
IJCLA VOL. 5, NO. 1, JAN-JUN 2014, PP. 117–128
RECEIVED 07/01/14 ACCEPTED 06/02/14 FINAL 17/06/14

Automatic Recognition of Clauses

OLDŘICH KRŮZA AND VLADISLAV KUBOŇ

Charles University in Prague, Czech Republic

ABSTRACT

This paper describes an attempt to solve the problem of recog-
nizing clauses and their mutual relationship in complex Czech
sentences on the basis of limited information, namely the infor-
mation obtained by morphological analysis only. The method de-
scribed in this paper may be used in the future for splitting the
parsing process into two phases, namely (1) Recognizing clauses
and their mutual relationships; and (2) Parsing the individual
clauses. This approach should be able to improve the result of
parsing long complex sentences.

1 INTRODUCTION

Despite the progress achieved in recent years in the field of natural lan-
guage parsing it still makes sense to seek alternative approaches to the
problem. Parsing is a procedure performed by a human or a computer
whose input are words of a sentence, typically with morphological an-
notation, and whose output is a syntactical structure on these words, in
our case represented by a dependency tree. Clearly, a sentence consists
of words, just like a human body consists of cells. Nobody sane would
describe a human body as a mere cluster of cells though. A body appar-
ently consists of organs, and those consist of cells. Even if a sentence can
hardly have 1014 words1, we believe the relation between words, clauses
and a sentence is similar to that of cells, organs and a body.

Clauses are in many aspects autonomous and many grammatical re-
lationships are either limited within a clause, or are among clauses as
atomic units. For example, Petkevič [1] states that

1 This is roughly how many cells a human body has.



118 OLDŘICH KRŮZA AND VLADISLAV KUBOŇ

– word order,
– valency and valency scopes, adjunct scopes, scopes of modifications

(local, temporal, concessive, etc.),
– agreement and its scope,
– analytical predicate and its scope,
– constituent coordination and its scope,
– internal coreference/anaphor

are all intra-clausal relationships.
In our approach we suggest to step aside from the traditional path

of performing full-fledged parsing immediatelly after morphological tag-
ging of individual word forms and to attempt to detect the organs of com-
plex sentences, individual clauses, first, and to determine their mutual
relationships prior to the actual parsing phase. The next phse could then,
subsequently, concentrate on parsing individual clauses one by one. Not
only does this more refined sequence of steps make a lot more linguistic
sense, but it also decreases the number of words a parser has to consider
at a time and thus simplifies the task. We hope that this approach could
also speed up the whole procedure and raise the overall efficiency.

2 BUILDING A MODEL FOR CLAUSE RECOGNITION

Previous work on clause detection has focused on English and was mostly
limited to finding clause boundaries, not their dependency relations like
we do. One occasion of focus to clause identification was the CoNLL-
2001 shared task [2, 3]. Meanwhile, Prague Depencency Treebank in its
version 2.5 contains data that mark up clauses based on the research on
sentence segments [4]. The clauses have been annotated by an automatic
procedure that uses the surface syntax layer to identify the clause that
each token belongs to [5]. This approach differs from the one presented
in this paper in the type of information used. It exploits the information
from already analyzed sentences and their surface syntactic trees and thus
it cannot be used for splitting the parsing process into more phases. On
the other hand, our approach aims at using the morphological information
only for automatic clause identification.

The task of automated clause recognition is not trivial from the pro-
gramming point of view. We’d like to use a statistical approach using
machine learning. However, the task is not easily mapped to standard re-
gression or classification that machine learning has standard procedures
for. The output of clause recognition should include:



AUTOMATIC RECOGNITION OF CLAUSES 119

1. the set of clauses,
2. the dependency, and coordination relations among clauses,
3. distribution of words to individual

clauses.

2.1 Incremental Approach

Our first attempt at solving the task was an incremental solution, where
sub-tasks would be defined, each solvable as a classification or regression
task. The final result would then be obtained by chaining the subtasks.

The first step was the identification of clause borders. We trained
a simple discriminative model based on features that drew on previous
research of sentence segments described in [6]. Segments happen to be
mostly bordered by conjunctions or punctuation in Czech and we expo-
lited this. We have used the following features for our clause boundary
model:

– word’s lemma,
– whether the right neighbor is a separator,
– whether the left neighbor is a separator,
– whether the left neighbor is a conjunction.

A separator is a punctuation mark or one of the coordinate conjun-
tions that do not enforce a comma (a, nebo, ani, i).

The set of lemmata was limited to a small set of those that represent
conjunctions, punctuation, and single-letter words.

These features were chosen so that they use all the morphological
information that the surface-syntax-tree-to-clauses converter described in
Krůza, Kuboň 2009 uses. This converter made it possible to use the data
from the analytical layer of the Prague Dependency Treebank as training
data.

The predicted feature was whether a word is at the boundary of a
clause. Specifically, whether it is the starting word of a clause, whether
it is the final word of a clause, whether this word is just before the start
of a contained sub-clause and whether this word is just after the end of a
contained sub-clause.

Despite its simplicity, this model achieved about 75% precision. Even
though it likely had much room for improvement, we abandoned this
approach completely. A non-negligible error rate in the first step alone
would spoil the chain as the errors in the individual steps would accumu-
late.



120 OLDŘICH KRŮZA AND VLADISLAV KUBOŇ

2.2 Using MST Parser for Clause Recognition

The experience with the incremental approach clearly indicated that the
idea of dividing the recognition task into more steps should be abandoned
in favor of a more “holistic” approach that will try to solve the task in a
single step. Because the clause recognition is to a certain extent a similar
task to full-fledged parsing (the main difference being the size of units
we are working with), using a standard parser with adapted data for this
task seemed to be a natural solution. We have decided to use the MST
parser [7] for this task due to its quality which had been already demon-
strated for several languages of various types, Czech and English being
among them.

The standard form of data MST parser is the following: the words and
punctuation marks (tokens) represent the nodes of a syntactic tree. Each
word has four types of values:

1. an original word form
2. a morphological tag
3. a parent node
4. a label of a dependency edge going towards the parent node.

The adaptation of the data for our experiment had been relatively
straightforward. Since the whole parse of a sentence always has a tree
structure (at least in the FGD formalism, which we adhere to [8]), and
since each clause is formed by a subtree of the parse, the clauses them-
selves must evidently also form a dependency tree. Now, if we see the
relation of a word belonging to a clause as a special case of dependency,
then the whole output structure (i.e. the three points listed above) can be
seen as one dependency tree.

We need the nodes of the tree to represent the clauses on one hand
and the tokens of the clauses on the other hand. We’ll use the tokens of
the sentence to represent both things. So the set of tokens will be the set
of nodes of the tree. Each token will represent itself, and some tokens will
also represent the clause they belong to. The choice of which token shall
represent a clause is clear as each clause has, according to our definition,
a head among its tokens.

In the tree, we will distinguish between simple tokens and heads of
clauses with dependency types: (1) token dependency and (2) clause de-
pendency. A word that has a clause dependency to its parent represents
a clause. Other words can have token dependencies to such a word, thus
representing that the dependant is included in the clause represented by



AUTOMATIC RECOGNITION OF CLAUSES 121

Fig. 1. Standard dependency tree, simplified for illustrating our point.

Fig. 2. Dependency tree adapted to capture clausal dependencies. Thin lines de-
note token dependencies, thick lines denote clause dependencies. Underlined
words denote clause heads.

the parent word. Figures 1 and 2 illustrate the difference between a stan-
dard syntax tree and an adapted tree that captures clausal relationships on
simple made-up English examples.

Krůza, Kuboň 2009 elaborated on details of representing clause struc-
ture. Two major factors make the situation more complicated than out-
lined above: coordination and clauses sharing words. A brief recapitula-
tion follows.

A dependency relationship of one clause to another is represented by
clause dependency of the head either to the head of the parent clause or
to a word included in the parent clause. The former variant is simpler but
the latter can capture which token of the parent clause is the parent of the
head of the child clause in the parse. This information does not strictly
belong to the clause relationships, where clauses are seen as depending
on each other, not on tokens, but choosing to preserve this piece of in-
formation in the clause tree is an option that can save a lot of trouble
in later stages. Figures 3 and 4 illustrate the difference between the two
alternatives.

Beside dependency relations between clauses, two clauses can also
be coordinated. This frequent phenomenon, which is in fact a real night-
mare for the dependency paradigm, is represented by a special depen-



122 OLDŘICH KRŮZA AND VLADISLAV KUBOŇ

Fig. 3. Illustration of the variant where the dependency relationship of two clauses
is delegated on the two heads. The alternative is simpler and seems cleaner in the
sense of keeping the clauses atomic.

Fig. 4. Illustration of the variant where the dependency relationship of two clauses
is delegated on the head of the dependent clause and its actual antecedant from
the parent clause. The alternative introduces heterogeny but can be very useful
in the stage of reconstructing the actual sentence parse from inter-clausal and
intra-clausal trees.

dency type of both coordinated clauses on the coordination. Thus, we in-
troduce a new type of tree nodes. Now, beside clauses and tokens, clause
coordinations also occur. They are denoted by having the coordination
dependency. The coordinated clauses are denoted by having the member
dependency type.

Table 1 shows an example of the data format for MST parser.

Often, a noun phrase or another constituent forms a modifier shared
by both coordinated clauses. Such subtrees are represented by a node of
the tree with a special part dependency type. A tree with all dependency
types is shown in Figure 5. Notice that this short example with all types of
dependencies is quite extreme. Typically, a clause-structure tree is much
flatter, which is one of the differences compared to more complex trees
resulting from full-fledged parsing.

Having such trees, we trained the MST parser to recognize them. The
best results were achieved with a second-order model and non-projective
algorithm.



AUTOMATIC RECOGNITION OF CLAUSES 123

Table 1. A sample sentence with formating for the MST parser: “Šetřete penı́ze,
netelefonujte, faxujte! Je tento reklamnı́ slogan pravdivý? [Save money, don’t
call, fax! Is this advertising slogan true?]”

Šetřit penı́ze , telefonovat_:T
i-P- NIP4 :--- i-P-
Clause-MEMBER Word Coord.-CHILD Clause-MEMBER
3 1 0 5

, faxovat_:T !
:--- i-P- :---
Coord.-MEMBER Clause-MEMBER Word
3 5 0

být tento reklamnı́ slogan pravdivý ?
B-S- DYS1 AIS1 NIS1 AIS1 :---
Clause-Child Word Word Word Word Word
0 1 1 1 1 0

2.3 Baseline

Since our work on this type of automated clause recognition in Czech was
pioneer, we had no direct comparison with other approaches. Our task is
simpler than full-fledged parsing and it is our ultimate goal to improve
automated parsing. So deriving the clauses from the result of an existing
parser offers a fitting baseline for us.

We used the development test data from CoNLL 2009, which contains
MST-predicted heads and labels. The clauses have been derived using the
algorithm presented in [6].

3 EVALUATION

To use the standard precision and recall scores to evaluate clause recog-
nition, we need to define what makes for a correctly-recognized clause.
We use two criteria:

1. whether the head is correctly recognized, and
2. whether the component, i.e. set of words of the clause is correctly

assigned.

In addition, we also use a conjunction of both criteria. We call these the
scores a head-based score, a component-based score and a head-and-
component-based score.



124 OLDŘICH KRŮZA AND VLADISLAV KUBOŇ

Fig. 5. Clause-structure tree as fed to MST parser. The-number-grows of-
businessmen, who don’t-have separate office and work at-home. (The number
of businessmen who don’t have a separate office and work at home, grows.)

None of these, however, gives a continuous measure of the word dis-
tribution. We want a way to measure that a clause that has 12 out of 15
words correctly assigned is better than one that has only 9 of 15. For this
purpose, we introduce a so-called fuzzy score. It is defined by the follow-
ing algorithm:

1. Initialize an empty precision score array.
2. Initialize an empty recall score array.
3. For each predicted clause P find a clause G in gold standard such that

no other clause of gold standard contains more tokens belonging to
P than G does.

Push the evaluation of the following formula to the precision
score array: ((#words that P and G share – #words present in
P but absent in G) / #words in P)

End for.
4. For each clause in gold standard G find a predicted clause P such that

no other predicted clause contains more tokens belonging to G than
P does.

Push the evaluation of the following formula to the recall score
array: ((#words that G and P share – #words present in G but
absent in P) / #words in G)

End for.
5. Return mean values of the precision and recall score arrays.

The idea behind the fuzzy score is taken from precision and recall
measures. Precision constituent is simulated by looking at each found



AUTOMATIC RECOGNITION OF CLAUSES 125

Table 2. Evaluation of the MST-based model on dtest data

Method Precision Recall
fuzzy 0.95 0.95
head 0.94 0.94
component 0.78 0.78
head+comp 0.78 0.78

Table 3. Baseline results

Method Precision Recall
fuzzy 0.87 0.90
head 0.89 0.86
component 0.59 0.57
head+comp 0.58 0.57

clause, finding the gold clause sharing the most tokens, and calculating
the overlap ratio. Analogically, recall is simulated by looking at each gold
clause and comparing it to an adequate predicted clause. Since we’re
comparing two coverages of a given set (a sentence), the score cannot
reach zero. The worst case for the recall constituent would be identifying
each token as a clause, whereas the worst case for the precision con-
stituent would be identifying the whole sentence as one big clause.

The fuzzy score does its job in measuring component overlap but
ignores everything else, so we use it in addition to the aforementioned
measures. Table 2 shows the evaluation of the MST-based model. Table 3
shows the evaluation of the baseline.

3.1 Improving the MST-based Model

Seeing how much worse the model does at assigning words to clauses
in comparison to identifying the clauses themselves and their heads, we
were looking into ways of improving the assignment of words into cor-
rect clauses. When using the MST in projective mode, the most errors
had been done where there was a discontinuity in a clause, e.g. when a
clause spanned words 1 to 3 and 6 to 9. Switching to the non-projective
algorithm raised the score a touch but there was no observable tendency
in the remaining errors any more. We have therefore made an attempt
to employ machine learning again and we have trained another model
specifically for distributing the words into the pre-identified clauses. This



126 OLDŘICH KRŮZA AND VLADISLAV KUBOŇ

new model was applied on top of the MST-generated clause structure, so
we could use the original MST prediction as a feature.

This new component model had couples of words as observation sam-
ples. Both words of such couples always belonged to the same sentence;
one of them was a head of a clause and the other one was not (in the MST
prediction). The predicted feature was whether the first word represents
the clause that the other word belongs to. We have defined a set of 148
morphological, lexical and MST-prediction-based features, and planned
to use a statistical feature-selection method to get the optimal feature
space.

However, we have quickly encountered technical limitations: the train-
ing data set was simply too large to fit into the memory. All attempts
to train a model failed, either not finishing even after ten days (e.g. k-
nearest-neighbor) or crashed on depleting memory (all linear models in-
cluding SVM). Finally we have tried the C5.0 decision tree. It finished in
mere 16 minutes. The induced decision tree was only employing 38 fea-
tures, which was a neat (though possibly suboptimal) feature selection.

Applying the component model raised the component-based score by
0.1%. The fuzzy score has been raised by 0.0004%. C5.0 was reporting
its error rate at 3.9%, which is not bad and certainly not easy to beat by
tweaking the feature set.

Because of the negligible contribution, we decided not to use the com-
ponent model. The obvious explanation for the small contribution seems
to be the strictness of the component score, where a clause is only consid-
ered correctly identified, when its set of components is correctly assigned.
One token off or extra and the clause is not counted as a success. The de-
cent fuzzy score confirms that the token distribution has actually reached
a level where improvements are hard to get.

4 CONCLUSION

The paper presents an experiment with a method for automatical clause
detection using a specially-trained MST parser. A custom measure rate
has been defined to evaluate the recognition. The method outperforms
deriving clauses from full-fledged automated parsing with MST. What
remains yet to be seen is whether parsing the detected clauses would
yield better results than parsing the sentences in a classical way.

ACKNOWLEDGMENTS This work was supported by the Grant of Czech
Science Foundation (GAČR) No. P202/10/1333 and by the Charles Uni-



AUTOMATIC RECOGNITION OF CLAUSES 127

versity Grant Agency (GAUK), Grant No. 920913. In this work we used
language resources developed, stored, and distributed by the LINDAT /
CLARIN project of the Ministry of Education, Youth and Sports of the
Czech Republic (project LM2010013). Participation in the conference
was supported by Foundation of Vilem Mathesius.

REFERENCES

1. Petkevič, V.: Clause identification based on corpora of contemporary Czech.
In: Gramatika a korpus / Grammar & Corpora 2007. (2007)

2. Tjong, E.F., Sang, K., Déjean, H.: Introduction to the CoNLL-2001 shared
task: Clause identification. In Daelemans, W., Zajac, R., eds.: Proceedings of
CoNLL-2001, Toulouse, France (2001)

3. Stevenson, S., Carreras, X.: Proceedings of CoNLL-2009. Association for
Computational Linguistics, Boulder, Colorado (2009)

4. Lopatková, M., Homola, P., Klyueva, N.: Annotation of sentence structure:
Capturing the relationship between clauses in Czech sentences. Language
Resources and Evaluation (2012) 25–36

5. Bejček, E., Panevová, J., Popelka, J., Straňák, P., Ševčı́ková, M., Štěpǎnek,
J., Žabokrtský, Z.: Prague Dependency Treebank 2.5 – a revisited version of
PDT 2.0. In: Proceedings of Coling 2012. (2012) 231–246

6. Krůza, O., Kuboň, V.: Automatic extraction of clause relationships from a
treebank. In: Computational Linguistics and Intelligent Text Processing (CI-
CLing 2009). Number 5449 in LNCS. Springer (2009) 195–206

7. McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective dependency
parsing using spanning tree algorithms. In: HLT/EMNLP’05: Proceedings of
the Conference on Human Language Technology and Empirical Methods in
Natural Language Processing, Morristown, NJ, USA, Association for Compu-
tational Linguistics (2005) 523–530

8. Sgall, P.: Generativnı́ popis jazyka a česká deklinace. Academia, Prague,
Czech Republic (1967)

OLDŘICH KRŮZA
INSTITUTE OF FORMAL AND APPLIED LINGUISTICS,

FACULTY OF MATHEMATICS AND PHYSICS,
CHARLES UNIVERSITY IN PRAGUE,

MALOSTRANSKÉ NÁMĚSTÍ 25, PRAGUE, CZECH REPUBLIC
E-MAIL: <KRUZA@UFAL.MFF.CUNI.CZ>



128 OLDŘICH KRŮZA AND VLADISLAV KUBOŇ

VLADISLAV KUBOŇ
INSTITUTE OF FORMAL AND APPLIED LINGUISTICS,

FACULTY OF MATHEMATICS AND PHYSICS,
CHARLES UNIVERSITY IN PRAGUE,

MALOSTRANSKÉ NÁMĚSTÍ 25, PRAGUE, CZECH REPUBLIC
E-MAIL: <VK@UFAL.MFF.CUNI.CZ>


