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Resumen 
En esta tesis estudiamos métodos estadísticos aplicados en la solución de tareas del 

procesamiento del lenguaje natural. Estas tareas son: la desambiguación de sentidos de las 

palabras y el reconocimiento de implicación textual. 

Primero presentamos una nueva medida para la asignación del sentido a una palabra 

ambigua basada en una modificación al algoritmo simple de Lesk. Usamos la coocurrencia 

de las palabras para seleccionar el sentido correcto de una palabra. Se utilizó información 

estadística encontrada en la Web para medida. En los datos SemCor nuestro método tiene 

una cobertura del 100%, lo que significa siempre da una respuesta y una precisión de 0.47. 

En los datos de Senseval-2, nuestra variante del método de Lesk tiene una precisión de 0.45 

y supero a varios de los métodos basados en Lesk, también alcanzó una cobertura del 

100%. 

Finalmente propusimos una nueva medida no simétrica de causa-efecto aplicada en la 

tarea de reconocimiento de implicación textual. En primer lugar se realizaron búsquedas en 

un corpus por oraciones que contiene el marcador de discurso “porque”. Con estas 

oraciones se creó un conjunto de pares de causa y efecto. El reconocimiento de la 

implicación se basa en medir la relación causa-efecto entre el texto y la hipótesis utilizando 

las frecuencias relativas de las palabras de los pares de causa-efecto. En los resultados 

hemos superado el baseline, en los tres corpus de prueba del PASCAL (Reconocimiento de 

implicación textual, RTE).La medida muestra ser buena para determinar la clase 

“verdadero” y mostró ser menos precisa en la clase “falso”. 
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Abstract 
We study statistical methods based on the use of information retrieved from the Web in 

attempt to solve two Natural Language Processing tasks: Word Sense Disambiguation and 

Recognizing Textual Entailment. 

For Word Sense Disambiguation, we present a measure for semantic relatedness based 

on the simple Lesk algorithm. We measure kind of mutual information between the gloss of 

each sense of the word and the context of the word: namely, the scores of the sense s is the 

frequency (as the number of webpages found by Google) of the context where the word is 

substituted by the gloss of the sense s, divided by the frequency of the gloss itself (again, as 

the number of webpages found by Google).  In the SemCor dataset our method has the 

coverage of 100% (i.e., our method always gives some answer) and an accuracy of 0.47.  

On the Senseval 2 dataset, our method has an accuracy of 0.45, which outperforms some 

other Lesk-based methods (again with 100% coverage). 

For Recognizing Textual Entailment, we propose a new cause-effect non-symmetric 

measure. First, we search over a large corpus for sentences which contain the discourse 

marker “because” and create a database of cause-effect pairs. The entailment recognition is 

based on measuring the probability of a cause-effect relation between the Text and the 

Hypothesis using the relative frequencies of words from the cause-effect pairs. Our results 

outperform the baseline system, over the three test sets of the PASCAL Recognizing 

Textual Entailment Challenges (RTE). The measure is good at determining the “true” class, 

while it is less accurate at the “false” class. 
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1. Introduction 
In our time most of the information is encoded in the form of natural language text. 

Newspapers, magazines, radio, TV and the World Wide Web (WWW) are examples of the 

most complex information medium in our world: human language. Therefore with these 

resources comes the problem of finding a specific datum in millions of documents. A 

human reader will take many years to do this task. Thus computers can process (less 

accurate than a human) the millions of available documents in few time. 

The idea of giving computers the ability to process human language is as old as the idea 

of computers themselves (Manning and Shutze, 1999). The goal of the Natural Language 

Processing (NLP) is to design and build software that will analyze, understand, and 

generate languages that humans use naturally. This goal is not easy to reach. 

"Understanding" language means, among other things, knowing what concepts a word or 

phrase stands for and knowing how to link those concepts together in a meaningful way. 

Natural language system is easiest for humans to learn and use and hardest for a computer 

to master. Long after machines have proven capable of solving complex mathematical 

problems with speed and grace, they still fail to master the basics of our spoken and written 

languages.  

Research in NLP has been going on for several decades dating back to the late 1940’s. 

Machine translation (MT), task of translating texts from one natural language to another, 

was the first computer-based application related to NLP. Early work in MT took the 

simplistic view that the only differences between languages resided in their vocabularies 

and the permitted word orders. Systems developed from this perspective simply used 

dictionary-lookup for appropriate words for translation and reordered the words after 

translation to fit the word-order rules of the target language, without taking into account the 

lexical ambiguity inherent in natural language. Thus this produced poor results. 

Natural language processing provides both theory and implementations for a range of 

applications. In fact, any application that utilizes text is a candidate for NLP. The most 

frequent applications utilizing NLP include the following: 
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• Information Retrieval (IR) is finding material (usually documents) of an unstructured 

nature (usually text) that satisfies a user information need from within large collections 

(usually stored on computers). 

• Information Extraction (IE) focuses on the recognition, tagging, and extraction into a 

structured representation, certain key elements of information, e.g. persons, companies, 

locations, organizations, from large collections of text. These extractions can then be 

utilized for a range of applications including question-answering, visualization, and data 

mining. 

• Question Answering (QA) in contrast to Information Retrieval, which provides a list of 

potentially relevant documents in response to a user’s query, QA provides the user with 

either just the text of the answer itself or answer-providing passages. 

• Summarization (SUM) an implementation that reduces a larger text into a shorter, yet 

richly constituted abbreviated narrative representation of the original document. 

• Machine Translation is the application of computers to the task of translating texts from 

one natural language to another. 

• Dialogue Systems perhaps the omnipresent application of the future, in the systems 

envisioned by large providers of end-user applications. Dialogue systems, which 

usually focus on a narrowly defined application, e.g. your refrigerator or home sound 

system. 

The most explanatory method for presenting what actually happens within a NLP 

system is by means of the “levels of language” approach. This is also referred to engage the 

complex language behavior we require of various kinds of knowledge about language: 

• Phonetics and Phonology—knowledge about linguistic sounds. 

• Morphology—knowledge of the meaningful components of words. 

•  Syntax—knowledge of the structural relationships between words. 

•  Semantics—knowledge of meaning. 

• Pragmatics—knowledge of the relationship of meaning to the goals and intentions of 

the speaker. 

• Discourse—knowledge about linguistic units larger than a single utterance. 
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1.1. Research Problems and Why they are Worthwhile 
Studying 

Ambiguity resolution improves the quality of the solution in most NLP tasks. A word is 

ambiguous if it has multiple senses, i.e., alternative meanings, for example: 

• An MT system translates bill from English to Spanish. Should it translate it as pico 

“bird jaw” or cuenta “invoice”? 

• IR retrieves all the web pages about cricket, so the sport or the insect. 

• QA answer the query “What is George Miller’s position on gun control?”, so George 

Miller, the psychologist or congressman. 

Word Sense Disambiguation (WSD) is the task of selecting the most appropriate 

meaning for a polysemous word based on the context in which it occurs. For example, in 

the phrase “The bank down the street was robbed”, the word bank means a financial 

institution, while in “The city is on the Western bank of Jordan”, this word refers to the 

shore of a river. WSD is an intermediate task (Volk, 2002) and as we see above it is used in 

many applications. 

Also another fundamental phenomenon in language is the variability of a semantic 

expression, which the same meaning could be expressed or infer from different text. For 

example, the query “What does Peugeot manufacture?” A QA system must be able to 

recognize, or infer, and answer which may be expressed differently from the query. For 

example, from text “Chrétien visited Peugeot’s newly renovated car factory” entails the 

hypothesized answer from “Peugeot manufactures cars”. 

Recognizing Textual Entailment (RTE) has been proposed as a generic task that 

captures major semantic inference needs across many natural language processing 

applications. This task is defined as a directional relationship between pair of text 

expressions, denoted by T -the entailing “Text” and H -the entailed “Hypothesis”. We say 

that T entails H if the meaning of H can be inferred from the meaning of T as could 

typically de interpreted by people. 

Moreover, many NLP tasks have strong links to entailment: in SUM, a summary should 

be entailed by the text; Paraphrase recognition (PP) can be seen as mutual entailment 
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between a text T and a hypothesis H; in IE, the extracted information should also be 

entailed by the text; in QA the answer obtained for one question after the IR process must 

be entailed by the supporting snippet of text. 

In this thesis we proposed two statistical methods based on the use of information 

retrieved from the Web as an attempt to resolve the WSD task and the RTE task. Our WSD 

method outperformed most of the WSD approaches. But, our RTE method only 

outperforms the baseline method. Thus we developed a meta-classifier based on our 

method which has a competitive performance. Finally some contributions of our work are: 

Publications.  

1.2. Research Methods in Brief 

 We proposed two statistical approaches based on the use of the Web as a corpus as an 

attempt to resolve the WSD task and the RTE task.  

For the WSD task we propose a variant of the Lesk algorithm. The Lesk algorithm 

basically disambiguates a word by measuring the word overlap of each definition of the 

ambiguous word against the context of the ambiguous word. Therefore we propose a 

variation of this scheme. Instead of measure the word overlap we measure the frequency 

count of the definition of a sense and the context and choose the sense with the best score. 

Most of the approaches for the RTE task consist in measure the similarity between the 

Text and the Hypothesis. Thus many of these measures are symmetric and the RTE task is a 

directional relation between the Text and the Hypothesis. So, we propose a non-symmetric 

similarity measure for the RTE task. Our non-symmetric measure is based on find a causal 

relation between the Text and the Hypothesis. We measure the causal relation from the 

frequency count of words from sentences with the word because and decide if the Text 

Hypothesis pair is true or false.  
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1.3. Goal of the Thesis 

The main goal of our research is to use the Web as a corpus to develop NLP statistical 

approaches. 

Our particular goals are: 

• Propose a new WSD approach based on a variant of the Lesk algorithm. 

• Propose a new RTE approach based on a non-symmetric similarity measure. 

1.4. Structure of the Thesis 

The thesis is organized as follow: 

• Chapter 2. The related literature is shown in this section. 

• Chapter 3. In this chapter we show the method, results, and a comparison with previous 

works of the WSD approach. 

• Chapter 4. The RTE approaches, results and a comparison with previous works are 

showed in this chapter. 

• Chapter 5. The final conclusions and future work are drawn. 
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2. Related Bibliography 
In this chapter we first show the main approaches in NLP. Second, we show how the 

statistical approaches are use in WSD and finally, we show the main approaches in RTE.  

NLP approaches fall roughly into four categories: symbolic, statistical, connectionist, 

and hybrid. Symbolic and statistical approaches have coexisted since the early days of this 

field. Connectionist NLP work first appeared in the 1960’s.  

For a long time, symbolic approaches dominated the field. In the 1980’s, statistical 

approaches regained popularity as a result of the availability of critical computational 

resources and the need to deal with broad, real-world contexts. Connectionist approaches 

also recovered from earlier criticism by demonstrating the utility of neural networks in 

NLP. This section examines each of these approaches in terms of their foundations, typical 

techniques, differences in processing and system aspects, and their robustness, flexibility, 

and suitability for various tasks. 

Symbolic approaches perform deep analysis of linguistic phenomena and are based on 

explicit representation of facts about language through well-understood knowledge 

representation schemes and associated algorithms. In fact, the description of the levels of 

language analysis in the preceding section is given from a symbolic perspective. 

The primary source of evidence in symbolic systems comes from human-developed 

rules and lexicons. A good example of symbolic approaches is seen in logic or rule-based 

systems. In logic-based systems, the symbolic structure is usually in the form of logic 

propositions. 

Manipulations of such structures are defined by inference procedures that are generally 

truth preserving. Rule-based systems usually consist of a set of rules, an inference engine, 

and a workspace or working memory. Knowledge is represented as facts or rules in the 

rule-base. The inference engine repeatedly selects a rule whose condition is satisfied and 

executes the rule. 
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Another example of symbolic approaches is semantic networks. First proposed by 

Quillian (2000) to model associative memory in psychology, semantic networks represent 

knowledge through a set of nodes that represent objects or concepts and the labeled links 

that represent relations between nodes. The pattern of connectivity reflects semantic 

organization, that is; highly associated concepts are directly linked whereas moderately or 

weakly related concepts are linked through intervening concepts. Semantic networks are 

widely used to represent structured knowledge and have the most connectionist flavor of 

the symbolic models. 

Symbolic approaches have been used for a few decades in a variety of research areas 

and applications such as information extraction, text categorization, ambiguity resolution, 

and lexical acquisition. Typical techniques include: explanation-based learning, rule-based 

learning, inductive logic programming, decision trees, conceptual clustering, and K nearest 

neighbor algorithm. 

Statistical approaches employ various mathematical techniques and often use large text 

corpora to develop approximate generalized models of linguistic phenomena based on 

actual examples of these phenomena provided by the text corpora without adding 

significant linguistic or world knowledge. In contrast to symbolic approaches, statistical 

approaches use observable data as the primary source of evidence. A frequently used 

statistical model is the Hidden Markov Model (HMM) inherited from the speech 

community. HMM is a finite state automaton that has a set of states with probabilities 

attached to transitions between states. Although outputs are visible, states themselves are 

not directly observable, thus “hidden” from external observations. Each state produces one 

of the observable outputs with a certain probability. 

Statistical approaches have typically been used in tasks such as speech recognition, 

lexical acquisition, parsing, part-of-speech tagging, collocations, statistical machine 

translation, and statistical grammar learning, and so on. 

Similar to the statistical approaches, connectionist approaches also develop generalized 

models from examples of linguistic phenomena. What separates connectionism from other 

statistical methods is that connectionist models combine statistical learning with various 

theories of representation - thus the connectionist representations allow transformation, 

inference, and manipulation of logic formulae. In addition, in connectionist systems, 
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linguistic models are harder to observe due to the fact that connectionist architectures are 

less constrained than statistical ones.  

Generally speaking, a connectionist model is a network of interconnected simple 

processing units with knowledge stored in the weights of the connections between units. 

Local interactions among units can result in dynamic global behavior, which, in turn, leads 

to computation. Some connectionist models are called localist models, assuming that each 

unit represents a particular concept. For example, one unit might represent the concept 

“mammal” while another unit might represent the concept “whale”. Relations between 

concepts are encoded by the weights of connections between those concepts. Knowledge in 

such models is spread across the network, and the connectivity between units reflects their 

structural relationship. Localist models are quite similar to semantic networks, but the links 

between units are not usually labeled as they are in semantic nets. They perform well at 

tasks such as word-sense disambiguation, language generation, and limited inference. 

Other connectionist models are called distributed models. Unlike that in localist models, 

a concept in distributed models is represented as a function of simultaneous activation of 

multiple units. An individual unit only participates in a concept representation. These 

models are well suited for natural language processing tasks such as syntactic parsing, 

limited domain translation tasks, and associative retrieval.  

To summarize, symbolic, statistical, and connectionist approaches have exhibited 

different characteristics, thus some problems may be better tackled with one approach 

while other problems by another. In some cases, for some specific tasks, one approach may 

prove adequate, while in other cases, the tasks can get so complex that it might not be 

possible to choose a single best approach. 

2.1. Approaches to Word Sense Disambiguation 

The problem of word sense disambiguation has been described as AI-complete, that is, a 

problem which can be solved only by first resolving all the difficult problems in artificial 

intelligence (AI), such as the representation of common sense and encyclopedic knowledge 

(Pradhan et al. 2007). 
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To address this task, different methods have been used, with various degrees of success. 

These methods can be classified depending on the type of knowledge they use to 

accomplish the task. The main statistical approaches to the WSD task are supervised and 

unsupervised disambiguation. 

2.1.1. Supervised Methods 

Supervised methods use a labelled training set to solve the task. They have been shown to 

be the most efficient ones (Pradhan et al. 2007). However, the lack of large sense tagged 

corpora limits this kind of methods, and it is difficult and expensive to create such corpora 

manually. 

Several research projects take a supervised learning approach to WSD (Brown et al. 

1991). The goal is to learn to use surrounding context to determine the sense of an 

ambiguous word. 

Often the disambiguation accuracy is strongly affected by the size of the corpus used in 

the process. Typically, 1000–2500 occurrences of each word are manually tagged in order 

to create a corpus. From this about 75% of the occurrences are use for the training phase 

and the remaining 25% are use for the testing (Mihalcea and Moldovan, 1999). Corpus like 

interest and line were the most well studied in literature. 

The Interest dataset (a corpus where each occurrence of the word interest is manually 

marked up with one of its 6 senses) represent the context of an ambiguous word with the 

part-of-speech of three words to the left and right of interest, a morphological feature 

indicating if interest is singular or plural, an unordered set of frequently occurring 

keywords that surround interest, local collocations that include interest, and verb-object 

syntactic relationships. A nearest-neighbour classifier was employed and achieved an 

accuracy of 0.87 over repeated trials using randomly training and test sets. Ng and Lee 

(1996), and Pedersen et al. (2000) present studies that utilize the original Bruce and Wiebe 

feature set and include the interest data .The first compares a range of probabilistic model 

selection methodologies and finds that none out perform the Naive Bayesian classifier, 

which attains accuracy of 0.74. The second compares a range of machine learning 
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algorithms and finds that a decision tree learner 0.78 and a Naïve Bayesian classifier 0.74 

are most accurate. 

The Line dataset (similarly, a corpus where each occurrence of the word line is marked 

with one of its 6 senses) was first studied by Leacock (1993). They evaluate the 

disambiguation accuracy of a Naive Bayesian classifier, a content vector, and a neural 

network. The context of an ambiguous word is represented by a bag-of-words (BoW) where 

the window of context is two sentences wide. When the Naive Bayesian classifier is 

evaluated words are not stemmed and capitalization remains. With the content vector and 

the neural network words are stemmed and words from a stop-list are removed. They report 

no significant differences in accuracy among the three approaches; the Naïve Bayesian 

classifier achieved an accuracy of 0.71, the content vector of 0.72, and the neural network 

0.76. 

This dataset was studied again by Mooney (1996), where seven different machine 

learning methodologies are compared. All learning algorithms represent the context of an 

ambiguous word using the BoW with a two sentence window of context. In these 

experiments words from a stop list are removed, capitalization is ignored, and words are 

stemmed. The two most accurate methods in this study proved to be a Naive Bayesian 

classifier 0.72 and a perceptron 0.71. 

Recently, the Line dataset was revisited by both Towell and Voorhees (1998), and 

Pedersen (1997). Take an ensemble approach where the output from two neural networks is 

combined; one network is based on a representation of local context while the other 

represents topical context. The latter utilize a Naive Bayesian classifier. In both cases 

context is represented by a set of topical and local features. The topical features correspond 

to the open-class words that occur in a two sentence window of context. The local features 

occur within a window of context three words to the left and right of the ambiguous word 

and include co-occurrence features as well as the PoS of words in this window. These 

features are represented as local and topical BoW and PoS. (Towell and Voorhees, 1998) 

report an accuracy of 0.87 while (Pedersen et al. 1997) report accuracy of 0.84. 
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2.1.2. Unsupervised Methods 

Unsupervised methods are based on unlabeled corpora. This resolves the knowledge 

acquisition bottleneck, at the cost of low accuracy. Unsupervised approaches often do not 

use any learning process; they only rely on a lexical resource, like WordNet (Miller, 1991), 

to carry out the WSD task. 

The wide used methods are the methods based on content vectors. The content vectors 

approach treats the ambiguous word context as a document in IR. Therefore a vector in an 

n-dimensional space (n the number of words in context) it is associated to each context. 

Each row in the vector contains a function of the frequency of each word in the context. 

Even in WSD many similarity measures between vectors were proven and this measures 

are enough different from the measures in IR. The similarity measures between vectors are 

used to develop sets of the most similar vectors by means of clustering. These sets can be 

considered as the senses of the ambiguous word. 

A main contribution to this approach is the algorithm of Schutze (1992) called context-

group discrimination. The context-group discrimination algorithm is similar to the method 

of Brown et al. (1991) which is a supervised method. The main difference between the 

Shutze method and the Naïve Bayesian classifier of Gale is that the context-group 

discrimination algorithm first takes a random sample of the parameters to later re-estimate 

the parameter by an Expectation-Maximization algorithm (EM). Thus from the random 

sample of the parameters is taken for every context of the ambiguous word the conditional 

probability of that word to be used in a particular context. This categorization is used for 

training and the EM maximizes the similarity of the data for the given model. 

Schutze (1992) proposes a method which avoids tagging each occurrence in the training 

corpus. Using letter fourgrams within a 1001 character window, his method first 

automatically clusters the words in the text, and each target word is represented by a vector; 

a sense is then assigned manually to each cluster, rather than to each occurrence. 

Assigning a sense demands examining 10 to 20 members of each cluster, and each sense 

may be represented by several clusters. This method reduces the amount of manual 

intervention but still requires the examination of a hundred or so occurrences for each 

ambiguous word. More seriously, it is not clear what the senses derived from the clusters 
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correspond to (Pereira et al. 1993); and they are not in any case directly usable by other 

systems, since it is derived from the corpus itself. 

Brown et al. (1991) and Gale et al. (1993) propose the use of bilingual corpora to avoid 

hand-tagging of training data. Their premise is that different senses of a given word often 

translate differently in another language (for example, pen in English is stylo in French for 

its writing implement sense, and enclos for its enclosure sense). By using a parallel aligned 

corpus, the translation of each occurrence of a word such as sentence can be used to 

automatically determine its sense. This method has some limitations since many 

ambiguities are preserved in the target language (e.g., French souris--English mouse); 

furthermore, the few available large-scale parallel corpora are very specialized (for 

example, the Hansard Corpus of Canadian Parliamentary debates), which skews the sense 

representation. 

Dagan et al. (1991) and Dagan and Itai (1994) propose a similar method, but instead of 

a parallel corpus use two monolingual corpora and a bilingual dictionary. This solves in 

part the problems of availability and specificity of domain that plagues the parallel corpus 

approach, since monolingual corpora, including corpora from diverse domains and genres 

are much easier to obtain than parallel corpora. 

Other methods attempt to avoid entirely the need for a tagged corpus, such as many of 

those cited in the section below (e.g., Yarowsky, 1992, who attacks both the tagging and 

data sparseness problems simultaneously). However, it is likely that, as noted for 

grammatical tagging (Mérialdo, 1994), even a minimal phase of supervised learning 

improves radically on the results of unsupervised methods. Research into means to 

facilitate and optimize tagging is ongoing; for example, an optimization technique called 

committeebased sample selection has been proposed (Engelson and Dagan, 1996), which, 

based on the observation that a substantial portion of manually tagged examples contribute 

little to performance, enables avoiding the tagging of examples that carry more or less the 

same information. Such methods are promising, although to our knowledge they have not 

been applied to the problem of lexical disambiguation. 
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2.2. Approaches to Recognizing Textual Entailment 

Entailment definition in formal semantics (Chierchia & McConnell-Ginet, 2001) is the 

following: 

A text T entails another text H if H is true in every circumstance (possible world) in 

which T is true. 

This definition imposes a strictness that is inappropriate to many practical NLP systems. 

The problem is addressed by the notion of applied textual entailment, as defined by Dagan 

and Glickman (2004), which takes an empirical evaluation approach. By this definition, a 

text T entails a hypothesis H, if, typically, a human reading T would infer that H is most 

likely true. The advantages of such a perspective for NLP are: the evaluation is performed 

using a human gold standard, as in other NLP tasks, and at the same time, common 

background knowledge is assumed. 

Other annotation guidelines for textual entailment, by Dagan and Glickman (2004): 

• Entailment is a directional relation; hypothesis must be entail by the text and not the 

contrary. 

• The hypothesis must be totally entail by the text and don’t include parts which couldn’t 

be inferred. 

• Cases in which the infer is probable high but not with absolute certain, should be judge 

as true. 

• The background knowledge about the world, must be typical to a normal reader of that 

kind of text (news domain); instead isn’t acceptable the know presupposition of high 

specific knowledge. 

Based on the applied textual entailment definition, the PASCAL Network of Excellence 

recently started the RTE Challenge (Dagan et al. 2005). A few samples of Text-Hypothesis 

(T-H) pairs from the first RTE-1 Challenge are shown bellow. 
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Table 2.1: T-H pairs examples 

From Table 2.1 we can see the main goals of the RTE. To create a dataset of T-H pairs 

of small text snippets, corresponding to the news domain. Examples were manually labeled 

for entailment. Participating systems were asked to decide for each T-H pair whether T 

entail H or not, giving True or False annotation as a system output. For this reason the 

datasets provided by the RTE Challenge organizers are intended to include typical T–H 

pairs that correspond to success and failure cases of actual text processing applications, 

dealing with tasks such as IE, IR, QA and SUM. They are divided into two balanced 

corpora: Development and Test datasets. 

The judgments (classifications) produced by the systems were compared to the gold 

standard. The percentage of matching judgments provides the accuracy of the run (the 

fraction of correct responses). As a second measure the Confidence-Weighted Score (cws, 

also known as Average Precision) was computed. Judgments of the test examples were 

sorted by their confidence (in decreasing order). 

For instance, in the RTE-1 Challenge (Dagan et al. 2004), the dataset was collected 

from different text processing application like IR, Comparable Documents (CD), Reading 

Comprehension (RC), QA, IE, Machine Translation (MT) and PP. The collected examples 

represent a range of different levels of entailment reasoning, based on lexical syntactic, 

TASK TEXT HYPOTHESIS ENTAILMENT 

IR 
iTunes software has seen strong sales 

in Europe. 
Strong sales for iTunes in 

Europe. True 

PP 
American Airlines began laying off 

hundreds of flight attendants on 
Tuesday, after a federal judge turned 
aside a union's bid to block the job 

losses. 

American Airlines will 
recall hundreds of flight 

attendants as it steps up the 
number of flights it 

operates. 

False 

QA 
The two suspects belong to the 30th 

Street gang, which became embroiled 
in one of the most notorious recent 
crimes in Mexico: a shootout at the 

Guadalajara airport in May, 1993, that 
killed Cardinal Juan Jesus Posadas 

Ocampo and six others. 

Cardinal Juan Jesus 
Posadas Ocampo died in 

1993. 
True 
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logical and world knowledge. In the end 567 examples were in the development dataset and 

800 in the test dataset, split into True/False examples. 

The main focus for the RTE-2 Challenge dataset was to provide more “realistic” T-H 

pairs. Dataset consist of 1600 T-H pairs divided into development and test datasets, each 

one containing 800 pairs. The organizers focused on four applications IR, IE, QA and 

SUM. 

RTE-3 Challenge followed the same structure of the previous versions. Something new 

was introduced, a resource pool, where participants had the possibility to share the same 

recourses. 

In 2008 the RTE-4 Challenge include the three-way decision of “YES”, “NO” and 

“UNKNOWN” to drive systems to make more precise informational distinctions; a 

hypothesis being unknown on the basis of a text should be distinguished from a hypothesis 

being shown false/contradicted by a text. The classic two-way RTE task was also offered, 

in which the pairs where T entailed H were marked as ENTAILMENT, and those where the 

entailment did not hold were marked as NO ENTAILMENT. The descriptions of the tasks 

are presented below: 

The three-way RTE task is to decide whether: 

• T entails H - in which case the pair will be marked as ENTAILMENT. 

• T contradicts H - in which case the pair will be marked as CONTRADICTION. 

• The truth of H cannot be determined on the basis of T - in which case the pair will be 

marked as UNKNOWN. 

The two-way RTE task is to decide whether: 

• T entails H - in which case the pair will be marked as ENTAILMENT. 

• T does not entail H - in which case the pair will be marked as NO ENTAILMENT. 

• The RTE-4 dataset was made of 1000 pairs (300 each for IE and IR, 200 each for SUM 

and QA). 
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2.2.1. Approaches by Language Levels 

The RTE approaches can be classified depending in which textual entailment phenomena 

address or the type of representation (levels of language) of the T-H pair. 

Vanderwende et al. (2005) examine the complete test set of RTE-1 with the purpose of 

isolating the pairs whose categorization can be accurately predicted based only on syntactic 

matching. The human annotation indicates that 37% of the entailments are decided merely 

at the syntactic level, this outperforms to 49% if the information of a general-purpose 

thesaurus is additionally added.  

Bar-Haim et al. (2006) take this idea a step further and annotate 30% of the RTE-1 test 

set at two strictly defined levels of entailment. Extending Vanderwende et al.’s work, they 

consider a lexical entailment level, which involves morphological derivations, ontological 

relations and lexical world knowledge, in addition to a lexical-syntactic level, which, on top 

of lexical transformations, contains syntactic transformations, paraphrases and coreference. 

Where the T-H pairs are decided 44% for the lexical and of 50% for the lexical-syntactic 

level. Clark et al. (2007) explore the requirements of RTE in a way that differs from the 

previous approaches in that it is not centered on the basic lexical-syntactic levels of 

entailment, but instead it investigates a wide range of phenomena involving lexical and 

world knowledge. Clark et al. manually annotate 25% of the positive entailment pairs in 

RTE-3 for thirteen distinct entailment phenomena. As we can see there are various levels of 

the entailment phenomena, classified under four main categories lexical, syntactic, 

semantic and logical.  

2.2.1.1. Lexical Level 

The approach in (Pérez and Alfonseca, 2005) consists in using the BLEU algorithm that 

works at the lexical level, to compareT-H pairs. Next, the entailment is judged as true or 

false according to BLEU’s output. Once the algorithm is applied, they had seen that the 

results confirm the use of BLEU as baseline for the automatic recognition of textual 

entailments. They showed that a shallow technique can reach around 50% of accuracy. In 
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order to recognize entailments using BLEU, the first decision is to choose whether the 

candidate text should be considered as part of the entailment (T) or as the hypothesis (H). 

In order to make this choice, they did a first experiment in which they considered the T part 

as the reference and the H as the candidate. This setting has the advantage that the T part is 

usually longer than the H part and thus the reference would contain more information that 

the candidate. 

2.2.1.2. Syntactic Level 

Graph distance/similarity measures are widely recognized to be powerful tools for 

matching problems and it was used with success in RTE-1 by Pazienza, Pennacchiotti and 

Zanzotto. Objects to be matched (two images, patterns, text and hypothesis in RTE task, 

etc.) are represented as graphs, turning the recognition problem into a graph matching task. 

Following (Dagan and Glickman, 2004), since the hypothesis H and text T may be 

represented by two syntactic graphs, the textual entailment recognition problem can be 

reduced to graph similarity measure estimation, although textual entailment has particular 

properties (Pazienza et al., 2005): 

• Classical graph problems, it is non-symmetric. 

• Node similarity can not be reduced to the label level (token similarity). 

• Similarity should be estimated also considering linguistically motivated graph 

transformations (nominalization and passivization). 

The tree edit distance algorithm (Kouylekov and Magnini, 2005) applied on the 

dependency trees of both the text and the hypothesis. If the distance (cost of the editing 

operations) among the two trees is below a certain threshold, empirically estimated on the 

training data, then we assign an entailment relation between the two texts. According to the 

approach described above, the following transformations are allowed: 

• Insertion: insert a node from the dependency tree of H into the dependency tree of T. 

When a node is inserted, it is attached to the dependency relation of the source label. 
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• Deletion: delete a node N from the dependency tree of T. When N is deleted, all its 

children are attached to the parent of N. It is not required to explicitly delete the 

children of N as they are going to be either deleted or substituted on a following step. 

• Substitution: change the label of a node N1 in the source tree into a label of a node N2 

of the target tree. Substitution is allowed only if the two nodes share the same part-of-

speech. In case of substitution, the relation attached to the substituted node is changed 

with the relation of the new node. 

2.2.1.3. Semantic Level 

The system proposed in (Bar-Haim et al. 2006) relies on a relatively deep linguistic 

analysis, which we complement with a shallow component based on word overlap.  

The system is based on three main components:  

• A linguistic analysis of text and hypothesis based primarily on LFG and Frame 

Semantics (Baker et al. 1998). 

• A computation of a match graph that encodes the semantic overlap between text and 

hypothesis. 

• A statistical entailment decision (Bar-Haim et al. 2006). 

Bos and Markert (2005) used several shallow surface features to model the text, hypothesis 

and their relation to each other. They expected some dependency between the surface string 

similarity of text and hypothesis and the existence of entailment. This string similarity 

measure uses only a form of extended word overlap between text and hypothesis, taking 

into account identity of words, as well as synonymy and morphological derivations 

revealed by WordNet (Fellbaum, 1998). 

To introduce an element of robustness into their approach, they used model builders to 

measure the “distance” from an entailment. The intuition behind this approach is as 

follows: If H is entailed by T, the model for T+H is not informative compared to the one for 

T, and hence does not introduce new entities. Put differently, the domain size for T+H 

would equal the domain size of T. In contrast, if T does not entail H, H normally introduces 

some new information (except when it contains negated information), and this will be 
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reflected in the domain size of T+H, which becomes larger than the domain size of T. It 

turns out that this difference between domain sizes is a useful way of measuring the 

likelihood of entailment. Large differences are mostly not entailments, small differences 

usually are. 

They use a robust wide-coverage CCG-parser (Bos et al. 2004) to generate fine-grained 

semantic representations for each T-H pair. The semantic representation language is a first-

order fragment used in Discourse Representation Theory (DRS) (Kamp and Reyle, 1993); 

including the recursive DRS structure to cover negation, disjunction, and implication. 

Given a T-H pair, a theorem prover can be used to find answers to the following 

conjectures: 

• T implies H (shows entailment). 

• T+H are inconsistent (shows no entailment). 

In the RTE-1, five groups used logical provers and offered deep semantic analysis. One 

system (Raina et al. 2005) transformed the text and hypothesis into logical formula like in 

Harabagiu et al. (2000) and it calculated the “cost” of proving hypothesis from text. In 

RTE-2 only two systems used logical inferences and one of the systems achieved the 

second result of the edition (Tatu et al. 2006). In RTE-3 the number of systems using 

logical inferences grew up to seven and the first two results used the logical inferences 

(Hickl 2007 and Tatu 2007). In RTE-4 nine groups used logical inferences in order to 

identify the entailment relation, and two of them were oriented to that (Clark and Harrison, 

2008) and (Bergmair, 2008). 

2.2.2. Machine Learning Approaches 

In the RTE-1, the number of systems that used machine learning algorithms to determine 

the result of the entailment relation was considerable. The aim was to use results offered by 

these algorithms for answer classification instead of using thresholds established by human 

experts on training data. The features used by these systems include lexical, semantic, 

grammatical attributes of verbs, nouns and adjectives, named entities, and were calculated 

using the WordNet taxonomy, the VerbOcean semantic network (Chlonsky and Pantel, 
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2004), a Latent Semantic Indexing technique (Deerwester et al. 1990), or the ROUGE 

metrics (Lin and Hovy, 2003). Other features like negation were identified by inspecting 

the semantic representation of text with DRS for the presence of negation operators. 

These parameters were evaluated by machine learning algorithms such as SVM 

(Joachims, 2002) or such as C5.0 (Quinlan, 2000), or used binary classifications like 

Bayesian Logistic Regression (BBR) and TiMBL (Daelemans et al. 1998). Starting with 

RTE-2, the interest for using machine learning grew constantly. Thus, the number of 

systems that used machine learning for classification was increased from seven in RTE-1 to 

fifteen in RTE-2 and sixteen in RTE-3 and RTE-4. The approaches are various and their 

results depend on identify relevant features. In (Inkpen et al. 2006), matching features are 

represented by lexical matches (including synonyms and related words), part-of-speech 

matching and matching of grammatical dependency relations. Mismatch features include 

negation and numeric mismatches. The MLEnt system (Kozareva, 2006) models lexical 

and semantic information in the form of attributes and, based on them, proposed 17 

features. In (Ferrés and Rodríguez, 2007), the authors computed a set of semantic based 

distances between sentences. The system of Montejo-Ráez et al. (2007) used semantic 

distance between stems, subsequences of consecutive stems and trigrams matching. The 

features identified in (Li et al. 2007) include lexical semantic similarity, named entities, 

dependent content word pairs, average distance, negation, and text length. 
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3. Word Sense 
Disambiguation 

In this chapter we first present a new measure for semantic relatedness based on the simple 

Lesk algorithm. We use word co-occurrences for disambiguate the ambiguous word. The 

statistical information for the measure is retrieved from the Web. Our experiments are as 

follows: first over the Semcor corpus and then a comparison with previous results over the 

Senseval 2 corpus. Finally partial conclusions are drawn. 

An example of an unsupervised method is the original Lesk algorithm (OL) (Lesk, 

1986) that disambiguates polysemous words in (shorts) phrases. The definition, or gloss 

(from a dictionary), of each sense of an ambiguous word in a phrase is compared to the 

glosses of every other word in the phrase. Basically, the algorithm selects the set of senses 

such that their glosses have the largest number of words in common. 

To tackle the problem of knowledge acquisition bottleneck in supervised methods, the 

Web could be use as a lexical resource.  

The Web has become a source of data for NLP, and WSD is no an exception. Many 

methods use the Web to automatically generate sense tagged corpora (Martinez, 2003). 

Web as a corpus for NLP research (Volk, 2002) was already used with success in many 

areas such as question answering (Brill et al. 2001), machine translation (Greffenstete, 

1999), and anaphora resolution (Bunescu, 2003). 

3.1. Theoretical Framework 

Senseval, started in 1998 (Kilgarriff and Rosenzweig, 1998), tied to the evaluation of WSD 

systems, producing a set of benchmarks for evaluating WSD system performance, to 

establish the viability of WSD as a separately evaluable NLP task. 
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In the past versions of Senseval, exercises that were variants of the Lesk approach were 

considered as baseline approaches. In Senseval 1, most of the systems for disambiguating 

English words were outperformed by a Lesk variant, used as baseline. On the other hand, at 

Senseval 2, Lesk baselines were outperformed by most of the systems in the lexical sample 

task. 

The Lesk-based baselines outperform the baseline that uses simpler algorithms such as 

random sense assignment, or an algorithm that always chooses the sense which has most 

training-corpus instances. 

The simplified Lesk (SL) algorithm (Kilgarriff and Rosenzweig, 1998) chooses the 

sense of an ambiguous word w such that its gloss g has the greatest number of words in 

common with other words (the context of w) around the given word w: 

Table 3.1: Simplified Lesk algorithm 

Here c is the context of the word w (in the simplest case, just a bag of words within a 

certain distance from w) and g(s) is the gloss associated with the sense s. 

The Lesk-plus method (Kilgarriff and Rosenzweig, 1998) also considers a learning 

process, so it can be compared with supervised systems. For each word in the sentence 

containing the test item, it tests whether the word occurs in the dictionary entry or corpus 

instances for each candidate sense. For weighting of the sentences it uses the inverse 

document frequency (IDF) of a word, computed as log(p(w)), where p(w) is estimated as 

the fraction of dictionary “documents”—definitions or examples—which contain the word. 

Lesk-plus method does not explicitly represent the relative corpus frequencies of sense 

tags. Instead, it favours common tags because they have larger context sets, and an arbitrary 

word in a test-corpus sentence is more likely to occur in the context set of a more common 

training-corpus sense tag. 

The original Lesk algorithm relies on glosses found in traditional dictionaries such as 

Oxford Advance Learner’s dictionary. Banerjee and Pedersen (2002) propose a variant of 

the Lesk algorithm to take the advantage of the highly interconnected set of relations 

For each sense s of w do 

  weight(s) = sim(c,g(s)) 

  s = argmax weight(s) 
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among synonyms that WordNet offers. This variant takes as back-off the glosses of words 

that are related to the words to be disambiguated. This back-off provides a richer source of 

information and improves accuracy. It outperforms the baseline methods in the Senseval 2 

exercise. 

Vasilescu et al. (2004) proposed a set of different variants to the Lesk aproach. The first 

variant, the score assigned to a candidate sense is the number of overlaps between the BOW 

of that sense and the BOW of the context. A second variant, called WHG (for weighted) 

also takes into account the length of the description for a given sense. According to Lesk, 

long descriptions can produce more overlaps than short ones, and thus dominate the 

decision making process. Another type of variant multiplied the number of overlaps for a 

given candidate sense by the inverse of the logarithm of the description length for this 

sense. Other variant for weighting metrics were also proposed, taking into account the 

distance between a word in the context and the target word, or the frequency of the context 

word in the language, but that did not bring any significant difference. 

In Statistical NLP, one commonly receives as a corpus a certain amount of data from a 

certain domain of interest, without having any say in how it is constructed. In such cases, 

having more training data is normally more useful than any concerns of balance, and one 

should simply use all the text that is available. The problem of data sparseness, which is 

common for much corpus-based work, is especially severe for work in WSD. First, 

enormous amounts of text are required to ensure that all senses of a polysemous word are 

represented, given the vast disparity in frequency among senses. 

The Web is immense, free and available by mouse-click. It contains hundreds of billions 

of words of text and can be used for all manner of language research. The simplest 

language use is spell checking. Is it speculater or speculator? Google gives 67 for the first 

and 82,000 for the latter. Question answered. 

3.2. Proposed Method 

We augment the Lesk approach with a measure for semantic relatedness. The measure is 

based on the hypothesis of the high relationship between the gloss of a sense and the 
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context of a word. We measure this relationship by finding the frequencies of co-

occurrences between the gloss and the context. We consider the Web as a corpus to find the 

co-occurrences of the gloss and the context.  

 

Figure 3.1: General data flow for the WSD method. 

In Figure 3.1 we show the general scheme of our proposed method. For each word in 

the text the method tagged the word with a sense from a sense inventory. The method takes 

decisions based on: the n-gram database and the sense inventory. We used for n-gram 

database the Web and for sense inventory WordNet. Below we show how the new measure 

can be applied to our method (Simple Lesk algorithm): 
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Table 3.2: New statistical measure 

The web frequency is measured by a query to a web search engine. The weight is the 

probability of seeing the gloss of a sense in the context of the given word occurrence. The 

method chooses the sense which maximizes the weight. 

If various senses have the same weight, then the sense is chosen by a back-off heuristic. 

3.3. Experimental Setting 

In this subsection firstly we show a brief description of the datasets used, second the 

experimental setting of the proposed measure and finally a comparison with previous 

results. 

3.3.1. Data Sets 

Semcor is a textual corpus in which words are syntactically and semantically tagged. The 

texts included in Semcor were extracted from the Brown corpus and then linked to senses 

in the WordNet lexicon. All the words in the corpus have been syntactically tagged using 

Brill's part of speech tagger; the semantically tagging was done manually for all the nouns, 

For each word w to be tagged 

 For each sense s of w 

    g = gloss of sense s (bag of words) 

    e = example of sense s (bag of words) 

    c = context of sense s (bag of words) 

    d = g ∪ e 

    dc = d ∪ c 

    fg  = web frequency of(d) 

    fgc = web frequency of(dc) 

    weight(s) = fgc/fg 

s = arg max weight (s) 
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verbs, adjectives and adverbs, each of these words being associated with its correspondent 

WordNet sense. We show above an example of an entry in the Semcor corpus. 

<wf cmd=done pos=VB lemma=say wnsn=1 lexsn=2:32:00::>said</wf> 

The Senseval dataset consists of 4,328 instances each of which contains a sentence with 

a single target word to be disambiguated, and one or two surrounding sentences that 

provide additional context. 

A task in Senseval consists of three types of data: 1) A sense inventory of word-to-sense 

mappings, with possibly extra information to explain, define, or distinguish the senses (e.g., 

WordNet); 2) A corpus of manually tagged text or samples of text that acts as the Gold 

Standard, and that is split into an optional training corpus and test corpus; and 3) An 

optional sense hierarchy or sense grouping to allow for fine or coarse grained sense 

distinctions to be used in scoring. The next XML is an example of an entry in Senseval. 

<instance id="9:0@16@wsj/24/wsj_2444@wsj@en@on" docsrc="wsj"> 

<context> 

Once metropolitan ...<head> asking </head> ... 

</context> 

</instance> 

Senseval has two variants of the WSD task: 

All words task participating systems have to disambiguate all words (open-class words) 

in a set of text, and Lexical sample task, first a sample of words is selected. Then for each 

sample word, a number of corpus instances are selected. 

3.4. Experimental Results 

In our preliminary experiments we aimed at the all words WSD task. For evaluation we 

used a subset of the first two tagged files of SemCor 1.6: the files br-a01 and br-a02. We 

used WordNet 2.1 as a sense repository. WordNet is a lexical database where each unique 

meaning of a word is represented by a synonym set or synset. Each synset has a gloss that 

defines the concept that it represents. For example, the words car, auto, automobile, and 
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motorcar constitute a single synset that has the following gloss: four wheel motor vehicle, 

usually propelled by an internal combustion engine. Many glosses have examples of usages 

associated with them, such as “he needs a car to get to work.”  

Context is the only means to identify the meaning of a polysemous word. Therefore, all 

work on WSD relies on the context of the target word to provide information to be used for 

its disambiguation. Most disambiguation work uses the local context of a word occurrence 

as a primary information source for WSD. Local or “micro” context is generally considered 

to be some small window of words surrounding a word occurrence in a text or discourse, 

from a few words of context to the entire sentence in which the target word appears. 

Context is very often regarded as all words or characters falling within some window of 

the target, with no regard for distance, syntactic, or other relations. Yarowsky (1993) 

examines different windows of micro-context, including 1-contexts, k-contexts, and words 

pairs at offsets -1 and -2, -1 and + 1, and +1 and +2, and sorts them using a log-likelihood 

ratio to find the most reliable evidence for disambiguation. Yarowsky makes the 

observation that the optimal value of k varies with the kind of ambiguity: he suggests that 

local ambiguities need only a window of k = 3 or k = 4.We use the bag of words approach: 

here, context is considered as words in some window surrounding the target word, regarded 

as a group without consideration for their relationships to the target in terms of distance, 

grammatical relations. We take a symmetric window of ±3 words around the target word an 

optimal value to local ambiguities.  

The web counts were collected using the Google1 search engine. To construct the 

queries first we tokenize the sentence, second the target word is replaced by the gloss, and 

query the search engine (i.e. string query). 

When our method can not decide a sense number in the argmax function (e.g. two 

senses have the same weight), the sense will be chosen randomly from the top senses (those 

with the same weight); we refer to this as random top weight back-off. 

We used precision and recall to score the system, although the metrics are not 

completely analogous to Information Retrieval evaluation. Recall (percentage of right 

answers on all instances in the test set) is the basic measurement of accuracy in this task, 

because it shows how many correct disambiguations the system achieved overall. Precision 
                                                 

1 http://www.google.com 
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(percentage of right answers in the set of answered instances) favours systems that are very 

accurate if only on a small subset of cases that the system chose to give answers to. 

Resnik and Yarowsky (1993) have shown that it is difficult to compare WSD methods. 

The distinctions that make comparing methods difficult reside in the approach considered 

(supervised or unsupervised). 

The result from the preliminary experiments over the SemCor subset obtained an 

accuracy of 47%. We only reported accuracy because of any word presented an equal 

weight of senses. If a system makes an assignment for every word, then precision and recall 

are the same, and can be called accuracy. Therefore the Web rarely presents data 

sparseness. Thus the method always gives an answer and it does not reach the back-off 

heuristic.  

In Table 3.3 we present a comparison of the accuracy of our measure applied to the 

simple Lesk against variants of the original Lesk approach. This comparison was tested 

over the Senseval 2 data. The experiment had the same setting as the experiment over the 

SemCor subset. 

Table 3.3: Comparison with previous work 

As it can bee seen from Table 3.3, the original Lesk (OL) algorithm method has a lower 

performance than the other ones and even than the baseline system. This observation is 

Method Type Back-off Accuracy 

Vasilescu et al. 2004 simplified MFS 0.58 

Mihalcea and Tarau 2004 simplified RS 0.47 

Our method simplified Random top senses 0.45 

Vasilescu et al. 2004 original MFS 0.42 

Mihalcea and Tarau 2004 original RS 0.35 

Banerjee and Pedersen 2002 original 
Extended gloss 

overlaps 
0.31 
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consistent with Litkowski (2002) hypothesis that only about one third of the instances can 

rely on the Lesk-style information (gloss and example) in a disambiguation process. The 

simplified Lesk (SL) method, which only counts the overlaps between the description of a 

candidate sense and the words in the context, produces better results. 

Our Lesk variant outperforms the OL of Banerjee and Pedersen (2002) and the OL 

(Lesk, 1986) variants (back-off to random sense and most frequent sense). The SL of 

Mihalcea and Tarau (2004) is better in performance than our method, with the help of the 

random sense heuristic. Finally, the SL of Vasilescu et al. (2004) has the best accuracy. 

However, this method can be considered as a supervised method due to the most frequent 

sense heuristic (it is not clear what its performance would be with McCarthy et al. (2004) 

unsupervised method for determining the predominant sense).  

When a method can not make a judgment (i.e., no overlap between the gloss and the 

context in the simple Lesk) the judge is taken by the back-off heuristic. Most of these 

heuristics chose a random sense or uses information from a dictionary. So the most frequent 

sense is based on chose the first (or predominant) sense the heuristic assumes the 

availability of hand tagged data.  

Therefore our method did not reach the back-off heuristic we present in Table 3.4 a 

comparison with the top three unsupervised methods of Senseval-2. 

Table 3.4: Comparison with Senseval-2 unsupervised methods 

The Senseval–First, Senseval–Second, and Senseval–Third results are the top three 

most accurate fully automatic unsupervised systems in the Senseval-2 exercise. This is the 

class of systems could be comparable to our own, since they require no human intervention 

Method Accuracy 

Our method 0.45 

Senseval–First 0.40 

Senseval–Second 0.29 

Senseval–Third 0.24 

Original Lesk 0.18 
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and do not use any manually created training examples. These results show that our 

approach was considerably more accurate than all. This method has the advantage of 

simplicity and the use of a very limited context window.  

Table 3.5: Comparison with SemEval unsupervised methods 

In Table 3.5 we present a comparison of our method (tested over Senseval-2) with the 

state of the art unsupervised systems in the SemEval-2007. Thus two of the methods 

outperform our method but the comparison is not so clear because our method was test over 

the Senseval-2 corpus. Thus we can see growing tendencies in the precision of the 

unsupervised approaches. 

3.5. Conclusion 

In this thesis we used a variant of the Lesk algorithm for the WSD task. We proposed a new 

semantic relatedness measure based on web counts collected with a search engine. 

We have shown that our variant outperforms some Lesk based methods and 

outperforms the top unsupervised methods of the Senseval-2 exercise. These results are 

significant because they are based on a very simple algorithm that relies on co-occurrences 

scores to the senses of a target word.  

We once more confirmed that the web could be used as a lexical resource for WSD. 

In our future work we will explore the use of different context windows, as well as 

linguistically-motivated context windows (such as a syntactic unit) and test our method 

over the SemEval corpus. 

Method Accuracy 

Radu ION 0.52 

Davide Buscaldi 0.46 

Our method (Senseval-2) 0.45 

Sudip Kumar Naskar 0.40 



 31 

4. Recognizing Textual 
Entailment 

In this chapter we proposed a new statistical method applied to the RTE task. The new 

statistical method is based on the co-occurrences of words between the T-H pairs. The co-

occurrences are extracted from a cause-effect corpus. Therefore we are deciding the 

entailment based on a non-symmetric measure of similarity. Follow as first we show the 

experiments over the RTE-1, RTE-2, and RTE-3 test datasets and as a second experiment 

we proposed a meta-classifier, based on symmetric and non-symmetric measures of 

similarity. Finally we compare our methods with previous works and draw partial 

conclusions. 

4.1. Theoretical Framework 

As we could see in Chapter 2 the main methods for RTE are based on the level of 

representation given to the T-H pair. Thus each type of representation has operations in 

order to establish the entailment decision (e.g., word matching in the lexical level, tree edit 

distance in the syntactic level). The principal operations are similarity measures between T-

H pair representations. But many of the similarity measures are symmetric. So a symmetric 

measure can not capture some of the aspects in the T → H relation. Because if we altered 

the entailment relation (i.e., H → T) a symmetric function will give us the same score. 

Therefore methods like (Tatar et al. 2007) propose a non-symmetric similarity measure, 

used in RTE-1 Challenge. 

Glickman uses as definition: T entails H iff P(H | T) > P(H). The probabilities are 

calculated on the base of Web. The accuracy of the system is the best for RTE-1 (0.56). 
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Another non-symmetric method is that of Kouylekov, who uses the definition: T entails 

H iff there exists a sequence of transformations applied to T such that H is obtained with a 

total cost below of a certain threshold. The following transformations are allowed: 

Insertion: insert a node from the dependency tree of H into the dependency tree of T; 

Deletion: delete a node from the dependency tree of T; Substitution: change a node in the T 

into a node of H. Each transformation has a cost and the cost of edit distance between T and 

H, ed(T, H) is the sum of costs of all applied transformations. The entailment score of a 

given pair is calculated as 

score(T,H)  = ed(T,H), 

where ed(· , H) is the cost of inserting the entire tree H. If this score is bigger than a 

learned threshold, the relation T → H holds. The accuracy of method is of 0.56. 

In (Corley and Mihalcea, 2005) an even "more non-symmetric” is proposed: when the 

edit distance (which is a Levenshtein modified distance) satisfies the relation: 

ed(T,H) < ed(H,T), 

then the relation T→ H holds. 

Other authors use a definition which in terms of representation of knowledge as feature 

structures could be formulated as: T entails H iff H subsumes T. Even the method used is a 

non-symmetric one, as the definition used is: T entails H iff H is not informative in respect 

to T. 

A method of establishing the entailment relation could be obtained using a non-

symmetric measure of similarity between two texts presented by Corley and Mihalcea 

(2005), the authors define the similarity between the texts Ti and Tj with respect to Ti as: 

( ) ( ) ( )( )( )
( )∑ ∑

∑ ∑

∈

∈
×
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Here the sets of open-class words (nouns, verbs, adjective and adverbs) in each text 

segment. For a word wk with a given pos in Ti, the highest similarity of the words with the 

same pos in the other text Tj is denoted by maxSim(wk). 

Starting with this text-to-text similarity metric, we derive a textual entailment 

recognition system by applying the lexical refutation theory presented above. As the 
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hypothesis H is less informative than the text T, for a TRUE pair the following relation will 

take place: 

sim(T,H) × T  < sim(T,H) × H 

This relation can be proven using the lexical refutation. A draft is the following: to 

prove T → H it is necessary to prove that the set of formulas {T; negH} is lexical 

contradictory (they denote also by T and negH the sets of disjunctive clauses of T and 

negH). 

We propose a new non-symmetric measure of similarity based on the co-occurrences of 

words between the T-H pair in a cause-effect corpus. Follow the use of the two types of 

similarity measures (symmetric, non-symmetric) in a meta-classifier. 

4.2. Proposed Methods 

Before the presentation of the new methods we show a brief introduction to the main 

evaluation measures. This evaluation measures are used to evaluate the performance of the 

proposed methods. 

An important recent development in NLP has been the use of much more rigorous 

standards for the evaluation of systems. It is generally agreed that the ultimate 

demonstration of success is showing improved performance at an application task, be that 

spelling correction, summarizing job advertisements, or whatever. Nevertheless, while 

developing systems, it is often convenient to assess components of the system on some 

artificial performance score (such as perplexity), improvements in which one can expect to 

be reflected in better performance for the whole system on an application task. 

Evaluation in IR makes frequent use of the notions of precision and recall, and their use 

has crossed over into work on evaluating Statistical NLP models, such as a number of the 

methods discussed in this chapter. For many problems, we have a set of targets (for 

example, targeted relevant documents, or sentences in which a word has a certain sense) 

contained within a larger collection. The system then decides on a selected set (documents 

that it thinks are relevant, or sentences that it thinks contain a certain sense of a word, etc.). 
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The selected and target groupings can be thought. The variables can be expressed as a 2x2 

contingency matrix: 

Table 4.1: Contingency matrix 

The numbers in each box show the frequency or count of the number of items in each 

region of the space. The cases accounted for by tp (true positives) and tn (true negatives) 

are the cases our system got right. The wrongly selected cases in fp are called false 

positives, acceptances or Type errors. The cases in fn that failed to be selected are called 

false negatives, false rejections or Type I errors. 

The accuracy is the proportion of true results (both tp and tn) in the population: 

tnfnfptp

tntp
accuracy

+++
+=  

Precision is defined as a measure of the proportion of selected items that the system got 

right: 

fptp

tp
precision

+
=  

Recall is defined as the proportion of the target items that the system selected: 

fntp

tp
recall

+
=  

It can be convenient to combine precision and recall into a single measure of overall 

performance. One way to do this is the F-measure. The F-measure is defined as follows 

(precision and recall have and equal weighting): 

PR

PR
F

+
= 2

 

 Corpus 

System true false 

true tp fp 

false fn tn 



 35 

4.2.1. Causal Non-symmetric Measure 

A causal relation is the relation existing between two events such that one event causes (or 

enables) the other event, such as “hard rain causes flooding” or “taking a train requires 

buying a ticket”. The idea behind knowledge acquisition is to use connective markers such 

as “because”, “but” and “if” as linguistic cues. However, there is no guarantee that a given 

connective marker always signals the same type of causal relation. In this thesis we focused 

our attention on English sentences including the word “because”. 

Consider the following examples in English, from which one can obtain several 

observations about the potential sources of causal knowledge. 

• The laundry dried well today because it was sunny. 

• The laundry dried well, though it was not sunny. 

• If it was sunny, the laundry could dry well. 

• The laundry dried well because of the sunny weather.→ Cause( it is sunny , laundry 

dries well ). 

Cue phrase is a word, a phrase or a word pattern, which connects one event to the other 

with some relation. The causal relation between events is assumed by the cue phrase. The 

causal cue phrases are used for connecting the cause and effect events. When events are 

expressed bye noun phrases, the cue phrase connecting events is a verb phrase in general. 

For example: 

• The oral bacteria that cause gum disease appear to be the culprit. 

The verb “cause” is a cue phrase to connect two events expressed by noun phrases, the 

“oral bacteria” and “gum disease”. Several lexical pairs are assumed to lead the causal 

relation. The lexical pair “bacteria” and “disease” is an example of the causal lexical pair. If 

the term pair “the oral bacteria” and “gum disease” is causally related, we can infer the 

event pair “bowel bacteria” and “bowel disease” is causally related. Causal lexical pairs are 

learned from cause-effect pairs. 

The causal relation subsumes the cause and the explanation relations in Hobbs (1985). 

Hobbs’s cause relation holds if a discourse segment stating a cause occurs before a 

discourse segment stating an effect; an explanation relation holds if a discourse segment 
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stating an effect occurs before a discourse segment stating a cause. The causal relation is 

encoded by adding a direction. In a graph, this can be represented by a directed arc going 

from cause to effect, Fig 4.1. 

 

Figure 4.1: Cause effect graph 

The hypothesis behind our method is based on treat the T-H pair as a causal relation. 

Where the text T is a cause and the hypothesis H is its effect (i.e., T causes H).  

The non-symmetric similarity measure is based on the count of co-occurrences of causal 

lexical pairs from a C-E pairs extracted from a corpus.  

Table 4.2: Non-symmetric similarity measure 

As we see in the table 4.2 the first causal frequency function is the count of words ti and 

hi related by the cue phrase (For example, a sentence, h…because…t) in a corpus of C-E 

pairs and the second causal frequency function is the count of word hi in the C-E pairs, 

which gives us a non-symmetric score. Because the co-occurrences of T causes H is not the 

same like H causes T. 

To each T-H pair the system measures the causal relation between them and then 

decides if the pair is true or false given a certain entailment decision. The main differences 

in our experiments reside in the use of different strategies to decide the entailment relation. 

For each word ti in T 

   For each word hj in H 

      cej = causal frequency(ti,hj) 

      ej  = causal frequency(hj) 

   maxi = argmax(cej/ej) 

non-symmetric(T,H)= Σ maxi 
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4.2.2. Experimental Setting 

In this subsection we explain at detail some of the blocks in the Figure 4.2. First the pre-

processing we used to represent the T-H pair and second the data used to create the C-E 

pairs. 

The prepossessing we used in each T-H pair to be tagged is as follows: 

• Tokenize. 

• Quit stop words. 

Normally, an early step of processing is to divide the input text into units called tokens 

where each is either a word or something else like a number or a punctuation mark. This 

process is referred to as the treatment of punctuation varies.  

The system has just stripped the punctuation out. We consider as word any object 

within the occurrence of a withespace. The withespace is the main clue used in English 

(RTE benchmark is in English). Finally the system quits any stops words from a stoplist. 

The stop word is the name given to words which are filtered out prior to, or after, 

processing of text. Hans Peter Luhn, one of the pioneers in information retrieval, is credited 

with coining the phrase and using the concept in his design. It is controlled by human input 

and not automated (Manning and Shutze, 1999). Common stop words are the, from and 

could. These words have important semantic functions in English, but they rarely contribute 

information if the criterion is a simple word-by-word match (Manning and Shutze, 1999). In 

Figure 4.2 we show the general data flow of our method were the data used to collect the 

frequency of the causal lexical pairs came from sentences which contain the cue phrase 

because. 
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Figure 4.2: General data flow of our system 

The sentences were extracted from the Sketch Engine system from a big corpus 

(ukWAC from the Sketch Engine http://www.sketchengine.co.uk/) for sentences which 

contains the discourse marker because. Finally we striped the sentences in two parts: one 

corresponding to the cause and one corresponding to its effect. The Sketch Engine is a corpus 

query system which allows the user to view word sketches, thesaurally similar words, and 

‘sketch differences’, as well as the more familiar Corpus Query Systems (CQS) functions. The 

word sketches are fully integrated with the concordancing: by clicking on a collocate of interest 

in the word sketch, the user is taken to a concordance of the corpus evidence giving rise to that 
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collocate in that grammatical relation. If the user clicks on the word toast in the list of high-

salience objects in the sketch for the verb spread, they will be taken to a concordance of 

contexts where toast (n) occurs as object of spread (v).  

4.2.3. Experimental Results 

As we see in previous subsections we varied the entailment decision in order to prove some 

differences between the uses of our non-symmetric measure: 

• Experiment 1: The system penalizes a pair if the H → T relation is greater than T → H 

relation. 

• Experiment 2: The system determines the entailment decision based on a certain 

threshold (learned from corpus). 

The outline of the information displayed on each experiment is the next one: 

• Contingency matrix. 

• Evaluation matrix. 

• Comparison with previous wok. 

• Accuracy depending on task. 

The experiments are divided by the RTE Challenge versions (i.e. RTE-1, RTE-2, and 

RTE-3). 

4.2.3.1. Experiment 1 

The first experiment is based on use the non-symmetric measure. The entailment decision is 

as follows: 

Table 4.3: Entailment decision 1 

if non-symmetric(T,H) > non-symmetric(H,T) then TRUE 

else FALSE 
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In table 4.3 we see that the entailment decision is basically penalize a T—H pair when 

the H → T relation is stronger than the T → H relation. Therefore the hypothesis H is more 

probably an effect than the text T. Therefore it is more probable that the text T implies the 

hypothesis H. First, we present the method applied to the RTE-1. The contingency table, 

Table 4.4 show how many times the method misclassified the T-H pairs (i.e. fp and tn) and 

how many times the method its right. From this table we can obtain some measures to 

evaluate the entailment decision. 

Table 4.4: RTE-1 contingency matrix results 

Table 4.4 also shows that our approach tends to say true. 

Table 4.5: RTE-1 evaluation measures 

From table 4.5 this approach obtains a better recall than precision. Therefore the 

entailment decision got right the proportion of the target items that the system selected.  

Table 4.6: RTE-1 comparison with previous results 

To compare our approach with previous works we use the accuracy measure (i.e. the 

most common measure in the RTE Challenge).The proposed measure is compared to non-

symmetric measure. We compare out approach with 

• Bleu algorithm RTE baseline (Perez and Alfonseca. 2005). 

• Probabilistic measure (Glickman et al 2005). 

• Levenshthein modified measure (Tatar et al. 2007). 

 true false 

true 257 245 

false 143 155 

Accuracy Precision Recall F-measure 

0.51 0.51 0.64 0.57 

Method Accuracy 

GLICKMAN 0.56 

LEVENSHTEIN 0.53 

C-E 0.51 

BLEU 0.49 



 41 

In table 4.6 the results are show. Thus the best one is Glickman. Our measure is the last 

one compare to the non-symmetric measures. Our measure only outperforms the Bleu 

algorithm. 

 

Figure 4.3: RTE-1 comparison with previous results by tasks 

The results of our approach were the lowest between the non-symmetric measures in 

general. So if we make a comparison depending on each task. We see that our measure 

outperforms the other non-symmetric measures in some of the tasks. These tasks are: 

• QA. 

• IR. 

• MT. 

For the RTE-2 the scores did not varied too much. The tendency to say true of the 

method is the same, Table 4.7. 

Table 4.7: RTE-2 contingency matrix 

 

 true false 

true 289 271 

false 111 129 
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Table 4.8: RTE-2 evaluation measures 

The recall and precision increases in comparison with the past data set, Table 4.8. 

Table 4.9: RTE-2 comparison with previous results 

For the RTE-2 we compare our method with: 

• Bleu algorithm. 

• WordNet modified similarity measures (Corley and Mihalcea, 2005). 

Also out method only outperforms the baseline. 

 

Figure 4.4: RTE-2 comparison with previous results by tasks 

In the comparison by task our method did not pout perform the method of Corley et al. 

(2009). 

Accuracy Precision Recall F-measure 

0.52 0.51 0.72 0.60 

Method Accuracy 

CORLEY 0.58 

BLEU 0.53 

C-E 0.52 
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InRTE-3 the tendency to say true is the same. The tendency to say true increase in every 

data set. 

Table 4.10: RTE-3 contingency matrix 

 true false 

true 303 268 

false 107 122 

 

Table 4. 11: RTE-3 evaluation measures 

Also the results did not varied too much from other evaluations.  

Table 4.12: RTE-3 comparison with previous results 

Corley’s measure is still the best one. The measure reaches the highest accuracy over 

the tree data sets. 

 

Figure 4.5: RTE-3 comparison with previous results by task 

Accuracy Precision Recall F-measure 

0.53 0.53 0.73 0.61 

Method Accuracy 

CORLEY 0.63 

C-E 0.53 

BLEU 0.50 
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Almost the same result than the past data set we can not outperform the modified 

WordNet measure from Corley et al. (2009). 

4.2.3.2. Experiment 2 

The second experiment is based on use the non-symmetric measure. The entailment 

decision is as follows: 

Table 4.13: entailment decision 2 

if non-symmetric(T,H) > threshold then 

 TRUE 

else 

 FALSE 

In table 4.13 we see that the entailment decision is similar to a symmetric approach. We 

take a threshold from the test set to decide if a T-H pair is true or false. First we introduce 

the results of using different thresholds: 

Table 4.14: RTE evaluation measures with entailment decision 2 and a threshold of 0.1 

Dataset Accuracy Precision Recall F-measure 

RTE-1 0.51 0.51 0.80 0.62 

RTE-2 0.50 0.50 0.75 0.60 

RTE-3 0.53 0.53 0.7 0.63 

 

Table 4.15: RTE evaluation measures with entailment decision 2 and a threshold of 0.2 

Dataset Accuracy Precision Recall F-measure 

RTE-1 0.50 0.50 0.56 0.53 

RTE-2 0.50 0.50 0.50 0.50 

RTE-3 0.53 0.54 0.53 0.53 
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Table 4.16: RTE evaluation measures with entailment decision 2 and a threshold of 0.3 

The decision of the threshold used on the comparison experiments was to maximize the 

precision. Because in previous experiments the precision measure was very low.  

Table 4.17: RTE-1 contingency matrix 

In Table 4.17 we can see that the tendency change from true to false. Thus this approach is 

stricter with tag a T-H pair as “true”. 

Table 4.18: RTE-1 comparison with previous results 

Comparing to the other measures there is no significant changes in accuracy.  

In the comparison depending on task our method outperforms in: 

• IE. 

• QA. 

Dataset Accuracy Precision Recall F-measure 

RTE-1 0.51 0.52 0.40 0.45 

RTE-2 0.50 0.51 0.33 0.40 

RTE-3 0.52 0.55 0.36 0.43 

 true false 

true 161 147 

false 239 253 

Method Accuracy 

GLICKMAN 0.56 

LEVENSHTEIN 0.53 

C-E 0.51 

BLEU 0.49 
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Figure 4.6: RTE-1 comparison with previous results by tasks 

For the RTE-2 the tendency to say false continues, Table 4.19. 

Table 4.19: RTE-2 contingency table 

 true false 

true 161 147 

false 239 253 

 

Table 4.20: RTE-2 evaluation with previous results 

Out method outperforms the bleu algorithm but is the lower to the other non-symmetric 

measures. The threshold approach which is more similar to the other non-symmetric 

approaches did not show to be good in this data set.  

Method Accuracy 

GLICKMAN 0.56 

LEVENSHTEIN 0.53 

C-E 0.50 

BLEU 0.49 
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Figure 4.7: RTE-2 comparison with previous results by tasks 

In Figure 4.7 like the other datasets our method did not outperform in any task. 

For the RTE-3 the results did not varied respect to the other data sets, Tables 4.21, 4.22, 

and Figure 4.8. 

Table 4.21: RTE-3 contingency matrix 

 true false 

true 161 147 

false 239 253 

 

Table 4.22: RTE-3 comparison with previous results 

Method Accuracy 

GLICKMAN 0.56 

LEVENSHTEIN 0.53 

C-E 0.52 

BLEU 0.49 
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Figure 4.8: RTE-3 comparison with previous results by tasks 

Therefore these results show us the low performance of our measure. We decide to 

make some other experiments now over the joint use of the symmetric and non symmetric 

measures. 

4.2.4. Symmetric and Non-symmetric Meta-classifier 

It has been observed for related systems that a combination of separately trained features in 

the machine learning component can lead to an overall improvement in system 

performance, in particular if features from a more informed component and shallow ones 

are combined (Hickl et al. 2006; Bos and Markert, 2006 and Butchart 2007).  

One of the main problems when machine-learning classifiers are employed in practice is 

to determine whether classifications assigned to new instances are reliable. The meta-

classifier approach is one of the simplest approaches to this problem. Given a base 

classifiers, the approach is to learn a meta-classifier that predicts the correctness of each 

instance classification of the base classifiers. The sources of the meta-training data are the 

training instances. The meta-label of an instance indicates reliable classification, if the 
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instance is classified correctly by a base classifier; otherwise, the meta-label indicates 

unreliable classification. The meta-classifier plus the base classifiers form one combined 

classifier. The classification rule of the combined classifier is to assign a class predicted by 

the base classifier to an instance if the meta-classifier decides that the classification is 

reliable. 

Thus some questions on how to design a meta-classifier are: 

• What type of base classifiers do we have to learn for meta-classifier, for what type of 

data? 

• What is the role of the accuracy of the base classifiers in the whole scheme? 

• How do we have to represent meta-data? 

• How can we have to generate meta-data? 

4.2.5. Experimental Design 

To answer the previous questions we designed a meta-classifier as follows: 

• We used symmetric and non-symmetric measures as base classifiers. 

• We chose the best symmetric measure (optimizing accuracy). 

• We represented the T-H pairs as a BoW.  

• We used as meta-data the RTE Challenge test sets. 

4.2.6. Experimental Results 

In this subsection we compare the results of the meta-classifier to each base classifier. Also 

like in the previous part we develop two experiments: 

• Experiment 1: non-symmetric measure without threshold (base classifier) and 

symmetric cosine.  

• Experiment 2: non-symmetric measure with threshold (base classifier) and symmetric 

cosine. 
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4.2.6.1. Experiment 1 

The first experiment uses as base classifiers the cosine measure and our non-symmetric 

measure (Experiment 1: T → H > H → T).  

 

Figure 4.9: RTE-1 meta-classifier coverage 

In figure 4.9 it is show percentage of the coverage of the different base classifiers over 

the RTE-1 development data set. Where A means our approach and B means the cosine 

measure. Thus C means correct classification and E means a misclassification. For 

example, AC means that the non-symmetric measure got a right classification. 

Therefore more T-H pairs could be resolved also by the symmetric and the non-

symmetric measures. Following the examples resolved by the symmetric measure and the 

non-symmetric at last. Finally the 25.57% of the instances could not be resolved by any 

measure. 

Table 4.23: RTE-1 contingency table 

So our meta-classifier has the tendency to say true, Table 4.23 Thus from table 4.24 we 

see an overall increase in the evaluation measures over the test data set. 

 true false 

true 279 247 

false 121 153 
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Table 4.24: RTE-1 evaluation measures 

 

Figure 4.10: RTE-1 comparison with previous results 

The meta-classifier only outperform in the QA task.  

The cosine measure by itself outperform in the following tasks: 

• PP. 

• RC. 

• IE. 

• CD. 

The non-symmetric measure outperform in the following tasks: 

• IR. 

• MT. 

• QA.  

In the RTE-2 development data set the coverage values are the next: Figure 4.11. 

Accuracy Precision Recall F-measure 

0.54 0.53 0.68 0.60 
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Figure 4.11: RTE-2 meta-classifier coverage 

The behaviour of the coverage is similar to the RTE-1 development data set. Where 

most of the T-H pairs can be resolved by the two paradigms: the symmetric measure and 

the non-symmetric measure. 

Table 4.25: RTE-2 contingency matrix 

 true false 

true 296 267 

false 104 133 

 

Table 4.26: RTE-2 evaluation measures 

Accuracy Precision Recall F-measure 

0.53 0.52 0.70 0.61 
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Figure 4.12: RTE-2 comparison with previous results by tasks 

Following we present the results over the RTE-3 development data set (coverage) and 

test data set. 

 

Figure 4.13: RTE-3 meta-classifier coverage 

 

Table 4.27: RTE-3 contingency table 

 true false 

true 314 230 

false 96 160 
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Table 4.28: RTE-3 evaluation measures 

Accuracy Precision Recall F-measure 

0.59 0.57 0.76 0.65 

 

Figure 4.14: RTE-3 comparison with previous results by tasks 

4.2.6.2. Experiment 2 

In this subsection we present the results of the second meta-classifier over the RTE 

Challenge. In the RTE-1 and RTE-2the results did not achieve great differences against the 

Experiment 1. Thus in the RTE-3 the system achieve the best accuracy of all our 

experiments with 0.61. 
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Figure 4.15: RTE-1 meta-classifier coverage 

 

Table 4.29: RTE-1 contingency table 

 true false 

true 235 202 

false 165 198 

 

Table 4.30: RTE-1 evaluation measures 

The results showed an improvement using a meta-classifier than only use the non-

symmetric measure by itself. 

Accuracy Precision Recall F-measure 

0.54 0.53 0.58 0.56 
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Figure 4.16: RTE-1 comparison with previous results 

In Figure 4.16 it is shown the meta-classifier only outperform in the QA task. 

The next tables show the results over the RTE-2 Challenge.  

 

 

Figure 4.17: RTE-2 meta-classifier coverage 
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Table 4.31: RTE-2 contingency matrix 

 true false 

true 227 208 

false 173 192 

 

Table 4.32: RTE-2 evaluation measures 

Accuracy Precision Recall F-measure 

0.52 0.52 0.56 0.54 

 

 

Figure 4.18: RTE-2 comparison with previous results by tasks 

In the RTE-3 we achieve the better results for our approach, comparing it to the other 

results in our research. Thus the results to the RTE-3 were competitive to other participants 

in the same Challenge. 
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Figure 4.19: RTE-3 meta-classifier coverage 

 

Table 4.33: RTE-3 contingency matrix 

 true false 

true 264 163 

false 146 227 

 

Table 4.34: RTE-3 evaluation measures 

Accuracy Precision Recall F-measure 

0.61 0.61 0.64 0.63 

 

 

Figure 4.20: RTE-3 comparison with previous results by tasks 
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4.3. Conclusion 

We proposed a non-symmetric similarity measure to the RTE. Therefore our method is 

unsupervised which is no language dependent.  

We have shown that our measure has a lower accuracy than the state of the art methods 

and outperforms the RTE baseline. These results are significant because they are based on a 

very simple algorithm that relies on co-occurrences of causal pairs. 

We once more confirmed that the web could be used as a lexical resource for RTE. 

In our future work we will explore the use of different meta-features for the meta-

classifier, as well as linguistically-motivated meta-features (such as a syntactic unit) and 

evaluate our method against the RTE machine learning approaches. 
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5. Conclusions  
In this thesis we used a variant of the Lesk algorithm for the WSD task based on web 

counts collected with a search engine. We proposed a new non-symmetric similarity 

measure for the RTE based on word counts collected from corpus of causal pairs. 

We have shown that our variant outperforms some Lesk based methods and 

outperforms the top unsupervised methods of the Senseval-2 exercise. These results are 

significant because they are based on a very simple algorithm that relies on co-occurrences 

scores to the senses of a target word.  

We have also shown that our non-symmetric measure has a lower accuracy than the 

state of the art methods. So our method outperforms the RTE baseline. 

We once more confirmed that the web could be used as a lexical resource for WSD and 

RTE. 

In our future work we will explore the use of a WSD method in a RTE approach. Our 

hypothesis is based on the Yarowsky algorithm (Yarowsky, 1995). The Yarowsky 

algorithm is an unsupervised learning algorithm for WSD that uses the "one sense per 

collocation" and the "one sense per discourse" properties of human languages for word 

sense disambiguation. From observation, words tend to exhibit only one sense in most 

given discourse and in a given collocation. Therefore if we treat the T-H pair as parts of the 

same discourse they will exhibit one sense per discourse property. This property will be 

useful to entailment decision.   
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5.1. Contributions 

The main contributions of this thesis are: 

• A variant to the Lesk algorithm for WSD and its software implementation, which 

outperforms some Lesk based methods and outperforms the top unsupervised methods 

of the Senseval-2 exercise. 

• New symmetric similarity measure for RTE and its software implementation, which 

outperforms the baseline system.  

• A meta-classifier based on a symmetric measure and a non-symmetric measure, which 

has a competitive accuracy. 

• A system for RTE algorithm evaluation. 

• A database of the RTE Challenges. 

• A database of cause-effect pairs.  

5.2. Publications 

• Miguel Angel Ríos Gaona, Salvador Godoy Calderón, Alexander Gelbukh. Word Sense 

Disambiguation with the KORA-Ω Algorithm. Advances in Intelligent and Information 

Technologies. Special issue of J. Research in Computing Science, ISSN 1870-4069, N 

38, 2008, pp. 263–270. 

• Miguel Angel Ríos Gaona, Alexander Gelbukh, Sivaji Bandyopadhyay. Web-based 

Variant of the Lesk Approach to Word Sense Disambiguation. MICAI 2009. 

Proceedings of 2009 Eighth Mexican International Conference on Artificial 

Intelligence, ISBN 978-0-7695-3933-1, IEEE CS Press, 2009, pp. 103–107. 

• Miguel Angel Ríos Gaona, Alexander Gelbukh, Sivaji Bandyopadhyay. Recognizing 

Textual Entailment with Statistical Methods. MCPR 2010, 2nd Mexican Conference on 

Pattern Recognition (to be published). 
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• Miguel Angel Ríos Gaona, Alexander Gelbukh, Sivaji Bandyopadhyay. Recognizing 

Textual Entailment Using a Machine Learning Approach. MICAI 2010. Proceedings of 

2010 9th Mexican International Conference on Artificial Intelligence (in review). 
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