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ABSTRACT 
 

We consider some search problems which have applications in 
statistical text analysis and natural language processing. 
Given two sets of words A and B, we propose a statistical, 
corpus-based measure of the “closeness” between A and B in 
texts. Our proposed measure involves the search, throughout a 
text corpus, of the words in A and B, under the restriction that 
these words should co-occur within a given maximum distance 
n. We address the problem of efficiently computing this 
closeness measure and present algorithms for it. 

 
Keywords: Natural language processing, text search algorithms, 
closeness measure  
 
1. INTRODUCTION 
 
Discovering and retrieving relations between words is a central 
topic in computational linguistics, text analysis, and information 
retrieval. This is particularly true, for instance, in the case of the 
(semantic) similarity relation between words – word similarity – 
which has several important applications in natural language 
processing (see [1]). Various notions of word similarity have 
been proposed and studied over the years. Usually, word 
similarity relations are supplied with a measure – a similarity 
measure – that provides a statistical estimate of the degree of 
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similarity among words, i.e., how much a word is related or 
similar to another word. 

A conceptually simple case of similarity relation on words is 
provided by the following notion of word closeness: a word x is 
close to another word у if (“most of the times”) х co-occurs with 
у within a given maximum distance п in a given collection of 
texts. This notion of word closeness is at the basis of various 
statistical measures of similarity that use the so-called corpus-
based approach [2-5]. In the corpus-based model, similarity 
measures are computed using co-occurrence statistics of the 
words from a large corpus of collected texts in which the words 
occur. Note that this is different from the knowledge-based 
approach, which includes graph-based algorithms operating on 
lexical databases such as the WordNet [6-9]. 

A corpus-based measure for the above relation of word 
closeness can be easily provided by dividing the number of times 
that х co-occurs with у in the corpus within a distance of at most 
п, by the number of times that х occurs in the corpus. The higher 
is this ratio, the closer is х to у. 

We generalize this relation of word closeness to sets of 
words (relative to a corpus); accordingly, a set A of words is 
close to another set B of words if the words of A co-occur with 
the words of B within a given maximum distance п in the corpus. 
We can define a statistical measure for this relation as follows. 
We assume that the corpus is provided as a finite ordered 
sequence (i.e., a string) of words. A window is a sequence of at 
most п consecutive words of the corpus. A window containing 
the set A is minimal if it cannot be shortened without skipping 
any word in A. Then, we count the number of minimal windows 
containing A that can be extended to windows containing also B, 
and divide this number by the number of minimal windows 
containing A. The resulting ratio is the closeness factor of A to B 
(for a formal statement, see Problem 1 in Section 3.) Again, the 
higher is the closeness factor, the closer is A to B. 

The closeness factor of word sets has applications in the field 
of text simplification [10], a subfield of natural language 
processing concerned with the problem of reducing the syntactic 
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complexity of a text, while retaining its information content and 
meaning. The basic idea here is that a text can be simplified by 
repeatedly removing from it one or more “semantically 
superfluous” words, i.e., words that do not affect its whole 
meaning. Note that simplifications of this kind can be used, for 
instance, to make it easier to analyze the meaning of texts in such 
contexts as sentiment analysis [11], concerned with the study of 
opinions expressed in text documents. Then, a possible approach 
to text simplification based on the closeness factor of word sets, 
could be the following one. Let us first introduce a useful 
notation to ease our presentation: for a set of words S, we denote 
by Sym (S) the set of words which are similar to the words in S, 
under a given relation of word similarity. Next, let T be the set of 
the words occurring in the text we intend to simplify. After 
choosing the first candidate word w1 א T to be removed, we form 
the set Sym(T \ {w1}) to Sym(T); and compute the closeness 
factor of Sym(T \ {w1}) to Sym(T); if this is greater than or equal 
to some fixed threshold t ൑ 1, we “safely” remove the word w1

from T. We then select a second candidate word w2 א T \ {w1} to 
be removed from T \ {w1} and proceed as above. We keep 
removing words form T as long as the closeness factor remains 
above the threshold t. Let w1, w2, …, wr  be the list of the words that 
are removed during this process. Then, the text is simplified by 
eliminating from it the words of the set Sym({w1, w2, …, wr}). (See 
Example 1 at the end of Section 3.1.) The “simplification level”, 
i.e., the number of words that are actually removed, depends on
the particular candidates selected at each step. The goal is to 
obtain as high a simplification level as possible. Needless to say, 
trying all possible choices of the candidate words to be removed 
is far too expensive, since their number is exponential. Thus, it is 
essential to develop good selection heuristics, and make the 
choice of the candidates on the basis of them. In any case, since 
each step involves the calculation of a closeness factor, it is of 
prime importance to first design fast algorithms for performing 
such calculations efficiently. 
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In this paper we address the latter problem and present some 
efficient algorithms for computing the closeness factor of two 
sets of words. 

The scenario sketched above for the simplification of a text 
reduces to the following optimization problem: given a set S of 
words and a threshold t ൑ 1, determine a subsets S’ of S, of 
minimum size, such that the closeness factor of SҮ’ to S is greater 
than or equal to t. However, here we will not be concerned with 
this problem, as it will be the topic of future investigations. 

The paper is organized as follows. In Section 2 we introduce 
basic notations and terminology. Then, in Section 3, we formally 
define the main problem we are interested in, namely the 
computation of the closeness factor of two sets of words. In 
particular, we first develop efficient algorithms for two simpler 
problems related to it and then combine them into an efficient 
solution to our main problem (cf. Section 3.1). Finally, in Section 
4, we draw our conclusions. 

2. BASIC NOTATIONS

We will deal with strings of words, i.e., finite ordered sequences 
(possibly empty) of word occurrences. The empty string is 
denoted with ε and the length of a string σ  is denoted with |σ|. 
Given a string σ and a word w, we write σ.w for the string 
obtained by adding the word w to the end of σ. Note that, for 
each word w, ε.w coincides with the string of length 1 consisting 
in a single occurrence of w. It is also convenient to assume the 
existence of a special word, the null-word, denoted with Λ. 

Let σ be a string (of words). Given an index 0 ൑ і < |σ|, we 
denote with σі the (і + 1)st word of σ (from left to right); we 
extend this notation by also putting σі =Def Λ for any і < 0 or і ൒ 
|σ|. Given two integers h and k, we denote with [h, k] the set 
(interval) of integers ℓ such that h ൑ l ൑ k. The substring of σ 
between positions h and k, where h and k are integers, is the 
string σ[h, k] defined recursively by 
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The set {σі : 0 ൑ і < |σ |ሽ of the words occurring in σ is briefly 
denoted by ۦσ ۧ . Given two integers і and п, with п ൒ 1, we call 
σ[і, і +п –1] the window of σ of length п (starting) at position і. The 
window σ[і,і+п–1] is a minimal window containing a set S of 
words, if S ۦ كσ[і,і +п–1]ۧ but S ۦ مσ[h,k]ۧ, for all positions і ൑ h, k 
൑ і + п – 1 such that the interval [h, k] is strictly contained in the 
interval [і, і + п – 1]. A text is a nonempty string containing no 
occurrence of the null-word Λ, i.e., Λ ۦבтۧ. The cardinality of a 
(finite) set S of words is denoted with |S|. In the sequel, by a set 
of words we shall always mean a nonempty set of words not 
containing the null-word Λ. 

3. FORMALIZING THE PROBLEM: SOME PRELIMINARY
ALGORITHMS

In this section and in the subsequent one we address in details the 
problem of computing the closeness factor introduced in Section 1. 

We begin with the following formal definitions. 

Definition 1. Let т be a text, S a set of words, and n a window-
length. For each integer i we put: 

ࣧт,S,п (і) =Def min({k Ԗ [і – 1, і + п – 1] : S ۦ תт [і , k]ۧ = S ۦ תт [і, і + 

n –1]ۧሽሻ   
Kт,S,п(і) = Def |S ۦ תт [і, і +п–1]ۧ | , 
ε т,S,п(і) =Def max ({k Ԗ [і – п, + 1, і]: S ۦ كт [k, k +п- 1]ۧሽ ڂ ሼі – п ሽሻ.

(Thus if S ك   тۦ [і, і + п - 1]ۧ  and  ті   Ԗ  S  \   ,ۧт[і,і + 1, ࣧт,S,п(і)]ۦ the 
window т[i , ࣧт,S,п(і)] is a minimal window containing S; moreover, 
S ۦ كт[і, і + п - 1]ۧ iff Kт,S,п(і) = |S|. In addition, for j Ԗ [і, і + п – 1], 
the window т[і, j] can be extended to a window of length n 
containing S, iff j – εт,S,п(і) < п.)
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We call (AnB)τ,n the closeness factor of A to B relative to τ and
n.

Remark 1. Note that Ω+
τ,A,n(B) is equal to the number of the win-

dows τ[i,i+m−1] of τ , with 0 ≤ i < |τ | and m ≤ n, such that (a)
τ[i,i+m−1] is a minimal window containing A, and (b) there exists
h ∈ [i + m − n, i] such that B ⊆ 〈τ[h,h+n−1]〉 (i.e., τ[i,i+m−1]
can be extended to a window of length n containing B, namely the
window τ[h,h+n−1]). Moreover,Ω+

τ,A,n(B)+Ω−τ,A,n(B) is equal to
the number of the minimal windows of τ containing A.

We will solve Problem 1 by considering separately the follow-
ing two problems whose solutions can be easily combined to pro-
duce a solution to our main problem, as shown in Section 3.1.

Problem 2. Given a text τ , a set S of words, and a window-length
n, determine the value Mτ,S,n(i), for each position i of τ .

Problem 3. Given a text τ , a set S of words, and a window-length
n, determine the value Kτ,S,n(i), for each position i of τ .

Let us first consider Problem 2. We shall first present a basic al-
gorithm for it, namely the algorithm Algo1 reported in Fig. 2; this
will be subsequently refined into a more efficient variant named
Algo2, reported in Fig. 3. We begin with the following observa-
tions.

Firstly, note that the value Mτ,S,n(i) does not depend on the
word τi+n−1, i.e., the last word of the window τ[i,i+n−1], provided
that such word is not contained in the set S. Thus, in particular, if
τi+n−1 /∈ S, we have that Mτ,S,n(i) = Mτ[0,i+n−2],S,n(i).

2 Sec-
ondly, if τi+n−1 ∈ S, we can easily compute Mτ,S,n(i) by using
the value Mτ[0,i+n−2],S,n(i) and the number C of occurrences of
the word τi+n−1 in the window τ[i,i+n−2]; indeed, if C = 0 then
τ[i,i+n−2] contains no occurrences of τi+n−1 and, in this case, we

2 Since Λ /∈ S, we haveMτ[0,i+n−2],S,n(i) =Mτ̃ ,S,n(i), for 0 ≤ i < |τ | −
n + 1, where τ̃ is the string obtained by replacing the word in τ at position
i+ n− 1 by the null-word Λ.
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plainly have that Mτ,S,n(i) = i + n − 1; otherwise, if C 6= 0,
we plainly have that Mτ,S,n(i) = Mτ[0,i+n−2],S,n(i). The number C
can be easily expressed in terms of the number C′ of occurrences
of τi+n−1 in the window τ[i−1,i+n−2] by means of the following
simple formula:

C =
{
C′, if τi−1 6= τi+n−1
C′ − 1, otherwise.

Thus, the value of Mτ,S,n(i) can be easily computed from the val-
ues Mτ[0,i+n−2],S,n(i) and C′.

Next, we turn our attention to the computation of the value
Mτ[0,i+n−2],S,n(i). We show how to compute it from Mτ,S,n(i −
1), using the positions of the occurrences of τi−1 in the window
τ[i−1,i+n−2]. Suppose first that τi−1 ∈ S. Let L be the set of the
positions k of τ such that τk = τi−1, where Mτ,S,n(i − 1) < k <
i + n − 1.3 Moreover, let C′′ be the number of occurrences of the
word τi−1 in the window τ[i−1,i+n−2]. Then C′′ − 1 − |L| is equal
to the number of occurrences of the word τi−1 which are strictly
comprised between positions i− 1 and Mτ,S,n(i− 1) of τ ; i.e.,

C′′ − 1− |L| =
∣∣{k ∈ [i,Mτ,S,n(i− 1)− 1] : τk = τi−1}

∣∣ .
We observe the following facts. (A) If C′′ − 1− |L| 6= 0, there are
occurrences of τi−1 between positions i − 1 and Mτ,S,n(i − 1) of
τ , so that the value Mτ,S,n(i−1) does not depend by any means on
the word τi−1; hence, in this case, we have that Mτ[0,i+n−2],S,n(i) =
Mτ,S,n(i − 1). Similarly, (B) if L = ∅, then Mτ[0,i+n−2],S,n(i) =
Mτ,S,n(i−1) as well. When (C) C′′−1−|L| = 0 andL 6= ∅ hold, it
can be readily verified that, instead, Mτ[0,i+n−2],S,n(i) = min(L).
(See Fig. 1 for a pictorial illustration of cases (A), (B), and (C)
above.)

Finally, observe that if τi−1 /∈ S, then Mτ[0,i+n−2],S,n(i) =
max({i− 1,Mτ,S,n(i− 1)}) .

3 Plainly, since τi−1 ∈ S, we have Mτ,S,n(i−1) ≥ i−1. Moreover, Mτ,S,n(i−
1) = i−1 iff S = {τi−1}, and if Mτ,S,n(i−1) > i−1, then τMτ,S,n(i−1) 6=
τi−1.
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The previous observations can be stated formally as Lemmas 1
and 2 below. These will be expressed in terms of some maps to
be introduced in Definition 2 below. In fact, rather than comput-
ing directly the values Mτ,S,n(i), it is more convenient to com-
pute the quantitiesMτ,S,n(i) defined below as this allows one to
avoid dealing with the case τi−1 /∈ S examined above, yielding
simpler calculations. Note in fact that, for each i, Mτ,S,n(i) =
max{Mτ,S,n(i), i− 1}.

Definition 2. For each text τ , set S of words, and window-length
n, word w, we define the following maps:

Mτ,S,n(i) =Def


Mτ,S,n(i− 1), if i > −n AND

Mτ,S,n(i) = i− 1
Mτ,S,n(i), otherwise

Cwτ,n(i) =Def |{k ∈ [i, i+ n− 1] : τk = w}|
Lwτ,S,n(i) =Def {k ∈ [i, i+ n− 1] : k >Mτ,S,n(i) AND τk = w} .

Below we let τ be a fixed text, S be a fixed set of words,
and n be a fixed window-length. In addition, to simplify the no-
tations, for each integer i and word w, we shall writeM(i), Cw(i),
and Lw(i) for the values Mτ,S,n(i), Cwτ,n(i), and Lwτ,S,n(i), re-

spectively; also, we shall write M̃(i), L̃w(i), and C̃w(i) for the
valuesMτ[0,i+n−2],S,n(i), Lwτ[0,i+n−2],S,n

(i), and Cwτ[0,i+n−2],n
(i), re-

spectively.4

We are now ready to state the two lemmas which summarize
our previous discussion.

Lemma 1. For each i, the following properties hold:

(a) If τi−1 /∈ S, then M̃(i) =M(i− 1), L̃w(i) = Lw(i− 1), and
C̃w(i) = Cw(i− 1), for each w ∈ S.

4 Observe that, if w 6= Λ and 0 ≤ i < |τ | − n + 1, then Cwτ[0,i+n−2],n
(i) =

Cwτ̃,n(i), where τ̃ stands for the string obtained by replacing the word at posi-
tion i+ n− 1 of τ by the null-word Λ; similarly for Lwτ[0,i+n−2],S,n

(i). (See
also footnote 2.)
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(A) τi−1 ∈ 〈α〉
α

︷ ︸︸ ︷
τi−1

i−1 M i+ n− 2
⇓

i−1 M̃ i+ n− 2

(B) τi−1 /∈ 〈γ〉
γ

︷ ︸︸ ︷
τi−1

i−1 M i+ n− 2
⇓

i−1 M̃ i+ n− 2

(C) τi−1 /∈ (〈α〉 ∪ 〈β〉)
α β︷ ︸︸ ︷ ︷ ︸︸ ︷

τi−1 τi−1

i−1 M k i+ n− 2
⇓

i−1 M̃ i+ n− 2

Fig. 1. The computation of Mτ[0,i+n−2],S,n(i) (denoted as M̃) from Mτ,S,n(i−1)
(denoted as M), when τi−1 ∈ S. In the pictures, α, β and γ denote the windows
τ[i,M−1], τ[M+1,k−1] and τ[M+1,i+n−2], respectively, with k = min(L).
Cases (A) C′′− 1− |L| 6= 0; (B) L = ∅; and (C) C′′− 1− |L| = 0, with L 6= ∅.
In both cases (A) and (B) we have M̃ = M, whereas in case (C) we have M̃ =
min(L).

(b) If τi−1 ∈ S, then
(b.1) C̃w(i) = Cw(i− 1), for each w ∈ S \ {τi−1};
(b.2) C̃τi−1(i) = Cτi−1(i− 1)− 1;
(b.3) ifLτi−1(i−1) 6= ∅ and Cτi−1(i−1)−1−|Lτi−1(i−1)| =

0, then M̃(i) = min(Lτi−1(i − 1)) and L̃w(i) = {j ∈
Lτi−1(i− 1) : j > M̃(i)}, for each w ∈ S;

(b.4) ifLτi−1(i−1) = ∅ or Cτi−1(i−1)−1−|Lτi−1(i−1)| 6= 0,
then M̃(i) =M(i−1) and L̃w(i) = Lw(i−1), for each
w ∈ S.

Lemma 2. For each i, the following properties hold:

(a) If τi+n−1 /∈ S, then M(i) = M̃(i), Lw(i) = L̃w(i), and
Cw(i) = C̃w(i), for each w ∈ S.

(b) If τi+n−1 ∈ S, then
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(b.1) Cτi+n−1(i) = C̃τi+n−1(i) + 1;
(b.2) Cw(i) = C̃w(i), for each w ∈ S \ {τi+n−1};
(b.3) if C̃τi+n−1(i) = 0, thenM(i) = i+n−1 andLw(i) = ∅,

for each w ∈ S;
(b.4) if C̃τi+n−1(i) 6= 0, thenM(i) = M̃(i), Lw(i) = L̃w(i)

for each w ∈ S \ {τi+n−1}, and also Lτi+n−1(i) =
L̃τi+n−1(i) ∪ {i+ n− 1}.

Lemmas 1 and 2 readily lead to the basic algorithm Algo1 for Prob-
lem 2 reported in Fig. 2. Algorithm Algo1 scans the text τ from left
to right. It moves iteratively a window of length n along τ , advanc-
ing it one position at a time. During iteration i, the items M(i),
Lw(i), Cw(i), M̃(i), L̃w(i), and C̃w(i), for w ∈ S, are computed
by using information gathered during previous iterations, accord-
ing to the properties in Lemmas 1 and 2. In more details, the algo-
rithm Algo1 works as follows. It uses an array C indexed by the el-
ements of S, such that, for each word w ∈ S, the entry C[w] main-
tains successively the counters Cw(i) and C̃w(i), for−n ≤ i < |τ |;
more precisely, during iteration i, just before the execution of the
conditional test of line 13, we have that C[w] = C̃w(i), whereas,
before the execution of the instruction of line 22 we have that
C[w] = Cw(i). The sets L̃w(i) and Lw(i) are maintained by means
of an array Q of |S| queues indexed by the elements of S. Specifi-
cally, for each word w ∈ S and each i, during iteration i of Algo1,
just before the conditional test in line 13 (resp., before the instruc-
tion of line 22), the queue Q[w] contains the elements of the set
L̃w(i) (resp., Lw(i)) increasingly ordered, with the smallest ele-
ment at the head of the queue and the largest one at the tail. We as-
sume that each queue Q[w] supports the following operations: (a)
dequeue(Q[w]), which removes the element at the head of Q[w];
(b) enqueue(Q[w], j), which adds the number j at the tail of the
queue Q[w]; (c) head(Q[w]), which returns (but not remove) the
element at the head of Q[w]; (d) size(Q[w]), which returns the
number of elements currently contained in the queue Q[w]. The
algorithm Algo1 also uses the integer variable M to store succes-
sively the valuesM(−n),M(−n+1),M(−n+2), . . . as they are
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Algo1(τ ,S,n)
1. M := −n− 1
2. for w ∈ S do
3. Q[w] := ∅
4. C[w] := 0
5. for i := −n+ 1 to |τ | − 1 do
6. if τi−1 ∈ S then
7. C[τi−1] := C[τi−1]− 1
8. if size(Q[τi−1]) > 0 AND

(C[τi−1]− size(Q[τi−1])) = 0 then
9. M := head(Q[τi−1])

10. for w ∈ S do
11. while (size(Q[w]) > 0 AND

head(Q[w]) ≤ M) do
12. dequeue(Q[w])
13. if τi+n−1 ∈ S then
14. C[τi+n−1] := C[τi+n−1] + 1
15. if C[τi+n−1] = 1 then
16. M := i+ n− 1
17. for w ∈ S do
18. while (size(Q[w]) > 0) do
19. dequeue(Q[w])
20. else
21. enqueue(Q[τi+n−1], i+ n− 1)
22. if M < i− 1 then M := i− 1
23. output(M) C outputs the value Mτ,S,n(i)

Fig. 2. The algorithm Algo1 for Problem 2

computed during the execution. Note that at iteration i of Algo1,
just after the execution of instruction at line 9, the variable M stores
the intermediate value M̃(i), whereas, after the execution of in-
struction at line 16, M holds the valueM(i).

Note that each queue of the array Q can be efficiently imple-
mented as a circular array of size n in such a way that the supported

160 D. CANTONE, S. CRISTOFARO, G. PAPPALARDO

Alexander Gelbukh
Nota adhesiva
None definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
MigrationNone definida por Alexander Gelbukh

Alexander Gelbukh
Nota adhesiva
Unmarked definida por Alexander Gelbukh



operations enqueue, dequeue, head, and size take constant ex-
ecution time each. Using such an implementation, the space com-
plexity of the algorithm Algo1 is readily seen to be O(|S| · n).
Concerning the time complexity of the algorithm Algo1, we must
first be explicit on the representation of the input set S. In fact,
the particular representation used for S may affect, for instance,
the implementation of the conditional tests in lines 6 and 13, and
hence their computational costs. We shall assume that the set S is
represented as a map S : S ∪ 〈τ〉 −→ [−1, |S| − 1] such that

(a) S(w) = −1 if and only if w /∈ S, for every word w ∈ S ∪ 〈τ〉,
and

(b) S(w′) 6= S(w′′), for all distinct words w′, w′′ ∈ S ∪ 〈τ〉.

Thus, for each word w ∈ S, the value S(w) corresponds to the
index of w in the array Q. By using this representation, the con-
ditional tests in lines 6 and 13 of Algo1 can just be expressed in
the form S(τi) 6= −1 and S(τi+n−1) 6= −1, respectively. In the
analysis below we shall assume that, for every word w ∈ S ∪ 〈τ〉,
the value S(w) can be computed in constant time O(1),5 so that
the above two tests will take constant execution time. Thus, re-
turning to the running time of Algo1, note that, for each w ∈ S,
the while-loops of lines 11 and 18 are executed at most n times

5 Such a requirement can be achieved as follows. Let W be a fixed set of words
(the vocabulary), which includes all of the words we are dealing with, so that,
in particular, S ∪ 〈τ〉 ⊆W . We use a hash function h which injectively maps
each word w ∈ W to its hash code h(w), a nonnegative integer number.
Then, we store the map S in a table T of size max{h(w) : w ∈W }, in such
a way that (a) T [h(w)] = S(w), for w ∈ S, and (b) T [h(w)] = −1, for
w ∈ W \ S. Thus, the calculation of S(w) reduces to the extraction of the
value T [h(w)], for each word w. Now, the function h can be chosen in such a
way that the computation of h(w) can be performed in O(|w|) time, for each
word w ∈ W . Hence, since the maximum length of words in W is fixed
(and in fact, in practical cases this quantity is “small enough”), it turns out that
the function h can be computed in constant time, yielding a constant execution
time for computing S(w), for each wordw. Note also that an additional integer
variable could be used to hold the number of entries in T containing values
different from −1. This would allow one to retrieve the cardinality of S in
constant time.
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since each queue Q[w] has size at most n, and so—under the above
assumption concerning the representation of S—the running time
of Algo1 is easily seen to be O(|τ | · |S| · n).6 However, this is
just a rough estimate. A slightly more accurate analysis leads to
an O(|τ | · max(|S|, n)) time complexity. Indeed, note that, for
each w ∈ S, the queue Q[w] contains at most all of the occur-
rences of w in the window τ[i,i+n−1]. Thus, the sum of the sizes
of the queues in the array Q, i.e.,

∑
w∈S size(Q[w]), is bounded

above by n. Hence, the for-loops of lines 10 and 17 are executed
O(max(|S|, n)) times, and therefore the overall time complexity
of Algo1 is in fact O(|τ | ·max(|S|, n)).

The basic algorithm Algo1 presented above can be slightly
modified to a O(|τ |)-time variant, still retaining the same space
complexity. Note in fact that there is no need to update simultane-
ously all of the queues of the array Q during the for-loops of lines
10 and 17; indeed, for each w ∈ S, we can safely postpone the up-
dating of the queue Q[w] to the next time thatw is encountered dur-
ing the scan of τ , without affecting the correctness of the algorithm.
This observation leads to the variant Algo2 of Algo1 reported in
Fig. 3. As anticipated, the running time of Algo2 is O(|τ |). To
see this, consider the behaviour of the queue Q[w], for an arbitrary
word w ∈ S. Let Occs(w) be the number of occurrences of w in τ .
During the execution of Algo2, the number of enqueue operations
involving Q[w] is no larger than the number of positions i such that
τi+n−1 = w and hence no larger than Occs(w). Thus the number
of dequeue operations involving Q[w] is at most Occs(w). The to-
tal cost of the execution of the two while-loops of lines 7 and 13 is
therefore bounded above by the quantity

∑
w∈S Occs(w) which is

at most equal to |τ |. Thus, it plainly follows that the running time
of Algo2 is in fact O(|τ |).

Next we turn to Problem 3. We can solve this problem by
means of the following simple iterative procedure. As in the case
of algorithms Algo1 and Algo2, a window of length n is iteratively

6 All algorithms in the rest of the paper will implicitly use for the input set S
the same representation by a map S as above.
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Algo2(τ ,S,n)
1. M := −n− 1
2. for w ∈ S do
3. Q[w] := ∅
4. C[w] := 0
5. for i := −n+ 1 to |τ | − 1 do
6. if τi−1 ∈ S then
7. while (size(Q[τi−1]) > 0 AND

head(Q[τi−1]) ≤ M) do
8. dequeue(Q[τi−1])
9. C[τi−1] := C[τi−1]− 1

10. if size(Q[τi−1]) > 0 AND

(C[τi−1]− size(Q[τi−1])) = 0 then
11. M := head(Q[τi−1])
12. if τi+n−1 ∈ S then
13. while (size(Q[τi+n−1]) > 0 AND

head(Q[τi+n−1]) ≤ M) do
14. dequeue(Q[τi+n−1])
15. C[τi+n−1] := C[τi+n−1] + 1
16. if C[τi+n−1] = 1 then
17. M := i+ n− 1
18. else
19. enqueue(Q[τi+n−1], i+ n− 1)
20. if M < i− 1 then M := i− 1
21. output(M) C outputs the value Mτ,S,n(i)

Fig. 3. The variant Algo2 of Algo1 for Problem 2

advanced along the text τ , moving it to the right one position at a
time, starting from the initial position i = −n. We use an array
R of length |S|, indexed by the elements of S, whose entry R[w]
maintains successively the number of occurrences of the word w in
the window starting at the current position i, for each word w ∈ S.
An integer variable K is used to count the number of words of S
that are contained in the window starting at position i. More for-
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mally, for each i ≥ −n, when the iteration relative to position i is
completed, we have:

(a) the entry R[w] of the array R contains the quantity Cwτ,n(i), for
each word w ∈ S;

(b) the variable K holds the value Kτ,S,n(i).

Note that initially, i.e., when i = −n, we have that: (i) R[w] = 0,
for each word w ∈ S; and (ii) K = 0. Next we describe how
the two items R and K are updated when moving from position
i − 1 to position i. Let Ri−1 and Ki−1 be the contents of R and
K, respectively, just after position i − 1 has been processed. The
following four cases arise.

Case 1) τi−1, τi+n−1 /∈ S. Plainly, in this case no entry of the
array R needs to be updated, nor the variable K needs to be
changed.

Case 2) τi−1 ∈ S and τi+n−1 /∈ S. Since τi−1 ∈ S and τi−1 6=
τi+n−1, the number of occurrences of τi−1 in the current win-
dow τ[i,i+n−1] is equal to the number Ri−1[τi−1] of occurrences
of τi−1 in the previous window τ[i−1,i+n−2] decreased by 1.
Thus the entry R[τi−1] is updated to the value Ri−1[τi−1] − 1.
Moreover, if Ri−1[τi−1] = 1, then the current window τ[i,i+n−1]
does not contain any occurrence of the word τi−1, whereas the
previous window τ[i−1,i+n−2] contains exactly one occurrence
of τi−1, and therefore the variable K is updated to the value
Ki−1 − 1. When Ri−1[τi−1] 6= 1, then, as in Case 1), we do
nothing.

Case 3) τi−1 /∈ S and τi+n−1 ∈ S. Since τi+n−1 ∈ S and τi−1 6=
τi+n−1, the number of occurrences of τi+n−1 in the current
window τ[i,i+n−1] is equal to the number Ri+n−1[τi+n−1] of
occurrences of τi+n−1 in the previous window τ[i−1,i+n−2] in-
creased by 1. Thus, the entry R[τi+n−1] is updated to the value
Ri−1[τi+n−1]+1. Moreover, if Ri−1[τi+n−1] = 0, then the cur-
rent window τ[i,i+n−1] contains exactly one occurrence of the
word τi+n−1, whereas the previous window τ[i−1,i+n−2] does
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Algo3(τ ,S,n)
1. K := 0
2. for w ∈ S do
3. R[w] := 0
4. for i := −n+ 1 to |τ | − 1 do
5. if τi−1 ∈ S then
6. R[τi−1] := R[τi−1]− 1
7. if R[τi−1] = 0 then K := K− 1
8. if τi+n−1 ∈ S then
9. R[τi+n−1] := R[τi+n−1] + 1

10. if R[τi+n−1] = 1 then K := K + 1
11. output(K) C outputs the value Kτ,S,n(i)

Fig. 4. The algorithm Algo3 for Problem 3

not contain any occurrence of τi+n−1, and therefore the vari-
able K is updated to the value Ki−1+1. When Ri−1[τi+n−1] 6=
0, we do nothing, as in Case 1).

Case 4) τi−1, τi+n−1 ∈ S. In this case we simply perform the op-
erations involved in Case 2), followed by the operations in-
volved in Case 3).

The procedure described above translates into the algorithm Algo3
reported in Fig. 4.

Plainly, the space complexity of Algo3 isO(|S|); moreover, its
running time can be readily seen to be O(|τ |).

3.1 Efficiently Solving the Main Problem

Algorithms Algo2 and Algo3 can be combined into a single it-
erative algorithm that solves our main Problem 1 in time O(|τ |)
and space O(|A| · n + |B|), where we recall that τ is the text, n
is the window-length, and A and B are the sets of words to be
searched for in τ . The complete pseudo-code of the resulting algo-
rithm, named AlgoMain, is reported in Fig. 5–6.
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AlgoMain(τ ,A,B,n)
1. M := −n− 1
2. for w ∈ A do
3. Q[w] := ∅
4. C[w] := 0
5. A := 0
6. K := 0
7. for w ∈ B do
8. R[w] := 0
9. E := −2n

10. Ω+ := 0
11. Ω− := 0
12. for i := −n+ 1 to |τ | do
13. if τi−1 ∈ A then
14. while (size(Q[τi−1]) > 0 AND

head(Q[τi−1]) ≤ M) do
15. dequeue(Q[τi−1])
16. C[τi−1] := C[τi−1]− 1
17. if (C[τi−1]− size(Q[τi−1]) = 0) AND

A = |A| then
18. if (M− E < n) then Ω+ := Ω+ + 1
19. else Ω− := Ω− + 1
20. if C[τi−1] = 0 then A := A− 1
21. if size(Q[τi−1]) > 0 AND

(C[τi−1]− size(Q[τi−1])) = 0 then
22. M := head(Q[τi−1])

Fig. 5. The algorithm AlgoMain for Problem 1, part 1

Note that the block of instructions from line 1 to line 4 (resp.,
from line 6 to line 8) of algorithm AlgoMain corresponds to the
initialization of algorithm Algo2 (resp., algorithm Algo3), whereas
the instructions from line 13 to line 32, excluding lines 17, 18, 19,
20 and 28, correspond to the body of the main for-loop of algo-
rithm Algo2. Also, observe that the instructions from line 33 to
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23. if τi+n−1 ∈ A then
24. while (size(Q[τi+n−1]) > 0 AND

head(Q[τi+n−1]) ≤ M) do
25. dequeue(Q[τi+n−1])
26. C[τi+n−1] := C[τi+n−1] + 1
27. if C[τi+n−1] = 1 then
28. A := A + 1
29. M := i+ n− 1
30. else
31. enqueue(Q[τi+n−1], i+ n− 1)
32. if M < i− 1 then M := i− 1
33. if τi−1 ∈ B then
34. R[τi−1] := R[τi−1]− 1
35. if R[τi−1] = 0 then K := K− 1
36. if τi+n−1 ∈ B then
37. R[τi+n−1] := R[τi+n−1] + 1
38. if R[τi+n−1] = 1 then K := K + 1
39. if K = |B| then E := i
40. else
41. if (E < n− i) then E := n− i
42. output( Ω+

Ω++Ω− ) C outputs the closeness factor
of A to B

Fig. 6. The algorithm AlgoMain for Problem 1, part 2

line 38 of algorithm AlgoMain correspond to the body of the main
for-loop of algorithm Algo3. The additional integer variables A
and E are used to maintain successively the values Kτ,A,n(i) and
Eτ,B,n(i), for i ≥ −n, as they are computed during the execution
of the algorithm; thus, at the end of iteration i of AlgoMain we
have A = Kτ,A,n(i) and E = Eτ,B,n(i). Note that the variable E
is successively updated according to relation (1) in Section 3. Fi-
nally, the two variables Ω+ and Ω− are used to hold the values
Ω+
τ,A,n(B) and Ω−τ,A,n(B); more precisely, at the end of the exe-
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cution of the main for-loop of line 12 of AlgoMain, we have that
Ω+ = Ω+

τ,A,n(B) and Ω− = Ω−τ,A,n(B). In particular, concerning
the calculation of the values Ω+

τ,A,n(B) and Ω−τ,A,n(B), AlgoMain
determines whether τ[i−1,Mτ,A,n(i−1)] is a minimal window con-
taining A, for i = 1, 2, . . . , |τ |, in the following way. At iteration
i, initially AlgoMain checks whether τi−1 ∈ A (see the instruction
at line 13). If τi−1 /∈ A, then, plainly, the window τ[i−1,Mτ,A,n(i−1)]
cannot be a minimal window containingA, and in fact, in this case,
no update of the variables Ω+ and Ω− takes place. On the other
hand, if τi−1 ∈ A holds, AlgoMain successively updates the queue
Q[τi−1] and the entry C[τi−1] by executing the while-loop at lines
14–15 and the instruction at line 16, respectively. In fact, immedi-
ately after the execution of the instruction at line 16, we have that
C[τi−1]− size(Q[τi−1]) is equal to the number of occurrences of
the word τi−1 in the window τ[i,Mτ,A,n(i−1)], as can be readily veri-
fied. In addition, the variable A contains the number of words in A
that occur in the window τ[i−1,i+n−2]. Therefore, τ[i−1,Mτ,A,n(i−1)]
is a minimal window containing A iff C[τi−1] − size(Q[τi−1]) is
equal to 0 and A is equal to |A|, which corresponds in fact to the
conditional test at line 17.

By inspection, it is not difficult to verify that AlgoMain has an
O(|A| · n + |B|) space complexity; moreover, by using consider-
ations similar to those made for algorithms Algo2 and Algo3, and
assuming that the quantities |A| and |B| can be computed in con-
stant time,7 the running time of AlgoMain can be readily seen to
be O(|τ |).

We conclude the section with a simple example illustrating the
idea, sketched in Section 1, for simplifying a text by means of the
closeness factor of word sets.

Example 1. Let the words we are dealing with be represented by
the following symbols:

A B C D E F

7 See footnote 5.
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     and let

τ = DCCDAADEFFEABBCFD (2)

EEFABCDCBDDCEAAEBCBC

be the corpus and σ = DACBDCB be the text we intend to sim-
plify. Moreover, let us assume that the maximum word distance n
is 6 and that the threshold t is 0.7. Let T = 〈σ〉 = {A,B,C,D}
be the set of the words occurring in σ. We start by selecting the
first candidate word w1 = A and try to remove it from T . This
involves computing the closeness factor (T \ {w1} n T )τ,n and
then comparing it with the threshold t. By executing the algo-
rithm AlgoMain, we get (T \ {w1}n T )τ,n = 4/5.8 Since 4/5 >
t we can safely remove the word w1 from T thus obtaining the
word set T1 = T \ {w1} = {B,C,D}. Subsequently, we se-
lect the second candidate word w2 = C to be removed from T1
and compute the closeness factor (T1 \ {w2} n T1)τ,n, obtaining
(T1 \ {w2}n T1)τ,n = 4/5.9 As before, since this value is greater
than the threshold t, we remove w2 from T1 and form the word set
T2 = T1 \ {w2} = {B,D}. At this point, it can be verified that, for
every word w ∈ T2, the closeness factor (T2 \ {w}nT2)τ,n is less
than t,10 so that no further word can be removed and the process
terminates. Hence, the words that have been removed are w1 = A
and w2 = C which we then eliminate from σ, obtaining the sim-
plified text DBDB. Note that, if at the second step we had selected
the word w2 = B, rather than w2 = C, we would have obtained
(T1 \ {w2}n T1)τ,n = 5/7 which is less than the threshold t, and
so we could not have removed this word from T1. Similarly, the

8 In fact, in the corpus τ there are exactly five minimal windows containing
T \ {w1} = {B,C,D}, namely the windows starting at positions 13, 21,
23, 24 and 25; of these windows, only the one starting at position 24 can-
not be extended to a window containing T . Thus Ω+

τ,T\{w1},n(T ) = 4 and
Ω−τ,T\{w1},n(T ) = 1 which yield (T \ {w1}n T )τ,n = 4/5.

9 In fact, it can be verified thatΩ+
τ,T1\{w2},n(T1) = 4 andΩ−τ,T1\{w2},n(T1) =

1.
10 More precisely, we have that ({B} n {B,D})τ,n = ({D} n {B,D})τ,n =
4/6.
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