
Towards the Implementation of a Parallel Hardware Architecture for Spiking
Neural Networks

Marco Nuño-Maganda, Miguel Arias-Estrada, Cesar Torres-Huitzil
National Institute for Astrophysics, Optics and Electronics (INAOE)

Luis Enrique Erro No 1, Sta. María Tonantzintla, Puebla, C. P. 72000.
nmaganda@inaoep.mx, ariasm@inaoep.mx, ctorres@inaoep.mx,

Abstract

Artificial Neural Networks are processing models
widely explored due to the inherent parallelism.
Recently, Spiking Neural Networks (SNNs) have been
studied. These models have the advantage of reducing
the bandwidth needed for interchanging information
among the processing elements, due to the
communication scheme based on digital spikes. Many
hardware architectures for artificial neural networks
have been proposed as an alternative to
implementations based on personal computers. In this
work, efficient hardware implementation of SNN is
addressed. A research overview is presented and some
preliminary results as well.

1. Introduction

Artificial Neural Networks (ANNs) are parallel
computational models comprised of densely
interconnected, simple, adaptive processing units,
characterized by an inherent propensity for storing
experiential knowledge [1]. ANNs are widely used in a
number of applications in which the Neural Networks
are usually implemented as a software program on an
ordinary digital computer. However, software
implementations cannot utilize the essential property of
parallelism found in biological Neural Networks.

Spiking neurons differ from traditional
connectionist models in the sense that the information
is transmitted by means of pulses (or spikes), rather
than by average firing rates, allowing spiking neurons
to have richer dynamics and to exploit the temporal
domain to encode or retrieve information in the
exchanged spikes.

2. Motivation

Designing hardware architectures for simulating
artificial neural networks is a great challenge because

the computational complexity, area greedy, non linear
operators and highly dense interconnection shown by
these models. The biologically inspired parallelism of
ANNs, is lost when ANNs are implemented in modern
digital computers as software programs, due to their
sequential processing scheme.

Exploring new alternatives with respect to neural
networks models is a current research area because
recently new neuronal models has been proposed,
specifically Spiking Neural Models (SNMs), which
represent an alternative to classical models. In [3], the
computational power of SNMs has been tested, which
is comparable with the classical models, but SNMs
requires less hardware resources. SNMs can do the
same processing with less processing elements, which
is a great advantage when implementing SNN in
hardware. It is feasible to explore all the parallelism
desired by implementing hardware architectures using
Spiking Neuron Models, allowing improving the
performance of many SNN applications. For fully
exploiting the potential of SNN it would be necessary
to develop efficient hardware implementation
techniques. In the hardware domain, the challenge is to
follow the biological and mathematical trends.

High-performance hardware architectures could be
a very interesting research area, due to the high volume
of data that demands a high computational capability
of neural networks. In [4], a comparison of neural
networks implementations in different hardware
platform has been made, and only one of the tested
hardware platforms has proven to have enough
computational power for simulating SNNs. Thus, it is
required further investigation to find ways to map
efficiently SNN on efficient parallel architectures.

For building high density systems restricted to
speed/power consumption, it is necessary to investigate
architectural innovations and signal representations to
efficiently exploit the abilities of SNN in real world
applications where efficient hardware solutions are
needed.

3. State of the art

The most interesting spiking neural networks

implementations are described below. In [5], a simple
model of the neuron is implemented in hardware, but
simple neurons lack of representation power and this
must be compensated by a higher number of neurons.
Adaptation of synaptic weights is implemented with
hebbian learning.

In [6], SNNs topologies are explored using genetic
algorithms. The neuron model implemented is based in
the Leaky-Integrate and Fire model, which exhibits a
reduced connectionism schema and low hardware
resources requirements. A hardware architecture that
used the Dynamic Partial Reconfiguration feature of
Xilinx FPGAs is proposed, which allows the reusing of
internal logic resources.

In [7], neuron and interconnection architecture in a
spiking neural network is given. The spiking neuron
model used is LIF (Leaky-Integrate and Fire), where
the two basic operations are decay and addition. The
proposed architecture can implement three different
schemes for adding the weights: parallel processing –
serial arithmetic, serial processing – parallel arithmetic
and serial processing – serial arithmetic. For the
proposed schemes, equations for computing the
number of LUTs (Look-Up Tables) required are
proposed.

4. Objective

The main objective of this work is to design a high-
performance hardware architecture for simulating large
spiking neural networks that exploits the parallelism
shown in real neurons by implementing a large number
of processing elements working in parallel.

5. Methodology

• Review the existing parallelism techniques and

conclude which one is the appropriate for
implementing spiking neural networks in
hardware.

• Define a hardware architecture that allows the
user to configure the spiking neural network to
adapt it to the problem to be solved. Feed-
forward architecture with SpikeProp learning rule
is proposed, but other learning algorithms and
network architectures are not discarded.

• Define a testbench that allows measuring the
results obtained from the proposed architecture
and compares them with results obtained from
related work.

6. Current State of the Research

In this work, learning algorithms for SNNs have
been evaluated. SpikeProp [8] is one of the most
explored SNNs learning algorithms, and extensive
tests and improvements around this algorithm have
been made in the literature. In this work some of these
algorithms have been codified in C language, and
some improvements have been made to the SpikeProp
algorithm. The previous results of our work with this
algorithm are presented in table 1.

Algorithms Inputs Hidden Output Iterations Accuracy
[8] 50 10 3 1000 97.7
Ours 50 10 3 250 92.0

Table 1. Test of learning algorithms on iris data set

A simplified Leaky-integrate-and fire model has

been implemented in Handel-C HDL. The model has
an exponential element in its synapses, which is
modeled as a weighted first order recursive filter. The
output of the synapses is feed to the soma. The
threshold value is user definable. The model has two
inputs, one for an input spike and one for an 8-bit
weight, and one output for the output spike. Synthesis
results using a Virtex-II Pro FPGA for a simple
Neuron are presented in table 2.

Slice Flip-Flops 12

4 Input LUT 5
Total Slices 8

Total FPGA Slices 13,696
Estimated Neurons in an FPGA

(using only an half of total slices)
856

Table 2. Estimated neurons in a Virtex II Pro FPGA

7. References

[1] S. Haykin. Neural Networks: A Comprehensive Foundation. New York:
Macmillan College Publishing Company, 1999.
[2] Maass, W. and Bishop, C. M. (1998). Pulsed Neural Networks. MIT Press,
1998.
[3] Simon Johnston, Girijesh Prasad, Liam P. Maguire, T. Martin McGinnity:
Comparative Investigation into Classical and Spiking Neuron
Implementations on FPGAs. ICANN (1) 2005: 269-274.
[4] A. Jahnke, T. Schoenauer, U. Roth, K. Mohraz and H. Klar, Simulation of
Spiking Neural Networks on Different Hardware Platforms, International
Conference on Artificial Neural Networks (ICANN), Springer Verlag Berlin,
1997, Page(s): 1187-1192.
[5] Upegui A, Peña-Reyes C, Sanchez E. Hardware Implementation of a
Network of Functional Spiking Neurons with Hebbian Learning. BioADIT
2004: 233-243
[6] Upegui A, Peña-Reyes C, Sanchez E. An FPGA platform for on-line
topology exploration of spiking neural networks, Microprocessors and
Microsystems, Elsevier Science, Volume 29, Issue 5, Pages 211-223, 2005
[7] Schrauwen, B.; D'Haene, M. Compact Digital Hardware Implementations
of Spiking Neural Networks. Sixth FirW PhD Symposium. 2005.
[8] S. M. Bohte, H.La Poutré and J.N. Kok. SpikeProp: Error-
Backpropagation for in Multi-Layer Networks of Spiking Neurons, 2002,
Neurocomputing, November 2002, 48(1-4), pp 17-37

