Realization of a graph as the Reeb graph of a Morse, Morse–Bott or round function

Irina Gelbukh

Centro de Investigación en Computación Instituto Politécnico Nacional, Mexico

www.I.Gelbukh.com

Contents

1 Introduction

- History
- Reeb graph of a smooth function
- Counterexample: Reeb graph is not a finite graph
- When is the Reeb graph a finite graph?

2 Realization problem:

When is a finite graph the Reeb graph of a function?

- Smooth functions
- Morse functions
- Morse–Bott functions
- Round functions
- Conclusion

Introd	ucti	ion
000	00	00

Introduction

Concept of Reeb graph

Reeb graph was introduced by George Reeb (1946), in that time

- only for simple Morse functions
- on closed manifolds

as a quotient space: connected components of level sets contracted to points

He noted that it is a 1-dim (CW) complex: a finite graph (with multiple edges)

- for the type of functions he considered
- this is used in all modern applications of the Reeb graph
- Alexander Kronrod (1950) introduced tree of connected components of level sets
 - for continuous functions
 - on a sphere

This tree can be infinite.

Reeb graph also is called the Kronrod–Reeb graph.

Deale suggle of a support function	
000000	
Introduction	Realization problem:, When is a finite graph the Reeb graph of a function?

Reeb graph of a smooth function

Reeb graph of a smooth function

- *X* is a topological space; $f : X \to \mathbb{R}$ is a continuous function
- **Contour** of *f*: connected component of its level set $f^{-1}(y)$
- $x \sim y$ is an equivalence relation: $x, y \in$ the same contour of f

Definition

The **Reeb graph** R_f is the quotient space X/\sim , endowed with the quotient topology. For smooth functions: image of a critical contour is called a **vertex**.

References

Reeb graph of a smooth function

Geometric meaning of the Reeb graph

This graph shows the evolution of the level sets:

- contours can split into two or more
- contours can merge into one

In some "good" cases, Reeb graph is indeed a graph

- non-vertices form edges
- much more on this, later

Introduction

Realization problem:,When is a finite graph the Reeb graph of a function?

References

Counterexample: Reeb graph is not a finite graph

Counterexample: Reeb graph is not a finite graph

Generally, the Reeb graph is not a graph.

This quotient space can be ill-behaved even for very good functions:

Example

Let $M = \mathbb{R}^2 \setminus \{(0, 0)\}$ and f(x, y) = y be the projection. Then R_f is the line with two origins (bug-eyed line). Not a graph, even non-Hausdorff.

The problem is that the manifold is **not compact**.

7/22

Irina Gelbukh	CIC-IPN	Reeb graph	May 27, 2021

Counterexample: Reeb graph is not a finite graph

Reeb graph as a finite graph

- *M* is a manifold, $f: M \to \mathbb{R}$ is a smooth function
- A finite graph can have multiple edges and loops: a 1-dimensional CW complex

Definition

The Reeb graph R_f has the structure of a finite graph G, if there is a homeomorphism $h: R_f \to G$ mapping vertices of R_f bijectively to vertices of G.

We will say that R_f is **isomorphic** to G or just R_f is G (abuse of language).

Example

- The Reeb graph of a simple Morse function has the structure of a finite graph [Reeb (1946)]
- The Reeb graph of a function *f* with finite Crit(*f*) has the structure of a finite graph [Sharko (2006)]
- The Reeb graph of a simple Morse–Bott function on a surface has the structure of a finite graph [Martínez-Alfaro et al. (2016)]

Introduction

Realization problem:,When is a finite graph the Reeb graph of a function?

References

When is the Reeb graph a finite graph?

When is the Reeb graph a finite graph?

Theorem (Saeki (2021))

Let *M* be a closed manifold, $f : M \to \mathbb{R}$ a smooth function. Then: *R*_f has the structure of a finite graph \Leftrightarrow *f* has a finite number of critical values.

This makes it possible:

- to work with a wide class of functions, including Morse–Bott and round functions;
- to study these functions using graph theory.

Realization problem: When is a finite graph the Reeb graph of a function?

Realization: smooth function

Realization problem: Is any finite graph the Reeb graph of some function?

No. But yes for graphs without loops (edge with both endpoints at the same vertex):

Theorem (Masumoto and Saeki (2011))

Let G be a finite graph. Then: there is a smooth function $f: M \to \mathbb{R}$ such that R_f is $G \Leftrightarrow G$ has no loops.

Indeed, R_f that is a finite graph has an acyclic orientation \Rightarrow no loops.

Realization: Morse function. Counterexample

Realization problem in some class of functions: additional conditions on the graph.

Example (Sharko (2006))

Not R_f of any Morse function. Not even function with finite Crit(f):

It is not R_f of a Morse–Bott or round function.

Why? Let's see. First, some graph theory...

Introduction	Realization problem:, When is a finite graph the Reeb graph of a function?	References
	00000000	
Smooth functions		
-		

Some graph theory

Definition

Cut vertex: $G \setminus v$ has more connected components. Isolated vertex is not.

2 cut vertices, 4 blocks, 3 of them leaf blocks

Introduction	Realization problem:, When is a finite graph the Reeb graph of a function?	References
	00000000	
Smooth functions		

Some graph theory

Definition

- Cut vertex: G \ v has more connected components. Isolated vertex is not.
- Biconnected graph: connected, without cut vertices.

2 cut vertices, 4 blocks, 3 of them leaf blocks

Some graph theory

Definition

- **Cut vertex**: $G \setminus v$ has more connected components. Isolated vertex is not.
- Biconnected graph: connected, without cut vertices.
- Block of a graph: maximal biconnected subgraph. Isolated vertex is a block.

Smooth functions

Some graph theory

Definition

- **Cut vertex**: $G \setminus v$ has more connected components. Isolated vertex is not.
- Biconnected graph: connected, without cut vertices.
- Block of a graph: maximal biconnected subgraph. Isolated vertex is a block.
- Leaf block: a block with at most one cut vertex.

Blocks are attached to each other at shared vertices = cut vertices of the graph. (This forms the **block-cut tree**, of which leaf blocks are leafs—hence the term.)

2 cut vertices, 4 blocks, 3 of them leaf blocks

Morse functions

Realization: Morse function

- Closed manifold
- Morse function
- Generally, function with finite number of critical points

Theorem (Michalak (2018) + Gelbukh (submitted1))

G is R_f of a smooth function with finite Crit(f) on a closed manifold \Leftrightarrow *G* is finite, no loops, all leaf blocks are $\bullet (P_2)$.

f can be chosen Morse.

To make a given graph realizable by a Morse f, add P_2 to each non- P_2 leaf block:

Morse functions

Realization: Morse function

- Closed manifold
- Morse function
- Generally, function with finite number of critical points

Theorem (Michalak (2018) + Gelbukh (submitted1))

G is R_f of a smooth function with finite Crit(f) on a closed manifold \Leftrightarrow *G* is finite, no loops, all leaf blocks are $\bullet (P_2)$.

f can be chosen Morse.

To make a given graph realizable by a Morse f, add P_2 to each non- P_2 leaf block:

Morse functions

Realization: Morse function

- Closed manifold
- Morse function
- Generally, function with finite number of critical points

Theorem (Michalak (2018) + Gelbukh (submitted1))

G is R_f of a smooth function with finite Crit(f) on a closed manifold \Leftrightarrow *G* is finite, no loops, all leaf blocks are $\bullet (P_2)$.

f can be chosen Morse.

To make a given graph realizable by a Morse f, add P_2 to each non- P_2 leaf block:

Realization: Morse-Bott function

Morse–Bott function; generally, function with finite number of critical submanifolds:

Theorem (Gelbukh (submitted2))

For any given $n \ge 2$, G is R_f of a smooth f with Crit(f) = finite no. of submanifolds, on closed n-manifold \Leftrightarrow G is finite, no loops, and

- each leaf block *L* has a vertex *v* with $\deg_G(v) \leq 2$,
- two such vertices if L is a non-trivial (has an edge) connected component of G.

f can be chosen Morse-Bott.

To make G realizable by a Morse–Bott f, subdivide an edge in leaf blocks where missing:

Realization: Morse-Bott function

Morse-Bott function; generally, function with finite number of critical submanifolds:

Theorem (Gelbukh (submitted2))

For any given $n \ge 2$, G is R_f of a smooth f with Crit(f) = finite no. of submanifolds, on closed n-manifold \Leftrightarrow G is finite, no loops, and

- each leaf block L has a vertex v with $\deg_G(v) \leq 2$,
- two such vertices if L is a non-trivial (has an edge) connected component of G.

f can be chosen Morse-Bott.

To make G realizable by a Morse–Bott f, subdivide an edge in leaf blocks where missing:

Realization: Morse–Bott function

Morse-Bott function; generally, function with finite number of critical submanifolds:

Theorem (Gelbukh (submitted2))

For any given $n \geq 2$, G is R_f of a smooth f with $Crit(f) = finite no. of submanifolds, on closed n-manifold <math>\Leftrightarrow$ G is finite, no loops, and

- each leaf block L has a vertex v with $\deg_G(v) \leq 2$,
- two such vertices if L is a non-trivial (has an edge) connected component of G.

f can be chosen Morse-Bott.

To make G realizable by a Morse–Bott f, subdivide an edge in leaf blocks where missing:

Realization: Morse-Bott function (homeomorphism)

Morse-Bott functions play a special role in the Reeb graph theory:

Theorem (Gelbukh (in press))

Any finite graph is homeomorphic to the Reeb graph of a Morse–Bott function.

True even for a graph with loops: can subdivide a loop by a vertex of degree 2.

Example

no loop, Morse–Bott function

Realization: Morse-Bott function (homeomorphism)

Morse-Bott functions play a special role in the Reeb graph theory:

Theorem (Gelbukh (in press))

Any finite graph is homeomorphic to the Reeb graph of a Morse–Bott function.

True even for a graph with loops: can subdivide a loop by a vertex of degree 2.

Realization: Morse–Bott function (homeomorphism)

Morse-Bott functions play a special role in the Reeb graph theory:

Theorem (Gelbukh (in press))

Any finite graph is homeomorphic to the Reeb graph of a Morse–Bott function.

True even for a graph with loops: can subdivide a loop by a vertex of degree 2.

Round functions

Realization: round function

Definition

Round function: smooth function $f: M \to \mathbb{R}$ on a closed manifold M, with $\operatorname{Crit}(f) = \bigcup S^1$, a finite number of disjoint circles.

This time, the structure of R_f depends on manifold:

- dimension
- whether orientable

Theorem (Gelbukh (submitted2))

G is R_f of a round function on $M^n \Leftrightarrow G$ is finite, no loops, and

uction 0000	Rea	lization problem	n:,When is a finite	graph the Reeb graph of	a function?		Reference O
usion							
alization: co	onclusi	on					
A <mark>graph</mark> can b	oe realize	d by funct	ions of <mark>dif</mark> f	erent classes a	nd on <mark>dif</mark>	ferent ma	nifolds:
$L_i(G)$ leaf bl	ocks,		Mor	se, Morse-Bott,	dir	n <i>Mⁿ</i> , orie	ntability,
$b_1(G)$ cycle	rank		rour	nd	со	$rank(\pi_1(N$	1 ⁿ))
f	n = 2 orient	<i>n</i> = 2 non-or	$n \ge 3$	f	n = 2 orient	<i>n</i> = 2 non-or	$n \ge 3$
Morse	+	+	+	Morse			
Morse-Bott				Morse-Bott	+	+	+

Since $\operatorname{corank}(\pi_1(M)) \ge b_1(G)$ (Gelbukh (2019)): surface genus $\ge \begin{cases} 2 & \text{orientable}, \\ 4 & \text{non-orientable}. \end{cases}$

Irina Gelbukh	CIC-IPN	Reeb graph	May 27, 2021 18 / 22

Introduction	
Conclusion	

Realization of the Sharko graph

What functions realize the Sharko graph?

Example

On an orientable surface, these functions have two types of extrema:

- isolated points,
- wedge sum $S^1 \vee S^1$.

Introduction	Realization problem:, When is a finite graph the Reeb graph of a function?	References
Conclusion		
References I		

- Gelbukh, I. (2019). Approximation of metric spaces by Reeb graphs: Cycle rank of a Reeb graph, the co-rank of the fundamental group, and large components of level sets on Riemannian manifolds. Filomat, 33(7), 2031–2049. doi: 10.2298/ FIL1907031G
- Gelbukh, I. (in press). A finite graph is homeomorphic to the Reeb graph of a Morse– Bott function. Math. Slovaca.
- Gelbukh, I. (Submitteda). Criterion for a graph to admit a good orientation in terms of leaf blocks.
- Gelbukh, I. (Submittedb). Realization of a graph as the Reeb graph of a Morse–Bott or a round function.
- Kronrod, A. (1950). On functions of two variable. Uspekhi Mat. Nauk, 5(1), 24–134.
- Martínez-Alfaro, J., Meza-Sarmiento, I. S., & Oliveira, R. (2016). Topological classification of simple Morse Bott functions on surfaces. In Real and complex singularities (pp. 165–179). AMS. doi: 10.1090/conm/675/13590
- Masumoto, Y., & Saeki, O. (2011). Smooth function on a manifold with given Reeb graph. Kyushu J. of Math., 65(1), 75–84.
- Michalak, Ł. P. (2018). Realization of a graph as the Reeb graph of a Morse function on a manifold. Topol. Methods Nonlinear Anal., 52(2), 749–762.
- Reeb, G. (1946). Sur les points singuliers d'une forme de Pfaff complétement intégrable ou d'une fonction numérique. C.R.A.S. Paris, 222, 847–849.

References II

Saeki, O. (2021, February). Reeb spaces of smooth functions on manifolds. Int. Math. Res. Not.. Retrieved from https://doi.org/10.1093/imrn/rnaa301 doi: 10.1093/imrn/rnaa301
Sharko, V. V. (2006). About Kronrod-Reeb graph of a function on a manifold. Methods

Funct. Anal. Topol., 12(4), 389-396.

Thank you! :)

www.I.Gelbukh.com

Irina Gelbukh

CIC-IPN