Realization of a graph as the Reeb graph of a Morse, Morse-Bott or round function

Irina Gelbukh

Centro de Investigación en Computación Instituto Politécnico Nacional, Mexico
www.I.Gelbukh.com

Contents

1 Introduction

- History
- Reeb graph of a smooth function
- Counterexample: Reeb graph is not a finite graph
\square When is the Reeb graph a finite graph?

2 Realization problem:
When is a finite graph the Reeb graph of a function?

- Smooth functions
- Morse functions

■ Morse-Bott functions

- Round functions
- Conclusion

Introduction

Concept of Reeb graph

■ Reeb graph was introduced by George Reeb (1946), in that time
■ only for simple Morse functions
■ on closed manifolds
as a quotient space: connected components of level sets contracted to points

- He noted that it is a 1-dim (CW) complex: a finite graph (with multiple edges)
- for the type of functions he considered

■ this is used in all modern applications of the Reeb graph

- Alexander Kronrod (1950) introduced tree of connected components of level sets
- for continuous functions

■ on a sphere
This tree can be infinite.
. Reeb graph also is called the Kronrod-Reeb graph.

Reeb graph of a smooth function

$\square X$ is a topological space; $f: X \rightarrow \mathbb{R}$ is a continuous function
\square Contour of f : connected component of its level set $f^{-1}(y)$
$\square x \sim y$ is an equivalence relation: $x, y \in$ the same contour of f

Definition

The Reeb graph R_{f} is the quotient space X / \sim, endowed with the quotient topology. For smooth functions: image of a critical contour is called a vertex.

Geometric meaning of the Reeb graph

This graph shows the evolution of the level sets:

- contours can split into two or more
- contours can merge into one

In some "good" cases, Reeb graph is indeed a graph

- non-vertices form edges
- much more on this, later

Counterexample: Reeb graph is not a finite graph

Generally, the Reeb graph is not a graph.
This quotient space can be ill-behaved even for very good functions:

Example

Let $M=\mathbb{R}^{2} \backslash\{(0,0)\}$ and $f(x, y)=y$ be the projection.
Then R_{f} is the line with two origins (bug-eyed line).
Not a graph, even non-Hausdorff.

The problem is that the manifold is not compact.

Reeb graph as a finite graph

$\square M$ is a manifold, $f: M \rightarrow \mathbb{R}$ is a smooth function

- A finite graph can have multiple edges and loops: a 1-dimensional CW complex

Definition

The Reeb graph R_{f} has the structure of a finite graph G, if there is a homeomorphism $h: R_{f} \rightarrow G$ mapping vertices of R_{f} bijectively to vertices of G.

We will say that R_{f} is isomorphic to G or just R_{f} is G (abuse of language).

Example

- The Reeb graph of a simple Morse function has the structure of a finite graph [Reeb (1946)]
- The Reeb graph of a function f with finite $\operatorname{Crit}(f)$ has the structure of a finite graph [Sharko (2006)]
- The Reeb graph of a simple Morse-Bott function on a surface has the structure of a finite graph [Martínez-Alfaro et al. (2016)]

When is the Reeb graph a finite graph?

Theorem (Saeki (2021))

Let M be a closed manifold, $f: M \rightarrow \mathbb{R}$ a smooth function. Then:
R_{f} has the structure of a finite graph $\Leftrightarrow f$ has a finite number of critical values.

This makes it possible:

- to work with a wide class of functions, including Morse-Bott and round functions;
- to study these functions using graph theory.

Realization problem: When is a finite graph the Reeb graph of a function?

Realization: smooth function

Realization problem: Is any finite graph the Reeb graph of some function?
No. But yes for graphs without loops (edge with both endpoints at the same vertex):

Theorem (Masumoto and Saeki (2011))

Let G be a finite graph. Then:
there is a smooth function $f: M \rightarrow \mathbb{R}$ such that R_{f} is $G \Leftrightarrow G$ has no loops.
Indeed, R_{f} that is a finite graph has an acyclic orientation \Rightarrow no loops.

Realization: Morse function. Counterexample

Realization problem in some class of functions: additional conditions on the graph.

Example (Sharko (2006))

Not R_{f} of any Morse function. Not even function with finite $\operatorname{Crit}(f)$:

It is not R_{f} of a Morse-Bott or round function.
Why? Let's see. First, some graph theory...

Some graph theory

Definition

$■$ Cut vertex: $G \backslash v$ has more connected components. Isolated vertex is not.

2 cut vertices, 4 blocks, 3 of them leaf blocks

Some graph theory

Definition

\square Cut vertex: $G \backslash v$ has more connected components. Isolated vertex is not.
■ Biconnected graph: connected, without cut vertices.

2 cut vertices, 4 blocks, 3 of them leaf blocks

Some graph theory

Definition

\square Cut vertex: $G \backslash v$ has more connected components. Isolated vertex is not.
■ Biconnected graph: connected, without cut vertices.
■ Block of a graph: maximal biconnected subgraph. Isolated vertex is a block.

2 cut vertices, 4 blocks, 3 of them leaf blocks

Some graph theory

Definition

\square Cut vertex: $G \backslash v$ has more connected components. Isolated vertex is not.
■ Biconnected graph: connected, without cut vertices.
■ Block of a graph: maximal biconnected subgraph. Isolated vertex is a block.
■ Leaf block: a block with at most one cut vertex.
Blocks are attached to each other at shared vertices = cut vertices of the graph. (This forms the block-cut tree, of which leaf blocks are leafs-hence the term.)

2 cut vertices, 4 blocks, 3 of them leaf blocks

Realization: Morse function

■ Closed manifold

- Morse function
- Generally, function with finite number of critical points

Theorem (Michalak (2018) + Gelbukh (submitted1))

G is R_{f} of a smooth function with finite $\operatorname{Crit}(f)$ on a closed manifold \Leftrightarrow G is finite, no loops, all leaf blocks are $\bullet \longrightarrow\left(P_{2}\right)$.
f can be chosen Morse.
To make a given graph realizable by a Morse f, add P_{2} to each non- P_{2} leaf block:

Example

Realization: Morse function

■ Closed manifold

- Morse function
- Generally, function with finite number of critical points

Theorem (Michalak (2018) + Gelbukh (submitted1))

G is R_{f} of a smooth function with finite $\operatorname{Crit}(f)$ on a closed manifold \Leftrightarrow G is finite, no loops, all leaf blocks are $\bullet \bullet\left(P_{2}\right)$.
f can be chosen Morse.
To make a given graph realizable by a Morse f, add P_{2} to each non- P_{2} leaf block:

Example

:) all P_{2} leaf blocks

Realization: Morse function

■ Closed manifold

- Morse function
- Generally, function with finite number of critical points

Theorem (Michalak (2018) + Gelbukh (submitted1))

G is R_{f} of a smooth function with finite $\operatorname{Crit}(f)$ on a closed manifold \Leftrightarrow G is finite, no loops, all leaf blocks are $\bullet \bullet\left(P_{2}\right)$.
f can be chosen Morse.
To make a given graph realizable by a Morse f, add P_{2} to each non- P_{2} leaf block:

Example

Realization: Morse-Bott function

Morse-Bott function; generally, function with finite number of critical submanifolds:

Theorem (Gelbukh (submitted2))

For any given $n \geq 2$,
G is R_{f} of a smooth f with $\operatorname{Crit}(f)=$ finite no. of submanifolds, on closed n-manifold \Leftrightarrow G is finite, no loops, and

- each leaf block L has a vertex v with $\operatorname{deg}_{G}(v) \leq 2$,
- two such vertices if L is a non-trivial (has an edge) connected component of G.
f can be chosen Morse-Bott.
To make G realizable by a Morse-Bott f, subdivide an edge in leaf blocks where missing:

Example

: $)$ no vertex of degree ≤ 2

() all leaf blocks have ≤ 2

Realization: Morse-Bott function

Morse-Bott function; generally, function with finite number of critical submanifolds:

Theorem (Gelbukh (submitted2))

For any given $n \geq 2$,
G is R_{f} of a smooth f with $\operatorname{Crit}(f)=$ finite no. of submanifolds, on closed n-manifold \Leftrightarrow G is finite, no loops, and

- each leaf block L has a vertex v with $\operatorname{deg}_{G}(v) \leq 2$,
- two such vertices if L is a non-trivial (has an edge) connected component of G.
f can be chosen Morse-Bott.
To make G realizable by a Morse-Bott f, subdivide an edge in leaf blocks where missing:

Example

: no vertex of degree ≤ 2

() all leaf blocks have ≤ 2

Realization: Morse-Bott function

Morse-Bott function; generally, function with finite number of critical submanifolds:

Theorem (Gelbukh (submitted2))

For any given $n \geq 2$,
G is R_{f} of a smooth f with $\operatorname{Crit}(f)=$ finite no. of submanifolds, on closed n-manifold \Leftrightarrow G is finite, no loops, and

- each leaf block L has a vertex v with $\operatorname{deg}_{G}(v) \leq 2$,
- two such vertices if L is a non-trivial (has an edge) connected component of G.
f can be chosen Morse-Bott.
To make G realizable by a Morse-Bott f, subdivide an edge in leaf blocks where missing:

Example

: no vertex of degree ≤ 2

() all leaf blocks have ≤ 2

Realization: Morse-Bott function (homeomorphism)

Morse-Bott functions play a special role in the Reeb graph theory:

Theorem (Gelbukh (in press))

Any finite graph is homeomorphic to the Reeb graph of a Morse-Bott function.
True even for a graph with loops: can subdivide a loop by a vertex of degree 2.

Example

© loop: no any function

© no loop, Morse-Bott function

Realization: Morse-Bott function (homeomorphism)

Morse-Bott functions play a special role in the Reeb graph theory:

Theorem (Gelbukh (in press))

Any finite graph is homeomorphic to the Reeb graph of a Morse-Bott function.
True even for a graph with loops: can subdivide a loop by a vertex of degree 2.

Example

© loop: no any function

© no loop, Morse-Bott function

Realization: Morse-Bott function (homeomorphism)

Morse-Bott functions play a special role in the Reeb graph theory:

Theorem (Gelbukh (in press))

Any finite graph is homeomorphic to the Reeb graph of a Morse-Bott function.
True even for a graph with loops: can subdivide a loop by a vertex of degree 2.

Example

© loop: no any function

© no loop, Morse-Bott function

Realization: round function

Definition

Round function: smooth function $f: M \rightarrow \mathbb{R}$ on a closed manifold M, with $\operatorname{Crit}(f)=\bigcup S^{1}$, a finite number of disjoint circles.

This time, the structure of R_{f} depends on manifold:

- dimension
- whether orientable

Theorem (Gelbukh (submitted2))

G is R_{f} of a round function on $M^{n} \Leftrightarrow G$ is finite, no loops, and

$$
\text { each leaf block } \begin{cases}\text { has a non-cut vertex of } \operatorname{deg} v=2 & \text { if } n=2 \text {, orientable surface } \\ \text { has a non-cut vertex of } \operatorname{deg} v \leq 2 & \text { if } n=2 \text {, non-orientable surface } \\ \text { is } \bullet\left(P_{2}\right) & \text { if } n \geq 3\end{cases}
$$

Realization: conclusion

A graph can be realized by functions of different classes and on different manifolds:
$L_{i}(G)$ leaf blocks,
$b_{1}(G)$ cycle rank

Morse, Morse-Bott, round

f	$n=2$ orient	$n=2$ non-or	$n \geq 3$
Morse	+	+	+
Morse-Bott	\cdot	\cdot	\cdot
round	\cdot	+	+

Since corank $\left(\pi_{1}(M)\right) \geq b_{1}(G)\left(\right.$ Gelbukh (2019)): surface genus $\geq\left\{\begin{array}{lr}2 & \text { orientable, } \\ 4 & \text { non-orientable. }\end{array}\right.$

Realization of the Sharko graph

What functions realize the Sharko graph?

Example

On an orientable surface, these functions have two types of extrema:

- isolated points,
- wedge sum $S^{1} \vee S^{1}$.

References I

Gelbukh, I. (2019). Approximation of metric spaces by Reeb graphs: Cycle rank of a Reeb graph, the co-rank of the fundamental group, and large components of level sets on Riemannian manifolds. Filomat, 33(7), 2031-2049. doi: 10.2298/ FIL1907031G
Gelbukh, I. (in press). A finite graph is homeomorphic to the Reeb graph of a MorseBott function. Math. Slovaca.
Gelbukh, I. (Submitteda). Criterion for a graph to admit a good orientation in terms of leaf blocks.
Gelbukh, I. (Submittedb). Realization of a graph as the Reeb graph of a Morse-Bott or a round function.
Kronrod, A. (1950). On functions of two variable. Uspekhi Mat. Nauk, 5(1), 24-134.
Martínez-Alfaro, J., Meza-Sarmiento, I. S., \& Oliveira, R. (2016). Topological classification of simple Morse Bott functions on surfaces. In Real and complex singularities (pp. 165-179). AMS. doi: 10.1090/conm/675/13590
Masumoto, Y., \& Saeki, O. (2011). Smooth function on a manifold with given Reeb graph. Kyushu J. of Math., 65(1), 75-84.
Michalak, Ł. P. (2018). Realization of a graph as the Reeb graph of a Morse function on a manifold. Topol. Methods Nonlinear Anal., 52(2), 749-762.
Reeb, G. (1946). Sur les points singuliers d'une forme de Pfaff complétement intégrable ou d'une fonction numérique. C.R.A.S. Paris, 222, 847-849.

References II

Saeki, O. (2021, February). Reeb spaces of smooth functions on manifolds. Int. Math. Res. Not.. Retrieved from https://doi.org/10.1093/imrn/rnaa301 doi: 10.1093/imrn/rnaa301

Sharko, V. V. (2006). About Kronrod-Reeb graph of a function on a manifold. Methods Funct. Anal. Topol., 12(4), 389-396.

Thank you!:)

www.l.Gelbukh.com

