Studia Scientiarum Mathematicarum Hungarica 46 (4), 547-557 (2009) DOI: 10.1556/SScMath.2009.1108 First published online 4 July, 2009

NUMBER OF MINIMAL COMPONENTS AND HOMOLOGICALLY INDEPENDENT COMPACT LEAVES FOR A MORSE FORM FOLIATION

IRINA GELBUKH*

Department of Mathematics, Moscow State University, Russia Current address: CIC, IPN, 07738, DF, Mexico e-mail: gelbukh@member.ams.org

Communicated by A. Némethi

(Received May 3, 2007; accepted May 5, 2008)

Abstract

The numbers $m(\omega)$ of minimal components and $c(\omega)$ of homologically independent compact leaves of the foliation of a Morse form ω on a connected smooth closed oriented manifold M are studied in terms of the first non-commutative Betti number $b'_1(M)$. A sharp estimate $0 \leq m(\omega) + c(\omega) \leq b'_1(M)$ is given. It is shown that all values of $m(\omega) + c(\omega)$, and in some cases all combinations of $m(\omega)$ and $c(\omega)$ with this condition, are reached on a given M. The corresponding issues are also studied in the classes of generic forms and compactifiable foliations.

1. Introduction and announce of the results

Consider a connected closed oriented manifold M with a Morse form ω , i.e., a closed 1-form with Morse singularities $\operatorname{Sing} \omega$ (locally the differential of a Morse function). This form defines a foliation \mathcal{F}_{ω} on $M \setminus \operatorname{Sing} \omega$.

The number $m(\omega)$ of minimal components and $c(\omega)$ of homologically independent compact leaves are important topological characteristics of the foliation. For example, if \mathcal{F}_{ω} is compactifiable, i.e. $m(\omega) = 0$, then $\operatorname{rk} \omega \leq c(\omega)$, where $\operatorname{rk} \omega$ is the number of its incommensurable periods; for the the cycle rank $m(\Gamma)$ of the foliation graph Γ it holds $m(\Gamma) = c(\omega)$ (Section 2.1; [4]).

Considerable effort has been devoted to estimating these numbers. Obviously, $c(\omega) \leq b_1(M)$, where $b_1(M)$ is the Betti number; in [1] (dim $M \geq 3$) and [7] (M_g^2) it was shown that $2m(\omega) \leq b_1(M)$. In [4] these facts were

Key words and phrases. Morse form foliation, minimal components, compact leaves.

²⁰⁰⁰ Mathematics Subject Classification. Primary 57R30, 58K65.

^{0081-6906/\$ 20.00 © 2009} Akadémiai Kiadó, Budapest

combined into

(1)
$$0 \leq c(\omega) + 2m(\omega) \leq b_1(M).$$

In [11] it was shown that $c(\omega) \leq h(M)$, where $h(M) \leq b_1(M)$ is another homological characteristic of the manifold; in [4] this was generalized to an independent estimate

$$0 \leq c(\omega) + m(\omega) \leq h(M).$$

An independent estimate in terms of Sing ω was given in [12]:

$$0 \leq c(\omega) + m(\omega) \leq \frac{|\Omega_1| - |\Omega_0|}{2} + 1,$$

where Ω_1 is the set of conic singularities and Ω_0 of centers. These estimates were, though, not exact.

In this paper we give an exact estimate in terms of the non-commutative Betti number $b'_1(M)$ – the maximal rank of a free quotient group of the fundamental group $\pi_1(M)$ [9]; obviously $b'_1(M) \leq b_1(M)$ and as we show, $b'_1(M) \leq h(M)$. We prove (Theorem 3) that

(2)
$$0 \leq c(\omega) + m(\omega) \leq b_1'(M)$$

and show that all intermediate values are reached on M even for $c(\omega)$ alone:

(3)
$$0 \leq c(\omega) \leq b_1'(M),$$

and even in the class of compactifiable foliations (Theorem 8). In particular, on any M there exists a compactifiable foliations with all (compact) leaves being homologically trivial; such forms are exact (Theorem 4). On M_g^2 , all combinations of $c(\omega)$ and $m(\omega)$ that satisfy (2) are reached (Propositon 7); $b'_1(M_g^2) = g$ (Lemma 2). Possibly all combinations of $c(\omega)$ and $m(\omega)$ that satisfy both (1) and (2) are reached on a given manifold (Conjecture 11); these conditions are independent if dim $M \geq 3$ (Remark 9, Example 10).

A Morse form is called generic if each its singular leaf contains a unique singularity [2]; such forms are dense in the space of Morse forms. All statements mentioned above hold in the class of generic forms, with some exceptions for M_g^2 (Remark 12). Specifically, the exact lower bound in (2) on M_g^2 except for S^2 is 1 (Proposition 14):

$$1 \leq c(\omega) + m(\omega) \leq b_1'(M_q^2) = g$$

and for compactifiable foliations of generic forms on M_g^2 , (3) is reduced to $c(\omega) = g$ (Lemma 13, Remark 16). With this, for generic forms on M_g^2 possible are all combinations of $c(\omega)$ and $m(\omega)$ such that if \mathcal{F}_{ω} is compactifiable then $c(\omega) = g$, otherwise $1 \leq c(\omega) + m(\omega) \leq g$ (Proposition 17).

The paper is organized as follows. In Section 2 we give necessary definitions and prove some useful facts. In Section 3 we prove the main inequality (2). In Section 4 we prove the exactness of this inequality by constructing forms with extremal values. In Section 5 we show that all intermediate values within the bounds (2) are reached, and in some cases all values of $c(\omega)$ and/or $m(\omega)$ allowed by (2) are reached (this does not eliminate the simpler Section 4 since its examples are used as building blocks). Finally, in Section 6 we give analogs of our most important statements for the class of generic forms.

2. Definitions and useful facts

In this paper, M is a connected closed oriented manifold. A closed 1-form ω on M is called a *Morse form* if it is locally the differential of a Morse function. The set $\operatorname{Sing} \omega = \{ p \in M \mid \omega(p) = 0 \}$ of its singularities is finite, since they are isolated and M is compact. In this paper we consider only *singular* forms, i.e., $\operatorname{Sing} \omega \neq \emptyset$. On $M \setminus \operatorname{Sing} \omega$ the form ω defines a foliation \mathcal{F}_{ω} .

2.1. Leaves and components; $c(\omega)$ and $m(\omega)$

A leaf $\gamma \in \mathcal{F}_{\omega}$ is called *compactifiable* if $\gamma \cup \text{Sing } \omega$ is compact; otherwise it is called *non-compactifiable*. A foliation is called *compactifiable* if all its leaves are compactifiable. The number of non-compact compactifiable leaves γ_i is finite, since each singularity can compactify no more than four leaves.

A singular leaf γ^0 is a maximal union of one or more leaves and one or more singularities such that for any two points $p, q \in \gamma^0$ there exists a path $\alpha : [0,1] \to M$ with $\alpha(0) = p, \alpha(1) = q$ and $\omega(\dot{\alpha}(t)) = 0$ for all t.

A Morse form (or function) is called *generic* if each its singular leaf contains a unique singularity [2]. Generic forms are dense in the space of Morse forms.

By $m(\omega)$ we denote the number of minimal components of \mathcal{F}_{ω} . A minimal component is a connected component of the union of non-compactifiable leaves. The latter union is open, the number of minimal components is finite, and each non-compactifiable leaf is dense in its minimal component [1, 6]. Obviously, \mathcal{F}_{ω} is compactifiable if $m(\omega) = 0$.

LEMMA 1. On M_g^2 , a minimal component contains two cycles z, z' such that $z \cdot z' \neq 0$.

PROOF. Let U be a minimal component and $s \subset U$ a curve such that $\int_s \omega \neq 0$. Consider the cycle in $H_1(\overline{U}, \partial \overline{U})$ corresponding to $[s] \in H_1(U)$. By Poincaré duality it defines a non-zero cocycle $\alpha \in H^1(U, \mathbb{Z})$. Since torsion $(H_1(M_g^2)) = 0$, [s] can be viewed as an element of Hom $(H_1(U), \mathbb{Z})$, i.e. $\alpha(z) = [s] \cdot z$. Since $\alpha \neq 0$ there exists $z \in H_1(U)$ such that $[s] \cdot z \neq 0$. \Box

By $c(\omega)$ we denote the number of homologically independent compact leaves of \mathcal{F}_{ω} . For a compact leaf γ there exists an open neighborhood consisting solely of compact leaves: indeed, integrating ω gives a function f with $df = \omega$ near γ ; hence the union of all compact leaves is open.

A connected component of the union of compact leaves of \mathcal{F}_{ω} is called a *maximal component*. Since $\operatorname{Sing} \omega \neq \emptyset$, it is a (maximal) cylindrical neighborhood $\gamma \times (0, 1)$ of any its leaf $\gamma \in \mathcal{F}_{\omega}$ and consists of compact leaves diffeomorphic to γ . Its boundary is a union of some non-compact compactifiable leaves and singularities. Obviously, the number of maximal components is finite [4].

The foliation graph Γ is the graph whose edges are maximal components (their boundary has one or two connected components) and vertices are connected components of the union of all non-compact leaves, i.e., a vertex consists of singularities, singular leaves, and/or minimal components; an edge is incident to a vertice if they adjoin in M. The structure of the foliation graph closely reflects that of the foliation itself; see details in [4]. In particular,

(4)
$$m(\Gamma) = c(\omega),$$

where $m(\Gamma)$ is the cycle rank [5] of the graph.

By $\operatorname{rk} \omega$ we denote the number of incommensurable periods of the form ω , i.e., $\operatorname{rk} \omega = \operatorname{rk}_{\mathbb{Q}} \left\{ \int_{z_1} \omega, \ldots, \int_{z_k} \omega \right\}$, where z_1, \ldots, z_k is a basis of $H_1(M)$. If \mathcal{F}_{ω} is compactifiable then

(5)
$$\operatorname{rk}\omega \leq c(\omega);$$

in particular, $c(\omega) = m(\omega) = 0$ implies $\omega = df$ [4].

2.2. Non-commutative Betti number $b'_1(M)$

By $b'_1(M)$ we denote the non-commutative Betti number – the maximal rank (number of free generators) of a free quotient group of $\pi_1(M)$ [1]; $b'_1(M) \leq b_1(M)$, the Betti number [9].

LEMMA 2. $b'_1(M_q^2) = g$.

PROOF. Let $M = M_g^2$. Obviously, $b'_1(M) \ge g$ since the fundamental group

$$\pi_1(M_g^2) = \langle a_i, b_i, \ i = 1, \dots, \ g \mid a_1 b_1 a_1^{-1} b_1^{-1} \dots a_g b_g a_g^{-1} b_g^{-1} = 1 \rangle$$

can be mapped onto a free subgroup $\langle a_i, i = 1, \ldots, g \rangle$. Let us show $b'_1(M) \leq g$.

Given a surjection $\pi_1(M) \to F$, $\operatorname{rk} F = b'_1(M)$, consider a continuous map $f: M \to W, W = \bigvee_{i=1}^{b'_1(M)} S_i^1$. Let $p_i \in S_i^1$ be its regular values; $c_i = f^{-1}(p_i)$ are circles in M. Consider the map $f_*: H_1(M) \to H_1(W)$. Cycles $z_i \in H_1(M)$ such that $f_*z_i = [S_i^1] \in H_1(W)$ are independent. By construction $[c_i] \cdot z_j = \delta_{ij}$, therefore $[c_i], i = 1, \ldots, b'_1(M)$, are also independent in $H_1(M)$. Since $[c_i] \cdot [c_j] = 0$, we obtain $b'_1(M) \leq g$.

A Morse form (or a minimal component) is called *weakly complete* if it has no centers and any its singular leaf containing a conic singularity (of index 1 or n-1) stays connected after removal this singularity. In any non-zero cohomology class there exists a weakly complete Morse form [8].

3. Main theorem: bounds on $c(\omega) + m(\omega)$

THEOREM 3. Let M be a smooth closed oriented manifold and ω a Morse form on it. Then

(6)
$$0 \leq c(\omega) + m(\omega) \leq b_1'(M)$$

and all intermediate values are reached on a given M; in particular, the bounds are exact.

PROOF. (i) dim $M \geq 3$. Let \mathcal{F}_{ω} contain m_1 not weakly complete and m_2 weakly complete minimal components, $m_1 + m_2 = m(\omega)$. By [9, Theorem I.1] the fundamental group of the space of leaves $\pi_1(M/\omega)$ can be represented as a free product of free abelian groups

$$\pi_1(M/\omega) = (\underbrace{\mathbb{Z} * \cdots * \mathbb{Z}}_{k_0}) * (\underbrace{\mathbb{Z} * \cdots * \mathbb{Z}}_{k_1}) * (P_1 * \cdots * P_{m_2}),$$

where the first k_0 factors correspond to the set of the compact leaves and form $\pi_1(\Gamma)$ (Γ is the foliation graph); the next k_1 factors correspond to the set of weakly complete minimal components, $k_1 \ge m_1$; and the groups P_i correspond to weakly complete minimal components, $\operatorname{rk} P_i \ge 2$, with $k_0 + k_1 + m_2 \le b'_1(M)$.

Since $k_0 = m(\Gamma)$, the latter inequality and (4) implies (6).

Erratum:

k1 factors correspond to the set of not weakly complete minimal components

(*ii*) dim M = 2. Let $\gamma_1, \ldots, \gamma_c$, $c = c(\omega)$, be homologically independent compact leaves and $U_1, \ldots, U_m, \ m = m(\omega)$, minimal components of \mathcal{F}_{ω} . By Lemma 1 there exist $z_i, z'_i \subset U_i$ such that $z_i \cdot z'_i \neq 0$. The cycles $[\gamma_1], \ldots, [\gamma_c]$, z_1, \ldots, z_m are independent; indeed,

$$\left(\sum_{i=1}^{c} n_i[\gamma_i] + \sum_{i=1}^{m} m_i z_i\right) \cdot z'_j = 0$$

implies all $n_i, m_i = 0$. Moreover, all $[\gamma_i] \cdot [\gamma_j] = [\gamma_i] \cdot z_j = z_i \cdot z_j = 0$. Thus $c+m \leq g = b'_1(M_q^2)$ (by Lemma 2).

Existence of all values within the bounds (6) follows from Theorem 8 below. Exactness of the bounds also independently follows from Theorem 4 and Proposition 5.

4. Existence of extremal values of $c(\omega)$ and $m(\omega)$

THEOREM 4. On M there exists a Morse form ω with $c(\omega) = m(\omega) =$ 0, i.e., \mathcal{F}_{ω} being compactifiable and all its leaves homologically trivial (such forms are exact).

PROOF. Exactness of the form follows from (5). We will construct a Morse function f with c(df) + m(df) = 0.

(i) dim $M \geq 3$. Consider a tubular neighborhood Y of a wedge sum $\bigvee_{i=1}^{b_1(M)} S_i^1$ of circles that generate a basis of $H_1(M)$; ∂Y is connected and homologically trivial. Let ∂Y be a leaf of f.

The inside of Y can be foliated as shown in Fig. 1. The figure shows the neighborhood of a wedge sum of (two) circles S_i^1 (the edges of the cylinders are identified). Take a center p_0 ; surrounding leaves are spheres. Extend them along S_1^1 until they self-intersect forming a conic singularity p_1 and then an $S^1 \times S^{n-2}$. Extend the latter along S_2^1 until it self-intersects forming a conic singularity p_2 . Repeating this for all S_i^1 will foliate Y such that all leaves are homologically trivial and ∂Y is a leaf.

Now extend f on the rest of M; all its leaves are homologically trivial. Indeed, denote $M' = \overline{M \setminus Y}$; $\partial M' = \partial Y$. By construction, $H_1(M', \partial M') =$ 0, then

(7)
$$H^{n-1}(M',\mathbb{Z}) = H_{n-1}(M') \oplus \operatorname{torsion} (H_{n-2}(M')) = 0$$

by the Poincaré duality. We obtain $H_{n-1}(M') = 0$. (*ii*) dim M = 2. On S^2 all leaves are homologically trivial. Let $M = M_g^2$, $g \ge 1$. Fig. 2(a) shows a torus T^2 (the opposite sides of the square are

Fig. 1. Foliating the inside of Y

identified) with a desired foliation: p_i are centers and q_i saddles. Finally, $M_g^2 = \sharp_{i=1}^g T_i^2$ is assembled as a connected sum of tori, see Fig. 2(b): a leaf surrounding p_2 of each previous torus is identified with a leaf surrounding p_1 of the next torus.

Fig. 2. Compactifiable foliation with $c(\omega) = 0$ on (a) T^2 , (b) $M_q^2 = \sharp T_i^2$

PROPOSITION 5. On M there exists a Morse form ω with $c(\omega) = b'_1(M)$ and $m(\omega) = 0$ (\mathcal{F}_{ω} compactifiable).

PROOF. By definition of $b'_1(M)$ there exists a surjective homomorphism $\pi_1(M) \to F$, where F is a free group, $\operatorname{rk} F = b'_1(M)$. Consider a corresponding map $\varphi : M \to W$, where $W = \bigvee_{i=1}^{b'_1(M)} S_i^1$. Let $\alpha_W \in H^1(W, \mathbb{R})$, $\operatorname{rk} \alpha_W = b'_1(M)$, and $\alpha = \varphi^* \alpha_W$.

Let $x_i \in S_i^1$ be regular values of φ ; each $M_i = \varphi^{-1}(x_i)$ is a compact submanifold of M. Denote by M' the result of cutting M open along the M_i ;

 $\partial M' = \bigcup_i (M_i^+ \cup M_i^-)$. We obtain $\alpha|_{M'} = 0$. Thus we can choose on M' a Morse function f without singularities on $\partial M'$ such that it is constant on each connected component of $\partial M'$, $f(M_i^+) - f(M_i^-) = \int_{S_i^1} \alpha$, and $f|_{\partial M'}$ fits together smoothly, giving on M a Morse form $\omega \sim \alpha$. Obviously, \mathcal{F}_{ω} is compactifiable; thus by (5) it holds $c(\omega) \geq \operatorname{rk} \omega = b'_1(M)$. From Theorem 3 it follows $c(\omega) = b'_1(M)$ and $m(\omega) = 0$.

PROPOSITION 6. If $b_1(M) \ge 2$ then on M there exists a Morse form ω with minimal foliation; in particular, $c(\omega) = 0$ and $m(\omega) = 1$.

PROOF. For dim $M \geq 3$ this was proved in [1]. A corresponding foliation on $M_g^2 = \sharp T_i^2$ is shown in Fig. 3.

Fig. 3. Minimal foliation on $M_q^2 = \sharp(T_i^2)$

5. Existence of intermediate values of $c(\omega)$ and $m(\omega)$

PROPOSITION 7. Let $c, m \in \mathbb{Z}$. On M_g^2 there exists a Morse form ω such that $c(\omega) = c$ and $m(\omega) = m$ iff

$$0 \leq c + m \leq b_1'(M_q^2) = g.$$

PROOF. By Theorem 3 and Lemma 2, we only need to show existence. To construct the desired ω represent M_g^2 as a connected sum of c tori with a compact, and m with a minimal, non-singular foliation plus an M_{g-c-m}^2 foliated as in Theorem 4, glued together by a circle inserted between leaves via a saddle as shown in Fig. 4.

THEOREM 8. Let $c \in \mathbb{Z}$. On M there exists a Morse form ω with $c(\omega) = c$ iff

$$0 \leq c \leq b_1'(M).$$

The form can be chosen with $m(\omega) = 0$ (\mathcal{F}_{ω} compactifiable).

Fig. 4. Preparing a summand for the connected sum

PROOF. By Theorem 3 we only need to show existence. For dim M = 2 see Proposition 7; let dim $M \ge 3$. By Proposition 5, on M there exists a Morse form ω_0 with compactifiable foliation and $c(\omega_0) = b'_1(M)$. Starting from this foliation, we will construct a compactifiable foliation with $c(\omega) = c$.

Let $\gamma_1, \ldots, \gamma_c$ be homologically independent compact leaves of \mathcal{F}_{ω_0} . Denote by \mathcal{M} the result of cutting M open along γ_i ; $\partial \mathcal{M} = \bigcup_i (\gamma_i^+ \cup \gamma_i^-)$. We will construct on \mathcal{M} a form ω with no homologically non-trivial leaves other than connected components of $\partial \mathcal{M}$, which are γ_i . We have done this for $\mathcal{M} = M$ ($c = 0, \partial \mathcal{M} = \emptyset$) in Theorem 4.

As in that theorem, consider a tubular neighborhood Y of a wedge sum $\bigvee_i S_i^1$ of circles that generate a basis of $H_1(\mathcal{M})$, foliate it as shown in Fig. 1, and extend the obtained Morse function f to the rest of \mathcal{M} . We need, however, a closer look at $\mathcal{M}' = \overline{\mathcal{M} \setminus Y}$ than (7), since now $\partial \mathcal{M}' = \partial Y \cup \partial \mathcal{M}$.

By construction, $i_*H_1(\partial \mathcal{M}') = H_1(\mathcal{M}')$, where $i : \partial \mathcal{M}' \to \mathcal{M}'$ is the inclusion map. Let us consider the commutative diagram:

$$H_{n-1}(\mathcal{M}', \partial \mathcal{M}') \xrightarrow{\partial} H_{n-2}(\partial \mathcal{M}')$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{1}(\mathcal{M}') \xrightarrow{i^{*}} H^{1}(\partial \mathcal{M}')$$

where vertical arrows are Poincaré duality. Since by construction i_* is surjective, we have ker $i^* = 0$. Thus ker $\partial = 0$. Consider the long exact sequence of a pair:

$$\to H_{n-1}(\partial \mathcal{M}') \xrightarrow{i_*} H_{n-1}(\mathcal{M}') \xrightarrow{j} H_{n-1}(\mathcal{M}', \partial \mathcal{M}') \xrightarrow{\partial} H_{n-2}(\partial \mathcal{M}') \to$$

Since im $j = \ker \partial = 0$, we obtain $H_{n-1}(\mathcal{M}') = i_* H_{n-1}(\partial \mathcal{M}')$. Thus leaves of f on \mathcal{M} are homologous to 0 or γ_i .

Again, we may assume that $f|_{\partial \mathcal{M}}$ fits together smoothly, giving on M a Morse form ω with $c(\omega) = c$. Obviously, the corresponding foliation is compactifiable.

REMARK 9. If dim $M \geq 3$, not all combinations of $c(\omega)$ and $m(\omega)$ allowed by Theorem 3 may be possible. Inequality (1) imposes additional restrictions on $m(\omega)$ if $b'_1(M) > \frac{1}{2}b_1(M)$. The latter values are independent: for a torus T^n it holds $b'_1(T^n) = 1$, $b_1(T^n) = n$; for a connected sum $M = \sharp_{i=1}^m (S^{n-1} \times S^1)$ it holds $b'_1(M) = b_1(M) = m$ [1].

EXAMPLE 10. Let $M = S^2 \times S^1$; obviously, $b'_1(M) = b_1(M) = 1$. Though Theorem 3 allows $m(\omega) = 1$, (1) prohibits it.

CONJECTURE 11. On M there exist Morse forms with all combinations of $c(\omega)$ and $m(\omega)$ that satisfy (6) and (1).

6. Generic forms

REMARK 12. Theorems 3, 4, and 8 hold in the class of generic forms for dim $M \geq 3$. Propositions 5 and 6 hold in this class for any M.

Indeed, the corresponding Morse forms or functions constructed in their proofs are generic. However, for M_g^2 the three theorems, as well as Proposition 7, should be modified to hold in the class of generic forms.

For the following fact proved in [10], we give a shorter independent proof.

LEMMA 13 (see [10]). On M_g^2 , if ω is generic and $m(\omega) = 0$ (\mathcal{F}_{ω} compactifiable) then $c(\omega) = g$.

PROOF. Consider the foliation graph Γ . Its cycle rank $m(\Gamma) = N_e - N_v + 1$, where N_e is the number of edges and N_v of vertices [5]. Since ω is generic and \mathcal{F}_{ω} compactifiable, vertices of Γ are of indices 1 or 3: $2N_e = n_1 + 3n_3$, where n_i is the number of vertices of index i [5]. So $2m(\Gamma) = n_3 - n_1 + 2$. Obviously, $n_1 = |\Omega_0|$ and $n_3 = |\Omega_1|$, where Ω_0 is the set of centers and Ω_1 of conic singularities. By (4), we have $2c(\omega) = |\Omega_1| - |\Omega_0| + 2$. On the other hand, on M_g^2 it holds $|\Omega_1| - |\Omega_0| = 2g - 2$. We obtain $c(\omega) = g$.

PROPOSITION 14. The statement of Theorem 3 holds for generic forms except that on M_g^2 , $g \ge 1$, the exact lower boundary in (6) is 1:

$$1 \leq c(\omega) + m(\omega) \leq b_1'(M_q^2) = g.$$

PROOF. That 0 in (6) is unreachable for a generic form on M_g^2 , $g \neq 0$, follows from Lemma 13, which together with Lemma 2 gives

$$c(\omega) + m(\omega) = c(\omega) = b_1'(M_q^2) = g.$$

Existence of all intermediate values in (6) in the class of generic forms follows from Proposition 17 and Theorem 8 (Remark 12). Exactness of the lower bound also independently follows from Proposition 15 and Proposition 6 and that of the upper bound from Proposition 5 (Remark 12). \Box

PROPOSITION 15. The statement of Theorem 4 holds for generic forms iff dim $M \ge 3$ or $M = S^2$.

PROOF. For exclusion of M_g^2 , $g \ge 1$, see Lemma 13.

REMARK 16. Similarly, the statement of Theorem 8 holds for generic forms except that on M_g^2 the form cannot be chosen with $m(\omega) = 0$ unless $c(\omega) = g$.

PROPOSITION 17. Let $c, m \in \mathbb{Z}$. On M_g^2 there exists a generic Morse form ω such that $c(\omega) = c$ and $m(\omega) = m$ iff either m > 0 and $1 \leq c + m \leq g$ or m = 0 and c = g (cf. Proposition 7).

PROOF. By Lemma 13 and Proposition 14, we only need to show existence. If m = 0, represent M_g^2 as a connected sum of g tori with a compact non-singular foliation. Otherwise, represent it as a connected sum of c tori with a compact, and m - 1 with a minimal, non-singular foliation plus an $M_{q-c-m+1}^2$ with a foliation as in Proposition 6 (Remark 12).

REFERENCES

- ARNOUX, P. and LEVITT, G., Sur l'unique ergodicité des 1-formes fermées singulières, Invent. Math., 84 (1986), no. 1, 141–156. MR 87g:58004
- FARBER, M., Topology of closed one-forms, Math. Surv. and Monographs, AMS, v. 108, 2004. MR 2005c:58023
- GELBUKH, I., Presence of minimal components in a Morse form foliation, Diff. Geom. Appl., 22 (2005), no. 2, 189–198. MR 2005m:57040
- [4] GELBUKH, I., On the structure of a Morse form foliation, Czechoslovak Mathematical Journal, 59 (2009), no. 1, 207-220.
- [5] HARARY, F., Graph theory, Addison-Wesley Publ. Comp., 1994. MR 41#1566
- [6] IMANISHI, H., On codimension one foliations defined by closed one forms with singularities, J. Math. Kyoto Univ., 19 (1979), no. 2, 285–291. MR 80k:57050
- [7] KATOK, A., Invariant measures for flows on oriented surfaces, Sov. Math., Dokl., 14 (1973), no. 3, 1104–1108. MR 48#9771
- [8] LEVITT, G., 1-formes fermées singulières et groupe fondamental, Invent. Math., 88 (1987), 635-667. MR 88d:58004
- [9] LEVITT, G., Groupe fondamental de l'espace des feuilles dans les feuilletages sans holonomie, J. Diff. Geom., 31 (1990), 711-761. MR 91d:57018
- [10] MEĽNIKOVA, I., An indicator of the noncompactness of a foliation on M_g^2 , Math. Notes, **53:3** (1993), 356-358. MR **94h**:57044
- [11] MEĽNIKOVA, I., A test for non-compactness of the foliation of a Morse form, Russ. Math. Surveys, 50:2 (1995) 444-445. MR 96f:57028
- [12] MEĽNIKOVA, I., Non-compact leaves of a Morse form foliation, Math. Notes, 63:6 (1998), 760-763. MR 2000e:57046