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Abstract

We study the geometry of compact singular leaves γ and minimal components Cmin of the foliation Fω of a
Morse form ω on a genus g closed surface M2

g in terms of genus g(∗). We show that c(ω) +
∑

γ g(V (γ)) +

g(
⋃Cmin) = g, where c(ω) is the number of homologically independent compact leaves and V (∗) is a small

closed tubular neighborhood. This allows us to prove a criterion for compactness of the singular foliation
Fω, to estimate the number of its minimal components, and to give an upper bound on the rank rkω, in
terms of genus.
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1. Introduction and statement of main results

Let ω be a Morse form, i.e., a closed 1-form with Morse singularities—locally the differential of a Morse
function, on a genus g closed surface M = M2

g . It defines a foliation Fω on M \ Sing ω and a singular

foliation Fω (with possible singular leaves) on the whole M . A leaf γ ∈ Fω is compactifiable if γ ∪ Sing ω is
compact; then the closure γ is a circle or a segment.

Compact leaves of Fω are circles; connected components of their union are cylinders called maximal
components Cmax

i . Non-compactifiable leaves form minimal components Cmin
j ; each such leaf is dense in

its minimal component [9, 13]. The number of maximal and minimal components is finite. Obviously, all
components are mutually disjoint and

M =
⋃

Cmax
i ∪

⋃
Cmin

j .

The set
⋃

∂Cmax
i consists of a finite number of compactifiable leaves and singularities. The set of its

connected components coincides with the set of all compact singular leaves.
We study interrelation of some characteristics of maximal and minimal components. Denote by c(ω)

be the number of homologically independent compact leaves of Fω and by m(ω) the number of minimal
components. Arnoux and Levitt [2] and Maier [14] have shown that m(ω) ≤ g. Later it was shown [4] that

c(ω) + m(ω) ≤ g; (1)

moreover, if the form is weakly generic (each connected component of
⋃

∂Cmax
i contains a unique singularity)

then [7]

c(ω) + m(ω) = g − k(ω)

2
, (2)

where k(ω) = |Sing ω ∩⋃ int(Cmin)| is the number of singularities s ∈ Sing ω “inside” minimal components.
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Levitt [12], Aranson and Zhuzhoma [1], and Kono [11] have studied the structure of quasiminimal

components (which for Morse forms coincide with Cmin
j ) in terms of leaves and singularities. In contrast,

we address their genus. Namely, we show that the genus g(∗) of various structural elements of the foliation
is useful for characterization of its topology. Our main result (Theorem 42) is

c(ω) +
∑

γ

g (V (γ)) + g
(⋃

Cmin
j

)
= g, (3)

where γ are all compact singular leaves and V (∗) is a small closed tubular neighborhood.
This improves on (1) since the last summand is at least m(ω) (Corollary 10), which gives (Corollary 44)

c(ω) + m(ω) ≤ g −
∑

γ

g(V (γ)). (4)

Equation (3) also generalizes (2) to a wider class of forms, since k(ω) reflects the genus of minimal components
(Theorem 50, Corollary 51). In addition, it generalizes the result of Zorich [18], who showed that for a generic
form (each singular leaf contains a unique singularity) with maximal rank (the rank of the group of periods),
rkω = 2g, it holds ∑

g(Cmin
j ) = g. (5)

Indeed, in this special case the two first summands of (3) are zero (Proposition 26), and then (5) follows
from (3) by Lemma 9.

Finally, (3) gives a criterion for compactness of a foliation (Theorem 43): Fω is compact (all leaves are
compact) iff

c(ω) +
∑

γ

g(V (γ)) = g,

which improves on the condition—criterion if ω is generic—for compactness of Fω given by Mel’nikova [15]:
if c(ω) = g then Fω is compact. In particular, if

∑
γ g(V (γ)) = g then Fω is compact and all its non-singular

leaves are homologically trivial; moreover, the form is exact: ω = df (Proposition 26).
While g(V (γ)) depends on the embedding of γ in M2

g , in some cases we can tell that g(V (γ)) > 0
solely on the basis of the structure of γ. Indeed, consider γ as a graph. The genus g(γ) of a graph is
defined as the minimal integer k such that the graph can be embedded in a surface M2

k ; cf. Figure 8.
Obviously, g(γ) ≤ g(V (γ)); i.e., the structure of a compact singular leaf considered as a graph can give
useful information about the foliation structure (Corollary 35).

In particular, most of our inequalities still hold, and equalities turn into inequalities, in terms of
∑

γ g(γ)
that is independent of the embedding. For example, (4) rewritten as

c(ω) + m(ω) ≤ g −
∑

γ

g(γ)

still improves on (1).
Since for any leaf γ it holds

∫
γ

ω = 0, the structure of compact elements of the foliation defines zero

periods of the form ω, which affects its rank (Proposition 26):

rk ω + c(ω) ≤ 2

(
g −

∑

τ

g(V (τ))

)
, (6)

where each τ is a connected component of
⋃

∂Cmax
i ; τ is either a compact singular leaf γ or a boundary

component δ of the set
⋃

j Cmin
j , i.e. {τ} = {γ} ∪ {δ}.

For compact Fω we have (Corollary 28):

rkω ≤ g −
∑

g(V (γ)).
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This improves the result of Mel’nikova [16], who proved that rk ω ≤ g.
We consider in detail a class of Morse forms for which compact singular leaves give sufficient information

for (6), i.e., for which
∑

g(V (δ)) = 0. Namely, we introduce a class of very weakly generic forms: those for
which each δ contains a unique singularity and is thus S1. This class generalizes the classes of generic forms
and weakly generic forms [7].

Minimal components of a very weakly generic form are non-adjacent (Cmin
i ∩ Cmin

j = ∅), so (Lemma 9)

g
(⋃

Cmin
j

)
=
∑

g(Cmin
j )

and (3) becomes

c(ω) +
∑

γ

g(V (γ)) +
∑

g(Cmin
j ) = g.

Moreover, for a very weakly generic form the genus g(Cmin
j ) is defined by the number kj = |Sing ω ∩

int(Cmin
j )| of singularities inside Cmin

j (Theorem 47):

g(Cmin
j ) = 1 +

kj

2
.

This further rewrites (3) as (Theorem 50)

c(ω) + m(ω) +
k(ω)

2
+
∑

γ

g(V (γ)) = g, (7)

where is the total number of singularities inside minimal components. Some properties of k(ω) are given in
Proposition 49.

For a very weakly generic form the latter equality defines, in particular, the number m(ω) of minimal
components—a problem that has received attention in the past [2, 4, 7, 14]. Given the difficulty of exact
calculation of g(V (γ)), we also give some simplified estimations of m(ω). Note that while (1) is a simple
upper bound on m(ω), we are not aware of any lower bound on m(ω) existing in the literature.

Consider ker[ω] = 〈z ∈ H1(M) |
∫

z
ω = 0〉 and the rank h(ker[ω]) of its maximal isotropic subgroup

(subgroup consisting of non-intersecting cycles); it is calculated in Lemma 14. Equation (7) implies (Theo-
rem 53)

g − k(ω)

2
− h(ker[ω]) ≤ m(ω) ≤ g − k(ω)

2
− c(ω)

with m(ω) > 0 if k(ω) > 0; for given g, k(ω), and h(ker[ω]) the bounds are exact and all intermediate values
are reached.

Since studying the structure of ker[ω] can also be difficult, we give a weaker lower bound not involving
h(ker[ω]) (Corollary 54):

m(ω) ≥ rkω − g − k(ω)

2
.

This bound is efficient only for large rkω, specifically, for rkω ≥ g. However, a “typical” Morse form (in
terms of measure) has rk ω = 2g.

Finally we build an example that shows that our system of relations between g, m(ω), c(ω), h(ker[ω]),
and k(ω) is complete: all combinations of their values allowed by our inequalities are reached even in the
class of very weakly forms; in particular, the corresponding bounds are exact.

The paper is organized as follows. In Section 2 we introduce some necessary definitions and facts
concerning a Morse form foliation and prove some useful lemmas. In Section 3 we study some properties of
isotropic subgroups associated with the foliation; their geometric interpretation is given in Section 4, where
we analyze the topology of

⋃
∂Cmax

i . In Section 5 we discuss some properties of minimal components. In
Section 6 we prove our main theorem (3). In Section 7 we study minimal components of very weakly generic
forms and give the estimates on m(ω). Finally, in Section 8 we show completeness of our characterization
and in particular exactness of our bounds.
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2. Definitions and basic facts

Let us introduce, for future reference, some necessary notions and facts about Morse forms and their
foliations. By M = M2

g we denote a genus g closed orientable surface.

2.1. Morse form

A closed 1-form on M is called a Morse form if it is locally the differential of a Morse function. Let ω
be a Morse form and Sing ω = {p ∈ M | ω(p) = 0} be the set of its singularities; this set is finite since the
singularities are isolated and M is compact.

By the Morse lemma, in a neighborhood of s ∈ Sing ω on M2
g there exist local coordinates (x1, x2) such

that ω(x) = ±x1dx1 + x2dx2. If the sign is positive then s is a center, otherwise it is a conic singularity.
We denote the set of centers by Ω0 and the set of conic singularities by Ω1, so that Sing ω = Ω0 ∪ Ω1. By
the Poincaré—Hopf theorem, it holds

|Ω1| − |Ω0| = 2g − 2. (8)

The rank of a closed 1-form ω is the rank of its group of periods:

rk ω = rkQ

{∫
z1

ω, . . . ,
∫

z2g
ω
}

,

where z1, . . . , z2g is a basis of H1(M
2
g ). For an exact form, rk ω = 0.

2.2. Morse form foliation

On M \ Sing ω, the form ω defines a (non-singular) foliation Fω. A leaf γ ∈ Fω is compactifiable if
γ ∪ Sing ω is compact (thus compact leaves are compactifiable); otherwise it is non-compactifiable. If a
foliation contains only compactifiable leaves then it is called compactifiable.

Lemma 1 ([7]). Let γ0 ∈ Fω be a non-compact compactifiable leaf such that γ0 ∪ s is compact for some
s ∈ Sing ω. Then in any neighborhood of γ0 = γ0 ∪ s there exists a compact leaf γ ∈ Fω.

� �� ��

γ ��

� � ��

� �� �� γ ��

Figure 1: Decomposition of
T 2: Cmax

i are maximal com-
ponents, they are cylinders;
Cmin is a minimal component,
it is a torus with two holes; the
components are connected by
compactifiable leaves γ0

i and
singularities.

The foliation Fω defines a decomposition of M2
g into mutually disjoint

sets defined below; see Figure 1 [6]:

M2
g =

(⋃
Cmax

i

)
∪
(⋃

Cmin
j

)
∪
(⋃

γ0
k

)
∪ Sing ω. (9)

Maximal components Cmax
i are connected components of the union of all

compact leaves. On M2
g the notion of maximal component coincides with

the notion of periodic component [14]. Unless Sing ω = ∅, each maximal
component is a cylinder over a compact leaf: Cmax

i
∼= γi×(0, 1). Consider the

group Hω ⊆ H1(M
2
g ) generated by the homology classes of all compact leaves:

Hω = 〈[γi], γi ∈ Fω〉 [4]; c(ω) = rk Hω denotes the number of homologically
independent compact leaves.

Minimal components Cmin
i of the foliation are connected components of

the union of all non-compactifiable leaves. A foliation that has exactly one
minimal component and no maximal components is called minimal. Each
non-compactifiable leaf is dense in its minimal component [2, 9]. We denote
by m(ω) the number of minimal components.

Components Cmax
i and Cmin

i are open; their boundaries lie in the union
(
⋃

k γ0
k) ∪ Sing ω of all non-compact compactifiable leaves and singularities.

The number of components, as well as the number of non-compact compactifiable leaves γ0
k, is finite.

In homology terms, decomposition (9) implies [4]:

H1(M
2
g ) = 〈DHω, i∗H1

(⋃
∂Cmax

i

)
, j∗H1

(⋃
Cmin

j

)
〉, (10)

where D is a Poincaré duality map and i, j are the inclusion maps.
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2.3. Singular foliation

While a foliation Fω is defined on M \ Sing ω, a singular foliation Fω is an equivalence relation defined
on the whole M : two points p, q ∈ M belong to the same leaf of Fω if there exists a path α : [0, 1] → M
with α(0) = p, α(1) = q and ω(α̇(t)) = 0 for all t [3]. A singular leaf contains a singularity.

The singular foliation Fω differs from Fω only by possibly merging together some its leaves: indeed,
non-singular leaves of Fω are leaves of Fω; the number of singular leaves of Fω is finite, and each such leaf
consists of a finite number of non-compact leaves of Fω and singularities. Fω is compactifiable iff Fω is
compact, i.e., all its leaves are compact.

2.4. Very weakly generic forms

Definition 2 ([3]). A Morse form is called generic if each its singular leaf contains a unique singularity.

On M2
g this is equivalent to the requirement for each non-compact compactifiable leaf of Fω to be

compactified by only one singularity, i.e., for its closure to be a circle (as γ0
i in Figure 1) and not a segment

(as γ0 in Figure 2 (a)). In particular, compact singular leaves of a generic form are figures of eight, as τ1 in
Figure 6.

γ
�

� � � � � �

Figure 2: Foliations on T 2 with one minimal
component. The form (a) is weakly generic,
though not generic; the form (b) is not even
very weakly generic.

Generic forms are “typical” Morse forms in the sense that
their set is open and dense in the space of Morse forms [3]. A
reader only interested in generic forms may skip the next two
definitions, since all our results are applicable to generic forms.

Definition 3. A Morse form is weakly generic if any connected
component ∂jCi of the boundary of any its (minimal or maxi-
mal) component Ci contains a unique singularity.

On M2
g , this means that only those non-compact compac-

tifiable leaves of Fω that lie outside minimal components are
required to be compactified by only one singularity, while those
inside minimal components can form segments; see Figure 2.
Par abus de langage we say that a leaf or singularity is inside a component C if it belongs to int(C). In
other words, a weakly generic form is a form that is generic outside minimal components; in particular, all
compact singular leaves of a weakly generic form are figures of eight.

Definition 4. We call a Morse form very weakly generic if any connected component ∂jCmin of the boundary
of any its minimal component contains a unique singularity.

�

�

�

�

�

�

Figure 3: Minimal foliation on M2
g = T 2 ] T 2;

cf. Figure 9. Figure adapted from [5].

On M2
g this means that only those leaves that lie on the

boundary of minimal components are required to be compact-
ified by only one singularity, i.e., each ∂jCmin is either a circle
γ0 ∪ s or a single s ∈ Sing ω inside Cmin; the former are con-
nected components of ∂Cmin. Compact singular leaves of a
very weakly generic form do not have to be figures of eight.

Lemma 5. If ω is very weakly generic then Cmin
i ∩ Cmin

j = ∅.

Proof. Connected components of ∂Cmin are circles γ0. Out
of local considerations, each such circle separates the Cmin from
not more than one another component, which by Lemma 1 must be a maximal component and thus cannot
be another minimal component. 2
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For very weakly generic forms, the topology of minimal components is tightly connected with the singu-

larities inside minimal components. Let ki = | int(Cmin
i )∩Sing ω| be the number of singularities inside Cmin

i ;

we denote by k(ω) =
∑m(ω)

i=1 ki the total number of singularities inside all minimal components. In Figure 3,
k(ω) = 2. In fact, our results hold for an even wider class of forms, such as the one shown in Figure 2 (b),
but not in Figure 9; however, we will treat such generalizations in a separate paper.

2.5. The genus of a surface

Definition 6. The genus g(S) of an orientable surface S is the maximum number of cuttings along closed
simple curves without increasing the number of its connected components.

For closed surfaces, g(M2
g ) = g. Let S ⊆ M2

g be a closed subset, obviously, g(S) ≤ g.

Lemma 7. Let i : S ↪→ M2
g be a surface with boundary, i∗ : H1(S) → H1(M

2
g ). Then ker i∗ = 0.

Proof. Denote M = M2
g . Consider the long exact sequence of the pair (M, S):

· · · → H2(M)
j−→ H2(M, S)

∂∗−→ H1(S)
i∗−→ H1(M) → . . .

Since H2(M) = H2(M, S) = Z and im j = ker ∂∗ = Z, we have im ∂∗ = 0 = ker i∗. 2

Corollary 8. The closed curves α1, . . . , αg(S) from Definition 6 for S ⊂ M2
g are homologically independent

in H1(M
2
g ).

Let us consider some subsets of M2
g covered by minimal components:

Lemma 9. For a Morse form foliation it holds

(i) g(Cmin) ≥ 1,

(ii) g
(⋃

j Cmin
j

)
≥∑j g(Cmin

j ).

For a very weakly generic form, the latter turns into equality g
(⋃

j Cmin
j

)
=
∑

j g(Cmin
j ).

Proof. (i) A subset Cmin ⊆ M2
g admits a flow having a dense orbit (transitive flow), so it is connected and

g(Cmin) 6= 0 [10].
(ii) Consider two minimal components, C1 = Cmin

1 and C2 = Cmin
2 . If C1 ∩ C2 = ∅ then, obviously,

g(C1∪C2) = g(C1)+g(C2). In particular, by Lemma 5 this holds for all minimal components of a very weakly
generic form. Now let C1 ∩ C2 6= ∅; then C1 ∩ C2 ⊂ ∂C1 ∪ ∂C2, so by definition, g(C1) + g(C2) ≤ g(C1 ∪ C2).
Induction on the number of minimal components completes the proof. 2

Corollary 10. g
(⋃m(ω)

j=1 Cmin
j

)
≥ m(ω).

Figure 4: Two tori with a winding (Cmin
j )

are connected by means of two holes,
forming an M2

3 .

For a Morse form that is not very weakly generic a strict inequal-
ity can hold:

Example 11. Consider a foliation on M2
3 covered by two minimal

components Cmin
j as in Figure 4. We have g(Cmin

1 ) = g(Cmin
2 ) = 1

and g(
⋃ Cmin

j ) = 3, so
∑

j g(Cmin
j ) < g(

⋃ Cmin
j ).

3. On some maximal isotropic subgroups in H1(M)

A singular foliation Fω has three types of leaves: compact non-singular leaves, compact singular leaves,
and non-compact leaves. We consider their geometric characteristics: isotropic subgroups generated by
leaves (this section) and the genus of a neighborhood of a leaf (below).
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3.1. Intersection of cycles and isotropic subgroups

Consider on H1(M
2
g ) the intersection of cycles

· : H1(M
2
g ) × H1(M

2
g ) → Z;

it is skew-symmetric and non-degenerated.

Definition 12. A subgroup H ⊂ H1(M
2
g ) is called isotropic with respect to the cycle intersection · if for

any z, z′ ∈ H it holds z · z′ = 0.

Obviously, for an isotropic subgroup H ⊆ H1(M
2
g ), it holds rkH ≤ g.

Definition 13. Isotropic rank h(G) of a subgroup G ⊆ H1(M
2
g ) is the rank of a maximal isotropic subgroup

H ⊆ G: h(G) = rkH .

For M2
g (unlike higher-dimensional case) isotropic rank is well-defined because rk H does not depend on

the choice of H :

Lemma 14 ([7]). Let G ⊆ H1(M
2
g ). Then

h(G) = rk G − 1

2
rk ‖zi · zj‖,

where {zi} is any basis of G.

Corollary 15. For G ⊆ H1(M
2
g ), it holds h(G) ≥ 1

2 rkG.

The value h (Hn−1(M)), n = dimM , properly generalized, is an important topological invariant of a
manifold denoted by h(M) [4, 16, 17]; specifically,

h
(
H1(M

2
g )
)

= h(M) = g. (11)

For a surface S ⊂ M2
g we denote h(S) = h(H1(S)); the isotropic rank does not depend on the inclusion:

Lemma 16. Let i : S ↪→ M2
g be a surface with boundary and G ⊆ H1(S) be a maximal isotropic subgroup.

Then i∗G is a maximal isotropic subgroup in i∗H1(S) ⊆ H1(M
2
g ) and rk(i∗G) = rkG, i.e. h(i(S)) = h(S).

Proof. Obviously, i∗G ⊂ i∗H1(S) is a maximal isotropic subgroup. By Lemma 7, ker i∗ = 0, so rk(i∗G) =
rkG. 2

Let us consider an important example of a maximal isotropic subgroup on a surface:

Proposition 17. Let S be a compact orientable surface with boundary ∂S =
⋃

∂j, ∂j = S1, and αi,
i = 1, . . . , g(S), be simple closed curves from Definition 6 that define its genus. Then

H = 〈[α1], . . . , [αg], [∂1], . . . , [∂l]〉

is a maximal isotropic subgroup and

h(H1(S)) = g(S) + rk〈[∂j ]〉.

In addition, there exist non-intersecting curves β1, . . . , βg ⊂ S such that [αi] · [βj ] = δij and ∂i ∩ βj = ∅.
The cycles [αi], [βj ], [∂k] ∈ H1(S) are related in the following way:

rk〈[αi], [βj ], [∂k]〉 = 2g(S) + rk〈[∂k]〉.
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This proposition generalizes (11) and allows one to study submanifolds.

Proof. Since αi ∩αj = αi ∩ ∂j = ∂i ∩ ∂j = ∅, the subgroup H is isotropic. Let us show that it is maximal.
Consider a cycle z ∈ H1(S) such that z ·H = 0. Realize z by a curve α, α∩αi = ∅. Denote by S′ the result
of cutting S open along all αi. By construction, S′ is a sphere with holes and α ⊂ S′. So any connected
component of α splits S′ up and thus is induced from ∂S′ = ∂S ∪

(⋃
(α+

i ∪ α−
i )
)
, where α±

i are two copies
of αi. This implies z = [α] ∈ 〈[αi], [∂j ]〉 = H .

By the choice of αi, we have H = 〈[α1]〉 ⊕ · · · ⊕ 〈[αg]〉 ⊕ 〈[∂1], . . . , [∂l]〉 and [αi] 6= 0, which gives
rkH = g + rk〈[∂j ]〉.

Gluing up S by disks we obtain M2
g , where the desired curves βi exist; without loss of generality we can

suppose βi ⊂ S.
Now let z ∈ 〈[αi], [βj ]〉 ∩ 〈[∂k]〉; then

z =
∑

i

nα
i [αi] +

∑

j

nβ
j [βj ] =

∑

k

mk[∂k].

Since βl ∩ αi = ∅, we obtain z · [βl] = 0, so nα
l = 0; similarly, all nβ

l = 0, i.e. z = 0. Thus 〈[αi], [βj ], [∂k]〉 =
〈[αi], [βj ]〉 ⊕ 〈[∂k]〉. Obviously, 〈[αi], [βj]〉 = 〈[αi]〉 ⊕ 〈[βj ]〉 and rk〈[αi]〉 = rk〈[βj ]〉 = g(S). This implies
rk〈[αi], [βj ], [∂k]〉 = 2g(S) + rk〈[∂k]〉. 2

Note that
rk〈[∂j ]〉 = #(∂S) − #′(S),

where #(∗) is the number of connected components and #′(∗) is the number of connected components with
non-empty boundary, and thus

h(H1(S)) = g(S) + #(∂S) − #′(S).

3.2. Isotropic subgroups associated with the foliation

Since leaves of a foliation do not intersect, isotropic subgroups related with the foliation can be used to
describe its geometrical structure.

Compact leaves generate an isotropic subgroup Hω ⊂ H1(M
2
g ); denote c(ω) = rkHω .

Compact singular leaves correspond to closed curves lying in
⋃

∂Cmax
j ; see (9). These closed curves

generate a subgroup Gc = i∗H1(
⋃

∂Cmax
j ); i is the inclusion map. The subgroup Gc is not necessarily

isotropic (see Figure 5); though for a weakly generic form it is (see Lemma 18 below). Since any compact
leaf in Cmax

j is induced from ∂Cmax
j , we have Hω ⊆ Gc.

Note that for any closed curve γ lying in a leaf of the foliation, it holds
∫

γ
ω = 0. Thus

Hω ⊆ Gc ⊆ ker[ω], (12)

where ker[ω] = {z ∈ H1(M
2
g ) |

∫
z
ω = 0}. The subgroup ker[ω] can be isotropic, but in general it is not.

Consider isotropic ranks of the groups from (12), then

c(ω) ≤ hc(ω) ≤ h(ker[ω]) ≤ g. (13)

where hc(ω) = h(Gc) is the number of non-intersecting cycles lying in the boundaries of maximal compo-
nents—some of them are homologous to compact leaves; recall that c(ω) is the number of homologically
independent compact leaves of Fω and h(ker[ω]) is the number of non-intersecting cycles with zero integral.

These three numbers characterize the geometrical structure of Fω. In the remainder of this section we
will study the inequality (13).

If rkω = 2g, we have ker[ω] = 0, so h(ker[ω]) = hc(ω) = c(ω) = 0. This is a trivial case: if g 6= 0 the
foliation consists of minimal components and (optionally) homologically trivial compact leaves.

Consider the lower bound in (13).
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Lemma 18. For a weakly generic form, c(ω) = hc(ω).

Proof. For a weakly generic form we have Gc ⊆ Hω. Indeed, each connected component γ of
⋃

j ∂Cmax
j is

O-shaped or 8-shaped; Lemma 1 gives i∗H1(γ) ⊆ Hω. 2

 
 
 
 

 
 
 

 

 γ  

 C1 
max 

 C2 
max 

 

Figure 5: Decomposition of
T 2 contains two Cmax

i and
a unique compact singular
leaf γ that glues them to-
gether. In this case the sub-
group Gc = i∗H1(γ) coin-
cides with the whole group
H1(M2

g ).

The condition for ω to be weakly generic is important: Figure 5 shows the
case 0 = c(ω) 6= hc(ω) = 1. In the next section we will discuss the difference
hc(ω) − c(ω) and its geometric meaning.

Now consider the upper bound in (13). By Lemma 14 and since rk ker[ω] =
2g − rkω, for h(ker[ω]) we have

g − rkω ≤ h(ker[ω]) ≤ min(2g − rkω, g).

In particular,
0 ≤ h(ker[ω]) ≤ g. (14)

If rk ω = 0, we have h(ker[ω]) = g. In fact this holds for any compactifiable
foliation (see Corollary 41 below).

Denote S =
⋃ Cmin

i the minimal part of the foliation; let j : S ↪→ M2
g be

the inclusion map.

Lemma 19. If ker[ω] ∩ j∗H1(S) ⊆ Gc then hc(ω) = h(ker[ω]).

Proof. Rewrite (10) as
H1(M) = 〈DHω, Gc, j∗H1(S)〉. (15)

Let ker[ω] ∩ j∗H1(S) ⊆ Gc. Consider a maximal isotropic subgroup H ⊆ ker[ω], H ⊇ Hω ; then H ⊆
〈Gc, j∗H1(S)〉 ∩ ker[ω] ⊆ Gc, which with (13) gives h(ker[ω]) = rkH = hc(ω). 2

Geometrically this means that rkω is maximal in the set S =
⋃

j Cmin
j :

Lemma 20. ker[ω] ∩ j∗H1(S) ⊆ Gc iff rkω|S = 2g(S).

Proof. Consider the exact sequence of a pair:

−→ H1(∂S)
α∗−→ H1(S)

β∗−→ H1(S, ∂S) −→ .

Then H1(S) = α∗H1(∂S) ⊕ β∗H1(S), where β∗H1(S) contains only the cycles not induced from ∂S. Since
∂S ⊆ ⋃ ∂Cmax

i , we obtain j∗α∗H1(∂S) ⊆ Gc ⊆ ker[ω]. Thus

ker[ω] ∩ j∗H1(S) = j∗α∗H1(∂S) ⊕
(
ker[ω] ∩ j∗β∗H1(S)

)
.

So the condition ker[ω]∩j∗H1(S) ⊆ Gc is equivalent to ker[ω]∩j∗β∗(H1(S)) = 0, i.e., rkω|S = rkβ∗(H1(S)) =
2g(S). 2

Corollary 21. If Fω is compactifiable then hc(ω) = h(ker[ω]).

4. Topology of the compact part of the foliation

Let M2
g = C ∪ S, where C =

⋃ Cmax
i is the compact part of the foliation and S =

⋃ Cmin
i is its minimal

part; C ∩S = ∂C = ∂S. Note that the boundary may contain singularities. In the previous section we have
briefly discussed the minimal part S; in this section we study the compact part C.

Consider
⋃

∂Cmax
j ⊂ C. Denote by τ a connected component of

⋃
∂Cmax

j . If τ ⊂ int(C), it is a compact
singular leaf, as τ1 in Figure 6; it can also be a part of a non-compact singular leaf consisting of compactifiable
leaves and the corresponding singularities, as τ2 in Figure 6.
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C 

S 

 τ1 

 τ2 

(a) 

C ~ 

(b) 

Figure 6: (a) M2
g = C∪S; S is a torus with winding;

τ1 = γ is a compact singular leaf, τ2 is a part of a
non-compact singular leaf. (b) �C is a small closed

neighborhood of C, ∂ �C = S1.

The boundary of C may contain singularities, as in Fig-
ure 6 (a), so we consider its small closed neighborhood C̃,

as in Figure 6 (b). The boundary of C̃ is non-singular, it
consists of non-intersecting circles. In addition, the homol-
ogy groups of C and C̃ are isomorphic, H1(C) = H1(C̃).
Denote by V (τ) a small closed tubular neighborhood of
τ ⊆ ∂C, then

C̃ = C ∪
⋃

τ⊆∂C

V (τ).

Denote by i : C̃ ↪→ M2
g the inclusion map.

4.1. Isotropic rank h(C) of the compact part

Recall that h(C) = h(H1(C)); see (11). Obviously,
⋃

∂Cmax
j ⊂ C, moreover, it defines a maximal

isotropic subgroup in C:

Lemma 22. h(C) = hc(ω)

Proof. Since
⋃

∂Cmax
i ⊂ C, it holds hc(ω) ≤ h(C). Consider a maximal subgroup G ⊂ i∗H1(C) such

that Hω ⊂ i∗G. By (15) we have i∗G ⊂ Gc, which implies rk(i∗G) ≤ hc(ω). By Lemma 16 it holds
h(C) = rk(i∗G), so h(C) = hc(ω). 2

Therefore it is sufficient to consider a maximal independent isotropic system of cycles in
⋃

∂Cmax
j ; their

number is hc(ω). These cycles are of three types:

– those induced from maximal components Cmax
i , such as the side circles of τ2 in Figure 6; their number

is c(ω);

– those not induced from maximal components but induced from minimal components Cmin
i , such as

the middle circle of τ2 in Figure 6; their number is denoted below by ∆;

– own cycles of
⋃

∂Cmax
j not induced from anywhere else, such as the cycles in Figure 5; the number of

such cycles in a given τ ⊆ ⋃ ∂Cmax
j is g(V (τ)), the genus of its small closed tubular neighborhood.

The following theorem formalizes these considerations and characterizes c(ω) and hc(ω) from (13). De-
note D = 〈i∗[∂τ

j ] | τ ⊆ ⋃ ∂Cmax
j 〉 ⊆ H1(M), where ∂τ

j ⊆ ∂V (τ) are connected components of ∂V (τ). Denote
Dc = D ∩ Gc and ∆ = rk(D/Dc).

Note that
rkDc = c(ω). (16)

Indeed, by definition rkDc ≤ c(ω). On the other hand, each maximal component contains a curve ∂τ
j and,

obviously, i∗[∂
τ
j ] ∈ Dc, so c(ω) ≤ rkDc.

Proposition 23. For a Morse form ω it holds

hc(ω) = c(ω) +
∑

τ⊆
�

∂Cmax
j

g(V (τ)) + ∆. (17)

Proof. Recall that hc(ω) = h(Gc), where Gc = i∗H1

(⋃
∂Cmax

j

)
. Consider a small closed tubular neighbor-

hood V (τ) of each τ ⊆ ⋃ ∂Cmax
j such that V (τ) ∩ V (τ ′) = ∅. Note that H1(τ) = H1(V (τ)).

Let us construct a maximal isotropic subgroup Hτ ⊆ H1(V (τ)) as in Proposition 17, i.e., Hτ = 〈[ατ
i ]〉 ⊕

〈[∂τ
j ]〉, where ατ

i are those curves from Definition 6 that define the genus of V (τ) and ∂τ
j are connected

components of ∂V (τ). Consider

H = 〈i∗Hτ | τ ⊆
⋃

∂Cmax
j 〉 ⊂ Gc.
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It is easy to see that H is a maximal isotropic subgroup, so rkH = hc(ω).
By construction,

H = 〈i∗[ατ
i ]〉 ⊕ 〈i∗[∂τ

j ]〉. (18)

By Corollary 8, all i∗[α
τ
i ] are independent, thus

rk〈i∗[ατ
i ]〉 =

∑

τ

g(V (τ)). (19)

Recall that 〈i∗[∂τ
j ]〉 = D, which is free abelian. By (16) we have rkD = c(ω) + ∆, where ∆ = rk(D/Dc),

which together with (18) and (19) gives (17). 2

Remark 24. For a weakly generic form,

hc(ω) = c(ω) +
∑

γ

g(V (γ)),

where γ are compact singular leaves.
Indeed, if ω is very weakly generic then in Proposition 23 each τ ⊆ ∂C is S1 and attaches one maximal

component, so V (τ) is a cylinder; thus g(V (τ)) = 0 and ∆ = 0. If τ 6⊆ ∂C then it is a compact singular leaf
γ.

The following fact improves on Lemma 18:

Corollary 25. If c(ω) = hc(ω) then for any compact singular leaf γ it holds g(V (γ)) = 0. For very weakly
generic forms the converse is also true: if g(V (γ)) = 0 for all γ then c(ω) = hc(ω).

4.2. The form’s rank and the structure of the compact part

Since for any leaf γ it holds
∫

γ
ω = 0, the compact part C of the foliation includes zero periods of ω and

therefore defines its rank.

Proposition 26. For a Morse form ω on M2
g it holds

rk ω + c(ω) ≤ 2

(
g −

∑

τ

g(V (τ))

)
. (20)

In particular, if rkω ≥ 2g − 1 then all g(V (τ)) = 0.

Proof. For any z ∈ Gc = i∗H1

(⋃
∂Cmax

j

)
it holds

∫
z
ω = 0; so

rkω ≤ 2g − rkGc. (21)

Consider a small closed tubular neighborhood V (τ) of each τ ⊆ ⋃ ∂Cmax
j , such that V (τ)∩V (τ ′) = ∅. Then

H1(τ) = H1(V (τ)), so for any z ∈ i∗H1(V (τ)) it holds
∫

z
ω = 0.

Choose the curves ατ
j , βτ

j ⊂ V (τ) as in Proposition 17, i.e., such that ατ
j define g(V (τ)) and [ατ

i ] · [βτ
j ] =

δij . Let G = 〈i∗[ατ
j ], i∗[β

τ
j ],Dc〉 ⊆ Gc. Obviously, rk G ≤ rkGc, so by Lemma 7, Proposition 17, and (16)

we have rkG = 2
∑

τ g(V (τ)) + c(ω), which together with (21) gives (20).
If rkω ≥ 2g − 1 then 2

∑
τ g(V (τ)) ≤ 1 − c(ω) ≤ 1, so

∑
τ g(V (τ)) = 0. 2

Corollary 27. It holds
∑

g(V (τ)) ≤ g. If
∑

g(V (τ)) = g then the form is exact: ω = df , the foliation is
compact, in particular, all τ are compact singular leaves: τ = γ, and c(ω) = 0.

The first fact follows also from Corollary 8. Proposition 26 and Theorem 43 below imply:

Corollary 28. For compactifiable Fω it holds rkω ≤ c(ω), or, in terms of compact singular leaves:

rkω ≤ g −
∑

g(V (γ)).

This Corollary improves on the result of Mel’nikova [16] who proved that rk ω ≤ g.
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4.3. Calculation of g(V (γ)) in terms of singularities in γ

Denote by d(γ) the number of maximal components glued to a compact singular leaf γ.

Lemma 29. g(V (γ)) = 1 + 1
2 (|γ ∩ Ω1| − d(γ)).

Proof. The foliation Fω defines a foliation on V (γ). Without loss of generality we can suppose that the
connected components of ∂V (γ) are leaves of Fω. Glue up ∂V (γ) by disks and continue the foliation to these
disks with one center in each, so that the number of centers is deg γ; see Figure 7. The constructed surface has
a foliation with d(γ) centers and |γ∩Ω1| conic singularities, while by (8) we have |γ∩Ω1|−d(γ) = 2g(V (γ))−2.

2

Corollary 30. g(V (γ)) ≥ 1 iff |γ ∩ Ω1| ≥ d(γ).

Remark 31. If ω is weakly generic then for any γ it holds |γ ∩ Ω1| = 1 and d(γ) = 3, so g(V (γ)) = 0.

4.4. Compact singular leaf as a graph

γ

Figure 7: A tubular neigh-
borhood V (γ) of a compact
singular leaf γ can be glued
up by deg γ disks.

We can consider a compact singular leaf γ as a graph; loops and multiple
edges are allowed. Recall that

γ =

q⋃

i=1

γ0
i ∪

p⋃

j=1

sj,

where γ0
i are compactifiable leaves of Fω, and sj ∈ Sing ω are singularities.

Vertices of the graph are singularities sj and edges are compactifiable leaves
γ0

i . This gives information concerning the structure of compact singular leaves:

Lemma 32. A compact singular leaf γ contains an even number of compacti-
fiable leaves, q = 2|γ ∩ Ω1|. In addition, rkH1(γ) = 1 + |γ ∩ Ω1|.
Proof. For the number of vertices p it holds p = |γ∩Ω1|. Since all singularities are conic, we have deg sj = 4
for all sj , i.e γ is a 4-regular graph. So by Euler theorem, the number of edges (in our case, compactifiable
leaves) is even: q = 2|γ ∩ Ω1|. For the cycle rank m(γ) we have m(γ) = q − p + 1 = |γ ∩ Ω1| + 1 [8]; on the
other hand, m(γ) = rkH1(γ). 2

For example, the complete graph on five vertices K5 can be a compact singular leaf; the number of
vertices p(K5) = 5, its cycle rank m(K5) = 6; see Figure 8.

Definition 33. The genus of a graph γ is the minimum genus of a surface M2
g in which the graph can be

embedded without any crossings. A planar graph has genus 0.

� � � � ��

Figure 8: A graph is planar iff it contains no sub-
graph homeomorphic to one of these two graphs.

Recall that V (γ) is a small tubular neighborhood of γ;
obviously, g(γ) ≤ g(V (γ)). Consider all compact singular
leaves γ as graphs. Then

∑

γ

g(γ) ≤
∑

γ

g(V (γ)) ≤ g. (22)

Figure 5 gives an example of a strict inequality: a planar sin-
gular leaf with g(V (γ)) = 1. Obviously, g(V (γ)) = 0 implies
that γ is planar.

For example, g(K5) = 1.
Kuratowski’s theorem states that a finite graph is planar if and only if it does not contain any subgraph

homeomorphic (equal up to vertices of degree two) to K5 or K3,3 [8]; see Figure 8. In particular, if |γ∩Ω1| ≤ 4
then the graph is planar. For example, if ω is generic or weakly generic then each compact singular leaf γ
is a figure of eight, which is planar. While the number of planar singular leaves is unlimited, there can be
only few non-planar ones:
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Lemma 34. Let n be the number of non-planar compact singular leaves. Then:

(i) n ≤ g;
(ii) n ≤ 1

5 |Ω1| = 1
5 (2g − 2 + |Ω0|);

(iii) If the total number of compact singular leaves |{γ}| ≥ |Ω1| − 3, then n = 0.

Proof. (i), and even stronger n ≤∑γ g(V (γ)), follows from (22). (ii) follows from Kuratowski’s theorem:
a non-planar graph has at least 5 vertices; the equality in (ii) is by (8).

(iii): Suppose there exists a non-planar leaf γ; then |γ ∩ Ω1| ≥ 5, so
∑

γ |γ ∩ Ω1| ≥ 5 + |{γ}| − 1. Since
|Ω1| ≥

∑
γ |γ ∩ Ω1|, we obtain |{γ}| ≤ |Ω1| − 4, a contradiction. 2

The topology of one compact singular leaf influences the topology of the whole foliation. Indeed, Propo-
sition 23 and Proposition 26 imply:

Corollary 35. If there exists non-planar a compact singular leaf, i.e., g(γ) ≥ 1, then

(i) c(ω) < hc(ω),
(ii) c(ω) ≤ 2g − 2 − rkω,
(iii) rkω ≤ 2g − 2.

For example, a foliation with a non-planar compact singular leaf on a torus T 2 is compactifiable.

5. Topology of the minimal part of the foliation

Recall that M2
g = C ∪ S, where C =

⋃ Cmax
j is the compact part of the foliation and S =

⋃ Cmin
i is its

minimal part; C ∩ S = ∂C = ∂S. In this section we study the minimal part S: namely, we construct its
maximal isotropic subgroup and calculate its genus g(S).

5.1. Maximal isotropic subgroup of the minimal part

The boundary of S may have singularities, so we consider its small closed tubular neighborhood S̃
such that ∂S̃ is non-singular and consists of non-intersecting circles. It has the same homology group
H1(S̃) = H1(S) and genus g(S̃) = g(S).

Namely, S̃ is constructed as follows: For each connected component τ ⊆ ∂S = ∂C of the boundary,
consider its small closed neighborhood V (τ). Then

S̃ = S ∪
⋃

τ⊆∂S

V (τ).

Associate with each V (τ) a maximal isotropic subgroup Hτ ⊆ H1(V (τ)). By Proposition 17, we can choose
Hτ = 〈[ατ

i ]〉 ⊕ 〈[∂τ
j ]〉, where the curves ατ

i from Definition 6 define the genus of V (τ) and ∂τ
j are connected

components of ∂V (τ).

Consider the curves ατ
i ⊂ V (τ) in connection with S̃:

Lemma 36. The set S̃ \ ⋃τ⊆∂S,i ατ
i has the same number of connected components as S̃. In addition, a

system {ατ
i } defining the genus g(

⋃
τ⊆∂S V (τ)) can be extended to a system of curves {αS

i } defining the

genus g(S), i.e. {ατ
i } ⊂ {αS

i }.
Proof. Without loss of generality suppose that S̃ is connected (otherwise consider one connected compo-
nent). By construction,

S̃ \
⋃

τ⊆∂S,i

ατ
i =


S \

⋃

τ,i

ατ
i


 ∪

⋃

τ⊆∂S

(
V (τ) \

⋃

i

ατ
i

)
.

Denote S0 = S \⋃τ,i ατ
i and V 0

τ = V (τ) \⋃i ατ
i . Since ατ

i ⊆ ∂S, the set S0 is connected; by definition of

ατ
i , the sets V 0

τ are also connected. In addition, S0 ∩ V 0
τ 6= ∅ for all τ ⊆ ∂S. This implies that S0 ∪ V 0

τ is

connected, and so is S0 ∪⋃τ V 0
τ . Therefore S̃ \⋃τ,i ατ

i is connected as well. 2
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Now consider the curves ∂τ
j ⊆ ∂V (τ) in connection with S̃. Denote j : S̃ ↪→ M2

g .

Lemma 37. For any system of curves {αS
i } defining the genus g(S) it holds

〈j∗[∂τ
i ] | τ ⊆ ∂S〉 ⊆ 〈j∗[αS

i ]〉 ⊕ Hω.

Proof. Since τ ⊆ ∂S, there exist two types of boundary components ∂τ
i ⊆ ∂V (τ): ∂τ

i (S) ⊂ int(S) and
∂τ

i (C) ⊂ int(C). Obviously, ∂τ
i (C) ∼ γi for some compact non-singular leaf γi.

Let S̃ =
⋃k

i=1 S̃i, where S̃i are its connected components. Denote by S̃′ the result of cutting S̃ open

along the curves αS
j ; then S̃′ has the same number of connected components: S̃′ =

⋃k
i=1 S̃′

i. Note that all

S̃′
i are spheres with holes and ∂S̃′

i ⊆ ∂S̃ ∪ ⋃αS±
j . In addition, ∂S̃ =

⋃
∂τ

i (C) =
⋃

γi, where γi ⊂ C are
compact non-singular leaves.

Each ∂τ
i = ∂τ

i (S) ⊂ int(S) splits up some S̃′
j , so we obtain [∂τ

i (S)] ∈ 〈[αS
i ], [∂τ

j (C)]〉, i.e. j∗[∂
τ
i ] ∈

〈j∗[αS
i ], Hω〉. Let z ∈ 〈j∗[αS

i ]〉 ∩ Hω, then

z =
∑

mij∗[α
S
i ] =

∑
li[γi].

Consider βS
k ⊂ S̃ such that [αS

i ] · [βS
k ] = δik (Proposition 17); then z · j∗[βS

k ] = mk = 0, since γi ∩ βS
k = ∅.

This gives z = 0 and thus 〈j∗[αS
i ], Hω〉 = 〈j∗[αS

i ]〉 ⊕ Hω. 2

Now let us construct a maximal isotropic subgroup H �
S
⊆ H1(S̃) = H1(S). Suppose that the curves ατ

i

define the genus g(
⋃

τ⊆∂S V (τ)). By Lemma 36, we can choose the system {αS
i } such that {αS

i } ⊃ {ατ
i }.

Denote jτ : V (τ) ↪→ S̃.

Proposition 38. The subgroup

H �
S

=
〈
[αS

i ], jτ∗Hτ | i = 1, . . . , g(S), τ ⊆ ∂S
〉
⊂ H1(S̃)

is maximal isotropic.

Proof. By construction, all curves ατ
i ⊂ V (τ), τ ⊆ ∂S, are included in the system {αS

i } defining the genus.
The remaining curves αS

i can be chosen such that αS
i ∩V (τ) = ∅, so the subgroup H �

S
is isotropic. Consider

a cycle z ∈ H1(S̃) such that z · H �
S

= 0 and realize it by a curve α ⊂ S̃ with α ∩ αS
i = α ∩ ∂τ

i = ∅.
Denote by S̃′ the result of cutting S̃ open along the curves αS

i ⊂ S \⋃τ V (τ) and ∂τ
i ; it breaks up into

some neighborhoods V (τj) and some S′
j which are spheres with holes, S̃′ =

⋃
V (τj) ∪

⋃
S′

i. Let α0 ⊆ α be
a connected component. If α0 ⊂ V (τj), the condition [α0] · Hτj

= 0 implies [α0] ∈ jτj∗Hτj
⊂ H �

S
, since the

subgroup Hτj
is maximal. If α0 ⊂ S′

j, it splits S′
j up and thus is induced from ∂S′

j ⊆ ⋃(αS+
i ∪αS−

i )∪⋃τ,i ∂τ
i ,

where αS±
i are two copies of αS

i . This implies [α0] ∈ 〈[αS
i ], jτ∗[∂

τ
j ]〉 ⊆ H �

S
.

Recall that α =
⋃

α0 is the union of its connected components, so z = [α] ∈ H �
S

and therefore the
subgroup H �

S
is maximal. 2

5.2. Genus of the minimal part

Recall that M2
g = C∪S. We have constructed maximal isotropic subgroups of rank hc(ω) in the compact

part C and of rank g(S) in the minimal part int(S), respectively. They combine into a maximal isotropic
subgroup H ⊂ H1(M

2
g ) of rank g. However, they have some cycles in common:

Proposition 39. For a Morse form ω on M2
g ,

hc(ω) + g(S) −
∑

τ⊆∂S=∂C

g(V (τ)) − ∆ = g. (23)
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Proof. Consider C̃ = C ∪ ⋃τ⊆∂C V (τ) and S̃ = S ∪ ⋃τ⊆∂S V (τ). In Propositions 23 and 38 we have

constructed maximal isotropic subgroups H �
C
⊂ H1(C̃) and H �

S
⊂ H1(S̃), respectively. Let i : C̃ ↪→ M2

g and

j : S̃ ↪→ M2
g be inclusion maps. Then i∗H �

C
⊆ i∗H1(C̃) and j∗H �

S
⊂ j∗H1(S̃) are also maximal isotropic

subgroups. By Proposition 23 we have

i∗H �
C

= 〈i∗[ατ
i ], i∗[∂

τ
i ] | τ ⊆

⋃
∂Cmax

j 〉, (24)

where ατ
i define the genus of V (τ) and ∂τ

i form its boundary. By Proposition 38,

j∗H �
S

= 〈j∗[∂τ
i ], j∗[α

S
i ] | τ ⊆ ∂S〉,

where αS
i define the genus of S. In addition, by Lemma 36 we can choose the system {αS

i } such that

{αS
i } ⊃ {ατ

i }, where τ ⊆ ∂S. Since i(C̃ ∩ S̃) = j(C̃ ∩ S̃), we have i∗[∂
τ
i ] = j∗[∂

τ
i ] for any τ ⊆ ∂S. Denote

H = 〈i∗H �
C

, j∗H �
S
〉 = 〈i∗[ατ

i ], i∗[∂
τ
i ], j∗[α

S
i ] | τ ⊆

⋃
∂Cmax

j 〉. (25)

Obviously, H ⊂ H1(M
2
g ) is isotropic; let us show that it is maximal.

Consider z ∈ H1(M
2
g ), z · H = 0; in particular, z · i∗[∂τ

i ] = 0, τ ⊆ ∂S, so z = [αC ] + [αS ] + [αV ], where
αC ⊂ int(C), αS ⊂ int(S), and αV ⊂ ⋃

τ⊆∂S int(V (τ)). Without loss of generality we can assume that

αC ∩ S̃ = ∅ and αS ∩ C̃ = ∅. The equation z ·H = 0 implies z · i∗H �
C

= 0, so ([αC ] + [αV ]) · i∗H �
C

= 0. Since

αC∪αV ⊂ C̃, the cycle [αC ]+[αV ] ∈ i∗H1(C̃). The subgroup i∗H �
C

is maximal, thus [αC ]+[αV ] ∈ i∗H �
C
⊆ H .

On the other hand, z · j∗[α
S
i ] = 0. Recall that by construction there are two kinds of αS

i : the curves
αS

i ⊂ int(S) and αS
i ⊂ int(V (τ)), τ ⊆ ∂S. The former set implies that [αS ] · j∗[α

S
i ] = 0. Since also

[αS ] · i∗[∂τ
i ] = 0, we obtain [αS ] ∈ j∗H �

S
⊆ H . Therefore z = [αC ] + [αS ] + [αV ] ∈ H , i.e., H ⊂ H1(M

2
g ) is

maximal; by (11), rk H = g.
By (24) and (25) we have

rkH = rk(i∗H �
C

) + rk〈j∗[αS
i ]〉 − rk(i∗H �

C
∩ 〈j∗[αS

i ]〉) = g. (26)

Lemma 22 gives rk(i∗H �
C

) = hc(ω) and Corollary 8 gives rk〈j∗[αS
i ]〉 = g(S). So

hc(ω) + g(S) − rk(i∗H �
C
∩ 〈j∗[αS

i ]〉) = g. (27)

Now we only need to calculate rk(i∗H �
C
∩ 〈j∗[αS

i ]〉). By (24),

i∗H �
C
∩ 〈j∗[αS

i ]〉 =
(
〈i∗[ατ

i ]〉 ∩ 〈j∗[αS
i ]〉
)
∪
(
〈i∗[∂τ

i ]〉 ∩ 〈j∗[αS
i ]〉
)
.

The union is disjoint since ατ
i ∩ ∂τ ′

j = ∅, thus

rk(i∗H �
C
∩ 〈j∗[αS

i ]〉) = rk(〈i∗[ατ
i ]〉 ∩ 〈j∗[αS

i ]〉) + rk(〈i∗[∂τ
i ]〉 ∩ 〈j∗[αS

i ]〉). (28)

By construction, for the first summand we have

rk(〈i∗[ατ
i ]〉 ∩ 〈j∗[αS

i ]〉) =
∑

τ⊂∂S

g(V (τ)). (29)

Consider the second summand in (28). Recall that D = 〈i∗[∂τ
i ] | τ ⊆ ⋃ ∂Cmax

j 〉 and Dc ⊆ D is a subgroup of

elements homologous to a union of compact leaves; cf. Proposition 23. Thus 〈i∗[∂τ
i ]〉∩〈j∗[αS

i ]〉 = D∩〈j∗[αS
i ]〉.

Let z1, . . . , zk ∈ D ∩ 〈j∗[αS
i ]〉 be a basis. Consider zi + Dc ∈ D/Dc and suppose that

∑
ni(zi + Dc) = 0,

i.e., z =
∑

nizi ∈ Dc. Then there exist compact non-singular leaves γi ⊂ C \ S̃ such that z =
∑

li[γi]. On
the other hand, z =

∑
mij∗[α

S
i ]. We obtain

z =
∑

li[γi] =
∑

mij∗[α
S
i ].
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Consider closed curves βS
k ⊂ S̃ such that [αS

i ] · [βS
k ] = δik (Proposition 17); then z · j∗[βS

k ] = mk = 0 since
γi ∩ βS

k = ∅. This gives z = 0 and all ni = 0, i.e., zi + Dc are independent. Thus rk(D ∩ 〈j∗[αS
i ]〉) ≤

rk(D/Dc) = ∆.
Now let u1 + Dc, . . . , u∆ + Dc be a basis of D/Dc. Then ui /∈ Dc and we can choose ui ∈ 〈j∗[∂τ

i ] | τ ⊆
∂S〉 ⊆ 〈j∗[αS

i ]〉 ⊕ Hω (Lemma 37). Since ui /∈ Dc, we have ui ∈ 〈j∗[∂τ
i ] | τ ⊆ ∂S〉 ∩ 〈j∗[αS

i ]〉 ⊆ D ∩ 〈j∗[αS
i ]〉,

i.e. ∆ ≤ rk(D ∩ 〈j∗[αS
i ]〉).

Thus rk(D ∩ 〈j∗[αS
i ]〉) = ∆, which together with (27–29) gives (23). 2

Remark 40. For a very weakly generic form,

hc(ω) + g(S) = g.

The proof is as in Remark 24.

Finally, together with (13), Proposition 39 gives:

Corollary 41. If Fω is compactifiable then

hc(ω) = h(ker[ω]) = g.

6. Structure theorem

Our main result summarizes our study of geometry of minimal components and compact singular leaves
of a Morse form foliation:

Theorem 42. Let ω be a Morse form on M2
g . Then

c(ω) +
∑

γ

g(V (γ)) + g




m(ω)⋃

i=1

Cmin
i


 = g, (30)

where c(ω) is the number of homologically independent compact non-singular leaves; m(ω) is the number of
minimal components; V (∗) is a small closed tubular neighborhood; and g(∗) is the genus of a surface. The
summation is taken over all compact singular leaves γ.

The proof is obtained by summing up the results of Propositions 23 and 39.

This theorem immediately gives an important criterion for compactifiability of an arbitrary Morse form
foliation; cf. [15]:

Theorem 43. The foliation is compactifiable iff

c(ω) +
∑

γ

g(V (γ)) = g.

Together with Lemma 9, Theorem 42 gives an upper bound on the number of minimal components m(ω)
that is better than one given by (1):

Corollary 44. For a Morse form ω it holds

c(ω) + m(ω) ≤ g −
∑

γ

g(V (γ)).

Lemma 9 and Remark 31 refine Theorem 42 for (very) weakly generic forms, respectively:
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Corollary 45. For a very weakly generic form,

c(ω) +
∑

γ

g(V (γ)) +

m(ω)∑

i=1

g(Cmin
i ) = g.

Corollary 46. For a weakly generic form,

c(ω) +

m(ω)∑

j=1

g(Cmin
j ) = g.

7. Minimal components of a very weakly generic form in terms of singularities

We will study the relation of topology of minimal components of very weakly generic forms with the

number of singularities inside them. Namely, we calculate the genus g(Cmin
i ) and the number of minimal

components m(ω) for such forms in terms of k(ω)—the number of singularities inside Cmin
i .

7.1. Singularities of a very weakly generic form inside minimal components

Recall that we say that a singularity s is inside a component C if s ∈ int(C).

Theorem 47. Let ω be a very weakly generic form on M2
g , Cmin a minimal component, and k = | Sing ω ∩

int(Cmin)|. Then

g(Cmin) = 1 +
k

2
.

In particular, the number of singularities k inside a minimal component is even.

Proof. Denote C = Cmin. Since each connected component ∂j of ∂C contains one singularity, by Lemma 1
it locally attaches one maximal component Cmax

j to C. Cut each Cmax
j off C, replacing it with a disk D2

j ,
and continue the foliation to these disks with one center in each. Let this new manifold M ′ have genus g′;
obviously, g′ = g(C). Apart from k conic singularities inside C, the foliation on M ′ has a center in each D2

j

and a conic singularity on ∂D2
j . By the Poincaré—Hopf theorem, k = 2g′ − 2. 2

 

 

 

 

 p 

q 

 p 

q 

(a) (b) 
Figure 9: (a) Not very weakly generic foliation on T 2 ] T 2,
obtained by transforming the generic foliation shown in Fig-
ure 3 by adding a center as shown in (b); shaded is the minimal
component.

The condition for the form to be very weakly
generic is important: for a not very weakly generic
form the number of singularities k inside a min-
imal component does not have to be even. A
counter-example is shown in Figure 9: a unique
singularity q inside the only minimal component
on a double torus.

Lemma 9 gives:

Corollary 48. For a very weakly generic form,

g




m(ω)⋃

i=1

Cmin
i


 = m(ω) +

k(ω)

2
,

where m(ω) is the number of minimal components and k(ω) = |Sing ω ∩⋃ int(Cmin)| is the total number of
singularities inside minimal components. In particular, k(ω) is even.

Let us study the properties of k(ω):
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Proposition 49. Let ω be a very weakly generic form on M = M2
g , g ≥ 1. Then:

(i) It holds
0 ≤ k(ω) ≤ 2g − 2; (31)

on a given M all even values within these bounds are reached; in particular, the bounds are exact.

(ii) k(ω) = 0 (lowest) iff all minimal components are tori with holes (have genus one).

(iii) If g ≥ 2, then k(ω) = 2g − 2 (highest) iff there exists a minimal component with g(Cmin) = g.

The latter condition, obviously, means that there is exactly one minimal component Cmin (m(ω) = 1)

with Cmin covering M with possible holes; in particular, c(ω) = 0.

Proof. (i) Corollary 48 gives k(ω) ≤ 2g, while k(ω) = 2g implies m(ω) = 0 and thus k(ω) = g = 0. Since
k(ω) is even, we have k(ω) ≤ 2g − 2. That all even values within the bounds are reached follows from
Theorem 55 below.

(ii) This follows from Theorem 47.
(iii) If g ≥ 2 then k(ω) = 2g − 2 6= 0, thus m(ω) 6= 0, while Corollary 48 implies m(ω) ≤ 1. By

Theorem 47, g(Cmin) = g, i.e., g(M \ Cmin) = 0. The converse follows from Theorem 47. 2

Note that the lower bound is reached, in particular, on compactifiable foliations, and the upper bound
on minimal foliations.

7.2. Number of minimal components

There are known upper bounds on the number of minimal components: m(ω) ≤ g [14], m(ω) ≤ g −
c(ω) [6]. For a very weakly generic form, Corollaries 45 and 48 give an equality:

Theorem 50. For a very weakly generic form,

m(ω) = g −
(

c(ω) +
∑

γ

g(V (γ)) +
k(ω)

2

)
, (32)

where V (γ) is a small tubular neighborhood of a compact singular leaf γ.

It is known that for a weakly generic form it holds [7]:

c(ω) + m(ω) = g − k(ω)

2
. (33)

The following corollary generalizes this fact and clarifies its geometrical meaning:

Corollary 51. For a very weakly generic form, (33) holds iff g(V (γ)) = 0 for any compact singular leaf γ.

Let the foliation have at most one minimal component and no singularities inside it:

Lemma 52. For a very weakly generic form with m(ω) ≤ 1 and k(ω) = 0,

h(ker[ω]) = g − m(ω). (34)

Proof. Theorem 50 and Remark 24 imply hc(ω) = g − m(ω). If m(ω) = 0, Corollary 21 gives h(ker[ω]) =
hc(ω). If m(ω) = 1, by Proposition 49 (ii) the minimal component Cmin is a torus with holes; thus

rkω|
Cmin = 2 = 2g(Cmin). Lemmas 19 and 20 imply h(ker[ω]) = hc(ω). 2

It can be difficult to calculate g(V (γ)) for compact singular leaves γ. We can, however, give lower and
upper bounds on the number of minimal components m(ω) that are weaker than (32) but do not involve
g(V (γ)):
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Theorem 53. For very weakly generic forms ω on M2
g it holds

g − k(ω)

2
− h(ker[ω]) ≤ m(ω) ≤ g − k(ω)

2
− c(ω). (35)

In addition,

(i) if k(ω) > 0, then m(ω) > 0;

(ii) if k(ω) = 0 and h(ker[ω]) = g, then m(ω) 6= 1.

On a given M the bounds given by the system (35) and (i) are exact, and all intermediate values are
reached except for the case specified in (ii).

Note that if k(ω) = 0 and h(ker[ω]) = g, then m(ω) = 0, 6 1, 2, 3, . . . , g. In addition, if k(ω) = 0 then the
left side of (35) is non-negative and the bound given by (35) alone is exact.

However, if k(ω) > 0 then the left side of (35) can be negative. For example, if rkω = 2 and the foliation

is minimal, then h(ker[ω]) ≥ g−1 (Corollary 15) and k(ω) = 2g−2 (Theorem 47). So g− k(ω)
2 −h(ker[ω]) ≤

2 − g < 0 for g ≥ 3. In this case, (i) gives a better bound.

Proof of Theorem 53. Theorem 50 and Remark 24 imply m(ω) = g − k(ω)
2 − hc(ω). Since (13) implies

c(ω) ≤ hc(ω) ≤ h(ker[ω]), we obtain (35). Item (i) is obvious; (ii) is by Lemma 52. Exactness of the bounds
and existence of all intermediate values are shown in Theorem 55 below. In particular, Lemma 19 gives a
sufficient condition for reaching the lower bound, and Corollary 51, upper. 2

The value of m(ω) can vary by h(ker[ω]) − c(ω), cf. (13). We can also bound m(ω) in terms of rkω:

Corollary 54. For very weakly generic forms on M2
g it holds

m(ω) ≥ rkω − g − k(ω)

2
;

if rkω = 2g (the highest), then

m(ω) = g − k(ω)

2
.

Proof. Since h(ker[ω]) ≤ rk ker[ω] = 2g− rkω, Theorem 53 gives the inequality, which by the upper bound
in (35) turns into equality if rkω = 2g. 2

Though this bound is weaker than (35), it is easier to calculate. This bound is efficient for forms with
large rkω, which are the “majority” of all forms (in terms of measure).

8. Completeness of our results

Finally, we will show that we have completely characterized the relationships between the foliation
characteristics c(ω) and m(ω) and the form’s characteristics k(ω) and h(ker[ω]); in other words, that our
system of relations between their values is complete and no new relations can be obtained without involving
other variables.

Namely, we show that any combination of these values allowed by our results is realized even in the class
of very weakly generic forms. In particular, our bounds are exact and all intermediate values are reached.

Theorem 55. For any non-negative g, k, h, m, c that satisfy the relations (31), (14), (34), and (35), corre-
spondingly, on M2

g there exists a very weakly generic form ω such that k(ω) = k, h(ker[ω]) = h, c(ω) = c,
and m(ω) = m. If c satisfies (33), then ω can be chosen generic.
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Proof. Recall what each relation states:

0 ≤ g,

(31): 0 ≤ k ≤ 2g − 2 (k = 0 if g = 0); k is even,

(14): 0 ≤ h ≤ g,

(34): c ≤ h = g − m if k = 0 and m ≤ 1,

(35): g − 1
2k − h ≤ m ≤ g − 1

2k − c (m 6= 0 if k 6= 0),

(33): m = g − 1
2k − c.

If g = 0 then k = m = 0 and the statement trivially holds, so we assume g > 0. In the rest of the proof
we assume that all unspecified periods of ω are incommensurable.

Case k = 0:

Figure 10 shows a connected sum ] of m tori T
(m)
i with minimal foliation—cf. Proposition 49 (ii)—and

hc = g−m tori T
(c)
j with a compactifiable foliation, among them c ones with a compact foliation, c(ωj) = 1,

and the rest as in Figure 5, c(ωj) = 0. Denote the constructed manifold with such foliation by M(c, hc, m).

 

︸                     ︷︷                     ︸

c

 

︸                                                       ︷︷                                                       ︸

hc

 

︸                     ︷︷                     ︸

m
︸                                                                                          ︷︷                                                                                          ︸

g

Figure 10: Construction of M(c, hc, m) in Theorem 55 for the case k = 0.

Consider characteristics of this foliation. By construction, the constraints on c(ω) = c and m(ω) = m
are satisfied: c + m ≤ g. Note that each singular leaf by which a pair of tori is pasted together has a unique
singularity. Now we will show that the constructed foliation has h(ker[ω]) = h, where g − m ≤ h ≤ g.

If m ≤ 1, then by Lemma 52 we have h(ker[ω]) = g − m. So (34) holds and so do the other constraints.

Now let 2 ≤ m ≤ g. Consider one cycle z
(c)
j in each T

(c)
j such that z

(c)
j ∈ ker[ω]; obviously, the system

{z(c)
j } is isotropic. We have hc ≤ h(ker[ω]). If hc < h(ker[ω]), then we will complete the system {z(c)

j } to

a maximal isotropic subgroup H ⊆ ker[ω] with h(m) = h − hc isotropic cycles z
(m)
j from ] T

(m)
i . Obviously,

0 ≤ h(m) ≤ m.
To obtain the desired h(m), we will choose appropriate periods of ω in each T

(m)
i without loss of minimality

in it.

(i) Let h(m) = 0. Then just choose all incommensurable periods in all T
(m)
i .

(ii) Let h(m) = 1. Choose the periods (1,
√

2) in T
(m)
1 and (1,

√
3) in T

(m)
2 . Then ker[ω|

] T
(m)
i

] = 〈z11−z21〉,
where zi1, zi2 are the basic cycles of T

(m)
i corresponding to these periods. Recall that all other periods

are incommensurable.

(iii) Let h(m) = 2. Similarly, choose the periods (1,
√

2) and (
√

2, 1) in the first two T
(m)
i . Then

ker[ω|
] T

(m)
i

] = 〈z11 − z22, z12 − z21〉 is isotropic.

(iv) Let h(m) = 3. Choose the periods (1,
√

2), (
√

2,−1), and (
√

2 − 1, 2
√

2) in the first three T
(m)
i . By

Lemma 14, the isotropic subgroup 〈z11 − z21 + z31, z12 + z22 − z31, z12 + z21 − z32〉 of ker[ω|
] T

(m)
i

] is

maximal.
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(v) Let h(m) = 2n, n ∈ N. Consider n pairs of tori with periods (αi, αi

√
2) and (αi

√
2, αi), so that each

pair behaves as in (iii) above, but different pairs are incommensurable.

(vi) Let h(m) = 2n + 1. Choose n − 1 pairs as in (v) and a triple as in (iv).

By construction, we obtain h(m) + hc = h(ker[ω]), and h = h(ker[ω]) satisfies the constraints (14)
and (35), i.e., g − m ≤ h(ker[ω]) ≤ g.

Case k 6= 0:

Let now k ≥ 2, thus g ≥ 1
2k + 1.

Figure 11 shows a manifold M (k) of genus g(k) = 1
2k+1 with m(ω(k)) = 1, k(ω(k)) = k. If k = 2g−2, then

we have M (k) = M2
g ; otherwise we construct a manifold M (0) of genus g(0) = g− g(k) with m(ω(0)) = m− 1

and k(ω(0)) = 0 as discussed above. Then M (k) ] M (0) has the desired properties. To obtain h(ker[ω]) = h,
M (0) is to be constructed with h(0) = min(h, g(0)) and in M (k) the periods are constructed as in (i)–(vi)
above with h(k) = h − h(0) if positive.

 

︸                     ︷︷                     ︸

c

 

︸                                                       ︷︷                                                       ︸

hc

 

︸                     ︷︷                     ︸

m(0) = m − 1
︸                                                                                          ︷︷                                                                                          ︸

g(0)

 

     

 

m(k) = 1

︸                        ︷︷                        ︸

g(k)

︸                                                                                                                               ︷︷                                                                                                                               ︸

g

Figure 11: Construction of M (0) = M(c, hc, m − 1) and M (k) in Theorem 55 for the case k 6= 0.

If the constraint (33) holds, i.e., m+ c = g− 1
2k, then we have c = hc, so the form can be chosen generic.

2
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