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Abstract. On a closed orientable surface M2
g of genus g, we consider the

foliation of a weakly generic Morse form ω on M2
g and show that for such

forms c(ω) + m(ω) = g − 1

2
k(ω), where c(ω) is the number of homologically

independent compact leaves of the foliation, m(ω) is the number of its mini-
mal components, and k(ω) is the total number of singularities of ω that are
surrounded by a minimal component. We also give lower bounds on m(ω) in
terms of k(ω) and the form rank rk ω or the structure of ker[ω], where [ω] is
the integration map.

1. Introduction

Consider a closed connected orientable smooth two-dimensional manifold M =
M2

g of genus g. Let ω be a Morse form on M , i.e., a closed 1-form with Morse
singularities Sing ω, locally the differential of a Morse function. This form defines
a foliation Fω on M \ Sing ω. A leaf γ ∈ Fω is called compactifiable if γ ∪ Sing ω

is compact.
A Morse form is called generic if each of its non-compact compactifiable leaves

is compactified by a unique singularity [2, Definition 9.1]. The set of such forms is
dense in any cohomology class [2, Lemma 9.2]. The term generic introduced in [2] is
somewhat misleading because the set of such forms is not open. We find it plausible
that such forms are the “majority” of Morse forms and thus their properties are in
a sense “typical,” though we are not aware of any proof of this.

Our results hold for a wider class of forms, which we call weakly generic: the
requirement for a leaf to be compactified by only one singularity is only applied to
the leaves not surrounded by minimal components.

The number m(ω) of minimal components and c(ω) of homologically independent
compact leaves are important topological characteristics of the foliation. On M2

g it
holds [5]

(1) 0 ≤ c(ω) + m(ω) ≤ g

and all such combinations are possible on a given M [4]. In particular, if c(ω) = g

then the foliation is compactifiable, i.e., m(ω) = 0, though the converse is not true:
there exist compactifiable foliations with c(ω) < g.

In this paper, for weakly generic forms we give a precise expression for c(ω) +
m(ω) and better bounds on m(ω). A useful characteristic of a weakly generic
form foliation is the number k(ω) of singularities that are surrounded by a minimal
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2 I. GELBUKH

component; for a weakly generic form k(ω) is even (Corollary 7). Our main result
states that for such forms the inequality (1) becomes

(2) c(ω) + m(ω) = g − k(ω)

2

(Theorem 5). In particular, for weakly generic forms on M2
g , g 6= 0, the exact lower

bound in (1) is

1 ≤ c(ω) + m(ω) ≤ g

(Corollary 6). On the other hand, (2) gives a criterion for compactifiability for
weakly generic forms [11]: m(ω) = 0 iff c(ω) = g.

The inequality (1) gives an upper bound on the number of minimal components:
m(ω) ≤ g; this was also proved in [9]. For weakly generic forms, (2) gives a better
upper bound:

(3) m(ω) ≤ g − k(ω)

2
.

We are not aware, though, of any lower bound on m(ω) given in literature, except
for that if rkω > g (the rank of the group of periods) then the foliation has minimal
components: m(ω) > 0 [11]. For weakly generic forms, we give a lower bound on
m(ω), cf. (3):

(4) m(ω) ≥ g − k(ω)

2
− h(ker[ω])

(Theorem 10). Here, ker[ω] = 〈z ∈ H1(M) |
∫

z
ω = 0〉 and h(∗) is the rank of a

maximal subgroup consisting of non-intersecting cycles. We calculate the value of
h(ker[ω]) (Lemma 8) and bound it in terms of rk ker[ω] (Corollary 9).

The bound (4) is not exact; however, it becomes exact together with a trivial
observation that m(ω) > 0 if k(ω) > 0. All intermediate values are also reached,
except for m = 1 when k = 0 and h(ker[ω]) = g; this combination is impossi-
ble [6]. Our account of the relationships between g, k(ω), h(ker[ω]), and m(ω) is
complete: we build a (generic) form for any combination of these values within the
corresponding bounds (Lemma 14).

Since it may be difficult to investigate the structure of ker[ω], we give a weaker
lower bound not involving h(ker[ω]):

m(ω) ≥ rkω − g − k(ω)

2

(Corollary 12), which can, though, be easier to calculate. This estimate is efficient
only for large rk ω, specifically, for rkω ≥ g. However, this is the “majority” of all
forms: the forms in general position have rkω = 2g.

The paper is organized as follows. Section 2 introduces some necessary definitions
and facts concerning a Morse form foliation. In Section 3 we prove our main result:
c(ω) + m(ω) = g − 1

2k(ω). Finally, in Section 4 we give the bounds on m(ω).

2. Definitions and basic facts

Let us introduce, for future reference, some necessary notions and facts about
Morse forms and their foliations.
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2.1. Morse form. A closed 1-form on M is called a Morse form if it is locally the
differential of a Morse function. Let ω be a Morse form and Sing ω = {p ∈ M |
ω(p) = 0} the set of its singularities; this set is finite since the singularities are
isolated and M is compact.

By the Morse lemma, in a neighborhood of p ∈ Sing ω on M2
g there exist local

coordinates (x1, x2) such that ω(x) = ±x1dx1 +x2dx2. If the sign is positive then p

is a center, otherwise p is a conic singularity. We denote the set of centers by Ω0 and
that of conic singularities by Ω1, so that Sing ω = Ω0 ∪Ω1. By the Poincaré—Hopf
theorem, it holds

(5) |Ω1| − |Ω0| = 2g − 2.

The rank of a closed 1-form ω is the rank of its group of periods:

rkω = rkQ

{

∫

z1

ω, . . . ,

∫

z2g

ω

}

,

where z1, . . . , z2g is a basis of H1(M
2
g ). For an exact form, rk ω = 0.

2.2. Morse form foliation. On M \ Sing ω, the form ω defines a foliation Fω. A
leaf γ ∈ Fω is compactifiable if γ∪Sing ω is compact (compact leaves are compacti-
fiable); otherwise it is non-compactifiable. If a foliation contains only compactifiable
leaves, it is called compactifiable.

The foliation Fω defines a decomposition of M into mutually disjoint sets [5];
see Figure 2(a),(c) below:

(6) M =
(

⋃

Cmax
i

)

∪
(

⋃

Cmin
j

)

∪
(

⋃

γ0
k

)

∪ Sing ω.

The maximal components Cmax
i are connected components of the union of all

compact leaves. On two-manifolds the notion of maximal component coincides with
the notion of periodic component [10]. If Sing ω 6= ∅, each maximal component is
a cylinder over a compact leaf: Cmax

i
∼= γi × (0, 1). Consider the group Hω ⊆

Hn−1(M) generated by the homology classes of all compact leaves; Hω = 〈[γi], γi ∈
Fω〉 [3]. We denote by c(ω) = rk Hω the number of homologically independent
compact leaves.

The minimal components Cmin
j of the foliation are connected components of the

the set covered by all non-compactifiable leaves. A foliation consisting of exactly
one minimal component (and no maximal components) is called minimal. Each
non-compactifiable leaf is dense in its minimal component [1, 8]. We denote by
m(ω) the number of minimal components. Par abus de langage, we say that a
minimal component Cmin contains a leaf or singularity, or the leaf or singularity

is inside the minimal component, if it belongs to int(Cmin). We denote by k(ω) =
∑m(ω)

i=1

∣

∣ int(Cmin
i )∩Sing ω

∣

∣ the number of singularities inside minimal components;
in Figure 5, k(ω) = 2.

The components Cmax
i and Cmin

j are open; their boundaries lie in the union

(
⋃

k γ0
k)∪ Sing ω of non-compact compactifiable leaves and singularities. The num-

ber of components, as well as the number of non-compact compactifiable leaves γ0
k,

is finite.
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2.3. Weakly generic Morse form. While a foliation Fω is defined on M \Sing ω,
a singular foliation Fω is defined on the whole M : two points p, q ∈ M belong to
the same leaf of Fω if there exists a path α : [0, 1] → M with α(0) = p, α(1) = q

and ω(α̇(t)) = 0 for all t [2]. A singular leaf contains a singularity.
On M \ Sing ω, Fω differs from Fω only by possibly merging together some

of its leaves: indeed, non-singular leaves of Fω are leaves of Fω; the number of
singular leaves of Fω is finite, and each such leaf consists of a finite number of
non-compact leaves of Fω and singularities.

A Morse form is called generic if each of its singular leaves contains a unique
singularity [2]. On M2

g this means that each non-compact compactifiable leaf is
compactified by only one singularity. The set of generic forms is dense in any
cohomology class [2].

We call a form weakly generic if its non-compact compactifiable leaves lying
outside minimal components are compactified by only one singularity, while those
inside minimal components can form segments, as γ0 in Figure 1(a). On M \
⋃m(ω)

i=1 int(Cmin
i ) a weakly generic foliation is generic: all its compact singular leaves

are either centers or figures of eight, and connected components of the boundaries
of minimal components are single-leaf circles; see Figure 2.

γ0 

(a) (b) 

Figure 1. Foliations on T 2 with one minimal component. The
form (a) is weakly generic, though not generic; the form (b) is not.

2.4. Foliation graph. The configuration formed by the maximal components in
the decomposition (6) is described by the foliation graph. Rewrite (6) as

M =
(

⋃

Cmax
i

)

∪
(

⋃

Pj

)

,

where Pj are connected components of the union P =
(
⋃ Cmin

j

)

∪
(
⋃

γ0
k

)

∪ Sing ω

of all non-compact leaves and singularities.
Since ∂Cmax

i ⊆ P consists of one or two connected components, each Cmax
i

adjoins one or two of Pj . This allows representing M as a connected graph Γ with
edges Cmax

i and vertices Pj : an edge Cmax
i is incident to a vertex Pj if ∂Cmax

i ∩Pj 6=
∅; see Figure 2.

We call those vertices P I
j that consist solely of compactifiable leaves and sin-

gularities I-vertices, see Figure 2(b); II-vertices P II
j contain minimal components,

such as P2 in Figure 2(d). Note that I-vertices are compact singular leaves (in-
cluding center singularities). A II-vertex can contain several minimal components
separated by compactifiable leaves.
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Figure 2. (a), (c) Examples of the decomposition (6). (b) Vertices
of Γ can include singularities, non-compact compactifiable leaves,
and (d) whole minimal components.

3. Total number of homologically independent compact leaves and

minimal components

Lemma 1. Let P be a I-vertex. Then deg P = 1 iff P is a center.

Proof. If P is a center, in its neighborhood the manifold foliates into circles. Thus
a unique cylinder adjoins P , and so deg P = 1.

Conversely, if P is not a center, then P = (
⋃

i γ0
i ) ∪ (

⋃

j sj), where γ0
i are non-

compact compactifiable leaves and sj ∈ Ω1. In a neighborhood of P the form is
exact: ω = df , f(P ) = 0. The components covering the areas {f > 0} and {f < 0}
are locally distinct. Since P is a I-vertex, these have to be maximal components,
which means deg P ≥ 2. �

Lemma 2. Let γ0 ∈ Fω be a non-compact compactifiable leaf such that γ0 ∪ s is
compact for some s ∈ Sing ω. Then in any neighborhood of γ0 = γ0 ∪ s there exists
a compact leaf γ ∈ Fω.

Proof. Similarly, consider a small cylindrical neighborhood U of γ0 such that U ∩
Sing ω = {s}. In this neighborhood, ω = df ; let f(γ0) = 0. The set U \ γ0 has two
connected components U1, U2. Locally there are exactly four (non-compact) leaves
adjoining s, and f changes sign when crossing a leaf. Since U ∩ Sing ω = {s}, the
function f has a constant sign in one of Ui (see Figure 3); let f > 0 in U1. Then
there exists t > 0 such that a connected component γ of f−1(t) is a compact leaf
and lies in U . �

The condition of Lemma 2 requires the leaf to be compactified by only one
singularity. For leaves compactified by more than one singularity the conclusion
of Lemma 2 may not hold: there exist non-compact compactifiable leaves without
compact leaves in their neighborhood; see Figure 4.

Proposition 3. Let P be a I-vertex of a weakly generic form. Then either P is a
center or deg P = 3.

Proof. If P is not a center, then P = S1 ∨s S1, s ∈ Ω1. As in Lemma 2, in a
small neighborhood of P the form is exact, so leaves of the foliation are levels of
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+ 
+ — — — 

— 
+ 

+ 

(a) (b) 

U1 
U2 

γ0 
s 

Figure 3. Possible (a) and impossible (b) configuration of the
leaves adjoining the singularity s. Areas with different sign of f

are shown in different colors.

γ0 γ0 

Figure 4. Foliation on M2
2 = T 2 ] T 2 (connected sum) with

one compactifiable leaf γ0, two minimal components, and without
compact leaves.

a Morse function. Since P contains a unique singularity, close levels have one and
two connected components, correspondingly. Thus deg P = 3. �

Proposition 4. Let P be a II-vertex of a weakly generic form. Then

(i) P contains a unique minimal component Cmin;

(ii) each connected component of ∂Cmin locally attaches to Cmin exactly one
maximal component;

(iii) deg P = |∂Cmin ∩ Sing ω|.
Proof. Since P is a II-vertex, it contains a minimal component Cmin. Each con-

nected component ∂i of ∂Cmin is compact and includes exactly one s ∈ Sing ω, which
adjoins at least one non-compactifiable leaf and at least one non-compact compac-
tifiable leaf γ0, which adjoins only this singularity. Thus ∂i = γ0 ∪ s. By Lemma 2,
there is exactly one maximal component Cmax

i glued to Cmin by ∂i; see Figure 3(a).

Therefore P consists of Cmin with |∂Cmin ∩ Sing ω| maximal components locally
attached to it (globally they can be different ends of the same cylinder). �

Now we are ready to prove our main theorem:

Theorem 5. Let ω be a weakly generic Morse form on M2
g . Then

c(ω) + m(ω) = g − k(ω)

2
.

Proof. Denote by ni the number of vertices of degree i of the foliation graph Γ;
ni = nI

i + nII
i , where nI

i , nII
i are the corresponding numbers for I- and II-vertices.
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Similarly, denote ΩI
1 and ΩII

1 the sets of conic singularities belonging to the vertices
of each type.

Consider nI
i . By Lemma 1, it holds nI

1 = |Ω0|; Proposition 3 gives nI
3 = |ΩI

1| and
nI

i = 0 for i 6= 1, 3.
Consider nII

i . By Proposition 4 (i), each II-vertex contains a unique minimal

component, so
∑

i nII
i = m(ω). Denote kj =

∣

∣ int(Cmin
j ) ∩ Sing ω

∣

∣. By Proposi-

tion 4 (iii), |ΩII
1 | =

∑

i inII
i +

∑

j kj =
∑

i inII
i + k(ω).

For the cycle rank m(Γ) = 1
2

∑

i(i − 2)ni + 1 [7] we have

2m(Γ) = −nI
1 + nI

3 +
∑

i

inII
i − 2

∑

i

nII
i + 2

= −|Ω0| + |ΩI
1| + |ΩII

1 | − k(ω) − 2m(ω) + 2.

Since m(Γ) = c(ω) [5] and by (5), this proves the theorem. �

Corollary 6. For weakly generic forms on M2
g , g 6= 0, it holds

1 ≤ c(ω) + m(ω) ≤ g;

for a given M2
g the bounds are exact and all combinations of c(ω) and m(ω) within

these bounds are possible in the class of generic forms.

Proof. If c(ω) + m(ω) = 0 then m(ω) = 0 and thus k(ω) = 0; Theorem 5 gives
g = 0. That all intermediate values are reached for generic forms was shown in [4].
In particular, on any M2

g , g 6= 0, there exists a minimal foliation [4], see Figure 5,
which shows the exactness of the lower bound; the upper bound is reached on
ω = df . �

 
 
 

 

q 

p 

q 

p 

q 

p 

Figure 5. Minimal foliation on M2
2 = T 2 ] T 2.

The condition for the form to be weakly generic in Corollary 6 is important: on
every M2

g there exist not weakly generic forms with c(ω) + m(ω) = 0; see Figure 6.
Theorem 5 and Corollary 6 give:

Corollary 7. For a weakly generic form on M2
g , k(ω) is even. In addition,

0 ≤ k(ω) ≤ 2g − 2

if g 6= 0, otherwise k(ω) = 0. On a given M2
g the bounds are exact and all (even)

intermediate values are possible in the class of generic forms.
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 (a)                                        (b)       
Figure 6. Compactifiable foliation with c(ω) = 0 on (a) T 2,
(b) M2

g = ] T 2
i .

4. Bounds on the number of minimal components

The inequality (1) gives an upper bound on the number of minimal components
of a Morse form: m(ω) ≤ g; this fact was also proved in [9]. We obtain a lower
bound and a better upper bound on m(ω) for weakly generic Morse forms.

Consider on H1(M
2
g ) the intersection of cycles:

· : H1(M
2
g ) × H1(M

2
g ) → Z;

it is skew-symmetric and non-degenerated. A subgroup H ⊂ H1(M
2
g ) is called

isotropic with respect to the intersection · if for any z, z′ ∈ H it holds z ·z′ = 0 [12].
For an isotropic subgroup, rkH ≤ g.

For G ⊆ H1(M
2
g ), denote h(G) = rkH , where H ⊆ G is a maximal isotropic

subgroup. For higher-dimensional manifolds M this value would depend on the
choice of H ; the maximal rank of an isotropic subgroup is an important topological
invariant of a manifold denoted h(M) [3, 12]; h(M2

g ) = h(H1(M)) = g [13]. For

M2
g , though, this definition does not depend on the choice of H :

Lemma 8. Let G ⊆ H1(M
2
g ). Then

h(G) = rkG − rk ‖zi · zj‖
2

,

where {zi} is a basis of G.

Proof. Obviously, rk ‖zi · zj‖ does not depend on the choice of the basis {zi}. Let
H ⊆ G be a maximal isotropic subgroup; denote n = rkG, h = rk H . Choose a
basis {zi} such that zi ∈ H for i ≤ h. Consider A = ‖zi · zj‖:

1 h

0 · · · 0
...

... B

0 · · · 0

C
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Since H is maximal, the n − h columns of B are independent, and so are the rows
of C = −BT and thus some n−h its columns. The corresponding 2(n−h) columns
of A are independent, and no greater system of columns is independent. Thus
rkA = 2(n − h). �

Corollary 9. It holds

rkG

2
≤ h(G) ≤ min{rkG, g}.

Consider the subgroup ker[ω] = {z ∈ H1(M
2
g ) |

∫

z
ω = 0}; obviously, rk ker[ω] =

2g − rkω and thus

(7) g − rkω

2
≤ h(ker[ω]) ≤ min{2g − rk ω, g}.

In particular,

(8) 0 ≤ h(ker[ω]) ≤ g.

Since Hω ⊆ ker[ω],

(9) c(ω) ≤ h(ker[ω]).

It can be shown [6] that if k(ω) = 0 and m(ω) ≤ 1 then

(10) h(ker[ω]) = c(ω) = g − m(ω).

A lower bound on m(ω) can be given in terms of the structure of ker[ω]. Theo-
rem 5, (9), and (10) give:

Theorem 10. For weakly generic forms ω on M2
g it holds

(11) g − k(ω)

2
− h(ker[ω]) ≤ m(ω) ≤ g − k(ω)

2
.

In addition,

(i) m(ω) > 0 if k(ω) > 0;
(ii) m(ω) 6= 1 if k(ω) = 0 and h(ker[ω]) = g.

On a given M2
g , the bounds given by the system (11) and (i) are exact, and all

intermediate values are reached except for the case specified in (ii).

Exactness of the bounds and existence of all intermediate values are shown in
Lemma 14 below.

Note that if k(ω) = 0 then the left side of (11) is non-negative (can be zero)
and the bound given by (11) alone is exact. However, if k(ω) > 0 then the left
side of (11) can be zero or even negative and (i) can give a better bound. As an

example, consider the foliation in Figure 5, assuming the periods (1,
√

2) in each
torus; then h(ker[ω]) = 1 and the left side of (11) is zero. Assuming the periods

(1,
√

2) and (1,−
√

2), we have h(ker[ω]) = 2 and the left side of (11) negative.
Note also that if k(ω) = 0 and h(ker[ω]) = g, then m(ω) = 0, 61, 2, 3, . . . , g.

Corollary 11. For a weakly generic form on M2
g , m(ω) = 0 implies

h(ker[ω]) = g.

The converse is not true; a counterexample is a connected sum T 2 ] T 2 with
windings with the periods (1,

√
2) and (1,−

√
2), correspondingly.

Since H ⊆ ker[ω] implies rkH ≤ 2g − rkω; Theorem 10 gives:
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Corollary 12. For weakly generic forms ω on M2
g it holds

m(ω) ≥ rkω − g − k(ω)

2
.

Though this bound is weaker than (11), it is easier to calculate. This bound is
efficient for forms with large rk ω, which are the “majority” of all forms: a form
in general position has rk ω = 2g. In general case, a Morse form with rkω = 2g

(i.e., ker[ω] = 0) has c(ω) = 0 [5] and m(ω) ≥ 1 [3]. For weakly generic forms,
Theorem 10 gives an exact value:

Corollary 13. For weakly generic forms ω on M2
g such that rk ω = 2g, it holds

m(ω) = g − k(ω)

2
.

Note that for c(ω), (9) and (7) give a bound not involving k(ω):

c(ω) ≤ h(ker[ω]) ≤ 2g − rkω.

The following lemma shows that we have given a complete account of the rela-
tions between g, k(ω), h(ker[ω]), and m(ω):

Lemma 14. For any g ≥ 0, k, m, and h satisfying the constraints of Corollary 7,
Theorem 10, and (8), on M2

g there exists a generic form ω such that k(ω) = k,
m(ω) = m, and h(ker[ω]) = h.

Proof. Consider g, k, h, and m satisfying the constraints:

0 ≤ g,

Corollary 7: 0 ≤ k ≤ 2g − 2 (k = 0 if g = 0); k is even,

Theorem 10: 0 ≤ m ≤ g − 1
2k,

Theorem 10, (8): c ≤ h ≤ g; h < g if k = 0 and m = 1,

where c = g − 1
2k − m. If g = 0 then k = m = 0 and the statement trivially holds,

so we assume g > 0. In the rest of the proof we assume that all unspecified periods
of ω are incommensurable.

Let k = 0 and m ≤ 1; then h = c. An example is a connected sum ]c
j=1 Tj of

tori with a compact foliation each plus, if m = 1, a torus with a minimal foliation.
By (10), h(ker[ω]) = h.

Let k = 0 and 2 ≤ m ≤ g. Consider a connected sum ] of m tori T
(m)
i with a

minimal foliation and c = g − m tori T
(c)
j with a compact foliation. Complete Hω

to a maximal isotropic subgroup H ⊆ ker[ω] such that rkH = h. Namely, denote
h(m) = h − c; obviously, 0 ≤ h(m) ≤ m.

(i) Let h(m) = 0. Then just choose all incommensurable periods in all T
(m)
i .

(ii) Let h(m) = 1. Choose the periods (1,
√

2) in T
(m)
1 and (1,

√
3) in T

(m)
2 .

Then ker[ω|
] T

(m)
i

] = 〈z11 − z21〉, where zi1, zi2 are the basic cycles of T
(m)
i

corresponding to these periods.
(iii) Let h(m) = 2. Similarly, choose the periods (1,

√
2) and (

√
2, 1) in the first

two T
(m)
i . Then ker[ω|

] T
(m)
i

] = 〈z11 − z22, z12 − z21〉 is isotropic.
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(iv) Let h(m) = 3. Choose the periods (1,
√

2), (
√

2,−1), and (
√

2 − 1, 2
√

2)

in the first three T
(m)
i . By Lemma 8, the isotropic subgroup 〈z11 − z21 +

z31, z12 + z22 − z31, z12 + z21 − z32〉 of ker[ω|
] T

(m)
i

] is maximal.

(v) Let h(m) = 2n, n ∈ N. Consider n pairs of tori with periods (αi, αi

√
2) and

(αi

√
2, αi), so that each pair behaves as in (iii) above, but different pairs

are incommensurable.
(vi) Let h(m) = 2n + 1. Choose n − 1 pairs as in (v) and a triple as in (iv).

By construction, we obtain h(ker[ω]) = c + h(m) = h.

 
 
 
 
 

   

c m(0) = m — 1 

g(k) g(0) 

g 

m(k) = 1 

Figure 7. Construction of the foliation in Lemma 14.

Let now k ≥ 2, thus g ≥ 1
2k + 1. Construct a manifold M (k) with g(k) = 1

2k + 1,

m(ω(k)) = 1, k(ω(k)) = k as shown in Figure 5 and a manifold M (0) with g(0) =
g − g(k), m(ω(0)) = m − 1, k(ω(0)) = 0 as discussed above; see Figure 7. Then
M (k) ] M (0) has the desired properties. To obtain h(ker[ω]) = h, M (0) is to be
constructed with h(0) = min(h, g(0)) and in M (k), the periods are constructed as
in (i)–(vi) above with h(k) = h − h(0) if positive. �
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