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In [1, 2] P. Arnoux and G. Levitt showed that the topology of the foliation of a Morse form ~a on a 
compact manifold is closely related to the structure of the integration mapping [~]: Hz(M)  - .  R.  In 
this paper we consider the foliation of a Morse form on a two-dimensional manifold M~. We study 
the relationship of the subgroup Ker[ta] C H~(M~) with the topology of the foliation. We consider the- 
structure of the subgroup Ker[w] ,for a compact foliation and prove a criterion for the compactness of a 
foliation. 

w Preliminary definitions 

Consider a dosed form ~ with Morse singularities on M~. This form determines a foliation ~" on 
M~ \ Sing ~ .  

Let us define a foliation with singularities ~',~ on M~ as follows. 
Suppose that the foliation ~ is locally (in a sufFiciently small neighborhood of a singular point p E 

Sing~a) determined by the levels of a function fp such that fr(P) = O. 

Definition 1. A nonsingular leaf of a foliation ~',~ is a leaf 7 E ~" such that 7 N f~-l(0) = ~ for all 
p E Sing~. 

Put Fp = pU {7 E ~'l 7 N fp'z(O) r ~}" Also put F= Uv~sins. Ft. 

Def in i t ion  2. A singular leaf of a foliation ~',~ is a connected component of F .  

There is only a finite number of singular leaves (because the form is Morse). 
A foliation ~',~ is called compact if all its leaves are compact. 
A closed form w determines the mapping [w]: Hz(M~) --, R (integration over cycles). The image ok 

this mapping Im[w] represents the period group of the form w. Note that rkIm[w] = dirrta + 1, where 
dirrw is the degree of irrationality of the form w. 

If dirr~a < 0, then the foliation ~,, is compact [3]. If dirrw > g, then the foliation ~'~ has a 
noncompact leaf [4]. If 0 < dirrw < g, then the foliation can be compact as well as noncompact. The 
study of the subgroup Ker[ta] yields a condition for the compactness of a foliation in the latter case also. 

Consider the intersection operation of 1-cycles 

• Z. 

This operation is a nondegenerate skew-symmetric bilinear mapping. 
By ~o., denote the restriction of the mapping ~ to the subgroup Ker[~] C HI(AI~): 

~,~: Ker[w] • Ker[w] -* Z. 

Obviously, rk Ker~,~ < rk Ker[w] = 2g - (dirrw + 1). For small values of dirrw a sharper estimate exists. 

P r o p o s i t i o n  1. rkKer~0,~ <_ dirr~ + 1. 
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Proof .  Suppose that Ker~, ,  = (zl, . . . ,  zk). By Dzi denote the cycles dual to zi ; then Dziozj  = 6ij. 
Assume that ~ ni fD:, to = 0 and put z = ~ niDzi.  We see that z G Ker[to] and z o z i = n i . All 
the nj  equal zero because zj E Ker~o~. Thus, the integrals fo , ,  to are linearly independent over Q and 
dirrto > k - 1. The proposition is proved. [] 

A subgroup H C H I ( M  2) is called iaotropic with respect to cycle intersection if z o y = 0 for all 
z, y E H .  An isotropic subgroup H is mazimal if for all z ~ H there exists a y E H such that z o y ~ 0. 

Note that the subgroup Ker ~o~, is isotropic. 

Proposition 2. Let Ho be a max/too/isotropic subgroup in the group Ker[w]. Then 

rkHo = 2(rkKer[to] + rkKer~w). 

ProoL Since the mapping ~,, is a symplectic form on Ker[to] @ R, the statement follows by splitting 
the symplectic space Ker[to] @ R into an orthogonal direct sum of two-dimensional nondegenerate and 
one-dimensional degenerate subspaces. [] 

To each nonsingular leaf 7 G ~'~, assign its homology class [7]. The image of all compact nonsingular 
leaves under this correspondence generates a subgroup in HI(M~);  denote it by H~,. Note that the 
subgroup H,~ is isotropic and H~, C Ker[w]. 

w Properties of Morse forms that determine compact foliations 

Theorem 1. Suppose that a foliation on M~ is determined by a Morse form w. If  the foliation J:~, 
is compact, then 

rk Ker ~ = dirr a~ + 1. 

Proof. Nonsingular compact leaves of ~'~, generate a subgroup H,~ C HI(M~) .  There is also a finite 
number of singular leaves, say, 7 0 , . . . ,  7~- Consider the embeddings j , :  7 ~ ~ M~, s = 1 , . . . ,  k, and 
the induced homology mappings j , . :  H1(7 ~ ---, g l (M~) .  For each group Hi(T~ choose its maximal 
subgroup Zs so that the image j s .Z ,  C HI(M~) is an isotropic subgroup. 

Consider the subgroup Ho = (H~, j s .Z , ,  s = 1 , . . . ,  k), which is obviously isotropic. Moreover, we 
have H0 C Ker[to]. 

Consider a cycle z G HI(M~) such that z o H0 = 0; then z o H~ = 0. In the paper [5] it was shown 
(see the proof of Theorem 1.2) that the cycle z can be realized by a curve a C U7 ~ provided that the 
foliation ~'w is compact and z o Hw = 0. Let us assume that a = ~ as ,  where as C 70 �9 We have 
z o j , . Z ,  = 0 for all s.  Hence, [aa] ojs.Za = 0 because ap N 7~ = ~ whenever p ~ s. Since a ,  C 7~, we 
get [a,] G I m j a . .  Thus, [~,] G j~.Z, and z G Ho (by the construction of the group Z~). 

So H0 is a maximal subgroup of HI(M~). Thus, rkH0 = g (this is shown in [5]). On the other hand, 
H0 is a maximal subgroup of Ker[to], and Proposition 2 implies that 

rkH0 = ~(rk Ker[to] + r k K e r ~ ) .  

Since dirrto = 2g - 1 - rk Ker[to], the theorem is proved. [] 

R e m a r k .  The converse statement is not true, i.e., there exist noncompact foliations such that the 
previous relation holds. 

w A criterion for the  c o m p a c t n e s s  of  a fol iat ion 

In [4] it is shown that if there are g compact leaves that are homologically independent, then all the 
leaves are compact. Taking into account the structure of the subgroup Ker[w], let us strengthen this 
criterion of compactness. Let us consider the intersection Hw N Ker ~w. 
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Theorem 2. A foliation . ~  is compact g and only if 

rk(H~ f3 Ker %o) > dirrw. 

Proof. If dirrw _< 0, then the compactness of the foliation follows from [3]. Assume that dirrw _> 1, 
then k = rk(H~, f3 Ker ~) _~ i. 

Consider the nonsingular leaves 7i e ~'w such that Hw f3 Ker~w = ([71],-.., [Tt])- Proposition 1 
implies that the integrals fD[~d w are linearly independent over Q, and dirrw _~ k - 1. By assumption, 
dirr0J _< k; thus dirrw is determined by means of integrals over D[71], �9 .., D[Tt] and, possibly, over some 
cycle z. 

Let us cut M~ along the fibers 7i. Since they are homologically independent, we get a connected 
manifold M' with boundary. The number of connected components of the boundary is 2k. By w' denote 
the restriction of the form a~ .to M'. Since the cycles D[Ti] vanish after cutting, we have dirrw I _< 0. 

Attaching a disk D 2 to each connected component of the boundary, we obtain a manifold M 2 

Extend the form w' to the disks D~ in such a way that the form w" obtained on every D~ is a Morse 
form and has exactly one singular point, either minimum-like or maximum-Eke. Obviously, dirro/' _< 0 
and the foliation ~'~,, is compact. So the foliation ~'~ is also compact. One implication of the theorem is 
proved. 

Conversely, assume that the foliation ~ is compact. Let us show that Im[w] = D Ker ~,. Indeed, 
it follows from the proof of Proposition 1 that D Ker ~o~, C Im[w]. Theorem 1 implies that rk Ker ~, = 
dirrw + 1. On the other hand, rklm[w] = dirr0J + i, consequently, Im[~] = DKer~o~. So, if the 
foliation ~'~ is compact, then HI(M~) = Ker[w] ~ D Ker~w. 

Suppose that H~ = ([7x], - . - ,  [7N]). The proof of Theorem 2.2 of the paper [5] implies that 

dirr, +i=rkq{/D w , . . . , / D  w } . 
"Ix 'TN 

Let us reindex the leaves in such a way that fl)~, w ~ 0 for all i <__ 8 and fDm w = 0 for all i > 8. Then 

dirrw + 1 = rkQ{fD.y x w , . . . ,  fD~. w} < rk([71], . . . ,  [TJ]) -< rk(H~ N Ker ~o,) 

because [7i] 6 Ker ~w whenever Ibm ~ ~ 0, as it is shown above. The theorem is proved. Vl 

So the following condition is sufficient for the compactness of a foliation: there exist dirrw homologicaily 
independent leaves such that their homology classes belong to the subgroup Ker~o~. In particular, if 
dirrw = 1 and there exists a nonhomological to zero leaf 7 such that [7] 6 Ker~ow, then the foliation is 
compact. 
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