is given. The spiking neuron 
model used is LIF (Leaky-Integrate and Fire), where 
the two basic operations are decay and addition. The 
proposed architecture can implement three different 
schemes for adding the weights: parallel processing – 
serial arithmetic, serial processing – parallel arithmetic 
and serial processing – serial arithmetic. For the 
proposed schemes, equations for computing the 
number of LUTs (Look-Up Tables) required are 
proposed. 

 
4. Objective 
 

The main objective of this work is to design a high-
performance hardware architecture for simulating large 
spiking neural networks that exploits the parallelism 
shown in real neurons by implementing a large number 
of processing elements working in parallel. 
 
5. Methodology 
 
• Review the existing parallelism techniques and 

conclude which one is the appropriate for 
implementing spiking neural networks in 
hardware. 

• Define a hardware architecture that allows the 
user to configure the spiking neural network to 
adapt it to the problem to be solved. Feed-
forward architecture with SpikeProp learning rule 
is proposed, but other learning algorithms and 
network architectures are not discarded.  

• Define a testbench that allows measuring the 
results obtained from the proposed architecture 
and compares them with results obtained from 
related work. 

6. Current State of the Research 
 

In this work, learning algorithms for SNNs have 
been evaluated. SpikeProp [8] is one of the most 
explored SNNs learning algorithms, and extensive 
tests and improvements around this algorithm have 
been made in the literature. In this work some of these 
algorithms have been codified in C language, and 
some improvements have been made to the SpikeProp 
algorithm. The previous results of our work with this 
algorithm are presented in table 1. 

 
Algorithms Inputs Hidden Output Iterations Accuracy 
[8] 50 10 3 1000 97.7 
Ours 50 10 3 250 92.0 

Table 1. Test of learning algorithms on iris data set 
 
A simplified Leaky-integrate-and fire model has 

been implemented in Handel-C HDL. The model has 
an exponential element in its synapses, which is 
modeled as a weighted first order recursive filter. The 
output of the synapses is feed to the soma. The 
threshold value is user definable. The model has two 
inputs, one for an input spike and one for an 8-bit 
weight, and one output for the output spike. Synthesis 
results using a Virtex-II Pro FPGA for a simple 
Neuron are presented in table 2. 

 
Slice Flip-Flops 12 

4 Input LUT 5 
Total Slices 8 

Total FPGA Slices 13,696 
Estimated Neurons in an FPGA 

(using only an half of total slices) 
856 

Table 2. Estimated neurons in a Virtex II Pro FPGA 
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