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Resumen

En esta tesis estudiamos métodos estadisticosadpdicen la solucion de tareas del
procesamiento del lenguaje natural. Estas tareadadesambiguacion de sentidos de las

palabras y el reconocimiento de implicacion textual

Primero presentamos una nueva medida para la aggndel sentido a una palabra
ambigua basada en una modificacion al algoritm@lerde Lesk. Usamos la coocurrencia
de las palabras para seleccionar el sentido corgectuna palabra. Se utilizé informacion
estadistica encontrada en la Web para medida. £datms SemCor nuestro método tiene
una cobertura del 100%, lo que significa siempremarespuesta y una precision de 0.47.
En los datos de Senseval-2, nuestra variante deldméle Lesk tiene una precision de 0.45
y supero a varios de los métodos basados en Lasiién alcanzd una cobertura del
100%.

Finalmente propusimos una nueva medida no siméleceausa-efecto aplicada en la
tarea de reconocimiento de implicacién textualpEmer lugar se realizaron busquedas en
un corpus por oraciones que contiene el marcadodisieurso “porque”. Con estas
oraciones se cred un conjunto de pares de causicyo.eEl reconocimiento de la
implicacion se basa en medir la relacion causa@fare el texto y la hipotesis utilizando
las frecuencias relativas de las palabras de losspde causa-efecto. En los resultados
hemos superado bhseling en los tres corpus de prueba del PASCAL (Recomeaito de
implicacion textual, RTE).La medida muestra ser riauepara determinar la clase

“verdadero” y mostré ser menos precisa en la cfadsn”.



Abstract

We study statistical methods based on the usefofnmation retrieved from the Web in
attempt to solve two Natural Language ProcessiskstaWord Sense Disambiguation and

Recognizing Textual Entailment.

For Word Sense Disambiguation, we present a medsusemantic relatedness based
on the simple Lesk algorithm. We measure kind ofualinformation between the gloss of
each sense of the word and the context of the wanghely, the scores of the sesds the
frequency (as the number of webpages found by @yaglthe context where the word is
substituted by the gloss of the sessdivided by the frequency of the gloss itself (agas
the number of webpages found by Google). In theGa dataset our method has the
coverage of 100% (i.e., our method always givesesamswer) and an accuracy of 0.47.
On the Senseval 2 dataset, our method has an agaoir®.45, which outperforms some

other Lesk-based methods (again with 100% coverage)

For Recognizing Textual Entailment, we propose & wause-effect non-symmetric
measure. First, we search over a large corpusefotesces which contain the discourse
marker “because” and create a database of causa-ptirs. The entailment recognition is
based on measuring the probability of a cause4efidation between the Text and the
Hypothesis using the relative frequencies of wdrds the cause-effect pairs. Our results
outperform the baseline system, over the three de of the PASCAL Recognizing
Textual Entailment Challenges (RTE). The measuged at determining the “true” class,
while it is less accurate at the “false” class.
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1.Introduction

In our time most of the information is encoded ke tftorm of natural language text.
Newspapers, magazines, radio, TV and the World Wigd (WWW) are examples of the
most complex information medium in our world: humanguage. Therefore with these
resources comes the problem of finding a specifitum in millions of documents. A
human reader will take many years to do this td3kus computers can process (less

accurate than a human) the millions of availableudzents in few time.

The idea of giving computers the ability to prockaman language is as old as the idea
of computers themselves (Manning and Shutze, 1999).goal of the Natural Language
Processing (NLP) is to design and build softwarat twill analyze, understand, and
generate languages that humans use naturally. §hes is not easy to reach.
"Understanding” language means, among other thikgsying what concepts a word or
phrase stands for and knowing how to link thosecepts together in a meaningful way.
Natural language system is easiest for humansato lend use and hardest for a computer
to master. Long after machines have proven capablgolving complex mathematical
problems with speed and grace, they still fail tstar the basics of our spoken and written
languages.

Research in NLP has been going on for several @scddting back to the late 1940’s.
Machine translation (MT), task of translating tektsm one natural language to another,
was the first computer-based application related\Ntd®. Early work in MT took the
simplistic view that the only differences betweanduages resided in their vocabularies
and the permitted word orders. Systems developenh fthis perspective simply used
dictionary-lookup for appropriate words for trangla and reordered the words after
translation to fit the word-order rules of the &trtanguage, without taking into account the
lexical ambiguity inherent in natural language. ltis produced poor results.

Natural language processing provides both theodyimplementations for a range of
applications. In fact, any application that utiBztext is a candidate for NLP. The most

frequent applications utilizing NLP include theléing:



- Information Retrieval (IR) is finding material (usly documents) of an unstructured
nature (usually text) that satisfies a user infdromaneed from within large collections
(usually stored on computers).

« Information Extraction (IE) focuses on the recogmi tagging, and extraction into a
structured representation, certain key elemenisfofmation, e.g. persons, companies,
locations, organizations, from large collectionst@ft. These extractions can then be
utilized for a range of applications including qli@s-answering, visualization, and data
mining.

« Question Answering (QA) in contrast to InformatiBetrieval, which provides a list of
potentially relevant documents in response to asigelery, QA provides the user with
either just the text of the answer itself or anspieviding passages.

« Summarization (SUM) an implementation that reduéarger text into a shorter, yet
richly constituted abbreviated narrative represemntaof the original document.

« Machine Translation is the application of computerthe task of translating texts from
one natural language to another.

- Dialogue Systems perhaps the omnipresent applicaticthe future, in the systems
envisioned by large providers of end-user appliceti Dialogue systems, which
usually focus on a narrowly defined applicatiory. g/our refrigerator or home sound
system.

The most explanatory method for presenting whatiadigt happens within a NLP
system is by means of thkevels of languadeapproach. This is also referred to engage the
complex language behavior we require of variousliof knowledge about language:

« Phonetics and Phonology—knowledge about lingussiimnds.

« Morphology—knowledge of the meaningful componerita/ords.

«  Syntax—knowledge of the structural relationshiptsveen words.

«  Semantics—knowledge of meaning.

« Pragmatics—knowledge of the relationship of meanmghe goals and intentions of
the speaker.

- Discourse—knowledge about linguistic units lardert a single utterance.



1.1. Research Problems and Why they are Worthwhile
Studying

Ambiguity resolution improves the quality of thelmn in most NLPtasks. A word is
ambiguous if it has multiple senses, i.e., altéveaneanings, for example:
« An MT system translatebill from English to Spanish. Should it translate itpaso

“bird jaw” or cuenta“invoice”?
« IR retrieves all the web pages aboritket so the sport or the insect.

« QA answer the query “What iSeorge Millets position on gun control?”, so George

Miller, the psychologist or congressman.

Word Sense Disambiguation (WSD) is the task of ctielg the most appropriate
meaning for a polysemous word based on the comewxhich it occurs. For example, in
the phrase The bank down the street was robhetthe word bank means a financial
institution, while in The city is on the Western bank of Jorfahis word refers to the
shore of a river. WSD is an intermediate task (Y@B02) and as we see above it is used in
many applications.

Also another fundamental phenomenon in languagedsvariability of a semantic
expression, which the same meaning could be exgtessinfer from different text. For
example, the queryWhat does Peugeot manufacture® QA system must be able to
recognize, or infer, and answer which may be esadslifferently from the query. For
example, from text Chrétien visited Peugeot’s newly renovated cardgactentails the
hypothesized answer fronP&ugeot manufactures cars

Recognizing Textual Entailment (RTE) has been psedoas a generic task that
captures major semantic inference needs across maiyral language processing
applications. This task is defined as a directiorghtionship between pair of text
expressions, denoted by T -the entailing “Text” &hethe entailed “Hypothesis”. We say
that T entails H if the meaning of H can be infdrfeom the meaning of T as could
typically de interpreted by people.

Moreover, many NLP tasks have strong links to ément: in SUM, a summary should

be entailed by the text; Paraphrase recognitio) @&@ be seen as mutual entailment



between a text T and a hypothesis H; in IE, theaektd information should also be
entailed by the text; in QA the answer obtaineddioe question after the IR process must

be entailed by the supporting snippet of text.

In this thesis we proposed two statistical methbdsed on the use of information
retrieved from the Web as an attempt to resolves® task and the RTE task. Our WSD
method outperformed most of the WSD approaches., But RTE method only
outperforms the baseline method. Thus we develapedeta-classifier based on our
method which has a competitive performance. Finedi;me contributions of our work are:
Publications.

1.2. Research Methods in Brief

We proposed two statistical approaches based ®mugbh of the Web as a corpus as an
attempt to resolve the WSD task and the RTE task.

For the WSD task we propose a variant of the Ldgkrsghm. The Lesk algorithm
basically disambiguates a word by measuring thedvawerlap of each definition of the
ambiguous word against the context of the ambiguwsasd. Therefore we propose a
variation of this scheme. Instead of measure thedlwwerlap we measure the frequency

count of the definition of a sense and the cordexk choose the sense with the best score.

Most of the approaches for the RTE task consish@&asure the similarity between the
Text and the Hypothesis. Thus many of these messueesymmetric and the RTE task is a
directional relation between the Text and the Hgpsis. So, we propose a non-symmetric
similarity measure for the RTE task. Our non-symioeheasure is based on find a causal
relation between the Text and the Hypothesis. Wasore the causal relation from the
frequency count of words from sentences with thedwsecauseand decide if the Text
Hypothesis pair is true or false.



1.3. Goal of the Thesis

The main goal of our research is to use the Weh asrpus to develop NLP statistical

approaches.
Our particular goals are:
« Propose a new WSD approach based on a variang dfetbk algorithm.

+ Propose a new RTE approach based on a non-symrmsietiiarity measure.

1.4. Structure of the Thesis

The thesis is organized as follow:
« Chapter 2. The related literature is shown in $eistion.

« Chapter 3. In this chapter we show the method ltesand a comparison with previous

works of the WSD approach.

« Chapter 4. The RTE approaches, results and a ctsuopawith previous works are

showed in this chapter.

« Chapter 5. The final conclusions and future wok@dnawn.



2. Related Bibliography

In this chapter we first show the main approacme®NLP. Second, we show how the

statistical approaches are use in WSD and finalyshow the main approaches in RTE.

NLP approaches fall roughly into four categoriegmbolic, statistical, connectionist,
and hybrid. Symbolic and statistical approacheslaexisted since the early days of this
field. Connectionist NLP work first appeared in #t#60'’s.

For a long time, symbolic approaches dominatedfigid. In the 1980’s, statistical
approaches regained popularity as a result of ttaélability of critical computational
resources and the need to deal with broad, reddvwoantexts. Connectionist approaches
also recovered from earlier criticism by demonstthe utility of neural networks in
NLP. This section examines each of these approanhesms of their foundations, typical
techniques, differences in processing and systgracés and their robustness, flexibility,

and suitability for various tasks.

Symbolic approaches perform deep analysis of Istguphenomena and are based on
explicit representation of facts about languageough well-understood knowledge
representation schemes and associated algorittmfact, the description of the levels of
language analysis in the preceding section is dir@n a symbolic perspective.

The primary source of evidence in symbolic systamsies from human-developed
rules and lexicons. A good example of symbolic apphes is seen in logic or rule-based
systems. In logic-based systems, the symbolic tstreids usually in the form of logic
propositions.

Manipulations of such structures are defined bgrerfice procedures that are generally
truth preserving. Rule-based systems usually conéia set of rules, an inference engine,
and a workspace or working memory. Knowledge igaggnted as facts or rules in the
rule-base. The inference engine repeatedly setectse whose condition is satisfied and

executes the rule.



Another example of symbolic approaches is semamgiovorks. First proposed by
Quillian (2000) to model associative memory in ggjogy, semantic networks represent
knowledge through a set of nodes that represemictshbpr concepts and the labeled links
that represent relations between nodes. The patiEroonnectivity reflects semantic
organization, that is; highly associated conceptsdirectly linked whereas moderately or
weakly related concepts are linked through inteingrconcepts. Semantic networks are
widely used to represent structured knowledge ana lthe most connectionist flavor of
the symbolic models.

Symbolic approaches have been used for a few decdade variety of research areas
and applications such as information extractior{ tategorization, ambiguity resolution,
and lexical acquisition. Typical techniques includgplanation-based learning, rule-based
learning, inductive logic programming, decisionreggconceptual clustering, and K nearest
neighbor algorithm.

Statistical approaches employ various mathematgciiniques and often use large text
corpora to develop approximate generalized modeélBnguistic phenomena based on
actual examples of these phenomena provided byteke corpora without adding
significant linguistic or world knowledge. In coa#t to symbolic approaches, statistical
approaches use observable data as the primaryesofirevidence. A frequently used
statistical model is the Hidden Markov Model (HMMhherited from the speech
community. HMM is a finite state automaton that lzaset of states with probabilities
attached to transitions between states. Althougputs! are visible, states themselves are
not directly observable, thusitiderf from external observations. Each state produces o
of the observable outputs with a certain probaphilit

Statistical approaches have typically been usethsks such as speech recognition,
lexical acquisition, parsing, part-of-speech taggircollocations, statistical machine
translation, and statistical grammar learning, smadn.

Similar to the statistical approaches, connectiamiproaches also develop generalized
models from examples of linguistic phenomena. Wiegtarates connectionism from other
statistical methods is that connectionist modelslboe statistical learning with various
theories of representation - thus the connectiomptesentations allow transformation,

inference, and manipulation of logic formulae. Idd#ion, in connectionist systems,



linguistic models are harder to observe due tofdlce that connectionist architectures are

less constrained than statistical ones.

Generally speaking, a connectionist model is a awof interconnected simple
processing units with knowledge stored in the wesighf the connections between units.
Local interactions among units can result in dyraghobal behavior, which, in turn, leads
to computation. Some connectionist models are adddlealist models, assuming that each
unit represents a particular concept. For exammbe, unit might represent the concept
“mammadl while another unit might represent the concephdl€. Relations between
concepts are encoded by the weights of conneclietvgeen those concepts. Knowledge in
such models is spread across the network, andotirgectivity between units reflects their
structural relationship. Localist models are ggitailar to semantic networks, but the links
between units are not usually labeled as theyragemantic nets. They perform well at
tasks such as word-sense disambiguation, langiegagion, and limited inference.

Other connectionist models are called distributedl@hs. Unlike that in localist models,
a concept in distributed models is represented fam@ion of simultaneous activation of
multiple units. An individual unit only participaein a concept representation. These
models are well suited for natural language prongstasks such as syntactic parsing,
limited domain translation tasks, and associatetgaval.

To summarize, symbolic, statistical, and connectiompproaches have exhibited
different characteristics, thus some problems maybbtter tackled with one approach
while other problems by another. In some casessdore specific tasks, one approach may
prove adequate, while in other cases, the tasksgearso complex that it might not be

possible to choose a single best approach.

2.1. Approaches to Word Sense Disambiguation

The problem of word sense disambiguation has besaoritbed as Al-complete, that is, a
problem which can be solved only by first resolvadfthe difficult problems in artificial
intelligence (Al), such as the representation ohown sense and encyclopedic knowledge
(Pradhan et al. 2007



To address this task, different methods have bsed, with various degrees of success.
These methods can be classified depending on the ©f knowledge they use to
accomplish the task. The main statistical appros¢behe WSD task are supervised and

unsupervised disambiguation.

2.1.1. Supervised Methods

Supervised methods use a labelled training seblte $he task. They have been shown to
be the most efficient ones (Pradhan et al. 208@wever, the lack of large sense tagged
corpora limits this kind of methods, and it is diffit and expensive to create such corpora
manually.

Several research projects take a supervised lepapproach to WSD (Brown et al.
1991). The goal is to learn to use surrounding exinto determine the sense of an
ambiguous word.

Often the disambiguation accuracy is strongly aéflédy the size of the corpus used in
the process. Typically, 1000-2500 occurrences ofi @ord are manually tagged in order
to create a corpus. From this about 75% of the roenues are use for the training phase
and the remaining 25% are use for the testing (M#saand Moldovan, 1999). Corpus like
interest and line were the most well studied eréture.

The Interest dataset (a corpus where each occerm@nthe word interest is manually
marked up with one of its 6 senses) represent dnéekt of an ambiguous word with the
part-of-speech of three words to the left and rightinterest, a morphological feature
indicating if interest is singular or plural, an andered set of frequently occurring
keywords that surround interest, local collocatidingt include interest, and verb-object
syntactic relationships. A nearest-neighbour cleesswas employed and achieved an
accuracy of 0.87 over repeated trials using rangdnaining and test sets. Ng and Lee
(1996), and Pedersen et al. (2000) present sttitiesitilize the original Bruce and Wiebe
feature set and include the interest data .Thedompares a range of probabilistic model
selection methodologies and finds that none outoparthe Naive Bayesian classifier,

which attains accuracy of 0.74. The second comparesnge of machine learning



algorithms and finds that a decision tree learné8 @nd a Naive Bayesian classifier 0.74

are most accurate.

The Line dataset (similarly, a corpus where eaduwence of the word line is marked
with one of its 6 senses) was first studied by be&c(1993). They evaluate the
disambiguation accuracy of a Naive Bayesian cl&ssia content vector, and a neural
network. The context of an ambiguous word is regméed by a bag-of-words (BoW) where
the window of context is two sentences wide. Whiee Naive Bayesian classifier is
evaluated words are not stemmed and capitalizadorains. With the content vector and
the neural network words are stemmed and words &@top-list are removed. They report
no significant differences in accuracy among thee¢happroaches; the Naive Bayesian
classifier achieved an accuracy of 0.71, the cdantecator of 0.72, and the neural network
0.76.

This dataset was studied again by Mooney (1996graviseven different machine
learning methodologies are compared. All learnilgp@Ehms represent the context of an
ambiguous word using the BoW with a two sentencedaiv of context. In these
experiments words from a stop list are removedijtaigation is ignored, and words are
stemmed. The two most accurate methods in thisygiwoved to be a Naive Bayesian

classifier 0.72 and a perceptron 0.71.

Recently, the Line dataset was revisited by botlwdlband Voorhees (1998), and
Pedersen (1997). Take an ensemble approach wheecaitput from two neural networks is
combined; one network is based on a representatiolocal context while the other
represents topical context. The latter utilize avBaBayesian classifier. In both cases
context is represented by a set of topical and lleedures. The topical features correspond
to the open-class words that occur in a two seetencdow of context. The local features
occur within a window of context three words to teg and right of the ambiguous word
and include co-occurrence features as well as tf & words in this window. These
features are represented as local and topical BodVPaS. (Towell and Voorhees, 1998)

report an accuracy of 0.87 while (Pedersen et®#7 ) report accuracy of 0.84.
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2.1.2. Unsupervised Methods

Unsupervised methods are based on unlabeled corpbia resolves the knowledge
acquisition bottleneck, at the cost of low accurddgsupervised approaches often do not
use any learning process; they only rely on a &besource, like WordNet (Miller, 1991),
to carry out the WSD task.

The wide used methods are the methods based oentasmctors. The content vectors
approach treats the ambiguous word context as antenat in IR. Therefore a vector in an
n-dimensional space (n the number of words in capié is associated to each context.
Each row in the vector contains a function of tregfiency of each word in the context.
Even in WSD many similarity measures between vectegre proven and this measures
are enough different from the measures in IR. Thndarity measures between vectors are
used to develop sets of the most similar vectorsnbgns of clustering. These sets can be
considered as the senses of the ambiguous word.

A main contribution to this approach is the aldamtof Schutze (1992) called context-
group discrimination. The context-group discrimioatalgorithm is similar to the method
of Brown et al. (1991) which is a supervised methtde main difference between the
Shutze method and the Naive Bayesian classifieiGale is that the context-group
discrimination algorithm first takes a random saenpl the parameters to later re-estimate
the parameter by an Expectation-Maximization atgoni (EM). Thus from the random
sample of the parameters is taken for every corgkttie ambiguous word the conditional
probability of that word to be used in a particutantext. This categorization is used for
training and the EM maximizes the similarity of theta for the given model.

Schutze (1992) proposes a method which avoidsrigggach occurrence in the training
corpus. Using letter fourgrams within a 1001 chimaocvindow, his method first
automatically clusters the words in the text, aachetarget word is represented by a vector;
a sense is then assigned manually to each cluateer than to each occurrence.

Assigning a sense demands examining 10 to 20 menobeach cluster, and each sense
may be represented by several clusters. This methddces the amount of manual
intervention but still requires the examination aofhundred or so occurrences for each

ambiguous word. More seriously, it is not clear e senses derived from the clusters
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correspond to (Pereira et al. 1993); and they atemany case directly usable by other

systems, since it is derived from the corpus itself

Brown et al.(1991) and Gale et a]1993) propose the use of bilingual corpora to @voi
hand-tagging of training data. Their premise igd thifferent senses of a given word often
translate differently in another language (for eplaypenin English isstyloin French for
its writing implement sense, amdclosfor its enclosure sense). By using a parallel &dyn
corpus, the translation of each occurrence of adwsuch assentencecan be used to
automatically determine its sense. This method bkame limitations since many
ambiguities are preserved in the target languagg, (Erenchsouris-English mouse;
furthermore, the few available large-scale paratltelpora are very specialized (for
example, theHansard Corpuf Canadian Parliamentary debates), which skewsehse

representation.

Dagan et al(1991) and Dagan and Itai (1994) propose a simiathod, but instead of
a parallel corpus use two monolingual corpora armliagual dictionary. This solves in
part the problems of availability and specificitydmmain that plagues the parallel corpus
approach, since monolingual corpora, including coaprom diverse domains and genres
are much easier to obtain than parallel corpora.

Other methods attempt to avoid entirely the needaftagged corpus, such as many of
those cited in the section below (e.g., Yarowsk892, who attacks both the tagging and
data sparseness problems simultaneously). Howeveis likely that, as noted for
grammatical tagging (Mérialdo, 1994), even a midimphase of supervised learning
improves radically on the results of unsupervisedthmds. Research into means to
facilitate and optimize tagging is ongoing; for exde, an optimization technique called
committeebased sample selecti@s been proposed (Engelson and Dagan, 1996), which
based on the observation that a substantial podfionanually tagged examples contribute
little to performance, enables avoiding the taggi@xamples that carry more or less the
same information. Such methods are promising, afhdo our knowledge they have not

been applied to the problem of lexical disambigurati
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2.2. Approaches to Recognizing Textual Entailment

Entailment definition in formal semantics (Chierhf McConnell-Ginet, 2001) is the
following:

A text T entails another text H if H is true in eyeircumstance (possible world) in
which T is true.

This definition imposes a strictness that is inappiate to many practical NLP systems.
The problem is addressed by the notiommplied textual entailmenas defined by Dagan
and Glickman (2004), which takes an empirical ex@un approach. By this definition, a
text T entails a hypothesis H, if, typically, a hamreading T would infer that H is most
likely true. The advantages of such a perspectivé\LP are: the evaluation is performed
using a human gold standard, as in other NLP taskd, at the same time, common

background knowledge is assumed.

Other annotation guidelines for textual entailméytDagan and Glickman (2004):

- Entailment is a directional relation; hypothesissinbe entail by the text and not the
contrary.

- The hypothesis must be totally entail by the texd don’t include parts which couldn’t
be inferred.

« Cases in which the infer is probable high but nithwabsolute certain, should be judge
as true.

« The background knowledge about the world, mustypeal to a normal reader of that
kind of text (news domain); instead isn’t accepgatile know presupposition of high
specific knowledge.

Based on the applied textual entailment definititve, PASCAL Network of Excellence
recently started the RTE Challenge (Dagan et &520A few samples of Text-Hypothesis

(T-H) pairs from the first RTE-1 Challenge are sindvellow.
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Table2.1: T-H pairsexamples

TASK TEXT HYPOTHESIS ENTAILMENT
iTunes software has seen strong salesStrong sales for iTunes in
IR in Europe. Europe. True

American Airlines began laying off ~ American Airlines will
PP hundreds of flight attendants on recall hundreds of flight False
Tuesday, after a federal judge turnedattendants as it steps up the
aside a union's bid to block the job number of flights it

losses. operates.
The two suspects belong to the 30th  Cardinal Juan Jesus
QA Street gang, which became embroiled Posadas Ocampo died in True
in one of the most notorious recent 1993.

crimes in Mexico: a shootout at the
Guadalajara airport in May, 1993, that
killed Cardinal Juan Jesus Posadas
Ocampo and six others.

From Table 2.1 we can see the main goals of the. RdEreate a dataset of T-H pairs
of small text snippets, corresponding to the nearman. Examples were manually labeled
for entailment. Participating systems were askeddoide for each T-H pair whether T
entail H or not, giving True or False annotationaasystem output. For this reason the
datasets provided by the RTE Challenge organizersandended to include typical T-H
pairs that correspond to success and failure calsestual text processing applications,
dealing with tasks such as IE, IR, QA and SUM. Tlaeg divided into two balanced
corpora: Development and Test datasets.

The judgments (classifications) produced by thdesys were compared to the gold
standard. The percentage of matching judgmentsigesvthe accuracy of the run (the
fraction of correct responses). As a second meaker€onfidence-Weighted Score (cws,
also known as Average Precision) was computed.dadts of the test examples were
sorted by their confidence (in decreasing order).

For instance, in the RTE-1 Challenge (Dagan e2@04), the dataset was collected
from different text processing application like IRpmparable Documents (CD), Reading
Comprehension (RC), QA, IE, Machine Translation {Miid PP. The collected examples

represent a range of different levels of entailme@isoning, based on lexical syntactic,
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logical and world knowledge. In the end 567 examplere in the development dataset and
800 in the test dataset, split into True/False gtam

The main focus for the RTE-2 Challenge dataset twgzrovide more “realistic” T-H
pairs. Dataset consist of 1600 T-H pairs dividew idevelopment and test datasets, each
one containing 800 pairs. The organizers focusedoan applications IR, IE, QA and
SUM.

RTE-3 Challenge followed the same structure ofpfevious versions. Something new
was introduced, a resource pool, where participhats the possibility to share the same
recourses.

In 2008 the RTE-4 Challenge include the three-waygision of “YES”, “NO” and
“UNKNOWN?” to drive systems to make more preciseommhational distinctions; a
hypothesis being unknown on the basis of a textilshioe distinguished from a hypothesis
being shown false/contradicted by a text. The atasg-way RTE task was also offered,
in which the pairs where T entailed H were marke@&BTAILMENT, and those where the
entailment did not hold were marked as NO ENTAILMEN he descriptions of the tasks
are presented below:

The three-way RTE task is to decide whether:

« T entails H - in which case the pair will be marleesdENTAILMENT.

« T contradicts H - in which case the pair will berkesl as CONTRADICTION.

« The truth of H cannot be determined on the basis oin which case the pair will be
marked as UNKNOWN.

The two-way RTE task is to decide whether:

« T entails H - in which case the pair will be marleesdENTAILMENT.

« T does not entail H - in which case the pair wdlharked as NO ENTAILMENT.

+ The RTE-4 dataset was made of 1000 pairs (300 feadk and IR, 200 each for SUM
and QA).

15



2.2.1. Approaches by Language Levels

The RTE approaches can be classified dependinghiohwiextual entailment phenomena

address or the type of representatiendls of languageof the T-H pair.

Vanderwende et al. (2005) examine the completesttsdf RTE-1 with the purpose of
isolating the pairs whose categorization can berately predicted based only on syntactic
matching. The human annotation indicates that 37%eentailments are decided merely
at the syntactic level, this outperforms to 49%hé information of a general-purpose
thesaurus is additionally added.

Bar-Haim et al. (2006) take this idea a step furtrel annotate 30% of the RTE-1 test
set at two strictly defined levels of entailmenttéhding Vanderwende et al.’s work, they
consider a lexical entailment level, which involwesrphological derivations, ontological
relations and lexical world knowledge, in additiona lexical-syntactic level, which, on top
of lexical transformations, contains syntactic sfanmations, paraphrases and coreference.
Where the T-H pairs are decided 44% for the lexacad of 50% for the lexical-syntactic
level. Clark et al. (2007) explore the requiremesitiRTE in a way that differs from the
previous approaches in that it is not centered hen basic lexical-syntactic levels of
entailment, but instead it investigates a wide eanfj phenomena involving lexical and
world knowledge. Clark et al. manually annotate 26f4he positive entailment pairs in
RTE-3 for thirteen distinct entailment phenomena.we can see there are various levels of
the entailment phenomena, classified under fournmaategories lexical, syntactic,

semantic and logical.

2.2.1.1. Lexical Level

The approach in (Pérez and Alfonseca, 2005) cansistising the BLEU algorithm that
works at the lexical level, to compareT-H pairsxtjehe entailment is judged as true or
false according to BLEU'’s output. Once the algontis applied, they had seen that the
results confirm the use of BLEU as baseline for #homatic recognition of textual

entailments. They showed that a shallow techniguereach around 50% of accuracy. In
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order to recognize entailments using BLEU, thet fadscision is to choose whether the
candidate text should be considered as part oémit@iment (T) or as the hypothesis (H).
In order to make this choice, they did a first expent in which they considered the T part
as the reference and the H as the candidate. &ttisgshas the advantage that the T part is
usually longer than the H part and thus the ref@emould contain more information that

the candidate.

2.2.1.2. Syntactic Level

Graph distance/similarity measures are widely racagl to be powerful tools for
matching problems and it was used with successliB-R by Pazienza, Pennacchiotti and
Zanzotto. Objects to be matched (two images, pettdext and hypothesis in RTE task,
etc.) are represented as graphs, turning the réagproblem into a graph matching task.

Following (Dagan and Glickman, 2004), since thedtlgpsis H and text T may be
represented by two syntactic graphs, the textutdilerent recognition problem can be
reduced to graph similarity measure estimatiomoalgh textual entailment has particular
properties (Pazienza et al., 2005):

« Classical graph problems, it is non-symmetric.

« Node similarity can not be reduced to the labetl€token similarity).

- Similarity should be estimated also consideringguistically motivated graph
transformations (nominalization and passivization).

The tree edit distance algorithm (Kouylekov and WMag 2005) applied on the
dependency trees of both the text and the hypah#sihe distance (cost of the editing
operations) among the two trees is below a cettagshold, empirically estimated on the
training data, then we assign an entailment reddtiestween the two texts. According to the

approach described above, the following transfoionatare allowed:

« Insertion: insert a node from the dependency tfeld mto the dependency tree of T.

When a node is inserted, it is attached to the mtgrecy relation of the source label.
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« Deletion: delete a node N from the dependency afe€. When N is deleted, all its
children are attached to the parent of N. It is remuired to explicitly delete the

children of N as they are going to be either deletesubstituted on a following step.

« Substitution: change the label of a node N1 insierce tree into a label of a node N2
of the target tree. Substitution is allowed onlyh& two nodes share the same part-of-
speech. In case of substitution, the relation h&éddo the substituted node is changed

with the relation of the new node.

2.2.1.3. Semantic Level

The system proposed in (Bar-Haim et al. 2006) seb@ a relatively deep linguistic

analysis, which we complement with a shallow congmirtibased on word overlap.

The system is based on three main components:

« A linguistic analysis of text and hypothesis bagwdnarily on LFG and Frame
Semantics (Baker et al. 1998).

« A computation of a match graph that encodes theasgmoverlap between text and

hypothesis.

« A statistical entailment decision (Bar-Haim et2006).

Bos and Markert (2005) used several shallow surfaatires to model the text, hypothesis
and their relation to each other. They expectedesdependency between the surface string
similarity of text and hypothesis and the existentesntailment. This string similarity
measure uses only a form of extended word overddpden text and hypothesis, taking
into account identity of words, as well as synonyaayd morphological derivations
revealed by WordNet (Fellbaum, 1998).

To introduce an element of robustness into thgar@gch, they used model builders to
measure the “distance” from an entailment. Theitiotu behind this approach is as
follows: If H is entailed by T, the model for T+H not informative compared to the one for
T, and hence does not introduce new entities. iferenhtly, the domain size for T+H
would equal the domain size of T. In contrast, ddes not entail H, H normally introduces

some new information (except when it contains regyahformation), and this will be
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reflected in the domain size of T+H, which becorsger than the domain size of T. It
turns out that this difference between domain sigea useful way of measuring the
likelihood of entailment. Large differences are thosiot entailments, small differences
usually are.

They use a robust wide-coverage CCG-parser (Bak 2004) to generate fine-grained
semantic representations for each T-H pair. Theaséimrepresentation language is a first-
order fragment used in Discourse Representatiomh@®RS)(Kamp and Reyle, 1993);
including the recursive DRStructure to cover negation, disjunction, and icgion.
Given a T-H pair, a theorem prover can be used to find answershe following
conjectures:

« T implies H(shows entailment).
« T+H are inconsistent (shows no entailment).

In the RTE-1, five groups used logical provers affdred deep semantic analysis. One
system (Raina et al. 2005) transformed the texthgpabthesis into logical formula like in
Harabagiu et al. (2000) and it calculated the “to$tproving hypothesis from text. In
RTE-2 only two systems used logical inferences and of the systems achieved the
second result of the edition (Tatu et al. 2006) RIAE-3 the number of systems using
logical inferences grew up to seven and the fingi tesults used the logical inferences
(Hickl 2007 and Tatu 2007). In RTE-4 nine group®disogical inferences in order to
identify the entailment relation, and two of therarev oriented to that (Clark and Harrison,
2008) and (Bergmair, 2008).

2.2.2. Machine Learning Approaches

In the RTE-1, the number of systems that used maclearning algorithms to determine
the result of the entailment relation was considleral he aim was to use results offered by
these algorithms for answer classification instefidsing thresholds established by human
experts on training data. The features used byetlsgstems include lexical, semantic,
grammatical attributes of verbs, nouns and adjestimamed entities, and were calculated

using the WordNet taxonomy, the VerbOcean semargtevork (Chlonsky and Pantel,

19



2004), a Latent Semantic Indexing technique (Destsveet al. 1990), or the ROUGE
metrics (Lin and Hovy, 2003). Other features likegation were identified by inspecting

the semantic representation of text with DRS ferghesence of negation operators.

These parameters were evaluated by machine leamggrithms such as SVM
(Joachims, 2002) or such as C5.0 (Quinlan, 2000)used binary classifications like
Bayesian Logistic Regression (BBR)d TiMBL (Daelemans et al. 1998). Starting with
RTE-2, the interest for using machine learning gremstantly. Thus, the number of
systems that used machine learning for classifinatias increased from seven in RTE-1 to
fifteen in RTE-2 and sixteen in RTE-3 and RTE-4eTdpproaches are various and their
results depend on identify relevant features. mkgén et al. 2006), matching features are
represented by lexical matches (including synonwnd related words), part-of-speech
matching and matching of grammatical dependengtiosls. Mismatch features include
negation and numeric mismatches. The MLEnt syst€ordreva, 2006) models lexical
and semantic information in the form of attributesd, based on them, proposed 17
features. In (Ferrés and Rodriguez, 2007), theocasitbomputed a set of semantic based
distances between sentences. The system of MdR&®ga-et al. (2007) used semantic
distance between stems, subsequences of consestgivs and trigrams matching. The
features identified in (Li et al. 2007) include ieed semantic similarity, named entities,

dependent content word pairs, average distancefinagand text length.
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3. Word Sense
Disambiguation

In this chapter we first present a new measurasdanantic relatedness based on the simple
Lesk algorithm. We use word co-occurrences forrdlsguate the ambiguous word. The
statistical information for the measure is retrgg\feom the Web. Our experiments are as
follows: first over the Semcor corpus and then garison with previous results over the
Senseval 2 corpus. Finally partial conclusionsdassvn.

An example of an unsupervised method is the oridimsk algorithm (OL) (Lesk,
1986) that disambiguates polysemous words in (sh@itrases. The definition, or gloss
(from a dictionary), of each sense of an ambigueasd in a phrase is compared to the
glosses of every other word in the phrase. Bagictike algorithm selects the set of senses
such that their glosses have the largest numb&oads in common.

To tackle the problem of knowledge acquisition leottck in supervised methods, the
Web could be use as a lexical resource.

The Web has become a source of data for NLP, an® W30 an exception. Many
methods use the Web to automatically generate sagged corpora (Martinez, 2003).

Web as a corpus for NLP research (Volk, 2002) vilesady used with success in many
areas such as question answering (Brill et al. p0ftachine translation (Greffenstete,

1999), and anaphora resolution (Bunescu, 2003).

3.1. Theoretical Framework

Sensevalstarted in 1998 (Kilgarriff and Rosenzweig, 1998 to the evaluation of WSD
systems, producing a set of benchmarks for evalgaWSD system performance, to

establish the viability of WSD as a separately eable NLP task.
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In the past versions of Senseval, exercises thed wagiants of the Lesk approach were
considered as baseline approaches. In Sensevaist,ahthe systems for disambiguating
English words were outperformed by a Lesk variasgd as baseline. On the other hand, at
Senseval 2, Lesk baselines were outperformed by afidBe systems in the lexical sample
task.

The Lesk-based baselines outperform the baselateuges simpler algorithms such as
random sense assignment, or an algorithm that alwhgoses the sense which has most
training-corpus instances.

The simplified Lesk (SL) algorithm (Kilgarriff an®Rosenzweig, 1998) chooses the
sense of an ambiguous wondsuch that its glosg has the greatest number of words in

common with other words (the contextvafaround the given worg:

Table 3.1: Simplified Lesk algorithm

For each sense s of w do

wei ght (s) = sinm(c, g(s))
s = argnmax wei ght(s)

Herec is the context of the wordl (in the simplest case, just a bag of words within

certain distance frow) andg(s) is the gloss associated with the sense

The Lesk-plus method (Kilgarriff and Rosenzweig98p also considers a learning
process, so it can be compared with supervisecémgstFor each word in the sentence
containing the test item, it tests whether the waedurs in the dictionary entry or corpus
instances for each candidate sense. For weightinidpeo sentences it uses the inverse
document frequency (IDF) of a word, computed agp(g), wherep(w) is estimated as
the fraction of dictionary “documents”—definitiolms examples—which contain the word.
Lesk-plus method does not explicitly represent rdlative corpus frequencies of sense
tags. Instead, it favours common tags becausehiey larger context sets, and an arbitrary
word in a test-corpus sentence is more likely touodn the context set of a more common
training-corpus sense tag.

The original Lesk algorithm relies on glosses foumdraditional dictionaries such as
Oxford Advance Learner’s dictionary. Banerjee ardié?sen (2002) propose a variant of

the Lesk algorithm to take the advantage of thenlizignterconnected set of relations
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among synonyms that WordNet offers. This variakésaas back-off the glosses of words
that are related to the words to be disambigudtkis back-off provides a richer source of
information and improves accuracy. It outperforims baseline methods in the Senseval 2

exercise.

Vasilescu et al. (2004) proposed a set of diffevaniants to the Lesk aproach. The first
variant, the score assigned to a candidate setise mumber of overlaps between the BOW
of that sense and the BOW of the context. A seaa@rdnt, called WHG (for weighted)
also takes into account the length of the desonptor a given sense. According to Lesk,
long descriptions can produce more overlaps thart stnes, and thus dominate the
decision making process. Another type of varianttiplied the number of overlaps for a
given candidate sense by the inverse of the Idgariof the description length for this
sense. Other variant for weighting metrics were gsoposed, taking into account the
distance between a word in the context and thetavgrd, or the frequency of the context
word in the language, but that did not bring amy#icant difference.

In Statistical NLP, one commonly receives as a u®m@ certain amount of data from a
certain domain of interest, without having any sayow it is constructed. In such cases,
having more training data is normally more usehart any concerns of balance, and one
should simply use all the text that is availableeTproblem of data sparseness, which is
common for much corpus-based work, is especialljerse for work in WSD. First,
enormous amounts of text are required to ensuteathaenses of a polysemous word are
represented, given the vast disparity in frequearogng senses.

The Web is immense, free and available by mous#-dl contains hundreds of billions
of words of text and can be used for all mannedapiguage research. The simplest
language use is spell checking. Is it speculateapeculator? Google gives 67 for the first
and 82,000 for the latter. Question answered.

3.2. Proposed Method

We augment the Lesk approach with a measure foasgenrelatedness. The measure is

based on the hypothesis of the high relationshigvéen the gloss of a sense and the
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context of a word. We measure this relationship fiogling the frequencies of co-
occurrences between the gloss and the context.ongder the Web as a corpus to find the

co-occurrences of the gloss and the context.
/ Text /

—< For each word w >

WsD
method

MN-gram
database

Sense
inventory

Tagged
text

Figure 3.1: General data flow for the WSD method.
In Figure 3.1 we show the general scheme of oupgeed method. For each word in

the text the method tagged the word with a sermsa & sense inventory. The method takes
decisions based on: the n-gram database and tlse saventory. We used for n-gram
database the Web and for sense inventory WordNgovBwe show how the new measure

can be applied to our method (Simple Lesk algorjthm
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Table 3.2: New statistical measure

For each word w to be tagged
For each sense s of w

g = gloss of sense s (bag of words)
e = exanple of sense s (bag of words)
c = context of sense s (bag of words)
d =g 0e

dc =d 0O c

fq web frequency of (d)

web frequency of (dc)

fgc
wei ght (s) = fg/fy

S = arg max weightg)

The web frequency is measured by a query to a walrk engine. The weight is the
probability of seeing the gloss of a sense in thatext of the given word occurrence. The

method chooses the sense which maximizes the weight

If various senses have the same weight, then tisess chosen by a back-off heuristic.

3.3. Experimental Setting

In this subsection firstly we show a brief descoptof the datasets used, second the
experimental setting of the proposed measure amallyfia comparison with previous

results.

3.3.1. Data Sets

Semcor is a textual corpus in which words are symaly and semantically tagged. The
texts included in Semcor were extracted from thewBr corpus and then linked to senses
in the WordNet lexicon. All the words in the corpave been syntactically tagged using

Brill's part of speech tagger; the semanticallygtag was done manually for all the nouns,
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verbs, adjectives and adverbs, each of these vimidg associated with its correspondent
WordNet sense. We show above an example of an ienting Semcor corpus.

<wf cmd=done pos=VB lemma=say wnsn=1 lexsn=2:32:8aid</wf>

The Senseval dataset consists of 4,328 instanchsoéavhich contains a sentence with
a single target word to be disambiguated, and anéwo surrounding sentences that
provide additional context.

A task in Senseval consists of three types of dgt& sense inventory of word-to-sense
mappings, with possibly extra information to explaiefine, or distinguish the senses (e.g.,
WordNet); 2) A corpus of manually tagged text ompées of text that acts as the Gold
Standard, and that is split into an optional tragncorpus and test corpus; and 3) An
optional sense hierarchy or sense grouping to aflowfine or coarse grained sense
distinctions to be used in scoring. The next XMlaimsexample of an entry in Senseval.

<instance id="9:0@16@wsj/24/wsj_2444@wsj@en@on'saze'wsj">

<context>

Once metropolitan ...<head> asking </head> ...

</context>

</instance>

Senseval has two variants of the WSD task:

All words task participating systems have to dissudte all words (open-class words)
in a set of text, and Lexical sample task, firsaaple of words is selected. Then for each

sample word, a number of corpus instances aretedlec

3.4. Experimental Results

In our preliminary experiments we aimed at thevatkds WSD task. For evaluation we
used a subset of the first two tagged files of SeniC6: the files br-a01 and br-a02. We
used WordNet 2.1 as a sense repository. WordNeetegical database where each unique
meaning of a word is represented by a synonymrsgyreset. Each synset has a gloss that

defines the concept that it represents. For exanipgewordscar, auto, automobileand
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motorcar constitute a single synset that has the follovglogs:four wheel motor vehicle,
usually propelled by an internal combustion engiMany glosses have examples of usages

associated with them, such d&“needs a car to get to wdrk

Context is the only means to identify the meanihg polysemous word. Therefore, all
work on WSD relies on the context of the targetdviar provide information to be used for
its disambiguation. Most disambiguation work ugdeslbcal context of a word occurrence
as a primary information source for WSD. Local omi¢ro” context is generally considered
to be some small window of words surrounding a wacdurrence in a text or discourse,

from a few words of context to the entire sentenaghich the target word appears.

Context is very often regarded as all words or atiars falling within some window of
the target, with no regard for distance, syntaabic,other relations. Yarowsky (1993)
examines different windows of micro-context, inghgl 1-contexts, k-contexts, and words
pairs at offsets -1 and -2, -1 and + 1, and +1-hdand sorts them using a log-likelihood
ratio to find the most reliable evidence for disaguolation. Yarowsky makes the
observation that the optimal value of k varies with kind of ambiguity: he suggests that
local ambiguities need only a window of k = 3 or K.We use the bag of words approach:
here, context is considered as words in some wirglovounding the target word, regarded
as a group without consideration for their relagiops to the target in terms of distance,
grammatical relations. We take a symmetric windéw#3words around the target word an

optimal value to local ambiguities.

The web counts were collected using the Googletckeangine. To construct the
queries first we tokenize the sentence, secondatiget word is replaced by the gloss, and
guery the search engine (i.e. string query).

When our method can not decide a sense numbereirarigimax function (e.g. two
senses have the same weight), the sense will Is=ohrandomly from the top senses (those
with the same weight); we refer to this as randopwteight back-off.

We used precision and recall to score the systdthpumh the metrics are not
completely analogous to Information Retrieval easibn. Recall (percentage of right
answers on all instances in the test set) is tsec lmeasurement of accuracy in this task,

because it shows how many correct disambiguatioasystem achieved overall. Precision

! http:/imwww.google.com
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(percentage of right answers in the set of answiaistdnces) favours systems that are very
accurate if only on a small subset of cases tleasyistem chose to give answers to.

Resnik and Yarowsky (1993) have shown that it fBadilt to compare WSD methods.
The distinctions that make comparing methods difficeside in the approach considered
(supervised or unsupervised).

The result from the preliminary experiments ovee themCor subset obtained an
accuracy of 47%. We only reported accuracy becafiseny word presented an equal
weight of senses. If a system makes an assignmoeetéry word, then precision and recall
are the same, and can be called accuracy. Theré¢fh@eWeb rarely presents data
sparseness. Thus the method always gives an amsweit does not reach the back-off
heuristic.

In Table 3.3 we present a comparison of the acguohour measure applied to the
simple Lesk against variants of the original Leglpraach. This comparison was tested
over the Senseval 2 data. The experiment had the satting as the experiment over the

SemCor subset.

Table 3.3: Comparison with previouswork

M ethod Type Back-off Accuracy
Vasilescu et al2004 simplified MFS 0.58
Mihalcea and Tarau 2004 simplified RS 0.47
Our method simplified Random top senses 0.45
Vasilescu et al2004 original MFS 0.42
Mihalcea and Tarau 2004 original RS 0.35

Extended gloss

overlaps 0.31

Banerjee and Pedersen 2002 original

As it can bee seen from Table 3.3, the originakl(€3.) algorithm method has a lower

performance than the other ones and even thanabelibe system. This observation is
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consistent with Litkowski (2002) hypothesis thatyoabout one third of the instances can
rely on the Lesk-style information (gloss and exbanin a disambiguation process. The
simplified Lesk (SL) method, which only counts theerlaps between the description of a

candidate sense and the words in the context, pesdoetter results.

Our Lesk variant outperforms the OL of Banerjee &mdlersen (2002) and the OL
(Lesk, 1986) variants (back-off to random sense amudt frequent sense). The SL of
Mihalcea and Tarau (2004) is better in performathes our method, with the help of the
random sense heuristic. Finally, the SL of Vasilest al.(2004) has the best accuracy.
However, this method can be considered as a sggervnethod due to the most frequent
sense heuristic (it is not clear what its perforogawould be with McCarthy et al. (2004)
unsupervised method for determining the predomisanse).

When a method can not make a judgment (i.e., nolagvdetween the gloss and the
context in the simple Lesk) the judge is taken Iy back-off heuristic. Most of these
heuristics chose a random sense or uses informiationa dictionary. So the most frequent
sense is based on chose the first (or predominsgtse the heuristic assumes the
availability of hand tagged data.

Therefore our method did not reach the back-offrisga we present in Table 3.4 a

comparison with the top three unsupervised metbb&enseval-2.

Table 3.4: Comparison with Senseval-2 unsupervised methods

Method Accuracy
Our method 0.45
Senseval-First 0.40
Senseval-Second 0.29
Senseval-Third 0.24
Original Lesk 0.18

The Senseval-First, Senseval-Second, and SensavdlEsults are the top three
most accurate fully automatic unsupervised systientise Senseval-2 exercise. This is the

class of systems could be comparable to our owmeeghey require no human intervention
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and do not use any manually created training exasnplhese results show that our
approach was considerably more accurate than hls method has the advantage of

simplicity and the use of a very limited contextdow.

Table 3.5: Comparison with SemEval unsupervised methods

M ethod Accuracy
Radu ION 0.52
Davide Buscaldi 0.46

Our method (Senseval-2) 0.45

Sudip Kumar Naskar 0.40

In Table 3.5 we present a comparison of our metbested over Senseval-2) with the
state of the art unsupervised systems in the SeR#E. Thus two of the methods
outperform our method but the comparison is natlear because our method was test over
the Senseval-2 corpus. Thus we can see growingeteres in the precision of the

unsupervised approaches.

3.5. Conclusion

In this thesis we used a variant of the Lesk athorifor the WSD task. We proposed a new
semantic relatedness measure based on web colletgembwith a search engine.

We have shown that our variant outperforms somek Lbased methods and
outperforms the top unsupervised methods of thes&Sah-2 exercise. These results are
significant because they are based on a very siaigtegithm that relies on co-occurrences
scores to the senses of a target word.

We once more confirmed that the web could be usedlexical resource for WSD.

In our future work we will explore the use of diféat context windows, as well as
linguistically-motivated context windows (such asyntactic unit) and test our method

over the SemEval corpus.
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4.Recognizing Textual
Entailment

In this chapter we proposed a new statistical ntethyoplied to the RTE task. The new
statistical method is based on the co-occurrenteals between the T-H pairs. The co-
occurrences are extracted from a cause-effect sorphberefore we are deciding the
entailment based on a non-symmetric measure ofasityi Follow as first we show the
experiments over the RTE-1, RTE-2, and RTE-3 tasaskts and as a second experiment
we proposed a meta-classifier, based on symmetret reon-symmetric measures of
similarity. Finally we compare our methods with ypoeis works and draw partial

conclusions.

4.1. Theoretical Framework

As we could see in Chapter 2 the main methods f6E Rre based on the level of
representation given to the T-H pair. Thus eacle typ representation has operations in
order to establish the entailment decision (e.gradwnatching in the lexical level, tree edit
distance in the syntactic level). The principal @piens are similarity measures between T-
H pair representations. But many of the similantgasures are symmetric. So a symmetric
measure can not capture some of the aspects ih theH relation. Because if we altered
the entailment relation (i.e., H> T) a symmetric function will give us the same scor
Therefore methods like (Tatar et al. 2007) propasgon-symmetric similarity measure,
used in RTE-1 Challenge.

Glickman uses as definition: T entails H iffH?( T) > PH). The probabilities are
calculated on the base of Web. The accuracy ofyeeem is the best for RTE-1 (0.56).
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Another non-symmetric method is that of Kouylekado uses the definition: T entails
H iff there exists a sequence of transformatiorgiag to T such that H is obtained with a
total cost below of a certain threshold. The follogv transformations are allowed:
Insertion: insert a node from the dependency tifeél anto the dependency tree of T;
Deletion: delete a node from the dependency tréle 8ubstitution: change a node in the T
into a node of H. Each transformation has a codttla@e cost of edit distance between T and
H, ed(, H) is the sum of costs of all applied transformagiohhe entailment score of a
given pair is calculated as

score(,H) =ed{,H),

where ed(, H) is the cost of inserting the entire tree H. listbcore is bigger than a
learned threshold, the relation—+ H holds. The accuracy of method is of 0.56.

In (Corley and Mihalcea, 2005) an even "more namsgtric” is proposed: when the
edit distance (which is a Levenshtein modifiedatse) satisfies the relation:

ed(T,H) < edd,T),

then the relation 3 H holds.

Other authors use a definition which in terms @resentation of knowledge as feature
structures could be formulated as: T entails HHiSubsumes T. Even the method used is a
non-symmetric one, as the definition used is: aénH iff H is not informative in respect
toT.

A method of establishing the entailment relatioruldobe obtained using a non-
symmetric measure of similarity between two textespnted by Corley and Mihalcea
(2005), the authors define the similarity betweasntextsT; andT; with respect to Ti as:

y Ti,Tj) :zposkzwkuw%os(maxsm(wk)xidf(Wk))}

i DI I (w,)

Here the sets of open-class words (nouns, verljsctag and adverbs) in each text

segment. For a word wk with a given posTinthe highest similarity of the words with the

same pos in the other tektis denoted by maxSim).

Starting with this text-to-text similarity metricve derive a textual entailment

recognition system by applying the lexical refudatitheory presented above. As the
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hypothesis H is less informative than the textof,& TRUE pair the following relation will
take place:
sim(T,H) x T <sim(T,H) xH

This relation can be proven using the lexical rion. A draft is the following: to
prove T — H it is necessary to prove that the set of formul& negH} is lexical
contradictory (they denote also by T and negH s sf disjunctive clauses of T and
negH).

We propose a hew non-symmetric measure of simyjlagased on the co-occurrences of
words between the T-H pair in a cause-effect corpofiow the use of the two types of

similarity measures (symmetric, non-symmetric) imeta-classifier.

4.2. Proposed Methods

Before the presentation of the new methods we shodwrief introduction to the main
evaluation measures. This evaluation measuressackto evaluate the performance of the
proposed methods.

An important recent development in NLP has beenuse of much more rigorous
standards for the evaluation of systems. It is gdlye agreed that the ultimate
demonstration of success is showing improved pexdoce at an application task, be that
spelling correction, summarizing job advertisememts whatever. Nevertheless, while
developing systems, it is often convenient to assesnponents of the system on some
artificial performance score (such as perplexity)provements in which one can expect to
be reflected in better performance for the wholgeay on an application task.

Evaluation in IR makes frequent use of the notioingrecision and recall, and their use
has crossed over into work on evaluating Statishitd® models, such as a number of the
methods discussed in this chapter. For many prahleme have a set of targets (for
example, targeted relevant documents, or sentancekich a word has a certain sense)
contained within a larger collection. The systemntliecides on a selected set (documents

that it thinks are relevant, or sentences thdtiitkis contain a certain sense of a word, etc.).
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The selected and target groupings can be thougjetv@riables can be expressed as a 2x2

contingency matrix:

Table 4.1: Contingency matrix

Corpus
System true false
true tp fp
false } fn tn

The numbers in each box show the frequency or coltite number of items in each
region of the space. The cases accounted fdp lfirue positives) anth (true negatives)
are the cases our system got right. The wronglgcsadl cases ifip are called false
positives, acceptances or Type errors. The casbsthat failed to be selected are called

false negatives, false rejections or Type | errors.
The accuracy is the proportion of true resultst{lptandtn) in the population:

tp+tn
tp+ fp+ fn+tn

accuracy=

Precision is defined as a measure of the propodiaelected items that the system got

right:

tp
tp+ fp

Recall is defined as the proportion of the targens that the system selected:

precision=

recall = P
tp+ fn

It can be convenient to combine precision and fect a single measure of overall
performance. One way to do this is the F-measune. H-measure is defined as follows

(precision and recall have and equal weighting):

- 2PR
R+P
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4.2.1. Causal Non-symmetric Measure

A causal relation is the relation existing betw&&a events such that one event causes (or
enables) the other event, such as “hard rain cdimeding” or “taking a train requires
buying a ticket”. The idea behind knowledge acdiaisiis to use connective markers such
as “because”, “but” and “if” as linguistic cues. Wever, there is no guarantee that a given
connective marker always signals the same typawdal relation. In this thesis we focused
our attention on English sentences including thedwbecause”.

Consider the following examples in English, from igth one can obtain several
observations about the potential sources of caumsalledge.

- The laundry dried well today because it was sunny.
« The laundry dried well, though it was not sunny.
- If it was sunny, the laundry could dry well.

« The laundry dried well because of the sunny weatheCause( it is sunny , laundry

dries well ).

Cue phrase is a word, a phrase or a word pattdnichveonnects one event to the other
with some relation. The causal relation betweemvis assumed by the cue phrase. The
causal cue phrases are used for connecting the @ags effect events. When events are
expressed bye noun phrases, the cue phrase camgneegnts is a verb phrase in general.
For example:

« The oral bacteria that cause gum disease appebetthe culprit.

The verb “cause” is a cue phrase to connect twatsvexpressed by noun phrases, the
“oral bacteria” and “gum disease”. Several lexipairs are assumed to lead the causal
relation. The lexical pair “bacteria” and “diseas®’an example of the causal lexical pair. If
the term pair “the oral bacteria” and “gum diseaisetausally related, we can infer the
event pair “bowel bacteria” and “bowel diseasetasisally related. Causal lexical pairs are
learned from cause-effect pairs.

The causal relation subsumes the cause and thanatin relations in Hobbs (1985).
Hobbs’s cause relation holds if a discourse segnseémiing a cause occurs before a

discourse segment stating an effect; an explana&tation holds if a discourse segment
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stating an effect occurs before a discourse segstatihg a cause. The causal relation is
encoded by adding a direction. In a graph, thislmamepresented by a directed arc going

from cause to effect, Fig 4.1.

Cause

Figure 4.1: Cause effect graph

The hypothesis behind our method is based on tineaT-H pair as a causal relation.

Where the text T is a cause and the hypothesigtsl éffect (i.e., T causes H).

The non-symmetric similarity measure is based erctiunt of co-occurrences of causal

lexical pairs from a C-E pairs extracted from gotrsx.

Table 4.2: Non-symmetric similarity measure

For each word t, in T
For each word h, in H

ce, = causal frequency(t,, h)

e, = causal frequency(h,)

max, = argnex(ce/e)
non-symmetric(T, H = = max,

As we see in the table 4.2 the first causal frequéuanction is the count of wordsand
h; related by the cue phrase (For example, a senténcbecause...t) in a corpus of C-E
pairs and the second causal frequency functiohascobunt of wordh; in the C-E pairs,
which gives us a non-symmetric score. Becausedkeecurrences of T causes H is not the
same like H causes T.

To each T-H pair the system measures the causatiorelbetween them and then
decides if the pair is true or false given a carttailment decision. The main differences

in our experiments reside in the use of differarategies to decide the entailment relation.
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4.2.2. Experimental Setting

In this subsection we explain at detail some oflitueks in the Figure 4.2. First the pre-
processing we used to represent the T-H pair aodnsethe data used to create the C-E
pairs.

The prepossessing we used in each T-H pair todgethis as follows:
« Tokenize.
+  Quit stop words.

Normally, an early step of processing is to divilde input text into units called tokens
where each is eitherword or something else like a number or a punctuationknighis

process is referred to as the treatment of puriotuatries.

The system has just stripped the punctuation owd. ddhsider as word any object
within the occurrence of a withespace. The withegpa the main clue used in English
(RTE benchmark is in English). Finally the systeuitsjany stops words from a stoplist.
The stop word is the name given to words which fdtered out prior to, or after,
processing of text. Hans Peter Luhn, one of thag®os in information retrieval, is credited
with coining the phrase and using the conceptsndeisign. It is controlled by human input
and not automated (Manning and Shutze, 1999). Comstap words ar¢he, from and
could These words have important semantic functiorisnglish, but they rarely contribute
information if the criterion isa simple word-by-word match (Manning and Shutze99)9In
Figure 4.2 we show the general data flow of ourhoétwere the data used to collect the
frequency of the causal lexical pairs came fromtesees which contain the cue phrase
because.
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MNon-symmetric
similarity
measure

Entailment
decision

FALSE

Figure 4.2: General data flow of our system

The sentences were extracted from the Sketch Engystem from a big corpus
(UKWAC from the Sketch Engine http://www.sketchergyco.uk/) for sentences which
contains the discourse markeecauseFinally we striped the sentences in two parts: one
corresponding to the cause and one correspondiitg &ffect. The Sketch Engine is a corpus
query system which allows the user to view wordtakes, thesaurally similar words, and
‘sketch differences’, as well as the more famitarpus Query Systems (CQS) functions. The
word sketches are fully integrated with the conaaring: by clicking on a collocate of interest

in the word sketch, the user is taken to a concmel®f the corpus evidence giving rise to that
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collocate in that grammatical relation. If the usicks on the wordoastin the list of high-

salience objects in the sketch for the vepread they will be taken to a concordance of

contexts wheréoast (n)occurs as object apread (v).

4.2.3. Experimental Results

As we see in previous subsections we varied thelam@nt decision in order to prove some

differences between the uses of our non-symmeite&sure:

Experiment 1: The system penalizes a pair if the>sH relation is greater than H
relation.

Experiment 2: The system determines the entailntaision based on a certain

threshold (learned from corpus).

The outline of the information displayed on eachexknent is the next one:
Contingency matrix.

Evaluation matrix.

Comparison with previous wok.

Accuracy depending on task.

The experiments are divided by the RTE Challengsioes (i.e. RTE-1, RTE-2, and

RTE-3).

4.2.3.1. Experiment 1

The first experiment is based on use the non-synumaeasure. The entailment decision is

as follows:

Table4.3: Entailment decision 1

if non-symmetric{,H) > non-symmetridq,T) then TRUE
else FALSE

39



In table 4.3 we see that the entailment decisidragcally penalize a T—H pair when
the H— T relation is stronger than the% H relation. Therefore the hypothesis H is more
probably an effect than the text T. Therefore inigre probable that the text T implies the
hypothesis H. First, we present the method appbethe RTE-1. The contingency table,
Table 4.4 show how many times the method misclasisthe T-H pairs (i.efp andtn) and

how many times the method its right. From this éaldle can obtain some measures to
evaluate the entailment decision.

Table4.4: RTE-1 contingency matrix results

| true false
true 257 245
false 143 155

Table 4.4 also shows that our approach tends ttrsay

Table4.5: RTE-1 evaluation measures

Accuracy Precision Recall F-measure
0.51 0.51 0.64 0.57

From table 4.5 this approach obtains a better Irébah precision. Therefore the

entailment decision got right the proportion of tagget items that the system selected.

Table4.6: RTE-1 comparison with previous results

M ethod Accuracy
GLICKMAN 0.56
LEVENSHTEIN 0.53
C-E 0.51
BLEU 0.49

To compare our approach with previous works we thseaccuracy measure (i.e. the
most common measure in the RTE Challenge).The gezpmeasure is compared to non-
symmetric measure. We compare out approach with

« Bleu algorithm RTE baseline (Perez and Alfonsea52.
« Probabilistic measure (Glickman et al 2005).

« Levenshthein modified measure (Tatar et al. 2007).
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In table 4.6 the results are show. Thus the bestilickman. Our measure is the last
one compare to the non-symmetric measures. Ourureeasly outperforms the Bleu
algorithm.

RTE-1 Accuracy depending on task

3 RTE-1_BLEU

[0 RTE-1 C-E

EFf RTE-1_GLICKMAN
3 RTE-1_LEVENSHTEIN

Accuracy
o
(%]
1
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IE MT
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=
o
e
e
B
o
=
0
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Figure4.3: RTE-1 comparison with previousresults by tasks

The results of our approach were the lowest betwkemon-symmetric measures in
general. So if we make a comparison depending oh tsk. We see that our measure

outperforms the other non-symmetric measures iresafithe tasks. These tasks are:

- QA
T
. MT.

For the RTE-2 the scores did not varied too mudie Tendency to say true of the

method is the same, Table 4.7.

Table 4.7: RTE-2 contingency matrix
| true false

true 289 271
false 111 129
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Table 4.8: RTE-2 evaluation measures

Accuracy Precision Recall F-measure
0.52 0.51 0.72 0.60

The recall and precision increases in comparisdh thie past data set, Table 4.8.

Table 4.9: RTE-2 comparison with previous results

Method Accuracy

CORLEY 0.58
BLEU 0.53
C-E 0.52

For the RTE-2 we compare our method with:

« Bleu algorithm.

- WordNet modified similarity measures (Corley anchilcea, 2005).
Also out method only outperforms the baseline.

RTE-2 Accuracy depending on task
1 —

[ RTE-2 BLEU
(0 RTE-2_C-E
4 | EFA RTE-2_CORLEY

Accuracy
o
(%]
L
|

(=]

T T T | T T | T T | T T T |
IE IR QA SUM
Tasks

Figure 4.4: RTE-2 comparison with previous results by tasks

In the comparison by task our method did not pawfggsm the method of Corley et al.
(2009).
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INRTE-3 the tendency to say true is the same. &hdency to say true increase in every

data set.

Table 4.10: RTE-3 contingency matrix

‘ true false
true 303 268
false 107 122

Table4. 11: RTE-3 evaluation measures

Accuracy Precision Recall F-measure
0.53 0.53 0.73 0.61

Also the results did not varied too much from oteealuations.

Table 4.12: RTE-3 comparison with previous results

Method Accuracy

CORLEY 0.63
C-E 0.53
BLEU 0.50

Corley’s measure is still the best one. The measeaehes the highest accuracy over
the tree data sets.

RTE-3 Accuracy depending on task

4 | &3 rRTE3 BLEU
(I0 RTE-3_C-E
EEf RTE-3_CORLEY

0.5 —

Accuracy

IE IR QA SUM

Figure 4.5: RTE-3 comparison with previousresults by task
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Almost the same result than the past data set weno& outperform the modified

WordNet measure from Corley et al. (2009).

4.2.3.2. Experiment 2

The second experiment is based on use the non-syimnmeasure. The entailment

decision is as follows:

Table 4.13: entailment decision 2

if non-symmetric{,H) > threshold then
TRUE
else

FALSE

In table 4.13 we see that the entailment decis@imilar to a symmetric approach. We
take a threshold from the test set to decide ifkd pair is true or false. First we introduce

the results of using different thresholds:

Table 4.14: RTE evaluation measures with entailment decision 2 and a threshold of 0.1

Dataset Accuracy Precision Recall F-measure

RTE-1 0.51 0.51 0.80 0.62
RTE-2 0.50 0.50 0.75 0.60
RTE-3 0.53 0.53 0.7 0.63

Table4.15: RTE evaluation measur es with entailment decision 2 and a threshold of 0.2

Dataset Accuracy Precision Recall F-measure

RTE-1 0.50 0.50 0.56 0.53
RTE-2 0.50 0.50 0.50 0.50
RTE-3 0.53 0.54 0.53 0.53
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Table 4.16: RTE evaluation measur es with entailment decision 2 and a threshold of 0.3

Dataset Accuracy Precision Recall F-measure

RTE-1 0.51 0.52 0.40 0.45
RTE-2 0.50 0.51 0.33 0.40
RTE-3 0.52 0.55 0.36 0.43

The decision of the threshold used on the compagsperiments was to maximize the

precision. Because in previous experiments thegoecmeasure was very low.

Table4.17: RTE-1 contingency matrix

| true false
true 161 147
false 239 253

In Table 4.17 we can see that the tendency changetfue to false. Thus this approach is
stricter with tag a T-H pair as “true”.

Table 4.18: RTE-1 comparison with previous results

M ethod Accuracy
GLICKMAN 0.56
LEVENSHTEIN 0.53
C-E 0.51
BLEU 0.49

Comparing to the other measures there is no sogmfichanges in accuracy.
In the comparison depending on task our methodeofatpns in:

. IE.
- QA
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RTE-1 Accuracy depending on task
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Figure 4.6: RTE-1 comparison with previousresults by tasks

For the RTE-2 the tendency to say false continliable 4.19.

Table 4.19: RTE-2 contingency table

‘ true false
true 161 147
false 239 253

Table 4.20: RTE-2 evaluation with previous results

M ethod Accuracy
GLICKMAN 0.56
LEVENSHTEIN 0.53
C-E 0.50
BLEU 0.49

Out method outperforms the bleu algorithm but & ltwer to the other non-symmetric
measures. The threshold approach which is morelasirto the other non-symmetric

approaches did not show to be good in this data set
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RTE-2 Accuracy depending on task
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Figure 4.7: RTE-2 comparison with previous results by tasks

In Figure 4.7 like the other datasets our methadddit outperform in any task.

For the RTE-3 the results did not varied respethéoother data sets, Tables 4.21, 4.22,
and Figure 4.8.

Table4.21: RTE-3 contingency matrix
‘ true false

true 161 147
false 239 253

Table 4.22: RTE-3 comparison with previous results

M ethod Accuracy
GLICKMAN 0.56
LEVENSHTEIN 0.53
C-E 0.52
BLEU 0.49
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RTE-3 Accuracy depending on task
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Figure 4.8: RTE-3 comparison with previous results by tasks

Therefore these results show us the low performariceur measure. We decide to
make some other experiments now over the jointofiske symmetric and non symmetric

measures.

4.2.4. Symmetric and Non-symmetric Meta-classifier

It has been observed for related systems that &ication of separately trained features in
the machine learning component can lead to an Wbvémprovement in system
performance, in particular if features from a moM®rmed component and shallow ones
are combined (Hickl et al. 2006; Bos and Markeb)@and Butchart 2007).

One of the main problems when machine-learningsiflass are employed in practice is
to determine whether classifications assigned tw mestances are reliable. The meta-
classifier approach is one of the simplest appresicto this problem. Given a base
classifiers, the approach is to learn a meta-dlasghat predicts the correctness of each
instance classification of the base classifieree $burces of the meta-training data are the

training instances. The meta-label of an instamcBcates reliable classification, if the
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instance is classified correctly by a base classifotherwise, the meta-label indicates
unreliable classification. The meta-classifier pthe base classifiers form one combined
classifier. The classification rule of the combirgaissifier is to assign a class predicted by
the base classifier to an instance if the metasiflas decides that the classification is
reliable.

Thus some questions on how to design a meta-dkrssit:

« What type of base classifiers do we have to learmfeta-classifier, for what type of
data?

« What is the role of the accuracy of the base diassiin the whole scheme?
- How do we have to represent meta-data?

+ How can we have to generate meta-data?

4.2.5. Experimental Design

To answer the previous questions we designed a-cretsifier as follows:
+  We used symmetric and non-symmetric measures achassifiers.

« We chose the best symmetric measure (optimizingracyg).

+ We represented the T-H pairs as a BoW.

- We used as meta-data the RTE Challenge test sets.

4.2.6. Experimental Results

In this subsection we compare the results of thearolassifier to each base classifier. Also

like in the previous part we develop two experimsent

- Experiment 1: non-symmetric measure without thriesh(base classifier) and

symmetric cosine.

- Experiment 2: non-symmetric measure with threst{blse classifier) and symmetric

cosine.
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4.2.6.1. Experiment 1

The first experiment uses as base classifiers tissne measure and our non-symmetric

measure (Experiment 1: > H>H—-T).

B AC-BE
0 AE-BC
B AC-BC
[ AE-BE

Figure 4.9: RTE-1 meta-classifier coverage

In figure 4.9 it is show percentage of the coverafthe different base classifiers over
the RTE-1 development data set. Whéreneans our approach amimeans the cosine
measure. ThusC means correct classification aril means a misclassification. For
example, AC means that the non-symmetric measura gght classification.

Therefore more T-H pairs could be resolved alsoth® symmetric and the non-
symmetric measures. Following the examples resobyethe symmetric measure and the
non-symmetric at last. Finally the 25.57% of thetamces could not be resolved by any

measure.

Table 4.23: RTE-1 contingency table

| true false
true 279 247
false 121 153

So our meta-classifier has the tendency to say Tralele 4.23 Thus from table 4.24 we

see an overall increase in the evaluation measwersthe test data set.
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Table 4.24: RTE-1 evaluation measures

Accuracy Precision Recall F-measure
0.54 0.53 0.68 0.60

RTE-1 Accuracy depending on task

[ RTE-1 C-E
(I RTE-1_COSINE
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Accuracy
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=
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Figure 4.10: RTE-1 comparison with previousresults

The meta-classifier only outperform in the QA task.

The cosine measure by itself outperform in theofeihg tasks:
PP.

RC.

IE.

CD.

The non-symmetric measure outperform in the folfmptiasks:
IR.

MT.

QA.

In the RTE-2 development data set the coveragessalte the next: Figure 4.11.
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EEm AC-BE
B AE-BC
8 AC-BC
BN AE-BE

Figure4.11: RTE-2 meta-classifier coverage

The behaviour of the coverage is similar to the RT&evelopment data set. Where
most of the T-H pairs can be resolved by the twagigms: the symmetric measure and

the non-symmetric measure.

Table 4.25: RTE-2 contingency matrix

‘ true false
true 296 267
false 104 133

Table 4.26: RTE-2 evaluation measures

Accuracy Precision Recall F-measure
0.53 0.52 0.70 0.61
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RTE-2 Accuracy depending on task
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Figure 4.12: RTE-2 comparison with previousresults by tasks

Following we present the results over the RTE-3ettgument data set (coverage) and

test data set.

Il AC-BE
Il AE-BC
[ AC-BC
I AE-BE

Figure4.13: RTE-3 meta-classifier coverage

Table4.27: RTE-3 contingency table

‘ true false
true 314 230
false 96 160
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Table 4.28: RTE-3 evaluation measures

Accuracy Precision Recall F-measure
0.59 0.57 0.76 0.65
RTE-3 Accuracy depending on task

| | =2 RTE-3.CE
(I RTE-3_COSINE
1 | EFF RTE-3_META-CLASSIFIER
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Figure 4.14: RTE-3 comparison with previousresults by tasks

4.2.6.2. Experiment 2

In this subsection we present the results of theore meta-classifier over the RTE
Challenge. In the RTE-1 and RTE-2the results didachieve great differences against the
Experiment 1. Thus in the RTE-3 the system achithe best accuracy of all our

experiments with 0.61.
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BN AC-BE
BB AE-BC
@ AC-BC
[ AT

Figure4.15: RTE-1 meta-classifier coverage

Table 4.29: RTE-1 contingency table

‘ true false
true 235 202
false 165 198

Table 4.30: RTE-1 evaluation measures

Accuracy Precision Recall F-measure
0.54 0.53 0.58 0.56

The results showed an improvement using a metaiilasthan only use the non-

symmetric measure by itself.
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RTE-1 Accuracy depending on task
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Figure4.16: RTE-1 comparison with previousresults

In Figure 4.16 it is shown the meta-classifier oolyperform in the QA task.
The next tables show the results over the RTE-2l€Hge.

N AC-BE
[ AE-BC
[ AC-BC
N AE-BE

Figure4.17: RTE-2 meta-classifier coverage
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Table 4.31: RTE-2 contingency matrix

‘ true false
true 227 208
false 173 192

Table 4.32: RTE-2 evaluation measures

Accuracy Precision Recall F-measure
0.52 0.52 0.56 0.54

RTE-2 Accuracy depending on task

[ RTE-2_C-E-T
[T RTE-2_COSINE
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Figure 4.18: RTE-2 comparison with previousresults by tasks

In the RTE-3 we achieve the better results for apyproach, comparing it to the other
results in our research. Thus the results to thE-BTvere competitive to other participants

in the same Challenge.
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13.12%

Figure4.19: RTE-3 meta-classifier coverage

Table 4.33: RTE-3 contingency matrix

‘ true false
true 264 163
false 146 227

Table 4.34: RTE-3 evaluation measures

Accuracy Precision Recall F-measure

0.61 0.61 0.64 0.63

Accuracy

RTE-3 Accuracy depending on task

i [ RTE-3_C-ET
[TD RTE-3_COSINE
7 B RTE-3_META-CLASSIFIER —
0.5 TTTH H
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IE IR QA SUM
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Figure 4.20: RTE-3 comparison with previousresults by tasks
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4.3. Conclusion

We proposed a non-symmetric similarity measureht RTE. Therefore our method is
unsupervised which is no language dependent.

We have shown that our measure has a lower accthranythe state of the art methods
and outperforms the RTE baseline. These resultsignéicant because they are based on a
very simple algorithm that relies on co-occurrenafesausal pairs.

We once more confirmed that the web could be usexlaxical resource for RTE.

In our future work we will explore the use of di#at meta-features for the meta-
classifier, as well as linguistically-motivated mdeatures (such as a syntactic unit) and

evaluate our method against the RTE machine leguapproaches.
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5.Conclusions

In this thesis we used a variant of the Lesk atborifor the WSD task based on web
counts collected with a search engine. We propasatkw non-symmetric similarity

measure for the RTE based on word counts colldobed corpus of causal pairs.

We have shown that our variant outperforms somek Lbased methods and
outperforms the top unsupervised methods of thes&Sah-2 exercise. These results are
significant because they are based on a very siaigtegithm that relies on co-occurrences

scores to the senses of a target word.

We have also shown that our non-symmetric measaseahlower accuracy than the

state of the art methods. So our method outperfthe&®TE baseline.

We once more confirmed that the web could be used kxical resource for WSD and
RTE.

In our future work we will explore the use of a W&iethod in a RTE approach. Our
hypothesis is based on the Yarowsky algorithm (Maky, 1995). The Yarowsky
algorithm is an unsupervised learning algorithm YWED that uses the "one sense per
collocation” and the "one sense per discourse" eotigs of human languages for word
sense disambiguation. From observation, words tenexhibit only one sense in most
given discourse and in a given collocation. Theeefbwe treat the T-H pair as parts of the
same discourse they will exhibit one sense perodise property. This property will be

useful to entailment decision.
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5.1. Contributions

The main contributions of this thesis are:

A variant to the Lesk algorithm for WSD and its teafre implementation, which
outperforms some Lesk based methods and outperfibventop unsupervised methods

of the Senseval-2 exercise.

New symmetric similarity measure for RTE and it$tware implementation, which

outperforms the baseline system.

A meta-classifier based on a symmetric measureaamoh-symmetric measure, which

has a competitive accuracy.
A system for RTE algorithm evaluation.
A database of the RTE Challenges.

A database of cause-effect pairs.

5.2. Publications

Miguel Angel Rios Gaona, Salvador Godoy Calderdexander Gelbukh. Word Sense
Disambiguation with the KORA2 Algorithm. Advances in Intelligent and Information
Technologies. Special issue of J. Research in Congp&cience, ISSN 1870-4069, N
38, 2008, pp. 263-270.

Miguel Angel Rios Gaona, Alexander Gelbukh, SiB§indyopadhyay. Web-based
Variant of the Lesk Approach to Word Sense Disamdiign. MICAI 2009.
Proceedings of 2009 Eighth Mexican International nf€cence on Atrtificial
Intelligence, ISBN 978-0-7695-3933-1, IEEE CS Pré€®9, pp. 103-107.

Miguel Angel Rios Gaona, Alexander Gelbukh, SiBgindyopadhyay. Recognizing
Textual Entailment with Statistical Methods. MCP®&L2, 2nd Mexican Conference on

Pattern Recognition (to be published).
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« Miguel Angel Rios Gaona, Alexander Gelbukh, Siggindyopadhyay. Recognizing
Textual Entailment Using a Machine Learning AppioddICAI 2010. Proceedings of

2010 9th Mexican International Conference on Aaidi Intelligence (in review).
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