A test for non-compactness of the foliation of a Morse form

I. A. Mel'nikova

In this paper we study foliations determined by a closed 1-form with Morse singularities on smooth compact manifolds. The problem of the topological structure of the level surfaces of such forms was posed by Novikov in [1], and has been studied in [2]-[5]. In the present article we investigate the problem of the existence of a non-compact leaf, verify a test for non-compactness of a foliation in terms of the degree of irrationality of the form ω, and show that the non-compactness of a foliation is a case of general position.

We consider a compact manifold M and a closed 1 -form ω with Morse singularities defined on it. The closed form ω determines a foliation of codimension 1 on the set $M-\operatorname{Sing} \omega$. Correspondingly, a foliation \mathcal{F}_{ω} with singularities is obtained on M by adjoining the singular points to $M-\operatorname{Sing} \omega$. We say that a leaf $\gamma \in \mathcal{F}_{\omega}$ is compact if it is a non-singular compact leaf or can be compactified by adding singular points. The foliation \mathcal{F}_{ω} is said to be compact if all its leaves are compact.

Definition 1. Let γ be a non-singular compact leaf of \mathcal{F}_{ω}, and consider the map $\gamma \rightarrow$ $[\gamma] \in H_{n-1}(M)$. Then the image of the set of compact leaves under this map generates a subgroup of $H_{n-1}(M)$. Denote it by H_{ω}.

The foliation \mathcal{F}_{ω} is characterized by the condition that $\gamma \cap \gamma^{\prime}=\varnothing$ for $\gamma, \gamma^{\prime} \in \mathcal{F}_{\omega}$. We consider the group $H_{n-1}(M)$ and the intersection operation for homology classes,

$$
H_{n-1}(M) \times H_{n-1}(M) \rightarrow H_{n-2}(M)
$$

If γ and γ^{\prime} are non-singular compact leaves of \mathcal{F}_{ω}, then $[\gamma] \circ\left[\gamma^{\prime}\right]=0$.
Definition 2. Let $H \subset H_{n-1}(M)$ be a subgroup such that $x \circ y=0$ for all $x, y \in H$. We say that H is an isotropic subgroup with resepct to the intersection operation for cycles. An isotropic subgroup H is said to be maximal if for all $x \notin H$ there is a $y \in H$ such that $x \circ y \neq 0$. The rank of a maximal isotropic subgroup is denoted by $h_{0}(M)$.

The subgroup H_{ω} of compact leaves is clearly an isotropic subgroup of $H_{n-1}(M)$. It can be shown that $h_{0}(M)$ is not uniquely determined. Let $h_{0}^{\max }(M)$ denote the maximal value of $h_{0}(M)$.

Definition 3 [1]. The degree of irrationality of the form ω is defined to be

$$
\operatorname{dirr} \omega=\operatorname{rk}_{\mathbb{Q}}\left\{\int_{z_{1}} \omega, \ldots, \int_{z_{m}} \omega\right\}-1
$$

where z_{1}, \ldots, z_{m} is a basis in $H_{1}(M)$.
It was proved in [1] that if $\operatorname{dirr} \omega=0$, then the foliation \mathcal{F}_{ω} is compact. The following test for non-compactness of a foliation on M_{g}^{2} was proved in [6].
Theorem 2 [6]. If $\operatorname{dirr} \omega \geq g$ on M_{g}^{2}, then the foliation \mathcal{F}_{ω} has a non-compact leaf.
We prove a generalization of this theorem to a manifold of arbitrary dimension.
Theorem. If the foliation \mathcal{F}_{ω} on a manifold M is determined by a Morse form ω and $\operatorname{dirr} \omega \geq$ $h_{0}^{\max }(M)$, then \mathcal{F}_{ω} has a non-compact leaf.

Proof. Suppose that the foliation \mathcal{F}_{ω} is compact, and consider a non-singular leaf $\gamma \in \mathcal{F}_{\omega}$. Since $\left.\omega\right|_{\gamma}=0$, the form is exact in some neighbourhood of $\gamma: \omega=d f$ and the leaves of \mathcal{F}_{ω} are the levels of the function f. In a neighbourhood where grad $f \neq 0$ (that is, the form ω is non-singular) all the leaves are diffeomorphic. Thus, each non-singular leaf γ has a neighbourhood consisting of leaves diffeomorphic to it.

Let $\mathcal{O}(\gamma)$ denote a maximal such neighbourhood. This neighbourhood is the cylinder with generator $\gamma: \mathcal{O}(\gamma)=\gamma \times \mathbb{R}$. We consider its closure $V=\overline{\mathcal{O}(\gamma)}$. The boundary of V contains at least one critical point of the form ω. Let γ^{\prime} be another non-singular compact leaf of \mathcal{F}_{ω}. Obviously, the cylinders $\mathcal{O}(\gamma)$ and $\mathcal{O}\left(\gamma^{\prime}\right)$ either are disjoint or coincide, and $V \cap V^{\prime} \subset \partial V \cup \partial V^{\prime}$.

Since ω is a Morse form and M a compact manifold, there are finitely many singular points. Consequently, the number of different cylinders $\mathcal{O}(\gamma)$ is also finite. Thus, the manifold M on which the compact foliation is given can be represented in the form

$$
M=\bigcup_{i=1}^{N} \mathcal{O}\left(\gamma_{i}\right) \bigcup_{k=1}^{K} \gamma_{k}^{0} \bigcup_{j=1}^{I} p_{j}
$$

where the p_{j} are the singular points of ω, and the γ_{k}^{0} are the singular leaves of \mathcal{F}_{ω}.
Let $V_{i}=\overline{\mathcal{O}\left(\gamma_{i}\right)}$ and let $T=\bigcup_{i=1}^{N} \partial V_{i}$. Obviously, $p_{j} \in T$ and $\gamma_{k}^{0} \in T$. Then $M=\bigcup_{i=1}^{N} V_{i}$, and $V_{i} \cap V_{j} \subset T$.

We investigate the connection between the homology $H_{1}(M)$ and the representation $M=$ $\bigcup_{i=1}^{N} V_{i}$. Using the exact Mayer-Vietoris sequence, we can show that $H_{1}(M)=\left\langle i_{k^{*}} H_{1}\left(V_{k}\right), D\left[\gamma_{k}\right]\right.$, $k=1, \ldots, N\rangle$, where $i_{k}: V_{k} \rightarrow M$. Since $V_{k}=\overline{\mathcal{O}\left(\gamma_{k}\right)}, \partial V_{k} \cap \operatorname{Sing} \omega \neq \varnothing$, and the form ω is locally exact, by considering Morse surgery at a singular point we deduce that $H_{1}(M)=$ $\left\langle j_{k_{*}} H_{1}\left(\gamma_{k}\right), D\left[\gamma_{k}\right], k=1, \ldots, N\right\rangle$, where $j_{k}: \gamma_{k} \rightarrow M$ is an embedding.

Let us compute the periods of the form ω. It suffices to consider a $z \in H_{1}\left(\gamma_{i}\right)$ with $z=D\left[\gamma_{i}\right]$. Obviously, $\int_{z} \omega=0$ for all $z \in H_{1}\left(\gamma_{i}\right)$, because $\gamma_{i} \in \mathcal{F}_{\omega}$. Consequently, on M only integrals over cycles transversal to γ_{i} can be non-zero: $z_{i}=D\left[\gamma_{i}\right], i=1, \ldots, N$. Furthermore, the number of integrals $\int_{z_{i}} \omega$ independent over \mathbb{Q} obviously does not exceed the number of independent classes $\left[\gamma_{i}\right]$, that is, rk H_{ω}. Thus, on the manifold M

$$
\operatorname{dirr} \omega=\operatorname{rk}_{\mathbb{Q}}\left\{\int_{z_{1}} \omega, \ldots, \int_{z_{k}} \omega\right\}-1
$$

where $k=\operatorname{rk} H_{\omega}$. Consequently, $\operatorname{dirr} \omega \leq \operatorname{rk} H_{\omega}-1 \leq h_{0}^{\max }(M)-1$. The theorem is proved.
It is not hard to show that $h_{0}\left(M_{g}^{2}\right)=g$, and then Theorem 2 in [6] follows immediately from the theorem proved.

We consider Morse forms in general position.
Corollary. If on a manifold M the intersection of the $(n-1)$-dimensional homology classes is not identically zero, then the foliation of a form in general position has a non-compact leaf.

Proof. Since the intersection of the homology classes is not identically zero, it follows that $h_{0}(M)<$ $\beta_{1}(M)$. A form in general position has maximal degree of irrationality dirr $\omega=\beta_{1}(M)-1$. Consequently, $\operatorname{dirr} \omega \geq h_{0}(M)$, and the foliation \mathcal{F}_{ω} has a non-compact leaf by the theorem. The corollary is proved.

Bibliography

[1] S. P. Novikov, Uspekhi Mat. Nauk 37:5 (1982), 3-49; English transl. in Russian Math. Surveys 37:5 (1982).
[2] S. P. Novikov, Trudy Mat. Inst. Steklov. 166 (1984), 201-209; English transl. in Proc. Steklov Inst. Math. 1986, no. 1.
[3] A. V. Zorich, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 1322-1344; English transl. in Math. USSR-Izv. 31 (1988).
[4] Le Ty Kuok Tkhang, Mat. Zametki 44 (1988), 124-133; English transl. in Math. Notes 44 (1988).
[5] L. A. Alaniya, Uspekhi Mat. Nauk 46:3 (1991), 179-180; English transl. in Russian Math. Surveys 46:3 (1991).
[6] I. A. Mel'nikova, Mat. Zametki 53:3 (1993), 158-160; English transl. in Math. Notes 53:3 (1993).

Moscow State University

