NUMBER OF MINIMAL COMPONENTS AND HOMOLOGICALLY INDEPENDENT COMPACT LEAVES FOR A MORSE FORM FOLIATION

IRINA GELBUKH*
Department of Mathematics, Moscow State University, Russia
Current address: CIC, IPN, 07738 , DF, Mexico
e-mail: gelbukh@member.ams.org

Communicated by A. Némethi
(Received May 3, 2007; accepted May 5, 2008)

Abstract

The numbers $m(\omega)$ of minimal components and $c(\omega)$ of homologically independent compact leaves of the foliation of a Morse form ω on a connected smooth closed oriented manifold M are studied in terms of the first non-commutative Betti number $b_{1}^{\prime}(M)$. A sharp estimate $0 \leqq m(\omega)+c(\omega) \leqq b_{1}^{\prime}(M)$ is given. It is shown that all values of $m(\omega)+c(\omega)$, and in some cases all combinations of $m(\omega)$ and $c(\omega)$ with this condition, are reached on a given M. The corresponding issues are also studied in the classes of generic forms and compactifiable foliations.

1. Introduction and announce of the results

Consider a connected closed oriented manifold M with a Morse form ω, i.e., a closed 1-form with Morse singularities $\operatorname{Sing} \omega$ (locally the differential of a Morse function). This form defines a foliation \mathcal{F}_{ω} on $M \backslash \operatorname{Sing} \omega$.

The number $m(\omega)$ of minimal components and $c(\omega)$ of homologically independent compact leaves are important topological characteristics of the foliation. For example, if \mathcal{F}_{ω} is compactifiable, i.e. $m(\omega)=0$, then rk $\omega \leqq c(\omega)$, where $\operatorname{rk} \omega$ is the number of its incommensurable periods; for the the cycle rank $m(\Gamma)$ of the foliation graph Γ it holds $m(\Gamma)=c(\omega)$ (Section 2.1; [4]).

Considerable effort has been devoted to estimating these numbers. Obviously, $c(\omega) \leqq b_{1}(M)$, where $b_{1}(M)$ is the Betti number; in [1] ($\operatorname{dim} M \geqq 3$) and [7] $\left(M_{g}^{2}\right)$ it was shown that $2 m(\omega) \leqq b_{1}(M)$. In [4] these facts were

[^0]combined into
\[

$$
\begin{equation*}
0 \leqq c(\omega)+2 m(\omega) \leqq b_{1}(M) \tag{1}
\end{equation*}
$$

\]

In [11] it was shown that $c(\omega) \leqq h(M)$, where $h(M) \leqq b_{1}(M)$ is another homological characteristic of the manifold; in [4] this was generalized to an independent estimate

$$
0 \leqq c(\omega)+m(\omega) \leqq h(M)
$$

An independent estimate in terms of $\operatorname{Sing} \omega$ was given in [12]:

$$
0 \leqq c(\omega)+m(\omega) \leqq \frac{\left|\Omega_{1}\right|-\left|\Omega_{0}\right|}{2}+1
$$

where Ω_{1} is the set of conic singularities and Ω_{0} of centers. These estimates were, though, not exact.

In this paper we give an exact estimate in terms of the non-commutative Betti number $b_{1}^{\prime}(M)$ - the maximal rank of a free quotient group of the fundamental group $\pi_{1}(M)$ [9]; obviously $b_{1}^{\prime}(M) \leqq b_{1}(M)$ and as we show, $b_{1}^{\prime}(M) \leqq h(M)$. We prove (Theorem 3) that

$$
\begin{equation*}
0 \leqq c(\omega)+m(\omega) \leqq b_{1}^{\prime}(M) \tag{2}
\end{equation*}
$$

and show that all intermediate values are reached on M even for $c(\omega)$ alone:

$$
\begin{equation*}
0 \leqq c(\omega) \leqq b_{1}^{\prime}(M), \tag{3}
\end{equation*}
$$

and even in the class of compactifiable foliations (Theorem 8). In particular, on any M there exists a compactifiable foliations with all (compact) leaves being homologically trivial; such forms are exact (Theorem 4). On M_{g}^{2}, all combinations of $c(\omega)$ and $m(\omega)$ that satisfy (2) are reached (Propositon 7); $b_{1}^{\prime}\left(M_{g}^{2}\right)=g$ (Lemma 2). Possibly all combinations of $c(\omega)$ and $m(\omega)$ that satisfy both (1) and (2) are reached on a given manifold (Conjecture 11); these conditions are independent if $\operatorname{dim} M \geqq 3$ (Remark 9, Example 10).

A Morse form is called generic if each its singular leaf contains a unique singularity [2]; such forms are dense in the space of Morse forms. All statements mentioned above hold in the class of generic forms, with some exceptions for M_{g}^{2} (Remark 12). Specifically, the exact lower bound in (2) on M_{g}^{2} except for S^{2} is 1 (Proposition 14):

$$
1 \leqq c(\omega)+m(\omega) \leqq b_{1}^{\prime}\left(M_{g}^{2}\right)=g
$$

and for compactifiable foliations of generic forms on $M_{g}^{2},(3)$ is reduced to $c(\omega)=g$ (Lemma 13, Remark 16). With this, for generic forms on M_{g}^{2} possible are all combinations of $c(\omega)$ and $m(\omega)$ such that if \mathcal{F}_{ω} is compactifiable then $c(\omega)=g$, otherwise $1 \leqq c(\omega)+m(\omega) \leqq g$ (Proposition 17).

The paper is organized as follows. In Section 2 we give necessary definitions and prove some useful facts. In Section 3 we prove the main inequality (2). In Section 4 we prove the exactness of this inequality by constructing forms with extremal values. In Section 5 we show that all intermediate values within the bounds (2) are reached, and in some cases all values of $c(\omega)$ and/or $m(\omega)$ allowed by (2) are reached (this does not eliminate the simpler Section 4 since its examples are used as building blocks). Finally, in Section 6 we give analogs of our most important statements for the class of generic forms.

2. Definitions and useful facts

In this paper, M is a connected closed oriented manifold. A closed 1-form ω on M is called a Morse form if it is locally the differential of a Morse function. The set Sing $\omega=\{p \in M \mid \omega(p)=0\}$ of its singularities is finite, since they are isolated and M is compact. In this paper we consider only singular forms, i.e., $\operatorname{Sing} \omega \neq \emptyset$. On $M \backslash \operatorname{Sing} \omega$ the form ω defines a foliation \mathcal{F}_{ω}.

2.1. Leaves and components; $c(\omega)$ and $m(\omega)$

A leaf $\gamma \in \mathcal{F}_{\omega}$ is called compactifiable if $\gamma \cup \operatorname{Sing} \omega$ is compact; otherwise it is called non-compactifiable. A foliation is called compactifiable if all its leaves are compactifiable. The number of non-compact compactifiable leaves γ_{i} is finite, since each singularity can compactify no more than four leaves.

A singular leaf γ^{0} is a maximal union of one or more leaves and one or more singularities such that for any two points $p, q \in \gamma^{0}$ there exists a path $\alpha:[0,1] \rightarrow M$ with $\alpha(0)=p, \alpha(1)=q$ and $\omega(\dot{\alpha}(t))=0$ for all t.

A Morse form (or function) is called generic if each its singular leaf contains a unique singularity [2]. Generic forms are dense in the space of Morse forms.

By $m(\omega)$ we denote the number of minimal components of \mathcal{F}_{ω}. A minimal component is a connected component of the union of non-compactifiable leaves. The latter union is open, the number of minimal components is finite, and each non-compactifiable leaf is dense in its minimal component $[1,6]$. Obviously, \mathcal{F}_{ω} is compactifiable if $m(\omega)=0$.

Lemma 1. On M_{g}^{2}, a minimal component contains two cycles z, z^{\prime} such that $z \cdot z^{\prime} \neq 0$.

Proof. Let U be a minimal component and $s \subset U$ a curve such that $\int_{s} \omega \neq 0$. Consider the cycle in $H_{1}(\bar{U}, \partial \bar{U})$ corresponding to $[s] \in H_{1}(U)$. By Poincaré duality it defines a non-zero cocycle $\alpha \in H^{1}(U, \mathbb{Z})$. Since torsion $\left(H_{1}\left(M_{g}^{2}\right)\right)=0,[s]$ can be viewed as an element of $\operatorname{Hom}\left(H_{1}(U), \mathbb{Z}\right)$, i.e. $\alpha(z)=[s] \cdot z$. Since $\alpha \neq 0$ there exists $z \in H_{1}(U)$ such that $[s] \cdot z \neq 0$.

By $c(\omega)$ we denote the number of homologically independent compact leaves of \mathcal{F}_{ω}. For a compact leaf γ there exists an open neighborhood consisting solely of compact leaves: indeed, integrating ω gives a function f with $d f=\omega$ near γ; hence the union of all compact leaves is open.

A connected component of the union of compact leaves of \mathcal{F}_{ω} is called a maximal component. Since $\operatorname{Sing} \omega \neq \emptyset$, it is a (maximal) cylindrical neighborhood $\gamma \times(0,1)$ of any its leaf $\gamma \in \mathcal{F}_{\omega}$ and consists of compact leaves diffeomorphic to γ. Its boundary is a union of some non-compact compactifiable leaves and singularities. Obviously, the number of maximal components is finite [4].

The foliation graph Γ is the graph whose edges are maximal components (their boundary has one or two connected components) and vertices are connected components of the union of all non-compact leaves, i.e., a vertex consists of singularities, singular leaves, and/or minimal components; an edge is incident to a vertice if they adjoin in M. The structure of the foliation graph closely reflects that of the foliation itself; see details in [4]. In particular,

$$
\begin{equation*}
m(\Gamma)=c(\omega), \tag{4}
\end{equation*}
$$

where $m(\Gamma)$ is the cycle rank [5] of the graph.
By rk ω we denote the number of incommensurable periods of the form ω, i.e., $\operatorname{rk} \omega=\operatorname{rk}_{\mathbb{Q}}\left\{\int_{z_{1}} \omega, \ldots, \int_{z_{k}} \omega\right\}$, where z_{1}, \ldots, z_{k} is a basis of $H_{1}(M)$. If \mathcal{F}_{ω} is compactifiable then

$$
\begin{equation*}
\operatorname{rk} \omega \leqq c(\omega) \tag{5}
\end{equation*}
$$

in particular, $c(\omega)=m(\omega)=0$ implies $\omega=d f[4]$.

2.2. Non-commutative Betti number $b_{1}^{\prime}(M)$

By $b_{1}^{\prime}(M)$ we denote the non-commutative Betti number - the maximal rank (number of free generators) of a free quotient group of $\pi_{1}(M)$ [1]; $b_{1}^{\prime}(M) \leqq b_{1}(M)$, the Betti number [9].

Lemma 2. $b_{1}^{\prime}\left(M_{g}^{2}\right)=g$.

Proof. Let $M=M_{g}^{2}$. Obviously, $b_{1}^{\prime}(M) \geqq g$ since the fundamental group

$$
\pi_{1}\left(M_{g}^{2}\right)=\left\langle a_{i}, b_{i}, i=1, \ldots, g \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \ldots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}=1\right\rangle
$$

can be mapped onto a free subgroup $\left\langle a_{i}, i=1, \ldots, g\right\rangle$. Let us show $b_{1}^{\prime}(M) \leqq g$.

Given a surjection $\pi_{1}(M) \rightarrow F$, rk $F=b_{1}^{\prime}(M)$, consider a continuous map $f: M \rightarrow W, W=\bigvee_{i=1}^{b_{1}^{\prime}(M)} S_{i}^{1}$. Let $p_{i} \in S_{i}^{1}$ be its regular values; $c_{i}=f^{-1}\left(p_{i}\right)$ are circles in M. Consider the map $f_{*}: H_{1}(M) \rightarrow H_{1}(W)$. Cycles $z_{i} \in$ $H_{1}(M)$ such that $f_{*} z_{i}=\left[S_{i}^{1}\right] \in H_{1}(W)$ are independent. By construction $\left[c_{i}\right] \cdot z_{j}=\delta_{i j}$, therefore $\left[c_{i}\right], i=1, \ldots, b_{1}^{\prime}(M)$, are also independent in $H_{1}(M)$. Since $\left[c_{i}\right] \cdot\left[c_{j}\right]=0$, we obtain $b_{1}^{\prime}(M) \leqq g$.

A Morse form (or a minimal component) is called weakly complete if it has no centers and any its singular leaf containing a conic singularity (of index 1 or $n-1$) stays connected after removal this singularity. In any nonzero cohomology class there exists a weakly complete Morse form [8].

$$
\text { 3. Main theorem: bounds on } c(\omega)+m(\omega)
$$

Theorem 3. Let M be a smooth closed oriented manifold and ω a Morse form on it. Then

$$
\begin{equation*}
0 \leqq c(\omega)+m(\omega) \leqq b_{1}^{\prime}(M) \tag{6}
\end{equation*}
$$

and all intermediate values are reached on a given M; in particular, the bounds are exact.

Proof. (i) $\operatorname{dim} M \geqq 3$. Let \mathcal{F}_{ω} contain m_{1} not weakly complete and m_{2} weakly complete minimal components, $m_{1}+m_{2}=m(\omega)$. By [9, Theorem I.1] the fundamental group of the space of leaves $\pi_{1}(M / \omega)$ can be represented as a free product of free abelian groups

$$
\pi_{1}(M / \omega)=(\underbrace{\mathbb{Z} * \cdots * \mathbb{Z}}_{k_{0}}) *(\underbrace{\mathbb{Z} * \cdots * \mathbb{Z}}_{k_{1}}) *\left(P_{1} * \cdots * P_{m_{2}}\right),
$$

where the first k_{0} factors correspond to the set of the compact leaves and form $\pi_{1}(\Gamma)$ (Γ is the foliation graph); the next k_{1} factors correspond to the set of weakly complete minimal components, $k_{1} \geqq m_{1}$; and the groups P_{i} correspond to weakly complete minimal components, $\operatorname{rk} P_{i} \geqq 2$, with $k_{0}+$ $k_{1}+m_{2} \leqq b_{1}^{\prime}(M)$.

Since $k_{0}=m(\Gamma)$, the latter inequality and (4) implies (6).

Erratum:
k1 factors correspond to the set of not weakly complete minimal components
(ii) $\operatorname{dim} M=2$. Let $\gamma_{1}, \ldots, \gamma_{c}, c=c(\omega)$, be homologically independent compact leaves and $U_{1}, \ldots, U_{m}, m=m(\omega)$, minimal components of \mathcal{F}_{ω}. By Lemma 1 there exist $z_{i}, z_{i}^{\prime} \subset U_{i}$ such that $z_{i} \cdot z_{i}^{\prime} \neq 0$. The cycles $\left[\gamma_{1}\right], \ldots,\left[\gamma_{c}\right]$, z_{1}, \ldots, z_{m} are independent; indeed,

$$
\left(\sum_{i=1}^{c} n_{i}\left[\gamma_{i}\right]+\sum_{i=1}^{m} m_{i} z_{i}\right) \cdot z_{j}^{\prime}=0
$$

implies all $n_{i}, m_{i}=0$. Moreover, all $\left[\gamma_{i}\right] \cdot\left[\gamma_{j}\right]=\left[\gamma_{i}\right] \cdot z_{j}=z_{i} \cdot z_{j}=0$. Thus $c+m \leqq g=b_{1}^{\prime}\left(M_{g}^{2}\right)($ by Lemma 2).

Existence of all values within the bounds (6) follows from Theorem 8 below. Exactness of the bounds also independently follows from Theorem 4 and Proposition 5.

4. Existence of extremal values of $c(\omega)$ and $m(\omega)$

Theorem 4. On M there exists a Morse form ω with $c(\omega)=m(\omega)=$ 0 , i.e., \mathcal{F}_{ω} being compactifiable and all its leaves homologically trivial (such forms are exact).

Proof. Exactness of the form follows from (5). We will construct a Morse function f with $c(d f)+m(d f)=0$.
(i) $\operatorname{dim} M \geqq 3$. Consider a tubular neighborhood Y of a wedge sum $\bigvee_{i=1}^{b_{1}(M)} S_{i}^{1}$ of circles that generate a basis of $H_{1}(M) ; \partial Y$ is connected and homologically trivial. Let ∂Y be a leaf of f.

The inside of Y can be foliated as shown in Fig. 1. The figure shows the neighborhood of a wedge sum of (two) circles S_{i}^{1} (the edges of the cylinders are identified). Take a center p_{0}; surrounding leaves are spheres. Extend them along S_{1}^{1} until they self-intersect forming a conic singularity p_{1} and then an $S^{1} \times S^{n-2}$. Extend the latter along S_{2}^{1} until it self-intersects forming a conic singularity p_{2}. Repeating this for all S_{i}^{1} will foliate Y such that all leaves are homologically trivial and ∂Y is a leaf.

Now extend f on the rest of M; all its leaves are homologically trivial. Indeed, denote $M^{\prime}=\overline{M \backslash Y} ; \partial M^{\prime}=\partial Y$. By construction, $H_{1}\left(M^{\prime}, \partial M^{\prime}\right)=$ 0 , then

$$
\begin{equation*}
H^{n-1}\left(M^{\prime}, \mathbb{Z}\right)=H_{n-1}\left(M^{\prime}\right) \oplus \operatorname{torsion}\left(H_{n-2}\left(M^{\prime}\right)\right)=0 \tag{7}
\end{equation*}
$$

by the Poincaré duality. We obtain $H_{n-1}\left(M^{\prime}\right)=0$.
(ii) $\operatorname{dim} M=2$. On S^{2} all leaves are homologically trivial. Let $M=M_{g}^{2}$, $g \geqq 1$. Fig. 2(a) shows a torus T^{2} (the opposite sides of the square are

Fig. 1. Foliating the inside of Y
identified) with a desired foliation: p_{i} are centers and q_{i} saddles. Finally, $M_{g}^{2}=\sharp_{i=1}^{g} T_{i}^{2}$ is assembled as a connected sum of tori, see Fig. 2(b): a leaf surrounding p_{2} of each previous torus is identified with a leaf surrounding p_{1} of the next torus.

Fig. 2. Compactifiable foliation with $c(\omega)=0$ on (a) T^{2}, (b) $M_{g}^{2}=\sharp T_{i}^{2}$

Proposition 5. On M there exists a Morse form ω with $c(\omega)=b_{1}^{\prime}(M)$ and $m(\omega)=0\left(\mathcal{F}_{\omega}\right.$ compactifiable $)$.

Proof. By definition of $b_{1}^{\prime}(M)$ there exists a surjective homomorphism $\pi_{1}(M) \rightarrow F$, where F is a free group, rk $F=b_{1}^{\prime}(M)$. Consider a corresponding map $\varphi: M \rightarrow W$, where $W=\bigvee_{i=1}^{b_{1}^{\prime}(M)} S_{i}^{1}$. Let $\alpha_{W} \in H^{1}(W, \mathbb{R})$, $\operatorname{rk} \alpha_{W}=b_{1}^{\prime}(M)$, and $\alpha=\varphi^{*} \alpha_{W}$.

Let $x_{i} \in S_{i}^{1}$ be regular values of φ; each $M_{i}=\varphi^{-1}\left(x_{i}\right)$ is a compact submanifold of M. Denote by M^{\prime} the result of cutting M open along the M_{i};
$\partial M^{\prime}=\bigcup_{i}\left(M_{i}^{+} \cup M_{i}^{-}\right)$. We obtain $\left.\alpha\right|_{M^{\prime}}=0$. Thus we can choose on M^{\prime} a Morse function f without singularities on ∂M^{\prime} such that it is constant on each connected component of $\partial M^{\prime}, f\left(M_{i}^{+}\right)-f\left(M_{i}^{-}\right)=\int_{S_{i}^{1}} \alpha$, and $\left.f\right|_{\partial M^{\prime}}$ fits together smoothly, giving on M a Morse form $\omega \sim \alpha$. Obviously, \mathcal{F}_{ω} is compactifiable; thus by (5) it holds $c(\omega) \geqq \operatorname{rk} \omega=b_{1}^{\prime}(M)$. From Theorem 3 it follows $c(\omega)=b_{1}^{\prime}(M)$ and $m(\omega)=0$.

Proposition 6. If $b_{1}(M) \geqq 2$ then on M there exists a Morse form ω with minimal foliation; in particular, $c(\omega)=0$ and $m(\omega)=1$.

Proof. For $\operatorname{dim} M \geqq 3$ this was proved in [1]. A corresponding foliation on $M_{g}^{2}=\sharp T_{i}^{2}$ is shown in Fig. 3 .

Fig. 3. Minimal foliation on $M_{g}^{2}=\sharp\left(T_{i}^{2}\right)$
5. Existence of intermediate values of $c(\omega)$ and $m(\omega)$

Proposition 7. Let $c, m \in \mathbb{Z}$. On M_{g}^{2} there exists a Morse form ω such that $c(\omega)=c$ and $m(\omega)=m$ iff

$$
0 \leqq c+m \leqq b_{1}^{\prime}\left(M_{g}^{2}\right)=g .
$$

Proof. By Theorem 3 and Lemma 2, we only need to show existence. To construct the desired ω represent M_{g}^{2} as a connected sum of c tori with a compact, and m with a minimal, non-singular foliation plus an M_{g-c-m}^{2} foliated as in Theorem 4, glued together by a circle inserted between leaves via a saddle as shown in Fig. 4.

Theorem 8. Let $c \in \mathbb{Z}$. On M there exists a Morse form ω with $c(\omega)=c$ iff

$$
0 \leqq c \leqq b_{1}^{\prime}(M)
$$

The form can be chosen with $m(\omega)=0\left(\mathcal{F}_{\omega}\right.$ compactifiable $)$.

Fig. 4. Preparing a summand for the connected sum

Proof. By Theorem 3 we only need to show existence. For $\operatorname{dim} M=2$ see Proposition 7; let $\operatorname{dim} M \geqq 3$. By Proposition 5, on M there exists a Morse form ω_{0} with compactifiable foliation and $c\left(\omega_{0}\right)=b_{1}^{\prime}(M)$. Starting from this foliation, we will construct a compactifiable foliation with $c(\omega)=c$.

Let $\gamma_{1}, \ldots, \gamma_{c}$ be homologically independent compact leaves of $\mathcal{F}_{\omega_{0}}$. Denote by \mathcal{M} the result of cutting M open along $\gamma_{i} ; \partial \mathcal{M}=\bigcup_{i}\left(\gamma_{i}^{+} \cup \gamma_{i}^{-}\right)$. We will construct on \mathcal{M} a form ω with no homologically non-trivial leaves other than connected components of $\partial \mathcal{M}$, which are γ_{i}. We have done this for $\mathcal{M}=M(c=0, \partial \mathcal{M}=\emptyset)$ in Theorem 4.

As in that theorem, consider a tubular neighborhood Y of a wedge sum $\bigvee_{i} S_{i}^{1}$ of circles that generate a basis of $H_{1}(\mathcal{M})$, foliate it as shown in Fig. 1, and extend the obtained Morse function f to the rest of \mathcal{M}. We need, however, a closer look at $\mathcal{M}^{\prime}=\overline{\mathcal{M} \backslash Y}$ than (7), since now $\partial \mathcal{M}^{\prime}=\partial Y \cup \partial \mathcal{M}$.

By construction, $i_{*} H_{1}\left(\partial \mathcal{M}^{\prime}\right)=H_{1}\left(\mathcal{M}^{\prime}\right)$, where $i: \partial \mathcal{M}^{\prime} \rightarrow \mathcal{M}^{\prime}$ is the inclusion map. Let us consider the commutative diagram:

where vertical arrows are Poincaré duality. Since by construction i_{*} is surjective, we have $\operatorname{ker} i^{*}=0$. Thus ker $\partial=0$. Consider the long exact sequence of a pair:

$$
\rightarrow H_{n-1}\left(\partial \mathcal{M}^{\prime}\right) \xrightarrow{i_{*}} H_{n-1}\left(\mathcal{M}^{\prime}\right) \xrightarrow{j} H_{n-1}\left(\mathcal{M}^{\prime}, \partial \mathcal{M}^{\prime}\right) \xrightarrow{\partial} H_{n-2}\left(\partial \mathcal{M}^{\prime}\right) \rightarrow
$$

Since $\operatorname{im} j=\operatorname{ker} \partial=0$, we obtain $H_{n-1}\left(\mathcal{M}^{\prime}\right)=i_{*} H_{n-1}\left(\partial \mathcal{M}^{\prime}\right)$. Thus leaves of f on \mathcal{M} are homologous to 0 or γ_{i}.

Again, we may assume that $\left.f\right|_{\partial \mathcal{M}}$ fits together smoothly, giving on M a Morse form ω with $c(\omega)=c$. Obviously, the corresponding foliation is compactifiable.

Remark 9. If $\operatorname{dim} M \geqq 3$, not all combinations of $c(\omega)$ and $m(\omega)$ allowed by Theorem 3 may be possible. Inequality (1) imposes additional restrictions on $m(\omega)$ if $b_{1}^{\prime}(M)>\frac{1}{2} b_{1}(M)$. The latter values are independent: for a torus T^{n} it holds $b_{1}^{\prime}\left(T^{n}\right)=1, b_{1}\left(T^{n}\right)=n$; for a connected sum $M=\sharp_{i=1}^{m}\left(S^{n-1} \times\right.$ $\left.S^{1}\right)$ it holds $b_{1}^{\prime}(M)=b_{1}(M)=m[1]$.

Example 10. Let $M=S^{2} \times S^{1}$; obviously, $b_{1}^{\prime}(M)=b_{1}(M)=1$. Though Theorem 3 allows $m(\omega)=1$, (1) prohibits it.

Conjecture 11. On M there exist Morse forms with all combinations of $c(\omega)$ and $m(\omega)$ that satisfy (6) and (1).

6. Generic forms

Remark 12. Theorems 3,4 , and 8 hold in the class of generic forms for $\operatorname{dim} M \geqq 3$. Propositions 5 and 6 hold in this class for any M.

Indeed, the corresponding Morse forms or functions constructed in their proofs are generic. However, for M_{g}^{2} the three theorems, as well as Proposition 7, should be modified to hold in the class of generic forms.

For the following fact proved in [10], we give a shorter independent proof.
Lemma 13 (see [10]). On M_{g}^{2}, if ω is generic and $m(\omega)=0\left(\mathcal{F}_{\omega}\right.$ compactifiable) then $c(\omega)=g$.

Proof. Consider the foliation graph Γ. Its cycle rank $m(\Gamma)=N_{e}-N_{v}+$ 1, where N_{e} is the number of edges and N_{v} of vertices [5]. Since ω is generic and \mathcal{F}_{ω} compactifiable, vertices of Γ are of indices 1 or $3: 2 N_{e}=n_{1}+3 n_{3}$, where n_{i} is the number of vertices of index $i[5]$. So $2 m(\Gamma)=n_{3}-n_{1}+2$. Obviously, $n_{1}=\left|\Omega_{0}\right|$ and $n_{3}=\left|\Omega_{1}\right|$, where Ω_{0} is the set of centers and Ω_{1} of conic singularities. By (4), we have $2 c(\omega)=\left|\Omega_{1}\right|-\left|\Omega_{0}\right|+2$. On the other hand, on M_{g}^{2} it holds $\left|\Omega_{1}\right|-\left|\Omega_{0}\right|=2 g-2$. We obtain $c(\omega)=g$.

Proposition 14. The statement of Theorem 3 holds for generic forms except that on $M_{g}^{2}, g \geqq 1$, the exact lower boundary in (6) is 1 :

$$
1 \leqq c(\omega)+m(\omega) \leqq b_{1}^{\prime}\left(M_{g}^{2}\right)=g .
$$

Proof. That 0 in (6) is unreachable for a generic form on $M_{g}^{2}, g \neq 0$, follows from Lemma 13, which together with Lemma 2 gives

$$
c(\omega)+m(\omega)=c(\omega)=b_{1}^{\prime}\left(M_{g}^{2}\right)=g .
$$

Existence of all intermediate values in (6) in the class of generic forms follows from Proposition 17 and Theorem 8 (Remark 12). Exactness of the lower bound also independently follows from Proposition 15 and Proposition 6 and that of the upper bound from Proposition 5 (Remark 12).

Proposition 15. The statement of Theorem 4 holds for generic forms iff $\operatorname{dim} M \geqq 3$ or $M=S^{2}$.

Proof. For exclusion of $M_{g}^{2}, g \geqq 1$, see Lemma 13 .
REmARK 16. Similarly, the statement of Theorem 8 holds for generic forms except that on M_{g}^{2} the form cannot be chosen with $m(\omega)=0$ unless $c(\omega)=g$.

Proposition 17. Let $c, m \in \mathbb{Z}$. On M_{g}^{2} there exists a generic Morse form ω such that $c(\omega)=c$ and $m(\omega)=m$ iff either $m>0$ and $1 \leqq c+m \leqq g$ or $m=0$ and $c=g$ ($c f$. Proposition 7).

Proof. By Lemma 13 and Proposition 14, we only need to show existence. If $m=0$, represent M_{g}^{2} as a connected sum of g tori with a compact non-singular foliation. Otherwise, represent it as a connected sum of c tori with a compact, and $m-1$ with a minimal, non-singular foliation plus an $M_{g-c-m+1}^{2}$ with a foliation as in Proposition 6 (Remark 12).

REFERENCES

[1] Arnoux, P. and Levitt, G., Sur l'unique ergodicité des 1-formes fermées singulières, Invent. Math., 84 (1986), no. 1, 141-156. MR $\mathbf{8 7 \mathrm { g } : 5 8 0 0 4}$
[2] Farber, M., Topology of closed one-forms, Math. Surv. and Monographs, AMS, v. 108, 2004. MR 2005c:58023
[3] Gelbukн, I., Presence of minimal components in a Morse form foliation, Diff. Geom. Appl., 22 (2005), no. 2, 189-198. MR 2005 m:57040
[4] Gelbukh, I., On the structure of a Morse form foliation, Czechoslovak Mathematical Journal, 59 (2009), no. 1, 207-220.
[5] Harary, F., Graph theory, Addison-Wesley Publ. Comp., 1994. MR 41\#1566
[6] Imanishi, H., On codimension one foliations defined by closed one forms with singularities, J. Math. Kyoto Univ., 19 (1979), no. 2, 285-291. MR 80k:57050
[7] Katok, A., Invariant measures for flows on oriented surfaces, Sov. Math., Dokl., 14 (1973), no. 3, 1104-1108. MR 48\#9771
[8] Levitt, G., 1-formes fermées singulières et groupe fondamental, Invent. Math., 88 (1987), 635-667. MR 88d:58004
[9] Levitt, G., Groupe fondamental de l'espace des feuilles dans les feuilletages sans holonomie, J. Diff. Geom., 31 (1990), 711-761. MR 91d:57018
[10] Melinikova, I., An indicator of the noncompactness of a foliation on M_{g}^{2}, Math. Notes, 53:3 (1993), 356-358. MR 94h:57044
[11] Melinikova, I., A test for non-compactness of the foliation of a Morse form, Russ. Math. Surveys, 50:2 (1995) 444-445. MR 96f:57028
[12] Melinikova, I., Non-compact leaves of a Morse form foliation, Math. Notes, 63:6 (1998), 760-763. MR 2000e:57046

[^0]: 2000 Mathematics Subject Classification. Primary 57R30, 58K65.
 Key words and phrases. Morse form foliation, minimal components, compact leaves.

