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ABSTRACT

Recognizing textual entailment has been known as a challenging
task, with many proposed approaches focusing on solving it inde-
pendently. From a broader perspective, there are other semantic
relations between pairs of texts, e.g., paraphrase, contradiction,
overlapping, independence, etc. In this paper, we propose three
basic measurements: relatedness, inconsistency, and inequality,
to characterize these closely relatedTextual Semantic Relations.
We show empirically the effectiveness of these measurements for
the recognition tasks (e.g. an improvement of 3.1% of accuracy
for entailment recognition) with features extracted from depen-
dency paths of the joint syntactic and semantic graph. With the se-
mantic relation space based on these three dimensions, we show
this is a way to achieve a better understanding of general seman-
tic relations between texts.

1 INTRODUCTION

Recognizing Textual Entailment (RTE) has been known as a challenging
task, with interesting close relations to both natural language understand-
ing (i.e. meaning interpretation) and natural language processing (i.e. ap-
plicable to various tasks). The task was defined as to recognize a spe-
cific relation (i.e.entailment) between two texts,text (T) andhypothe-
sis (H). While many attempts have been made to solve the problem in
a standalone manner, fewer investigated the relation between entailment
and other possible semantic relations between pairs of texts.
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From this perspective, most approaches fall into two groups. In the
first group, either the system deals with different cases of entailment with
specialized modules [1, 2], to learn various lexical or inference rules [3,
4] from large scale corpora, or applies logic inference techniques with
manually-crafted rules [5]. In the second group, people work on (seem-
ingly) different tasks, e.g. identifyingcontradiction[6], acquiring para-
phrase [7], and finding answers to the questions [8], and try to connect
these tasks with the RTE research. This paper falls into this category, too.

The termsemantic relationrefers to the relations that hold between
the meaning of two linguistic units. It is commonly used to describe re-
lations between pairs of words, e.g., synonym, hypernym, etc. However,
it has also been used in a wider sense to refer to relations between larger
linguistic expressions or texts, such as paraphrasing, textual entailment,
etc. [9]. We refer to the latter relations asTextual Semantic Relations
(TSRs), to differentiate them from the study of lexical semantic rela-
tions. At a first glance, such generalization makes the already challenging
recognition tasks even more complex. However, if these TSRs are mutu-
ally related, the simultaneous prediction will make much sense.

In previous work, [10] have shown that recognizingrelatednessbe-
tween two texts can be viewed as an intermediate step for entailment
and contradiction recognition. [11] proposed five elementary relations
between text pairs,EQUIVALENT, FORWARD (ENTAILMENT ), REVERSE

(ENTAILMENT ), INDEPENDENT, andEXCLUSIVE and represent them in
terms of entailment and negation. [12] proposed an annotation scheme for
semantic relations between text pairs, including six labels,BACKWARD

ENTAILMENT , FORWARD ENTAILMENT, EQUALITY , CONTRADICTION,
OVERLAPPING, andINDEPENDENT.

In order to obtain a better characterization of all these TSRs, in this
paper, we propose three basic numerical features,relatedness, inconsis-
tency, and inequality. We show empirically these features are effective
for the TSR recognition tasks, e.g. an improvement of 3.1% of accuracy
on entailment recognition and 2.3% on paraphrase identification (Sec-
tion 5.2). Although these three values are not entirely orthogonal to each
other, we can still build an approximate three-dimensional semantic rela-
tion space, and observe distributional difference between various TSRs.

2 RELATED WORK

While textual entailment analysis is now widely spotted in many NLP ap-
plications, e.g. question answering [13] and machine translation evalua-
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tion [14], the state-of-the-art performance of RTE systems is far from sat-
isfactory. According to the yearly RTE challenges (from RTE-1 in 2005
[15] to RTE-5 in 2009 [16]), the average performance of the particpating
systems is around 60% on the two-way annotated data (ENTAILMENT

vs. NON-ENTAILMENT ) and even worse on the three-way annotated data
(ENTAILMENT , CONTRADICTION, andUNKNOWN) introduced from the
RTE-3 pilot task1. Nevertheless, successful systems include both machine-
learning-based classifier [17] and logic-form-based inferencer [18].

A variant of the logic inference rule is the textual inference rule or
other (syntactic or semantic) representations closer to the surface text
than the logic form. The DIRT rule collection [19] has been applied to the
RTE task, although the improvement is limited [20]. [4] acquired unary
rules instead of the binary DIRT-style rules and showed improvement on
the accuracy, although it is still far from satisfactory. Both the logic-rule-
based and textual-rule-based systems suffer from either a laborious and
fragile system with hand-crafted rules (i.e. being lack of recall) or a large
collection of “noisy” rules (i.e. being lack of precision). In order to avoid
these disadvantages, we will treat RTE as a classification task and apply
feature-based machine learning techniques to achieve robustness.

As for the feature space of the machine learning approaches, tree and
graph structures are widely considered. For instance, [21] and their fol-
lowing work used tree editing distance algorithms; and [22] chose a graph
matching method. An alternative to the feature engineering attempts, sup-
port vector machines (SVMs) with different kernels are also popular in
this classification task. Both the (constituent) tree kernel [23, 24] and the
subsequence kernel based on syntactic dependency paths [25] were quite
successful. Therefore, in our work, we will also use an SVM-based clas-
sifier. Instead of using the tree kernels, we extract features based on both
syntactic and semantic dependency paths (or triples) as an approximation
of the meaning, which greatly reduce the number of dimensions of the
feature vectors and achieve better efficiency.

As we mentioned in the introduction, besides RTE, the main goal of
this paper is to build a general framework for recognizing different TSRs.
Previous work on this aspect includes [11]’s proposal of five elementary
relations between texts and our own inventory of six semantic relations
[12]. [11] tested their natural logic system on the FraCaS dataset [26],
which is manually constructed and focuses more on the different linguis-
tic (semantic) phenomena. While the system achieved quite good results

1 http://nlp.stanford.edu/RTE3-pilot/



124 RUI WANG AND YI ZHANG

on this “text-book” style dataset, the evaluation on the real world texts
(e.g. the RTE datasets) did not show much advantage of their approach.

Apart from the entailment recognition, [6] attempted to discover con-
tradiction, although it was then proved to be an even harder problem.
There is also rich literature on paraphrase (which can be viewed as a bi-
directional entailment relation) acquisition and application [27, etc.]. [9]
mainly focused on EQUIVALENCE and CONTRADICTION recognition in
terms of subjective texts, i.e. opinions. The recent work by [8] proposed
a generic system based on a tree editing model to recognize textual en-
tailment, paraphrase, and answers to questions. We follow this line of
research and draw a more general picture of all these semantic relations.

3 TEXTUAL SEMANTIC RELATIONS

We firstly introduce the TSRs we consider in this paper, and then the three
features we use to characterize the different relations.

In a previous study [12], we have proposed six relations,BACKWARD

ENTAILMENT , FORWARD ENTAILMENT, EQUALITY , CONTRADICTION,
OVERLAPPING, andINDEPENDENT. If we consider the unidirectional re-
lations between an ordered pair of texts (i.e. from the first one (T) to the
second one (H)), the first two relations can be collapsed into one. We
use the name ENTAILMENT , but we mean a strict directional relation, i.e.
T entailsH, but H does not entailT. The original goal of having both
OVERLAPPINGand INDEPENDENTis to capture the spectrum of related-
ness. However, in practice, even the human annotators found it difficult
to agree on many cases. Therefore, we also collapse the last two relations
into one, UNKNOWN, following the RTE label convention. After chang-
ing EQUALITY into PARAPHRASE, the TSRs we mention in the rest of
the paper would be, CONTRADICTION (C), ENTAILMENT (E), PARA-
PHRASE(P), and UNKNOWN (U).

Although semantic relations are supposed to be situation-independent
(i.e. consistently true or false in every possible world), in practice, every
text pair is always in a certain context. Our goal here is to differentiate
these four TSRs using some latent features shared by them, instead of
verifying them in all possible worlds. We assume, there exists a simpli-
fied low-dimension semantic relation space. While the identification of
effective dimensions is a complex question (see Section 5.3 for more de-
tailed discussion), we start only with three dimensions:Relatedness (Rel),
Inconsistency (Inc), and Inequality (Ine), and assume that the different
TSRs would be scattered on this space with different distributions.
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Fig. 1.Workflow of the System

Relatednesscaptures how relevant the two texts are. PARAPHRASE

would be one extreme (fully related), and UNKNOWN would the other
extreme.Inconsistencymeasures whether or how contradictory the two
texts are. CONTRADICTION has the highest inconsistency, and the others
do not have.Inequality mainly differentiates the asymmetric ENTAIL -
MENT from the symmetric PARAPHRASE. Although the other two rela-
tions are symmetric as well, we assume unequal information is contained
in T andH. All three features will be numerical.

There are two approximations here: i) the number of dimensions in
the real semantic relation space is much higher; ii) these three dimensions
we pick are not really orthogonal to each other (as shown in the exper-
iments). Nevertheless, we hope to benefit from the generality of these
measures in the TSR recognition task and will show the empirical results
in Section 5.

4 GENERAL FRAMEWORK

The workflow of the system is shown in Figure 1 and the details of the
important components will be elaborated on in the following sections.

4.1 Preprocessing

In this paper, we generally refer to all the linguistic analyses on the texts
aspreprocessing. The output of this procedure is a unified graph repre-
sentation, which approximates the meaning of the input text. In particu-
lar, after tokenization and POS tagging, we did dependency parsing and
semantic role labeling.

Tokenization and POS TaggingWe use the Penn Treebank style tokeniza-
tion throughout the various processing stages.TnT , an HMM-based POS
tagger trained with Wall Street Journal sections of the PTB, was used to
automatically predict the part-of-speech of each token in the texts and
hypotheses.
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Dependency ParsingFor obtaining the syntactic dependencies, we use
two dependency parsers, MSTParser [28] and MaltParser [29]. MST-
Parser is a graph-based dependency parser where the best parse tree is
acquired by searching for a spanning tree which maximize the score
on an either partially or fully connected dependency graph. MaltParser
is a transition-based incremental dependency parser, which is language-
independent and data-driven. It contains a deterministic algorithm, which
can be viewed as a variant of the basic shift-reduce algorithm. The com-
bination of two parsers achieves state-of-the-art performance.

Semantic Role LabelingThe statistical dependency parsers provide shal-
low syntactic analyses of the entailment pairs through the limited vocab-
ulary of the dependency relations. In our case, the CoNLL shared task
dataset from 2008 were used to train the statistical dependency parsing
models. While such dependencies capture interesting syntactic relations,
when compared to the parsing systems with deeper representations, the
contained information is not as detailed. To compensate for this, we used
a shallow semantic parser to predict the semantic role relations in theT
andH of entailment pairs. The shallow semantic parser was also trained
with CoNLL 2008 shared task dataset, with semantic roles extracted from
the Propbank and Nombank annotations [30].

4.2 Feature Extraction

We firstly extract all the dependency triples fromH, like <word, depen-
dency relation, word>, excluding those having stop words. Then, we use
the word pairs contained in the extracted dependency triples as anchors
to find the correspondingdependency pathsin T. For the following three
representations, we apply slightly different algorithms to find the depen-
dency path between two words,

Syntactic Dependency TreeWe traverse the tree to find the correspond-
ing dependency path connecting the two words;

Semantic Dependency GraphWe use Dijkstra’s algorithm to find the
shortest path between the two words;

Joint Dependency Graph We assign different weights to syntactic and
semantic dependencies and apply Dijkstra’s algorithm to find the
shortest path (with the lowest cost)2.

2 In practice, we simply set semantic dependency costs at 0.5 and syntactic de-
pendency costs at 1.0, to show the preferences on the former when both exist.
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For the features, we firstly check whether there are dependency triples
extracted fromH as well as whether the same words can be found inT.
Only if the corresponding dependency paths are successfully located inT,
we could extract the following features. The direction of each dependency
relation or path could be interesting. We use a boolean value to represent
whetherT-path contains dependency relations with different directions
of theH-path.

Notice that all the dependency paths fromH have length 13. If the
length of theT-path is also 1, we can directly compare the two depen-
dency relations; otherwise, we compare each of the dependency relation
contained theT-path withH-path one by one4. By comparing theT-path
with H-path, we mainly focus on two values, the category of the depen-
dency relation (e.g. syntactic dependency vs. semantic dependency) and
the content of the dependency relation (e.g. A1 vs. AM-LOC). We also
incorporate the string value of the dependency relation pair and make it
boolean depending on whether it occurs or not.

Table 1.Feature types of different settings of the system.
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Table 1 shows the feature types we extract from eachT-H pair. There,
H NULL ? means whetherH has dependencies;T NULL ? means whether
T has the corresponding paths (using the same word pairs found inH);
DIR is whether the direction of the pathT the same asH; MULTI ? adds
a prefix,M , to theREL PAIR features, if theT-path is longer than one
dependency relation;DEP SAME? checks whether the two dependency
types are the same, i.e. syntactic and semantic dependencies;REL SIM?

3 The length of one dependency path is defined as the number of dependency
relations contained in the path.

4 Enlightened by [25], we exclude some dependency relations like “CONJ”,
“COORD”, “APPO”, etc., heuristically, since usually they will not change the
relationship between the two words at both ends of the path.
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only occurs when two semantic dependencies are compared, meaning
whether they have the same prefixes, e.g.C-, AM -, etc.; REL SAME?
checks whether the two dependency relations are the same; andREL PAIR

simple concatenates the two relation labels together.

4.3 TSR Recognition

After obtaining all the features for text pairs with different TSRs, we train
three classifiers for the three measurements,relatedness, inconsistency,
andinequality, and test on the whole dataset to obtain the numerical val-
ues. The training data are labeled according the scheme shown in Table 2.
The later recognition of the TSRs are based on these three measurements.

Table 2.Training data of the three classifiers

relatedness inconsistency inequality
PARAPHRASE + − −
ENTAILMENT + − +
CONTRADICTION + + +
UNKNOWN − − +

5 EXPERIMENTS

5.1 Datasets

Table 3 gives an overview of all the datasets we use in our experiments
and we briefly describe them in the following.

AMT is a dataset we constructed using the crowd-sourcing technique
[31]. We used Amazon’s Mechanical Turk5, online non-expert annotators
[32] to perform the task. Basically, we show the Turkers a paragraph of
text with one highlighted named-entity and ask them to write some facts
or counter-facts about it. There are three blank lines given for the anno-
tators to fill in. For each task, we show five texts, and for each text, we
ask three Turkers to do it. In all, we collected 406 valid facts and 178
counter-facts, which will be viewed as E and C respectively.

MSR is a paraphrase corpus provided by Microsoft Research [33]. It
is a collection of manually annotated sentential paraphrases. This dataset

5 https://www.mturk.com/mturk/
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Table 3.Collection of heterogenous datasets with different annotation schemes.

CorporaParaphrase (P)Entailment (E)Contradiction (C) Unknown (U)
AMT Facts Counter-Facts
(584) (406) (178)
MSR Paraphrase Non-Paraphrase
(5841) (3940) (1901)
PETE YES NO
(367) (194) (173)
RTE ENTAILMENT CONTRADIC- UNKNOWN

(2200) (1100) TION (330) (770)
TSR Equality Forward/Back- Contradiction Overlapping &
(260) Entailment (3) ward (10/27) (17) Independent (203)
Total

3943 637 525 973
(9252)

consists of 5841 pairs of sentences which have been extracted from news
sources on the web, along with human annotations indicating whether
each pair captures a paraphrase/semantic equivalence relationship.

PETE is taken from the SemEval-2010 Task #12, Parser Evaluation
using Textual Entailment6 [34]. The dataset contains 367 pairs of texts in
all and has a focus on entailments involving mainly the syntactic infor-
mation. The annotation is two-way, YES would be converted into EN-
TAILMENT and NO could be either CONTRADICTION or UNKNOWN.
Since each text pair only concerns about one syntactic phenomenon, the
entailment relation is directional, excluding the paraphrases.

RTE is a mixture of RTE-4 (1000) and RTE-5 (1200) datasets. Both
are annotated in three-way, but the ENTAILMENT cases actually in-
clude PARAPHRASEas well. We did not include the unofficial three-way
annotation of the RTE-3 pilot task.

TSR is the dataset we annotated under the annotation scheme men-
tioned in Section 3. The sentence pairs were extracted from the the RST
Discourse Treebank (RST-DT)7. The annotation was done by two annota-
tors in two rounds. The inter-annotator agreement is 91.2% and the kappa
score is 0.775. We take all the valid and agreed sentence pairs (260) as
the TSR dataset here.

6 http://pete.yuret.com/guide
7 Available from the LDC: http://www.ldc.upenn.edu/Catalog/

CatalogEntry.jsp?catalogId=LDC2002T07
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We randomly sample 250T-H pairs from each dataset as the test sets
(1000 pairs in all). The rest of the data are then randomly selected to
create a balance training set with equal number of instance pairs from
each class.

5.2 Setup & Results

First, we take the PETE dataset to do binary classification (ENTAILMENT

vs. NON-ENTAILMENT ) on a small scale to confirm that both syntactic
and semantic dependency structures are useful. The features extracted
from the joint dependency graph improve the model of features purely
from the syntactic dependency tree by as much as 10% of accuracy.
Therefore, in the rest of the experiments, we will take the joint depen-
dency graph as the default structure to extract features.

For comparison, we configure our system in the following two ways
to compose different baseline systems: 1) from the classification strat-
egy perspective, the direct four-class classification would be the base-
line (Direct Joint in Table 4), compared with the main system with a
two-stage classification (3-D Model); and 2) from the feature set point of
view, we take the bag-of-words similarity as the baseline8 (Direct BoW),
compared with the main system using both syntactic and semantic depen-
dency structures (i.e. the3-D Model). Table 4 shows the results.

Table 4.Results of the system with different configurations and different evalua-
tion metrics.

Systems
4-Way 3-Way 2-Way

(C, E, P, U) (C, E&P, U) (E&P, Others) (P, Others)
Direct BoW 39.3% 54.5% 63.2% 62.1%
Direct Joint 42.3% 50.9% 66.8% 77.3%
3-D Model 45.9% 58.2% 69.9% 79.6%

Notice that E here indicates the strict directional entailment exclud-
ing the bidirectional ones (i.e. P), which makes the task much harder
(as we will see it more in Section 5.3). Nevertheless, the main approach,
3-D Model, improves the system performance greatly in all aspects, com-
pared with the baselines. Apart from the self-evaluation, we also compare

8 The bag-of-words similarity has shown to be a strong baseline in the previous
RTE challenges.
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our approach with others’ systems. Due to the difference in datasets, the
numbers are only indicative.

Table 5.System comparison under the RTE annotation schemes (∗ indicates dif-
ferent datasets).

RTE
3-Way 2-Way

(C, E&P, U) Acc. Prec. Rec.
3-D Model 58.2% 69.9% 75.9% 53.4%
M&M, 2007(NL) – 59.4% 70.1% 36.1%
H&S, 2010 – 62.8% 61.9%71.2%
Our Prev. 59.1% 69.2% – –
RTE-4 Median 50.7% 61.6% – –
RTE-5 Avg. 52.0% 61.2% – –

For the RTE comparison (Table 5), the datasets are partially differ-
ent due to the mixture of datasets. For reference, we re-run our previous
system on the new dataset (indicated asOur Prev., which was one of the
top system in the previous RTE challenges). The results show that our
new approach (3-D Model) catches the previous system on the three-way
RTE and outperforms it on the two-way task. And both systems achieves
much better results than the average. [11]’s system based on natural logic
(M&M, 2007) is precision-oriented while [8]’s (H&S, 2010) is recall-
oriented. Our system achieves the highest precision among them.

Table 6.System comparison under the paraphrase identification task (∗ indicates
the test sets).

P vs. Non-P Acc. Prec Rec.
3-D Model 79.6% 57.2% 72.8%
D&S, 2009 (QG) 73.9% 74.9%91.3%
D&S, 2009 (PoE) 76.1%79.6% 86%
H&S, 2010 73.2% 75.7% 87.8%

Besides the RTE task, we also compare our approach with other para-
phrase identification systems (Table 6). [35] proposed two systems, one
with high-recall (D&S, 2009 (QG), using a quasi-synchronous grammar)
and the other with high-precision (D&S, 2009 (PoE), using a product of
experts to combine the QG model with lexical overlap features).H&S,
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2010is the same system in Table 5. Although our system has lower pre-
cision and recall, our accuracy ranks the top, which indicates that our
approach is better at non-paraphrase recognition.

Notice that, our system is not fine-tuned to any specific recognition
task. Instead, we build a general framework for recognizing all the four
TSRs. We also include heterogenous datasets collected by various meth-
ods in order to achieve the robustness of the system. On the contrary, if
one is interested in recognizing one specific relation, a closer look at the
data distribution would help with the feature selection.

5.3 Discussion

While the empirical results show a practical advantage of applying the
three-dimensional space model in the TSR recognition task, in this sub-
section, we investigate whether this simplified semantic relation space
with the chosen axises is a good approximation for these TSRs. We plot
all the test data into this space and Figure 2 shows three different projec-
tions onto each two-dimensional plane.

Although the improvement on recognition accuracy is encouraging,
these three measurements cannot fully separate different TSRs in this
space. P is clearly differentiated from the others and most of the data
points stay in the region of low inconsistency (i.e. consistent), low in-
equality (i.e. equal), and high relatedness. However, the other three TSRs
behave rather similarly to each other in terms of the regions.

Figure 3 shows the other three TSRs on the same plane,inconsistency-
inequality. Although the general trend of these three groups of data points
is similar, slight differences do exist. U is rather restricted in the region of
high inconsistency and high inequality; while the other two spread a bit
over the whole plane. We have expected the contrary behavior of C and E
in terms of inconsistency, but it seems that our inconsistency measuring
module is not as solid as the relatedness measure. This is in accordance
with the fact that for the original three-way RTE task C is also the most
difficult category to be recognized.

A even more difficult measurement is the inequality. Among all the
four TSRs, the worst result is on E, which roots from the suboptimal in-
equality recognition. In retrospect, the matching methods applied to the
T-H pair cannot capture the directionality or the semantic implication,
but rather obtain a symmetric measurement, and thus it explains the suc-
cess of paraphrase recognition. Additionally, this might also suggest that,
in the traditional RTE task, the high performance might attribute to the
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Fig. 2. Test data in the three-dimensional semantic relation space projected onto
the three planes.

P “section” of the entailment, while the real directional E is still very
difficult to capture.

6 CONCLUSION AND FUTURE WORK

In this paper, we present our approach of recognizing different textual
semantic relations based on a three-dimensional model.Relatedness, in-
consistency, andinequalityare considered as the basic measurements for
the recognition task as well as the dimensions of the semantic relation
space. We show empirically the effectiveness of this approach with a fea-
ture model based on dependency paths of the joint syntactic and semantic
graph. We also interpret the results and the remaining difficulties visually.
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Fig. 3. C, E, and U test data projected onto the inconsistency-inequality plane.

There are several issues on the list: 1) Inequality seems to be difficult
to define and measure, which suggests to consider other possible dimen-
sions; 2) we are looking for a systematic way to tune the general system
for specific TSR recognition tasks; and 3) we have not incorporated lex-
ical resources (e.g. WordNet) into our system yet, for a proper way of
integration is still up for future research.
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