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Resumen
Debido a la rápida expansión de Internet y la proliferación de dispositivos inteligentes,

el uso compartido y el consumo del contenido del usuario a través de estos medios han
explotado a un nivel sin precedentes. Una parte importante de este contenido compartido
comprende opiniones sobre diversos temas, como revisiones de productos, comentarios
políticos. Muchas grandes empresas están interesadas en aprovechar esta información
abiertamente disponible para su beneficio. Específicamente, tienen la intención de con-
struir sistemas que recopilen automáticamente los comentarios de los usuarios al exami-
nar un gran volumen de contenido del usuario. Dicha información podría ayudar a tomar
decisiones comerciales, asignación de recursos, evaluación de riesgos, estudios de mer-
cado, por mencionar algunos. Esta recopilación de comentarios suele ser conveniente
y completa en términos de sentimiento y emoción. Con este fin, en esta tesis, presenta-
mos métodos basados en redes neuronales que se adaptan al análisis de sentimientos y
emociones en diferentes escenarios.

Recientemente ha habido un aumento en el intercambio de opiniones a través de
videos debido a la mayor accesibilidad de la cámara de teléfono inteligente de buena
calidad. Como los videos a menudo contienen tres modalidades: textual, acústica y
visual, el análisis de sentimientos y emociones de estos videos requiere algoritmos de
análisis de emociones y sentimientos multimodales. Un componente clave de cualquier
algoritmo multimodal es la fusión multimodal. Como tal, proponemos un algoritmo de
fusión basado en codificador automático variacional no supervisado cuya representación
latente se utiliza como representación multimodal.

A menudo, el sentimiento del usuario sobre aspectos específicos de un objeto es más
útil que la impresión general. El análisis de sentimientos basado en aspectos (ASBA) se
vuelve relevante en tales escenarios. Sin embargo, la mayoría de los trabajos existentes
sobre ASBA no consideran la coexistencia de múltiples aspectos en una sola oración.
Presentamos un método que ajusta las representaciones de aspecto comparándolo con
los aspectos vecinos usando la red de memoria.

Como consecuencia de las personas que interactúan y discuten en plataformas como
Facebook, YouTube, Reddit, la estructura general del contenido termina siendo conver-
sacional. Estas conversaciones a menudo contienen más de dos partes. El análisis de
sentimientos y emociones de tales conversaciones multipartitas requiere algoritmos con-
scientes de la parte. Por lo tanto, presentamos un modelo basado en redes neuronales
recurrentes (RNR) para el reconocimiento de emociones en la conversación (REC) que
es capaz de una clasificación de emociones de nivel de expresión específica del hablante.
A diferencia de los enfoques existentes, nuestro método no está limitado por el número
de hablantes definidos por la arquitectura del modelo o el conjunto de entrenamiento.
Esto se logra mediante el perfil dinámico de las partes a lo largo de la conversación uti-
lizando la estructura similar a RNR. Como tal, obtenemos un rendimiento de vanguardia
en conjuntos de datos REC diádicos y multipartitos.
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Abstract
Owing to the quick expansion of internet and proliferation of smart-devices, sharing

and consumption of user content through these means have exploded to unprecedented
level. A significant portion of this shared content comprises of opinion on various topics,
such as, product reviews, political commentary. Many large enterprises are keen on
leveraging this openly available data to their benefit. Specifically, they intend to build
systems that would automatically gather user feedback by sifting through huge volume
of user content. Such information could aid in making business decisions, resource
allocation, risk assessment, market survey to mention a few. This feedback gathering is
often convenient and comprehensive in terms of sentiment and emotion. To this end, in
this thesis, we present neural network-based methods that cater to sentiment and emotion
analysis in different scenarios.

There has been a recent surge in opinion sharing via videos due to increased acces-
sibility of good quality smartphone camera. As videos often contain three modalities —
textual, acoustic, and visual — sentiment and emotion analysis of these videos calls for
multimodal sentiment and emotion analysis algorithms. A key component of any multi-
modal algorithm is multimodal fusion. As such, we propose an unsupervised variational
auto-encoder-based fusion algorithm whose latent representation is used as multimodal
representation. We gain improvement over the state-of-the-art multimodal sentiment and
emotion analysis algorithms with this method.

Often user sentiment on specific aspects of an object is more useful than overall im-
pression. Aspect-based sentiment analysis (ABSA) becomes relevant in such scenarios.
However, most existing works on ABSA do not consider co-existence of multiple aspects
in a single sentence. We present a method that fine-tunes the aspect representations by
comparing with the neighboring aspects using memory network. We empirically show
that this approach beats the state of the art on multiple domains.

As a consequence of people interacting and arguing on platforms like Facebook,
YouTube, Reddit, the overall content structure ends up conversational. These conver-
sations often contain more than two parties. Sentiment and emotion analysis of such
multi-party conversations requires party-aware algorithms. Hence, we present a recur-
rent neural network- (RNN) based model for emotion recognition in conversation (ERC)
that is capable of speaker-specific utterance-level emotion classification. Unlike the ex-
isting approaches, our method is not bound by the number of speakers defined by model
architecture or training set. This is achieved by dynamic profiling of the parties along
the conversation using the RNN-like structure. As such, we obtain state-of-the-art per-
formance on both dyadic and multi-party ERC datasets.
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Chapter 1

Introduction

This chapter deals with introducing the readers to the problem at hand. We deconstruct
the problem into multiple subproblems and discuss each subproblem individually. We
also provide necessary background knowledge as to its relevance in modern society.
Further, we describe our solutions to these problems at conceptual level, along with their
novelties. In the end, we point out our contributions to science.

1.1 Background
It’s a foregone conclusion that internet is one of the linchpins of modern society. Various
aspects of our daily activities rely on internet — daily commute (Uber), shopping (Ama-
zon), entertainment (Netflix, YouTube), education (Coursera), finance (net-banking),
and so on.

E-commerce services, like Amazon, have enabled people with access to internet to
make purchases with the press of a button, saving numerous hours for productivity and
leisure. Again, the proliferation of smart devices has enabled social-media platforms,
like Facebook, Instagram, YouTube, to have great influence on public opinion. Users
post their opinion on various topics, such as politics, sports, food, products, etc, on these
platforms. These opinions are shared in huge quantity each day, in usually textual or
audio-visual form.

This huge quantity of data is being leveraged by various large enterprises to boost
their sales and revenue. E-commerce services, like Amazon, make recommendations
to their patrons based on their prior purchases and sentiment on those purchases. On
the other hand, product designers often want to get user feedback on various aspects of
their products to narrow down drawbacks of their products and plan improvements. This
aids companies to make critical business decisions based on user sentiment towards their
products.

On platforms like Facebook, Twitter, users often interact with each other as they
express their opinions. This leads to conversation among various parties. Hence, pro-
cessing all these conversational or otherwise multimodal or textual opinionated data and
extracting sentimental or emotional information from them warrant scalable algorithms.
To this end, in this thesis, we tackle a few types of chosen sentiment and emotion ex-
traction problems (Section 1.2) with neural network-based algorithms.
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1.2 Problems
The principal problems that we deal with in this thesis are sentiment analysis and emo-
tion detection. The methods we discuss are applicable to both of sentiment and emo-
tion detection as they are closely related problems, emotion detection being more fine-
grained than sentiment detection. Further, we explore the multimodal extension of both
of these problems.

1.2.1 Sentiment and Emotion Classification
1.2.1.1 Sentiment Analysis

The task is to assign appropriate sentiment label to a snippet of text, be it an utterance,
paragraph, or document. In this work, we perform sentiment analysis at utterance level.
Usually, the set of labels consists of three labels — positive, negative, and neutral. Ta-
ble 1.1 illustrates these labels.

Sentiment Example
Positive The display is gorgeous.
Negative The phone is too bulky.
Neutral It is powered by an Intel Core i5 processor.

TABLE 1.1: Different Sentiment Polarities.

Chapters 3 and 4 deal with sentiment analysis.

1.2.1.2 Emotion Classification

Similar to sentiment classification, emotion classification is the assignment of appropri-
ate emotion label to a piece of text, be it an utterance, paragraph, or document. In this
thesis, we deal with utterance-level emotion classification. The emotion labels that we
used in our work are illustrated in Table 1.2.

Emotion Sample
Happy Today, I got a big raise along with promotion.

Sad It’s a shame that John hurt his ankle before the expedition.
Neutral DHL is a courier service.
Angry Don’t ever call here again!

Excited I have to finish this thesis as soon as possible.
Frustrated Finishing this draft is taking longer than I expected.

TABLE 1.2: Illustration of utterance-level emotion classification.

Chapters 3 and 5 deal with emotion classification.
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1.2.2 Aspect-Based Sentiment Analysis
Often, a single utterance or sentence holds of multiple sentiments on multiple objects (or
aspects). As such, extraction of those aspects and their corresponding sentiment are two
different tasks that emerge. In this thesis, we deal with the latter task of sentiment clas-
sification of given aspects in the sentence. Table 1.3 illustrates aspect-based sentiment
analysis.

Sample Aspects (Sentiment)
Frenchie’s have mediocre food,

but great service. food (negative), service (positive)

TABLE 1.3: Illustration of Aspect-Level Sentiment.

Chapter 4 deals with aspect-based sentiment analysis.

1.2.3 Multimodal Sentiment and Emotion Classification
Unlike regular sentiment/emotion classification, multimodal sentiment/emotion classifi-
cation also deals with visual and acoustic information, apart from textual information.
This particularly comes into play for the extraction of sentiment/emotion in videos or
audios, where the extra modalities might lead to better classification result.

The main challenge of any multimodal task is the fusion of modalities. Chapter 3
deals with multimodal fusion.

1.2.4 Emotion and Sentiment Classification in Conversations
Conversational emotion and sentiment classification operates on conversation level in
addition to utterance level. The annotation is performed at utterance level like reg-
ular utterance-level emotion and sentiment classification. However, speaker and turn
information are provided as well to aid the classification. Fig. 1.1 illustrates one such
conversation. Chapter 5 deals with emotion recognition in conversations.

1.3 Relevance
Due to the massive growth of opinionated data on various topics, publicly available
over the internet, automated sentiment and emotion classification have risen to great
relevance. Major reviewers publish their opinions on newly released products on the
internet, discussing various facets of the target products. Even numerous general end
users chime in with their opinion. As such, the product manufacturers are keen on
user reception of many attributes of their product. They use this valuable information to
make critical business decisions, as to resource allocation — aspects with poor reception
require more resource for improvement; design decisions — design choices appreciated
in a rival product should be in incorporated. For instance, a company releasing a new
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I don’t think I can do this 
anymore. [ frustrated ]

Well I guess you aren’t trying hard 
enough. [ neutral ]

      Its been three years. I have tried 
everything. [ frustrated ]

Maybe you’re not smart enough. 
[ neutral ]

Just go out and keep trying. 
[ neutral ]

         I am smart enough. I am really good at 
what I do. I just don’t know how to make 

someone else see that. [anger]

Person BPerson A

u1

u3

u6

u2

u4

u5

FIGURE 1.1: Illustration of a conversation where the constituent utterances are labeled with
corresponding emotion labels.

smart-watch into the market would be interested in the near universally denounced poor
battery life, so that they could fix it in the next iteration.

Moreover, recently, there has been a trend of releasing opinion content in video form
to maximize reachability and quick information conveyance. Since, videos have multiple
channels of information, emotion and sentiment information tend to be more accurate
than solely textual channel. Hence, companies are more and more interested in opinions
expressed in videos.

E-commerce services can and do leverage the users’ experience and complaints about
past purchases to make relevant recommendations.

Also, this opinion information can contribute to risk assessment by conveying public
sentiment about specific choices that are being considered to be implemented.

Again, conversational emotion recognition systems can be used in empathetic dia-
logue generation systems in healthcare domain or customer relationship management,
where the response emotion and content of the dialogue system should be determined
by the user input (emotion and content), as illustrated in Fig. 1.2.
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My head is aching 
Frustrated

I’m sorry to hear that! 
Sad

Did you suffer a head injury 
earlier? 

Neutral

Yes 
Neutral

Please, 
immediately see a 

nearby doctor 
Excited 

No 
Neutral

Pleased to hear 
that 

Happy 

Did you consume 
alcohol recently? 

Neutral 

User Health Assistant

You might be 
concussed! 

Sad 

FIGURE 1.2: Example of empathetic dialogue generation based on user input.

1.4 Novelty

1.4.1 Multimodal Sentiment Analysis
Fusion of information from multiple modalities is the most crucial hurdle of multimodal
sentiment analysis or any multimodal task for that matter. Recently, myriad of multi-
modal fusion schemes (Majumder et al., 2018; Zadeh et al., 2017, 2018a,c) have been
proposed. These methods only fuse (encoding) the modality features into a unified fea-
ture. However, we go one step further by mapping (decoding) the fused feature back to
the original unimodal features to improve information retention. We reckon this strategy
forces the fusion model to retain both modality specific and invariant features at the same
time, resulting in fused feature vector with distinct features. We discuss this method in
details in Chapter 3.

Further, since, this strategy has distinct encoder and decoder parts, any new fusion
strategy can be used as encoder to boost the performance of newer fusion strategies.
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1.4.2 Aspect-Based Sentiment Analysis (ABSA)
Most ABSA algorithms treat the aspects in the same sentence independently. However,
it is not always the case. For example, “Their food was much better than their service”
has two aspects food and service. Due to the usage of ‘better’, the sentiment of food is
dependent on the sentiment of service and vice versa.

Hence, we employ memory networks (Sukhbaatar et al., 2015) to model the depen-
dency among the aspects within the same sentence, which resulted in improved perfor-
mance over SOTA. This is discussed in details in Chapter 4.

1.4.3 Emotion Recognition in Conversation (ERC)
Most of the existing works on emotion recognition in conversation do not utilize speaker
information effectively and in a scalable fashion. We, however, present a RNN-based
method that profiles individual speaker as the conversation proceeds. As such, it is
capable of handling multi-party conversations in a scalable way. Moreover, it is also
capable of handling arbitrary number of speakers in a conversation without retraining the
model. In Chapter 5, we discuss this in details and show that our method outperforms
the SOTA.

1.5 Contributions
The followings are the contributions of this thesis:

• Improved Multimodal Feature Fusion — Development of feature fusion scheme
that is capable of boosting performance of existing feature fusion schemes;

• Improved Unsupervised Multimodal Feature Fusion — Development of fea-
ture fusion method without labeled data;

• Inter-Aspect Dependency Modeling — Modeling of inter-aspect dependency for
aspect-based sentiment analysis, leading to more precise aspect-level sentiment
classification;

• Improved Incorporation of Speaker Information in ERC — Usage of on-the-
fly speaker profiling for ERC for improved classification performance;

• Scalable Multi-Party ERC — Capable of handling multi-party conversations
without the increase of number of model parameters with speaker count;

• Improved Real-time Multi-Party ERC — Capable of generating emotion pre-
dictions in realtime with a small modification to the model.
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1.6 Structure of this Document
• Chapter 1 (the current chapter) introduces the problems we strive to solve in this

thesis and their importance;

• Chapter 2 briefly introduces the reader to the theoretical elements employed to
solve the problems at hand;

• Chapter 3 describes our novel multimodal fusion method;

• Chapter 4 discusses inter-aspect dependency-based aspect-level sentiment classi-
fication model;

• Chapter 5 presents our RNN-based method for emotion recognition in conversa-
tion that performs speaker profiling in realtime;

• Chapter 6 concludes this thesis by elaborating our contributions, along with men-
tioning the publications born out of this thesis and the future works projected.



8

Chapter 2

Theoretical Framework

We provide necessary theoretical background as to different methods, tools, metrics to
facilitate reader understanding of the subsequent chapters. Firstly, we briefly discuss
different emotion and sentiment frameworks. Further, we discuss a few text representa-
tion methods, which is followed by classification techniques. Then, we delve into some
elementary neural-network architectures and training neural networks. Finally, we close
off this chapter by explaining the methods for validating and evaluating classification
methods on a given dataset.

2.1 Emotion and Sentiment Framework
Emotion Framework. There are two basic types of emotion categorization models —
categorical and dimensional. Categorical models define emotion as a finite set of discrete
categories. On the other hand, dimensional models define emotion as a continuous multi-
dimensional space, where each point in the space corresponds to some emotional state.

One of the most popular categorical models, Plutchik (1982)’s wheel of emotion
(Fig. 2.1) posits eight distinct primary emotion types. Each primary type is defined as
a collection related subtypes. On the other hand, Ekman (1993) only defines six basic
emotion types — anger, disgust, fear, happiness, sadness, and surprise.

On the dimensional categorization front, most such models (Mehrabian, 1996; Rus-
sell, 1980) define two dimensions — valence and arousal. Valence denotes the degree of
positive emotion and arousal represents the intensity of given emotion.

Compared to categorical models, dimensional models map emotion onto a continu-
ous space. It facilitates simple and intuitive comparison of two emotional states using
vector operations and vector similarity metrics. In contrast, comparison between cate-
gorical states is non-trivial.

It can be challenging to choose categorization model for annotation, due to the
availability of several taxonomies. For example, a simple model like Ekman’s model
has limited capability of grounding complex emotions. However, complex models like
Plutchik’s model make annotation very difficult due to the existence of subtly-different
and related emotion categories, e.g., anger and rage. Besides, this can also lead to low
annotator agreement.
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FIGURE 2.1: Plutchik’s wheel of emotion (Plutchik, 1982).

Sentiment Framework. Sentiment framework, however, is usually much simpler and
unambiguous, consisting of three sentiment types — positive, negative, and neutral.

2.2 Text Representations

2.2.1 Bag of Words (BOW)
BOW is arguably the simplest form of text representation, which only considers two fac-
tors — vocabulary of text and presence of constituent words. In the simplest form, words
in BOW are represented as one-hot vectors of length of the size of vocabulary, where
each element represents an unique word in the vocabulary. However, term frequency-
inverse document frequency (TF-IDF) (Ramos, 2003; Robertson, 2004) based vectors
are more popular and effective. However, the major two drawbacks of BOW are:

1. sparsity — word representation vectors are as large as the size of the vocabulary
(which can be millions) which is not scalable to deep neural networks or even
large volume of data,

2. loss of word-order — word order is not captured in document representations,
leading to loss of syntactic information. Bag of n-grams is often used to alleviate
this, but it does not scale well to large volume of data.

As such, distributed word representations become necessary, as discussed in the follow-
ing sections.
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2.2.2 Word2vec Embeddings
Mikolov et al. (2013) catapulted the use of deep learning in NLP through word2vec
distributed word embeddings. These embeddings are build from large corpus in such a
way that relationships among words are preserved in the vector space where the embed-
dings lie in. The two variants of word2vec are continuous-bag-of-words (CBOW) and
SkipGram.
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Predicted 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FIGURE 2.2: Word2vec CBOW model.

CBOW — Given a fixed number of context words, within fixed context window, sur-
rounding the target word, the model predicts the target word using a simple neural net-
work depicted in Fig. 2.2. Here, the rows of the weight matrix represent the word em-
beddings that are trained. The final softmax layer computes probability over the entirety
of the vocabulary, which is often computationally infeasible. To circumvent this issue
negative sampling strategy is adopted. This reduces the task to a binary classification
problem. Instead of predicting the target word directly, the task is now to predict if a
series of (target word, context word) pairs belong to the corpus. Alternatively, instead
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of negative sampling, the softmax function can be approximated using hierarchical soft-
max (Morin and Bengio, 2005), differentiated softmax (W. Chen et al., 2016).
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FIGURE 2.3: Word2vec SkipGram model.

SkipGram — This model is mirror image of CBOW. Here, given a single word, the
model predicts the context words. Fig. 2.3 shows this model.

Word2vec vectors are trained to have much smaller dimensionality (pretrained Google
word2vec vectors are of size 300). One important property of word2vec is — similar
words are closer in the vector space. Fig. 2.4a shows 2D projection of word2vec embed-
dings where similar words are clustered together.

Further, Fig. 2.4b shows that pairs of words having similar relationship between them
have similar distance vectors. As such, semantics is built into the vector space.

2.2.3 GloVe Embeddings
GloVe (Pennington et al., 2014) model adopts similar principal as word2vec (Mikolov
et al., 2013), by considering the co-occurrence of target and context word within corpus.
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(A)
(B)

FIGURE 2.4: (A) 2D projection of word2vec embeddings where semantically similar words are
closer; (B) Vector differences between words signifying gender.

However, unlike word2vec that only considers local statistics, GloVe also uses global
statistics by incorporating co-occurrence counts between words into the training objec-
tive (Eq. (2.1)). Moreover, GloVe deliberately infuses semantics into vector space (as in
Fig. 2.4b), unlike word2vec where the semantics emerges as a side effect of the training
process.

The following is the training objective of GloVe:

J =
V∑

i,j=1

f(Xij)(wi
Twj + bi + bj − logXij), (2.1)

f(x) =

{
(x/xmax)

α if x < xmax,

1 otherwise,

where wi,wj ∈ RD are embeddings of ith and j th word in vocabulary, respectively; bi, bj
are biases for ith and j th word, respectively; Xij is the co-occurrence count between
ith and j th word; V is the vocabulary size; f is the weighting function, where usually
α = 3/4 and xmax = 100.

2.2.4 Contextual Embeddings

1. The bank blocked Jason's credit card. 
2. Segun sat by the river bank, pondering the future. 
3. Jason sat sulking by the river bank, contemplating suing the bank.

     Financial Institution          Shore

FIGURE 2.5: Two different semantics of the word bank, depending on the context.
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One drawback of word2vec (Mikolov et al., 2013) and GloVe (Pennington et al.,
2014) embeddings is those remain static, regardless of the sentence they appear in (in
other words, context). Fig. 2.5 illustrates a scenario of polysemy, where two different se-
mantics of the word bank are appear. Word2vec and GloVe treat both banks as the same
word, hence, same embedding and semantics, which is wrong. Recently, pre-training
models like Embedding from Language Models (ELMo) (Peters et al., 2018) and Bidi-
rectional Encoder Representations from Transformers (BERT) (Devlin et al., 2019) have
been proposed that generates embeddings specific to the sentences. Employing these
embeddings has significantly improved performance of many tasks, such as question
answering, natural language inference, co-reference resolution, etc. These models also
allow fine-tuning specific to task at hand to obtain even better embeddings.

ELMo and BERT both are trained by solving some sentence-level problems, auto-
generated from the corpus. ELMo is composed of two language models that are trained
on large corpus. BERT, on the other hand, predicts randomly masked tokens in sen-
tences (masked language model) and if a given sentence follow the other in the corpus.
ELMo uses bidirectional long short-term memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) (Section 2.4.4) to construct the language models. BERT, however, uses trans-
former networks (Vaswani et al., 2017) which operates faster than LSTMs. Unlike static
embeddings, ELMo is immune to out-of-vocabulary (OOV) issue due to character-level
input encoding. BERT, on the other hand, uses WordPiece (Wu et al., 2016) encoding
that somewhat alleviates OOV problem, but not fully. Overall however, BERT outper-
forms ELMo on most tasks, due to harder training objective that captures more intricate
linguistic features.

In our work, we do not employ these contextual embeddings for the sake of fair
comparison with the SOTA methods that do not use contextual embeddings.

2.3 Classification Techniques

2.3.1 Perceptron
Single-Layer Perceptron (SLP) is the simplest form of classifier that is capable of ob-
taining a hyperplane separating data-points of two distinct classes. Fig. 2.6 illustrates
such a case there two classes (red and blue) are separated by two among infinitely many
possible straight line (hyperplane in 2D space).

The general equation of hyperplane in nD space is

wTx + b = 0, (2.2)

where x ∈ Rn is a point in nD space. We optimize parameters w ∈ Rn and b of Eq. (2.2)
such that the resulting hyperplane linearly separates data-points x. In other words, the
decision function is

f(x) =

{
1 if wTx + b > 0

0 otherwise.
(2.3)
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FIGURE 2.6: Two hyperplanes separating linearly separable data-points with two distinct
classes.

The following steps are performed to optimize parameters w and b:

1. Initialize parameters w and bwith small random values close to zero. Often values
sampled from standard normal distribution are used, i.e., w(0) ∼ N (0, I) and
b(0) ∼ N (0, 1).

2. For each sample (xj, yj) in the training set at iteration t, we perform

ŷj(t) = f(xj), (2.4)
w(t + 1) = w(t) + C(yj − ŷj(t))xj, (2.5)
b(t+ 1) = b(t) + C(yj − ŷj(t)), (2.6)

where C is some learning rate (usually set to 0.001 or 0.0001).

3. We repeat step 2 until the error value 1
s

∑s
j=1 |yj − ŷj|, where s is the number of

training samples, is below some predefined threshold.

2.3.2 Logistic Regression / Single-Layer Perceptron
The drawback of simple perceptron is that it is ineffective against linearly inseparable
data-points, as shown in Fig. 2.7. To introduce non-linearity, we feed the output of
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FIGURE 2.7: Linearly non-separable data.

wT .x + b through sigmoid activation (σ), where

σ(x) =
1

1 + exp(−x)
. (2.7)

Fig. 2.8 depicts the shape of Sigmoid function. Since, the mid part of the curve is linear,
manipulating parameters w and b can make the decision boundary linear of the data be
linearly separable. Henceforth, we rewrite the decision-function as

f(x) =

{
1 if σ(wTx + b) > 0.5

0 otherwise.
(2.8)

FIGURE 2.8: Sigmoid function (σ).
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Since, the range of sigmoid is [0, 1], its output can be interpreted as probability. Thus,
the probabilities of x belonging to class 1 and 0 are P(x) = σ(wTx + b) and 1−P(x),
respectively. Further, we write the joint class probability of all training samples as

P =
s∏
j=1

[yjP(xj) + (1− yj)(1− P(xj))], (2.9)

where yj ∈ {0, 1} is the expected label of sample j. Naturally, our goal is to maximize
the value of P . To this end, we use stochastic gradient descent (SGD). However, we
need to transform this maximization problem to minimization problem.

P contains O(s) number of multiplications, which is computationally expensive.
Hence, we apply log function on P as follows:

logP =
s∑
j=1

log [yjP(xj) + (1− yj)(1− P(xj))] (2.10)

Since, for sample j exactly one of yj and 1 − yj will be zero and the other one, the
following can be said:

logP =
s∑
j=1

[yj logP(xj) + (1− yj) log (1− P(xj))] (2.11)

Now, we negate logP to convert the problem to minimization problem. Also, we
normalize the value by dividing it with s. Finally, the objective function is

J = −1

s

s∑
j=1

[yj logP(xj) + (1− yj) log (1− P(xj))] (2.12)

Function J is called log-loss or binary cross-entropy. We now apply SGD or one of its
variants to minimize J .

2.3.3 Multi-Layer Perceptron
Logistic regression is effective in various tasks. However, certain arrangements of data-
points that cannot be reasonably separated using logistic hypersurfaces. For instance,
Fig. 2.9 shows four points with two classes (XOR function), which cannot be separated
using a single straight-line (even with logistic-curve). Clearly, it requires two straight-
lines to separate those.

To solve this, we employ multiple perceptrons. We introduce two perceptrons con-
nected to the input, which constitute the hidden layer. Such connections are called dense
connections (or full connections). Each perceptron stands for a straight-line (or hyper-
plane in general). We feed the output of those two perceptrons to another perceptron,
which is the overall output. This network is depicted in Fig. 2.10.
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FIGURE 2.9: XOR function: Linearly non-separable.

Input 
Layer

Hidden 
Layer

Output 
Layer

FIGURE 2.10: Multi-Layer Perceptron for XOR function.

The structure of XOR network is trivial, since the arrangement of the data-points is
known and simple. However, for most applications the distribution of the data-points is
unknown. As such, the networks are usually built with much higher number of percep-
trons with various activation functions and multitude of layers (these are called hyper-
parameters). As such, this is called multi-layer perceptron (MLP).

We perform the optimization of the parameters using SGD or one of its variants,
as discussed in Section 2.5. Hyper-parameters are fine tuned based on performance on
validation split, manually or using grid-search. Although, bayesian hyper-parameter
optimization (Snoek et al., 2015) is often used.

2.3.4 Other Classification Techniques
There are other classification techniques which are out of the scope of this thesis. For
example, naive bayes, random forest, decision tree, support vector machine (SVM), etc
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are still very relevant techniques in data-poor scenarios. Moreover, naive bayes, random
forest, decision tree are widely used where interpretability of the model is critical.

2.4 Neural Network Architectures
Dense or fully-connected layer discussed in Section 2.3.3 is very important building
block of neural networks. However, it alone rarely suffices in practice, without manual
feature engineering. Since, manual feature engineering is often limited in coverage and
not well scalable, specialized architecture like convolutional neural networks (CNN),
recurrent neural networks (RNN) are employed to process and filter relevant information
from raw input data directly, as per the task.

2.4.1 Convolutional Neural Networks (CNN)
Convolutional neural networks (CNN) are inspired by arrangement of cells (neurons) in
visual cortex of animals. Individual cells are only receptive of certain sub-area of the
visual field, acting as filter on the corresponding sub-area. However, as a whole these
cells cover the entire visual field. CNN mimics this strategy over the input space, which
is often an image or a sentence.

2.4.1.1 Convolution Filter

CNN applies convolution filter on a sub-region of the image at a time to yield a scalar in
the feature map. This filter is slid across the image to form the complete feature map, as
illustrated in Fig. 2.11.

FIGURE 2.11: Feature map derived from original image; 5×5 filter sliding along input volume,
yielding activation.
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Multiple of such feature maps can be produced, using different filter parameters,
from a single image. Therefore, k-th feature map is represented as fk, where

fkij = ReLU((W k ∗ x)ij + bk), (2.13)

ReLU(x) = max(0, x), (2.14)

W k ∈ Rn×m and bk are the weight and bias, respectively, of convolutional filter of size
n×m, i and j are row and column index of a neuron in feature map. Activation function,
rectified linear unit (ReLU ), is widely used in deep networks, to mitigate vanishing
gradient problem. In general, feature maps production can be represented as depicted in
Fig. 2.12.

FIGURE 2.12: New feature maps derived from previous feature maps.

2.4.1.2 Pooling

Pooling operation is often an important part of CNN-based networks. It only passes a
single value obtained from sliding window, of stipulated size, over the feature map. This
filters out less relevant features within given region, that enhances task performance.
Also, this reduces downstream computation cost per feature map, allowing higher num-
ber of subsequent feature maps. Max pooling is the most frequently used form of pool-
ing, where the maximum value within a window is passed. However, there exists average
pooling, min pooling.
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2.4.1.3 Classification

Such layers of CNN and max pooling are often stacked and the output of the final layer
is flattened to a vector. This vector is represents the input image with all the relevant in-
formation for classification. This vector is fed to a MLP for final classification. Fig. 2.13
illustrates a full scale CNN for image classification.

FIGURE 2.13: CNN for image classification.

2.4.1.4 Applications of CNN in NLP

CNN is applied to solve various NLP tasks, including generating sentence representation
from word embeddings (Section 2.2). The constituent word embeddings of the sentence
are stacked in order into a matrix, resembling an image. CNN of filter size n×d is applied
to this matrix, where d is embedding size and n represents n-gram, to obtain n-gram
feature maps. This is further fed through a series of pooling and CNN layers to finally
classify it. Chapter 3 discusses the application of CNN for utterance representation
generation.

2.4.2 3D Convolutional Neural Network (3D-CNN)
3D-CNN is 3D extension of regular 2D-CNN (Section 2.4.1). The convolution is per-
formed on a window of frames 2D frames at a time. Fig. 2.14 shows the architecture of
a 3D-CNN-based network with 3D-max-pooling and a classifier at the end.

Let V ∈ Rc×f×h×w be a video, where c is the number of channels in an image (c = 3
for RGB images), f is the number of frames, and h × w is the size of a frame. Again,
we consider the 3D convolutional filter F ∈ Rfm×c×fl×fh×fw, where fm is the number
of feature maps, c is the number of channels, fd is the number of frames (in other words
depth of the filter), and fh × fw is the size of the filter. Similar to 2D-CNN, F slides
across video V and generates output

C ∈ Rfm×c×(f−fd+1)×(h−fh+1)×(w−fw+1).

Next, we apply max pooling to C to select only relevant features. The pooling will be
applied only to the last three dimensions of the array C.
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FIGURE 2.14: 3D-CNN.

2.4.3 Recurrent Neural Network (RNN)
Recurrent neural networks (RNN) are a class of neural networks where the connection
among the nodes form at least one directed cycle or loop.

RNNs usually process one input per cell and retain that information in memory for
the next cell (that share parameters) where it takes another input and so forth. As such,
RNNs are specially apt in handling sequential information. Therefore, these are fre-
quently used in many NLP task to encode and decode sentences, that are intrinsically
sequential.

In theory, RNNs are capable of retaining every relevant information it has encoun-
tered at some point. However, in practice these only retains information from a few steps
back. To circumvent this critical issue RNNs with specific structure, like long short-term
memory (LSTM) (Hochreiter and Schmidhuber, 1997) (Section 2.4.4), are used, that are
much less inclined to memory loss.

FIGURE 2.15: Recurrent Neural Network (RNN).
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Fig. 2.15 shows an RNN loop, unfolded into a sequence, where W , U , and V are
network parameters. xt is the input vector at time-step t, which could be an word em-
bedding (Section 2.2); st is hidden state at time-step t:

st = N (U xt +W st−1), (2.15)

where N is non-linearity, such as sigmoid or tanh. The initial state s−1 is often initial-
ized to null vector. ot is the output at step t:

ot = softmax(V st), (2.16)

which is the probability of the input belonging to a particular class.

FIGURE 2.16: RNN for machine translation.

Fig. 2.16 shows an RNN for translating German to English.

2.4.4 Long Short-Term Memory (LSTM)
Long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) is purposely de-
signed to be less prone to vanishing gradient problem. Also, it is more adept at retaining
long-term memories in a sequence. These make it perfect fit for NLP applications due
to intrinsically sequential nature of sentences and documents.

LSTM has three gates, namely input, output, and forget, that decide the content to
incorporate, to output, and to forget, based on current input and memory state.

Fig. 2.17 depicts architecture of single LSTM cell. The same structure reiterates
over all the time steps, sharing the parameters. LSTM is described by the following
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FIGURE 2.17: Long Short-Term Memory (LSTM).

equations:

it = σ(Wi xt + Ui ht−1 + bi), (2.17)
ot = σ(Wo xt + Uo ht−1 + bo), (2.18)
ft = σ(Wf xt + Uf ht−1 + bf ), (2.19)
Cin = tanh(Wc xt + Uc ht−1 + bc), (2.20)
Ct = it ∗ Cin + ft ∗ Ct−1, (2.21)
ht = ot ∗ tanh(Ct), (2.22)

where it, ot, and ft represent input, output, and forget gate, respectively, at time-step
t; Cin is the candidate state at time-step t; Ct is cell state at time-step t (memory); ht
is hidden output of LSTM cell at time-step t. The gates depend on the current input
and output of previous cell, which means that it considers prior information with current
information to make decision retention and incorporation. In Eq. (2.21), new memory
is formed by purging part of existing memory and integrating part of new input xt. In
Eq. (2.22), LSTM cell passes part of the new memory as output. The output of final cell
is often considered representation of the whole sequence. However, often all the outputs
are pooled to obtain the sequence representation.

2.4.5 Gated Recurrent Unit (GRU)
Gated recurrent unit (GRU) (Chung et al., 2014), as depicted in Fig. 2.18, employs
similar ideas as LSTM. However, it works with fewer parameters than LSTM. Also, it
has only two gates as compared to three gates in LSTM. GRU can be described with the
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FIGURE 2.18: Single Gated Recurrent Unit (GRU) cell.

following:

zt = σ(Wz xt + Uz ht−1 + bz), (2.23)
rt = σ(Wr xt + Ur ht−1 + br), (2.24)

h̃t = tanh(Wh xt + Uh (rt ∗ ht−1) + bh), (2.25)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t, (2.26)

where zt and rt are update and refresh gates, respectively; h̃t is candidate input informa-
tion; ht is the output at time-step t.

GRU is an approximation of LSTM. Compared to LSTM, GRU often performs better
than LSTM on small datasets. However, with sufficient data LSTM performs better or
comparable to GRU.

2.5 Stochastic Gradient Descent (SGD)
Stochastic gradient descent (SGD) is an optimization algorithm that minimizes a dif-
ferentiable function by iteratively updating its parameters by a controlled fraction of its
gradients until a state of saturation is reached. Fig. 2.19 depicts the gradual descent to
the absolute minima of a convex function. Algorithm 1 summarizes SGD.

Hyper-parameters like η and ε are to be supplied by the user. ε is usually quite
small, like 0.0001. η (or learning-rate) is chosen with care to a small value like 0.001
and is refined across many SGD runs. Too small a learning-rate may not lead to a
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FIGURE 2.19: Gradient Descent for a convex function.

Algorithm 1 Stochastic Gradient Descent algorithm.
1: procedure SGD(J , w, η, ε) . J = Loss function which is a function of w,
η = learning rate, ε = change tolerance

2: Initialize parameters w with random values close to zero
3: repeat
4: w(t) = w(t−1) − η∇J(w(t−1))
5: until |J (t) − J (t−1)| < ε . J (t) = value of J after iteration t
6: return w

convergent state in a feasible amount of time. On the other hand, too large a η often
leads to oscillation of J or worse yet missing the global minima.

For large neural networks, the gradients (∇J(w(t−1))) are calculated using back-
propagation algorithm, that employs chain rule to propagate error from loss (J) towards
input.

2.6 Model Validation Techniques

2.6.1 Cross Validation
Cross-validation is a method of validating predictive models by generating one or more
splits of the dataset containing a training and a test partition.

Stratified k-fold cross-validation is the most popular variant of cross-validation. Here,
the dataset is randomly partitioned in to k nearly equal sized subsets, where it is equally
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likely for a sample to belong to any of the k subsets. Each of the k subset is used exactly
once for evaluation, while the remaining k − 1 subsets are used for training. The results
from each k test sets are aggregated for final evaluation.

Other variants include leave one group out where the test set contains samples with
some feature exclusive to the test set.

2.7 Model Evaluation Techniques
The following methods evaluate the quality of the model predictions against expected
output.

2.7.1 Evaluating Regression Quality
Mean Absolute Error — Mean absolute error (MAE) is defined as the average of
absolute difference between expected (Yi) and predicted (Ŷi) model output:

MAE =
1

n

n∑
i=1

|Yi − Ŷi|, (2.27)

where n is the number of samples.

Mean Squared Error — Mean squared error (MSE) is defined as the average of
squared difference between expected (Yi) and predicted (Ŷi) model output:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2, (2.28)

where n is the number of samples. MSE is also used as loss for training neural networks
for regression problems due to being differentiable.

Pearson Correlation Coefficient — Pearson correlation coefficient (ρ) is computed
to measure linear correlation between expected and predicted output, that ranges within
[−1,+1]:

ρY,Ŷ =
COV(Y, Ŷ )

σY σŶ
, (2.29)

COV(Y, Ŷ ) =
1

n

n∑
i=1

(Yi − Ȳi)(Ŷi − ¯̂
iY ), (2.30)

σY =

√√√√ 1

n

n∑
i=1

(Yi − Ȳi)2, σŶ =

√√√√ 1

n

n∑
i=1

(Ŷi − ¯̂
Yi)2. (2.31)
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2.7.2 Evaluating Classification Techniques
Precision — Precision is a class-specific metric (say class c) which is defined as —
the fraction of the samples predicted as class c that are predicted correctly as c. In terms
of formula, it is

Prc =
Tc

Tc + Fc
, (2.32)

where Tc and Fc are the number of samples that are correctly and falsely predicted as
class c, respectively.

Recall — Recall is also a class-specific metric (say class c) which is defined as — the
fraction of the samples known to be class c that are predicted correctly as c. The formula
is

Rec =
Tc

Tc + F¬c
, (2.33)

where Tc is the number of samples correctly predicted as class c and F¬c is the number
of samples incorrectly predicted as other classes that are known to be c.

F-Score — A measure that combines precision and recall with harmonic mean:

Fc =
2 · Prc · Rec
Prc + Rec

. (2.34)

This measure is especially relevant for imbalanced data where precision and recall sig-
nificantly deviate from each other.

To determine overall F-Score macro, micro, or weighted average is taken over F-
Scores of all the classes.

Accuracy — Accuracy is the fraction of all the samples that are predicted correctly:

Accuracy =

∑
c∈C Tc∑

c∈C Tc +
∑

c∈C Fc
, (2.35)

where C is the set of all classes.
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Chapter 3

Variational Fusion for
Multimodal Sentiment Analysis

3.1 Introduction
Multimodal sentiment analysis or affect detection is a fast-growing research area due to
its strong and increasing demand in the industry. Thanks to the lucrative video journal-
ism, promulgated by the likes of Facebook, YouTube, many professional reviewers are
sharing their product reviews on video platforms. Even nowadays, major news channels
are publishing their content on these platforms. Since, videos contain three channels or
modalities of information — textual, visual, and acoustic — predictions made by using
information from all these modalities tend to be more accurate compared to using single
channel. As such, major organizations are interested in utilizing these freely available
videos for market research, feedback gathering, customer relationship management, and
more.

Multimodal fusion is a major component of any multimodal task, including multi-
modal sentiment analysis. Recent works on multimodal fusion (Poria et al., 2017; Zadeh
et al., 2017, 2018c) have focused on encoding extracted unimodal representations into a
single unified multimodal representation. However, our approach takes this one step fur-
ther by reconstructing original unimodal representations. Our motivation is that, since,
different modalities are manifestation of the state of mind, then we can assume that the
fused representation should be representation of the state of mind as well. As such,
if we can ensure mapping between fused representation and unimodal representations,
then improvement of the quality of fused representation is reasonable to assume. We
empirically show the validity of this supposition in this chapter.

We implement our strategy using variational autoencoder (VAE) (Kingma and Welling,
2014), which is composed of an encoder and a decoder. The encoder network produces
a latent multimodal representation from the unimodal representations. Again, the de-
coder network decodes the latent multimodal representation into the original unimodal
representations.

The rest of the chapter is organized as follows — Section 3.2 briefly discusses the
recent works, Section 3.3 describes our approach, Section 3.4 states the experimental
setup, Section 3.5 reports and interprets the results of our experiments, and finally Sec-
tion 3.6 concludes this chapter.
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3.2 Related Works
Lately, sentiment analysis (Cambria et al., 2017) has become a prevalent tool for extract-
ing affective content out of large volume of social media content residing on Facebook,
YouTube, blogs, and various other online platforms. There is growing interest in sci-
entific community, leading to many exciting open challenges, as well as in the business
world, due to the remarkable benefits to be had from financial forecasting (Xing et al.,
2017) and political forecasting (Ebrahimi et al., 2017), user profiling (Mihalcea and
Garimella, 2016), and more.

In emotion recognition, early works by De Silva et al. (1997) and L. S. Chen et al.
(1998) demonstrated the superiority of fusion of acoustic and visual modalities over uni-
modal approaches. Both feature level (Kessous et al., 2010) and decision level (Schuller,
2011) fusion have been investigated.

As for textual modality, Rozgic et al. (2012) and Wollmer et al. (2013) were one of
the first few who fused acoustic, visual, and text modalities for sentiment and emotion
detection. Poria et al. (2015) employed CNN and multi-kernel learning for multimodal
sentiment analysis. Further, Poria et al. (2017) used long short-term memory (LSTM)
to achieve context-dependent multimodal fusion, where the surrounding utterances are
taken into account for context.

Zadeh et al. (2017) used tensor outer-products to model intra- and inter-modal inter-
actions for utterance-level fusion. Again, Zadeh et al. (2018a) used multi-view learning
for utterance-level multimodal fusion. Further, Zadeh et al. (2018c) employed hybrid
LSTM memory components to model intra-modal and cross-modal interactions.

3.3 Method
Humans have three major channels/modalities at their disposal to communicate their
thoughts — textual (written text or speech), acoustic (pitch and other vocal properties),
and visual (facial expression). Communicating through speech often leads to the usage
of all three modalities, one substantiating the others. To fuse relevant information from
all these multiple modalities existing methods employ some encoder to generate unified
fused representation. However, in this chapter we present a method that further decodes
the fused representation back to the original unimodal representations.

Firstly, utterance-level unimodal features are extracted independently (Section 3.3.1).
These unimodal features are passed to an encoder network (Section 3.3.2) to generate
fused representation. Further, the fused representation is decoded back to the unimodal
representations to maximize the fidelity of the fused representation, with respect to the
unimodal representations. This is basically an autoencoder setting. Specifically, we
employ a variational autoencoder (VAE) (Kingma and Welling, 2014), as described in
Fig. 3.1, where the sampled latent representation is used as the multimodal representa-
tion.
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FIGURE 3.1: Graphical model of our multimodal fusion scheme.

3.3.1 Unimodal Feature Extraction
Textual (ft), acoustic (fa), and visual (fv) features are extracted using CNN, 3D-CNN
(Tran et al., 2015), and OpenSmile (Eyben and Schuller, 2015), respectively.

3.3.1.1 Textual Feature Extraction

Firstly, transcripts are obtained from the videos. We represent the words in each ut-
terance with 300-dimensional word2vec vectors (Mikolov et al., 2013) (Section 2.2.2).
Each utterance is padded or truncated to have exactly 50 words. Such utterances are
fed to CNN- (Karpathy et al., 2014) based network (Fig. 3.2) to predict their sentiment
labels.

The network consists of two consecutive convolution layers — the first layer has two
filters of sizes 3 and 4, each having 50 feature maps; the second one has a filter of size
2 with 100 feature maps. Each convolution is followed by a max-pooling layer of size
2×2. The transition of the sentence through the convolution filters forces the network to
learn abstract features. Moreover, with each subsequent layer the scope of the individual
feature values expands further.

The output of the final max-pooling layer is fed to a dense layer of size 500 with
ReLU (Teh and Hinton, 2001) activation and dropout, followed by another dense layer
with softmax activation for classification. The output of the penultimate fully-connected
layer is taken as the textual representation of the corresponding utterance.
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FIGURE 3.2: Text CNN for textual feature extraction.

3.3.1.2 Acoustic Feature Extraction

Using openSMILE (Eyben et al., 2010), we extract low level descriptors (LLD) — like
pitch, voice intensity — and various statistical functionals — amplitude mean, arithmetic
mean, root quadratic mean, standard deviation, flatness, skewness, kurtosis, quartiles,
inter-quartile ranges, and linear regression slope — of the utterance-level audio clips.

Prior to extracting the aforementioned features, voiceless audio segments are re-
moved using voice intensity threshold. Also, Z-standardization is applied for voice nor-
malization.

OpenSMILE is utilized for both feature extraction and audio pre-processing, where
input audio is sampled at 30 Hz frame rate, with 100 ms sliding window. “IS13-ComParE”
configuration file is used for feature extraction, that results in total 6392 acoustic features
per utterance.
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3.3.1.3 Visual Feature Extraction

We employ 3D-CNN (Section 2.4.2) for utterance-level visual feature extraction. As a
3D extension of regular CNN, 3D-CNN not only captures frame-level information, but
also inter-frame temporal dependencies that exist in a video clip.

Each video V ∈ R3×f×h×w, is composed of f number of frames of size h × w with
RGB pixels with three channels. We apply 3D convolutional filter Fconv ∈ R32×3×5×5×5,
followed by max-pooling of size 3 × 3 × 3 on each V . This is flattened and fed to
a dense layer with 300 output size, which is fed to another dense layer with softmax
activation for sentiment classification. The 300-dimensional output of the penultimate
layer is taken as visual feature after training.

3.3.2 Encoder
The encoder network accepts utterance-level unimodal representations — ft ∈ RDt ,
fa ∈ RDa , and fv ∈ RDv — and generates the latent multimodal representation z ∈ RDz

by sampling from posterior distribution pθ(z|F ):

pθ(z|F ) =
pθ(F |z)p(z)

p(F )
, (3.1)

F = ft ⊕ fa ⊕ fv, (3.2)

p(F ) =

∫
pθ(F |z)p(z)dz, (3.3)

p(z) = N (0, I), (3.4)

where pθ(F |z) represents the decoder network with parameter θ given standard normal
prior of z.

Unfortunately, the true posterior pθ(z|F ) is analytically intractable due to RHS (right-
hand side) of Eq. (3.3) being the same. As such, we approximate the posterior distribu-
tion by feeding F to a neural network of two dense layers that generates mean and
covariance matrix of the approximate posterior distribution qφ(z|F ):

qφ(z|F ) = N (µenc, σenc), (3.5)
h1 = ReLU(Wh1F + bh1), (3.6)

µenc = Wµh1 + bµ, (3.7)
σenc = softplus(Wσh1 + bσ), (3.8)

where F ∈ RDt+Da+Dv , Wh1 ∈ RDh×(Dt+Da+Dv), bh1 ∈ RDh , h1 ∈ RDh , W{µ,σ} ∈
RDz×Dh , b{µ,σ} ∈ RDz , µenc ∈ RDz , and σenc ∈ RDz . It is point out that the non-
diagonal elements of the covariance matrix of are set to zero to force the feature values
in z be independent of each other. Hence, σenc is a vector instead of matrix. Eq. (3.20)
in Section 3.3.5, approximates pθ(z|F ) into qφ(z|F ) during training.

A more sophisticated encoder, like TFN (Zadeh et al., 2017) and MFN (Zadeh et al.,
2018a), could be adopted instead for posterior approximation. However, encoding the
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unimodal representations is not the focus of this chapter, rather it is the reconstruction
of the unimodal features from the multimodal representation.

Sampling Latent (Multimodal) Representation — The latent representation z ∼
qφ(z|F ) is sampled from the approximate posterior using the reparameterization trick
(Kingma and Welling, 2014) to allow backpropagation during training:

z = µenc + ε� σenc, (3.9)
ε ∼ N (0, I), (3.10)

where z ∈ RDz , ε ∈ RDz , and � represents elementwise product. z is the multimodal
representation.

3.3.3 Decoder
Unimodal representations (F̂ ) are reconstructed by the decoder network from z (Eq. (3.9)):

h3 = softplus(Wh3z + bh3), (3.11)

F̂ = Wrech3 + brec, (3.12)

where Wh3 ∈ RDh×Dz , bh3 ∈ RDh , Wrec ∈ R(Dt+Da+Dv)×Dh , brec ∈ R(Dt+Da+Dv),
h3 ∈ RDh , and F̂ ∈ R(Dt+Da+Dv).

Similar to the encoder network, decoder network construction is not the focus of this
chapter. A more sophisticated decoder can be used.

3.3.4 Classification
We employed two different types of classification networks:

Context-Free Classifier (Logistic Regression (LR)) — The multimodal representa-
tion z is fed to a dense layer with softmax activation:

P = softmax(Wclsz + bcls), (3.13)
ŷ = argmax

i
P [i], (3.14)

where Wcls ∈ RC×Dz , bcls ∈ RC , P ∈ RC contains the class-probabilities, ŷ is the
predicted class, andC is the number of classes (C = 2 for MOSI dataset (Section 3.4.1)).

The output ŷ does not depend on the neighboring utterances, ergo context-free clas-
sifier.

Context-Dependent Classifier (bc-LSTM (Poria et al., 2017)) — In order to infuse
contextual information into the multimodal utterance representations (zj; j is the index



34 Chapter 3. Variational Fusion for Multimodal Sentiment Analysis

of an utterance) within a video, zj are fed to a bidirectional-LSTM (bi-LSTM) (Hochre-
iter and Schmidhuber, 1997), as per Poria et al. (2017). The output of the bi-LSTM is
fed to a dense layer with softmax activation for sentiment classification:

Z = [z1, z2, . . . , zn], (3.15)
H = bi-LSTM(Z), (3.16)
H = [h1, h2, . . . , hn], (3.17)
Pj = softmax(Wclshj + bcls), (3.18)
ŷj = argmax

i
Pj[i], (3.19)

where Z and H contain n constituent multimodal utterance representations without and
with context information, respectively; hi ∈ R2Dl , Wcls ∈ RC×2Dl , bcls ∈ RC , Pj ∈ RC

contains class-probabilities for utterance j, ŷj is the predicted class for utterance j, and
C is the number of classes (e.g. C = 2 for MOSI dataset (Section 3.4.1)).

3.3.5 Training
Latent Multimodal Representation Inference — As per Kingma and Welling (2014),
the true posterior pθ(z|F ) is approximated into qφ(z|F ) by maximizing the evidence
lower bound (ELBO):

log p(F ) ≥ Eqφ(z|F )[log pθ(F |z)]− KL[qφ(z|F )||p(z)]︸ ︷︷ ︸
ELBO

, (3.20)

The first term of ELBO, Eqφ(z|F )[log pθ(F |z)], captures the reconstruction loss of input
F . The second term, KL[qφ(z|F )||p(z)], pushes the approximate posterior qφ(z|F ) close
to the prior p(z) = N (0, I) by minimizing the KL-divergence between them.

Classification — The sentiment classifiers (Section 3.3.4) were trained by minimizing
categorical cross-entropy (E) between expected and estimated class probabilities:

E = − 1

N

N∑
i=1

logPi[yi], (3.21)

where N is the number of samples, Pi contains the class probabilities for sample i, and
yi is the target class for sample i.

We used SGD-based Adam (Kingma and Ba, 2015) algorithm to train the parameters.
The hyper-parameters {Dh, Dl} and learning-rate are tuned using grid-search. The latent
representation size Dz is set to 100.
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3.4 Experimental Settings
We assess the multimodal representations (Eq. (3.9)), sampled from VAE, on two distinct
classification scenarios (Section 3.3.4). Therefore, the two variants are named VAE+LR
and VAE+bc-LSTM in Table 3.2.

3.4.1 Datasets
We assess our method on three distinct datasets (splits are shown on Table 3.1):

Dataset Train Test
CMU-MOSEI 16188 4614
IEMOCAP 5810 1623
CMU-MOSI 1447 752

TABLE 3.1: Utterance count in the train and test sets.

CMU-MOSI (Zadeh et al., 2016) dataset consists of English review videos on var-
ious topics by 89 people. Each constituent utterance in the videos are annotated with
sentiment label (positive or negative). Ideally, our model should be able to generalize
well, irrespective of the speaker. To this end, we keep the train and test split mutually
exclusive in terms of speakers. Specifically, training and test split consists of 1,447 and
752 utterances, respectively.

CMU-MOSEI (Zadeh et al., 2018b) dataset consists of 22,676 utterances spread
across 3,229 YouTube product and movie review videos by 1,000 unique creators. The
training, validation, and test split contain 16,188, 1,874, and 4,614 utterances, respec-
tively. Each utterance is annotated with positive, negative, or neutral sentiment label.

IEMOCAP (Busso et al., 2008) consists of dyadic conversations among 10 unique
speakers. The constituent utterances of each conversation are annotated with one of
the six emotion labels — anger, happy, sad, neutral, excited, and frustrated. The first
8 speakers from sessions one to four are exclusive to training set and the remaining 2
belong to the test set.

3.4.2 Baseline Methods
Logistic Regression (LR) — The concatenation of unimodal representations are clas-
sified using logistic regression, as in Section 3.3.4. Context from the neighboring utter-
ances is not considered.
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bc-LSTM (Poria et al., 2017) — The concatenation of unimodal representations is
sequentially fed to the bc-LSTM sentiment classifier, as in Section 3.3.4. This is the
state-of-the-art method.

TFN (Zadeh et al., 2017) — Intra- and inter-modal interactions are modeled using
vector outer product. It does not use neighboring context information.

MFN (Zadeh et al., 2018a) — Multi-view learning is employed for modality fusion
with memory content. It also does not use neighboring context information.

MARN (Zadeh et al., 2018c) — In this model the intra- and cross-modal interactions
are modeled with hybrid LSTM memory component.

3.5 Results and Discussion

Method CMU-MOSI CMU-MOSEI IEMOCAP
TFN 74.8 53.7 56.8
MARN 74.5 53.2 54.2
MFN 74.2 54.1 53.5

C
F LR 74.6 56.6 53.9

VAE+LR 77.8 57.4 54.4

C
D bc-LSTM 75.1 56.8 57.7

VAE+bc-LSTM 80.4∗ 58.8∗ 59.6∗

TABLE 3.2: Trimodal (acoustic, visual, and textual) performance (F1) of our method against
the baselines (results on MOSI and IEMOCAP are based on the dataset split from Poria et al.
(2017)); CF and CD stand for context-free and context-dependent models, respectively; * signi-

fies statistically significant improvement (p < 0.05 with paired t-test) over bc-LSTM.

Following Table 3.2, our VAE-based methods — VAE+LR and VAE+bc-LSTM —
surpass the corresponding concatenation-based fusions, with LR and bc-LSTM, consis-
tently on all three datasets. In particular, our context-dependent model, namely VAE+bc-
LSTM, outperforms the context-dependent state-of-the-art method bc-LSTM on all the
datasets, by 3.1% on average. Similarly, our context-free model VAE+LR outperforms
the other context-free models — MFN, MARN, TFN, and LR — on all datasets, by
1.5% on average. Further, VAE+bc-LSTM outperforms VAE+LR by 3.1% on average
— this shows the importance of context in sentiment analysis.

Overall, it is reasonable to conclude that the superior fused representation generated
by VAE, that retains enough unique information, leads to boosted classification perfor-
mance. Also, it is important to point out that the fusion representation generator, VAE,
is unsupervised. As such, the multimodal representation is label invariant.
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3.5.1 VAE vs. AE Fusion
As opposed to VAE, we also used auto-encoder (AE) for multimodal fusion. This yielded
inferior performance. We surmise this is due to relatively rigid nature of the latent states
of AE due to no stochasticity. This is demonstrated in Fig. 3.3, where the individual
classes in t-SNE scatter plot of AE are more fractured compared the same of VAE.

(A) (B)

FIGURE 3.3: (a) and (b) show t-SNE scatter-plots of VAE and AE multimodal representations,
respectively, for IEMOCAP.

3.5.2 Case Study
Matching the predictions of our model to the baseline models have highlighted the fact
that our model is more capable where non-textual cues are necessary for correct sen-
timent classification. For example, the utterance “I still can’t live on in six seven and
five. It’s not possible in Los Angeles. Housing is too expensive.” is misclassified by
bc-LSTM as excited, as compared to VAE+bc-LSTM that correctly classifies it as an-
gry. We surmise that bc-LSTM was unable to distinguish the nuance between angry and
excited from textual modality. However, due to informative and non-redundant multi-
modal representation from VAE, VAE+bc-LSTM could leverage information from visual
modality. We observed similar trend overall, where our VAE-based methods correctly
classify based on non-verbal cues as opposed to non-VAE baselines.

3.5.3 Error Analysis
We observed overall inability to recognize sarcasm by our models. For instance, “No.
I am just making myself fascinating for you.” is a sarcastic response to a question “you
going out somewhere, dear?”. Unfortunately, VAE+bc-LSTM fails to correctly classify
the emotion as excited, in contrast to the ground truth angry.
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3.6 Conclusion
This chapter presents a VAE-based unsupervised multimodal fusion strategy. We em-
pirically show that our method outperforms the SOTA by significant margin. We used
simple encoder and decoder models, however. In the future, we mean to develop more
sophisticated encoder (MFN, TFN) and decoder networks for improved performance.
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Chapter 4

IARM: Inter-Aspect Relation Modeling
for Aspect-Based Sentiment Analysis

4.1 Introduction
Sentiment analysis has become a very active research area due to its myriad of applica-
tions in e-commerce, customer relationship management (CRM), recommender systems,
user-feedback gathering, etc. Companies are often interested in user opinion on various
aspects of their products, rather than the entirety of it. This enables them to plan and fo-
cus on specific areas for improvement. Aspect-based sentiment analysis (ABSA) enables
this aspect-specific analysis.

Reviewers usually express their opinion on various aspects of the products individ-
ually. For instance, “Everything is so easy to use, Mac software is just so much simpler
than Microsoft software.” discusses three aspects, “use”, “Mac software”, and “Mi-
crosoft software”, where the sentiment behind them are positive, positive, and negative,
respectively. Naturally, there are two subtasks at hand — aspect extraction (Shu et al.,
2017) and aspect sentiment polarity detection (Wang et al., 2016). In this chapter, we fo-
cus on the second subtask where each pre-extracted aspect is to be assigned appropriate
sentiment label (positive, negative, or neutral).

Existing works on aspect polarity classification does not account for the effect of
neighboring aspects on the target aspect. For example,“The menu is very limited - I think
we counted 4 or 5 entries.” has two aspects — “menu” and “entries”. Here,“I think ...
entries” phrase does not completely convey the sentiment behind aspect “entries”. How-
ever, when we consider the phrase connected to “menu”, the sentiment behind “entries”
become clear, to be negative. So, in retrospect, we can observe that aspect “menu” im-
poses its sentiment on aspect “entries”. To account for such cases, our presented model
considers the neighboring aspects during target-aspect classification.

Aspect classification in a sentence containing multiple aspects is inherently more
difficult than a sentence containing only one aspect. This is because the ABSA classi-
fier has to correctly associate every aspect with their corresponding sentiment-bearing
phrase or word. For instance, the sentence “Coffee is a better deal than overpriced cosi
sandwiches” contains two aspects — “coffee” and “cosi sandwiches”. Here, “coffee”
and “cosi sandwiches” are opinionated by “better” and “overpriced”, respectively. We
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empirically show that our model is able to make this associations better that the existing
methods.

Often, the aspects in sentences containing conjunctions — and, not only, also, but,
however, though, etc — influence each other by sharing their sentiment. For example,
let’s consider the sentence “Food is usually very good, though I wonder about freshness
of raw vegetables” containing aspects “food” and “raw vegetables”. Clearly, “raw veg-
etables” does not have any explicit sentiment marker. However, in contrast to “food”,
which has a clear sentiment marker “good”, one can easily infer the sentiment of “raw
vegetables” to be negative. This connection is made by the existence of “though” in
the sentence. Hence, we hypothesize our model can capture such interaction among the
aspects.

We perform the following steps to model inter-aspect dependencies:

1. As in Wang et al. (2016), we derive aspect-specific sentence representations for all
constituent aspects by feeding aspect-concatenated word representations to gated
recurrent unit (GRU) (Chung et al., 2014) and attention mechanism (Luong et al.,
2015);

2. Then, the dependencies among the aspects are modeled using memory networks
(Sukhbaatar et al., 2015), where the target-aspect-aware sentence representation is
compared to the rest of the aspect-aware sentence representations;

3. The output of the memory networks is fed to a softmax classifier for final aspect
sentiment classification.

In this chapter, we empirically show that these steps outperforms the state of the art (Ma
et al., 2017) by 1.6% on average on two distinct domains — restaurant and laptop.

The rest of the chapter is organized as follows — Section 4.2 discusses related
works; Section 4.3 describes the proposed method; Section 4.4 discusses the mentions
the dataset, baselines, and experimental settings to evaluate our method; Section 4.5
shows the results of our experiments and interprets them; and Section 4.6 makes a con-
cluding remark by mentioning the contributions and planned future work.

4.2 Related Works
Due to the current advent of sharing opinionated textual pieces over blogs, wikis, editori-
als on social media platforms, sentiment analysis has gained a massive traction from the
research community. Targeted sentiment analysis requires solving two subtasks — as-
pect extraction (Poria et al., 2016; Shu et al., 2017) and aspect-based sentiment analysis
(ABSA) (Ma et al., 2017; Wang et al., 2016).

Due to the performance and scalability of deep learning-based methods, recently it
has been experiencing much interest and progress within NLP (Young et al., 2018). This
has led to significant performance improvement in ABSA.

One of the first deep learning-based ABSA approach (Wang et al., 2016) generated
aspect-aware sentence representation with aspect-concatenated word embeddings. This
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aspect-aware representation is fed to softmax classifier for aspect-level sentiment clas-
sification. Tay et al. (2017) improved this by utilizing word-aspect association with
circular correlation. Recently, X. Li et al. (2018) employed transformer networks for
ABSA.

The state-of-the-art method Ma et al. (2017) leverages attention mechanism to model
interaction between aspect and sentence.

From question-answering point of view C. Li et al. (2017) and Tang et al. (2016b)
employed memory networks to solve ABSA. However, none of these methods try to
model inter-aspect interactions.

4.3 Method

4.3.1 Problem Definition
Input — The input consists of a sentence S composed of L words wi — S = [w1, w2,
. . . , wL] — and constituent M aspect-terms A1, A2, . . . , AM , where Ai = [wk, . . . ,
wk+m−1], 1 ≤ k ≤ L, 0 < m ≤ L− k + 1.

Output — Sentiment label (positive, negative, and neutral) per aspect-term Ai.

4.3.2 Model
The main novelty of our method over the exiting methods in the literature is the usage of
neighboring aspects within a sentence for target aspect classification. Our supposition is
that the presented inter-aspect relation modeling (IARM) method1 (Fig. 4.1) is able to
find the dependencies between target and neighboring aspects, that filters out irrelevant
information to the target aspect, resulting in improved classification performance.

4.3.2.1 Overview

IARM consists in the following three stages:

Input Representation — The constituent words in the input sentence and aspect terms
are represented and replaced with GloVe embeddings (Pennington et al., 2014) (Sec-
tion 2.2.3). Multi-word aspect-terms are represented with the mean of their containing
word representations.

Aspect-Aware Sentence Representation (AASR) — To obtain Aspect-Aware Sen-
tence Representation (AASR), we follow Wang et al. (2016), where the words within
the given sentence are concatenated with the given aspect representation. This sentence
with aspect information is fed to a gated recurrent unit (GRU)2 to infuse context and

1Implementation available at http://github.com/senticnet/IARM
2LSTM (Hochreiter and Schmidhuber, 1997) gives similar performance with more parameters

http://github.com/senticnet/IARM
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FIGURE 4.1: IARM architecture; AASR stands for Aspect-Aware Sentence Representation.

aspect information into the constituent words. Attention mechanism is applied to this
context-rich word representations (output of GRU) to obtain a fixed-size AASR vector.
This attention mechanism amplifies words and information relevant to the given aspect.

Inter-Aspect Dependency Modeling — To model inter-aspect dependency, we use
memory networks (MemNet) (Sukhbaatar et al., 2015). The target AASR is passed as
the query to the memory networks, where all AASRs within the sentence are stored in
the memory slots. MemNet matches the target AASR with the rest of the AASRs and
through attention mechanism inter-aspect dependency information is augmented to the
target AASR. We assume that following several of this hops the refined target AASR
would contain information only relevant to sentiment classification. Hence, this refined
target AASR is fed to a dense layer with softmax activation for final sentiment classifi-
cation.

4.3.2.2 Input Representation

The constituent words in sentence S, wi are represented and replaced with GloVe em-
beddings (Pennington et al., 2014) (Section 2.2.3). That is S ∈ RL×D, where D = 300
is the GloVe embedding size.

Likewise, aspect terms are represented as the mean of the constituent word embed-
dings — ai ∈ RD represents the ith aspect term.
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4.3.2.3 Aspect-Aware Sentence Representation

It is a reasonable assumption that sentiment of a specific aspect does not depend on all
the words or phrases in the sentence. The stop words would be few of such words.
As such, it is necessary to construct a sentence representation that is indicative of the
aspect sentiment. To this end, following (Wang et al., 2016), we first concatenate aspect
representation ai to all the constituent words in sentence S:

Sai = [w1 ⊕ ai, w2 ⊕ ai, . . . , wL ⊕ ai] ∈ RL×2D. (4.1)

Now, to infuse contextual information into the words, we pass Sai through a GRU,
named GRUs, of size Ds (Table 4.1) and obtain Rai . Generally, GRU. is described as

z = σ(xtU
z
. + st−1W

z
. ), (4.2)

r = σ(xtU
r
. + st−1W

r
. ), (4.3)

ht = tanh(xtU
h
. + (st−1 ∗ r)W h

. ), (4.4)
st = (1− z) ∗ ht + z ∗ st−1, (4.5)

where ht and st are hidden output and cell state, respectively, at time t. We use shorthand
for GRU operation as — Rai = GRUs(Sai), where Rai ∈ RL×Ds and the GRUs has
trainable parameters — U z

s ∈ R2D×Ds , W z
s ∈ RDs×Ds , U r

s ∈ R2D×Ds , W r
s ∈ RDs×Ds ,

Uh
s ∈ R2D×Ds , W h

s ∈ RDs×Ds .
Finally, we utilize attention mechanism to summarize information relevant to the

sentiment of aspect ai, from context- and aspect-aware word representations in Rai:

z = RaiWs + bs, (4.6)
α = softmax(z), (4.7)

rai = αTRai , (4.8)

where z = [z1, z2, . . . , zL] ∈ RL×1, softmax(x) = [ex1/
∑

j e
xj , ex2/

∑
j e

xj , . . . ], α =

[α1, α2, . . . , αL] ∈ RL×1, rai ∈ RDs , Ws ∈ RDs×1, and bs is a scalar. rai is the final
aspect-aware sentence representation (AASR).

4.3.2.4 Inter-Aspect Dependency Modeling

We employ a GRU, namely GRUa, of size Do (Table 4.1) to infuse information on
neighboring aspects into all the AASRs rai , which aids in dependency modeling among
the aspects:

R = [ra1 , ra2 , . . . , raM ] ∈ RM×Ds , (4.9)
Q = GRUa(R), (4.10)

where Q ∈ RM×Do and GRUa has the parameters — U z
a ∈ RDs×Do , W z

a ∈ RDo×Do ,
U r
a ∈ RDs×Do , W r

a ∈ RDo×Do , Uh
a ∈ RDs×Do , W h

a ∈ RDo×Do .
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However, to refine target-aspect-aware sentence representation, namely rat (t is the
index of target aspect that is to be classified), memory networks (MemNet) (Sukhbaatar
et al., 2015) is employed. Thus, we transform rat into query (q) of the MemNet using a
dense layer:

q = tanh(ratWT + bT ), (4.11)

where q ∈ RDo , WT ∈ RDs×Do , and bT ∈ RDo .

Input Memory Representation — All individual AASRs are contained within the
rows of input memory Q. Following Weston et al. (2014), we use attention mechanism
to read from Q, where each memory slot (row) in Q is compared to the query q using
inner product:

z = qQT , (4.12)
β = softmax(z), (4.13)

where z = [z1, z2, . . . , zM ] ∈ RM×1, β = [β1, β2, . . . , βM ] ∈ RM×1. Attention score βi
represents the dependency between target aspect at and aspect ai.

Output Memory Representation — The output memory Q′ is a refinement of the
input memory Q. Q is passed through GRUm of size Do, which further improves inter-
aspect dependencies:

Q′ = GRUm(Q), (4.14)

where GRUm has parameters — U z
m ∈ RDo×Do , W z

m ∈ RDo×Do , U r
m ∈ RDo×Do , W r

m ∈
RDo×Do , Uh

m ∈ RDo×Do , W h
m ∈ RDo×Do .

The target AASR is refined with response vector o, which contains the refined inter-
aspect dependency information related to the target aspect. o is constructed by pooling
over output memory Q′ with inter-aspect dependency measure β:

o = βTQ′, (4.15)

where o ∈ RDo .

Final Classification (Single Hop) — For single MemNet hop, update information o is
added to the query q and fed to a dense layer with softmax activation for aspect-sentiment
classification:

P = softmax((q + o)Wsmax + bsmax), (4.16)
ŷ = argmax

i
(P [i]), (4.17)
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where Wsmax ∈ RDo×C , bsmax ∈ RC , C = 3 is the number of sentiment labels, and ŷ is
the predicted sentiment label (0 for negative, 1 for positive, and 2 for neutral).

Final Classification (Multiple Hops) — Multiple passes of target AASR q is achieved
with multiple hops of MemNet. Each of total H (Table 4.1) hops is defined as follows:

• Target ASSR q(τ) at the end of hop τ is updated as

q(τ+1) = q(τ) + o. (4.18)

• Output memory of hop τ , namely Q′(τ), is used as the input memory of the next
hop τ + 1:

Q(τ+1) = Q′(τ). (4.19)

q(H) is the final refined target AASR after H hops. This is fed to a dense layer with
softmax activation for sentiment classification:

P = softmax(q(H+1)Wsmax + bsmax), (4.20)
ŷ = argmax

i
(P [i]), (4.21)

where Wsmax ∈ RDo×C , bsmax ∈ RC , and ŷ is the predicted sentiment label (0 for
negative, 1 for positive, and 2 for neutral). Algorithm 2 summarizes this method.

4.3.3 Training
The presented network is trained for 30 epochs on average with categorical cross-entropy
added to L2-regularizer as loss (L):

L = − 1

N

N∑
i=1

C−1∑
k=0

yik logP [k] + λ ‖θ‖2 , (4.22)

where N represents the number of samples, λ is the regularization weight (we set it to
10−4),

yik =

{
1, label of sample i is k,
0, otherwise,

(4.23)

and θ contains the trainable parameters, where

θ = {U z
{s,a,m},W

z
{s,a,m}, U

r
{s,a,m},W

r
{s,a,m}, U

h
{s,a,m},W

h
{s,a,m},Ws, bs,WT , bT ,Wsmax, bsmax}.

We use SGD-based ADAM algorithm (Kingma and Ba, 2015) with learning-rate
0.001 for training.
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Algorithm 2 IARM algorithm

1: procedure TRAINANDTESTMODEL(U , V ) . U = train set, V = test set

2: Aspect-aware sentence representation (AASR) extraction:
3: for i:[1,M] do . generate AASR for all the aspects in the sentence
4: rai

← AASR(S, ai)

5: Query generation:
6: q ← FCLayer(rat

) . Transform the target AASR into query of MemNet

7: Memory networks (MemNet):
8: Q← GRUa([ra1 , ra2 , . . . , raM

]) . initial input memory
9: Q′ ← GRUm(Q) . initial output memory

10: for i:[1,H] do . memory network hops
11: z ← qQT . match with target aspect
12: β ← softmax(z)
13: o← βTQ′ . response vector
14: Q← Q′ . input memory for the next hop
15: q ← q + o . update target AASR (query)

16: Classification:
17: ŷ = argmax

j
(softmax(q)[j]) . softmax classification

18: TestModel(V )

19: procedure AASR(S,a) . generation of aspect-aware sentence representation
20: Ra ← GRUs([w1 ⊕ a,w2 ⊕ a, . . . , wL ⊕ a]) . S = [w1, w2, . . . , wL]
21: z ← FCLayer(Ra)
22: α← softmax(z)
23: ra ← αTRa

24: return ra

25: procedure TESTMODEL(V )
26: V is fed to the learnt model, as during the training, for classification. The trainable parameters

(θ) are mentioned in Section 4.3.3.

Hyper-Parameters — Grid search was used in our experiments for hyper-parameter
optimization. Optimal hyper-parameters are enlisted in Table 4.1.

4.4 Experiments

4.4.1 Dataset Details
We used SemEval-2014 ABSA dataset3, containing samples from restaurant and laptop
domains, to evaluate our method. Distribution of labels is shown in Table 4.2. Further,

3http://alt.qcri.org/semeval2014/task4

http://alt.qcri.org/semeval2014/task4
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Hyper-Parameter Restaurant Laptop
Ds 300 400
Do 350 400

Hop Count 3 10

TABLE 4.1: Optimal hyper-parameters.

Table 4.3 presents the distribution of sentences containing single aspect and multiple
aspects.

Domain
Positive Negative Neutral

Train Test Train Test Train Test
Restaurant 2164 728 805 196 633 196

Laptop 987 341 866 128 460 169

TABLE 4.2: Count of the samples by class labels in SemEval 2014 dataset.

Domain
Train Test

SA MA SA MA
Restaurant 1007 2595 285 835

Laptop 917 1396 259 379

TABLE 4.3: Count of the samples by the appearance of single aspect/multiple aspects in the
source sentence in SemEval 2014; SA and MA stand for Single Aspect and Multiple Aspects,

respectively.

4.4.2 Baseline Methods
Our method is compared with the following methods from the literature:

LSTM — This baseline method feeds the sentence to an LSTM to infuse contextual
information into the constituent words. Mean pooling over the output of the LSTM is
taken to obtain the sentence representation. This sentence representation is fed to a dense
layer with softmax activation for classification. This baseline shows the impact of the
absence of aspect information on the classification performance.

TD-LSTM — Tang et al. (2016a) feeds the words, concatenated with the target aspect-
term, appearing before and after the target aspect term to two distinct LSTMs. Mean
pooling over the outputs of the two LSTM are concatenated and sent to a dense layer
with softmax activation for sentiment classification.
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AE-LSTM — Wang et al. (2016) feeds the sentence to an LSTM to infuse contextual
information into the containing words. Target-aspect representation is concatenated to
each of the output vectors of the LSTM. Attention pooling is applied to these concate-
nated vectors to obtain intermediate aspect representation. This is passed through an
affine transformation and concatenated with the final output of the LSTM. This fed to a
dense layer with softmax activation for sentiment classification.

ATAE-LSTM — ATAE-LSTM (Wang et al., 2016) follows the same steps as AE-
LSTM. However, the only distinction being the LSTM accepts concatenation of target
aspect-term representation and word representations.

IAN (SOTA) — Ma et al. (2017) feeds the target aspect and the context sentence to
two different LSTMs. Output of each LSTM are max-pooled to a aspect and sentence
representation vectors. Now, this aspect representation vector is used for attention pool-
ing over the sentence LSTM output and vice versa. Output of these two attention pooling
are concatenated and fed to a dense layer with softmax activation for aspect-sentiment
classification.

4.4.3 Experimental Settings
The following three types of experiments were conducted to compare IARM with the
baseline methods:

Overall Comparison — For each individual domain, we compare IARM against the
baseline methods.

Single-Aspect and Multi-Aspect Scenarios — The trained IARM model is evaluated
independently on test samples having sentences with single and multiple aspects. The
same is done for the state-of-the-art IAN.

Cross-Domain Evaluation — The IARM model trained with the training samples of
one domain is evaluated with the test samples of the other domain. The same is done for
IAN also.

4.5 Results and Discussion
Overall Comparison — Table 4.4 shows that IARM surpasses the state-of-the-art
IAN and other baseline methods on both domains — by 1.7% and 1.4% on laptop and
restaurant domains, respectively, over IAN. This demonstrates that the consideration of
neighboring aspect information using MemNet leads to improvement in the target-aspect
sentiment classification.
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Model
Domain

Restaurant Laptop
Majority Classifier 53.4 65.0

LSTM 74.3 66.5
TD-LSTM 75.6 68.1
AE-LSTM 76.2 68.9

ATAE-LSTM 77.2 68.7
IAN (SOTA) 78.6 72.1

IARM 80.0 73.8

TABLE 4.4: Domain-wise accuracy (%) of the discussed models; best performance for each
domain is indicated with bold font.

Single-Aspect and Multi-Aspect Scenarios — According to Table 4.5, IARM out-
performs the SOTA model IAN on both single-aspect and multi-aspect cases on both
domains. Both models are expected to perform better on multi-aspect case than single-
aspect case due to the higher sample count of multi-aspect case in both domains (Ta-
ble 4.3). However, IAN performs better on single-aspect scenario than multi-aspect
scenario. This is indicative of the fact that the presence of multiple aspects in a sin-
gle sentence has confounding effect on IAN, leading to inferior performance on those
aspects than IARM.

Model
Restaurant Laptop
SA MA SA MA

IAN (SOTA) 75.4 77.7 72.5 71.6
IARM 78.6 80.48 73.4 74.1

TABLE 4.5: Accuracy (%) of the models for single aspect and multi aspect scenario; SA and
MA stand for Single Aspect and Multiple Aspects, respectively.

Cross-Domain Evaluation — According to Table 4.6, the SOTA IAN is beaten by
IARM on both cross-domain cases. This illustrates the capability of IARM to learn
domain-invariant features from the training data.

Model Rest→ Lap Lap→ Rest
IAN (SOTA) 64.6 72.0

IARM 66.7 74.0

TABLE 4.6: Accuracy (%) on cross-domain scenarios; Rest: Restaurant domain, Lap: Laptop
domain; A→ B represents that the model is trained on the train-set of domain A and tested on

the test-set of domain B.
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4.5.1 Case Study
We study, interpret, and compare the functioning of IARM and IAN on single-aspect
and multi-aspect cases with samples from the dataset.

Single-Aspect Case — Table 4.5 shows that IARM beats IAN on single-aspect case.
We demonstrate this with a sample — “I recommend any of their salmon dishes......”
containing aspect “salmon dishes” with positive ground sentiment; IAN misclassifies
this aspect as negative due to its attention on the wrong context word “salmon” without
sentimental intensity, as depicted in Fig. 4.2a.

IARM, however, pays attention to the correct context word “recommend”, bearing
positive sentiment, as depicted in the visualization of α attention (Eq. (4.7)) in Fig. 4.2b.
Hence, correct sentiment label is predicted.

(A) Attention weight for aspect “salmon dishes” for IAN.

(B) Attention weight for aspect “salmon dishes” for IARM.

FIGURE 4.2: Attention weights for IAN and IARM for “I recommend any of their salmon
dishes”.

Multi-Aspect Case — Following Table 4.5, IARM beats IAN on multi-aspect case
as well. We posit that the existence of multiple aspects in context sentence has a con-
founding effect on IAN, specifically, regarding the association between aspect-term and
its respective sentiment carrying word. Let us consider this sample — “Coffee is a
better deal than overpriced cosi sandwiches” with aspect-terms “coffee” and “cosi sand-
wiches”. IAN is unable to make the connection between aspect “cosi sandwiches” and
its sentiment-bearer “overpriced”. Rather, it erroneously connects “cosi sandwiches” to
“better”, which is sentiment bearer for the other aspect “coffee”. This is visible in the
visualization of attention of IAN Fig. 4.3a. As such, IAN misclassifies the sentiment of
“cosi sandwiches” as positive.

On the other hand, IARM utilizes word-level aspect-aware attention (α) and MemNet
to disambiguate the connection between aspect and its corresponding sentiment-bearing
term. This is achieved by the repeated matching of target aspect with the neighboring
aspects via MemNet. This ability of IARM is illustrated by the α attention visualizations
in Fig. 4.3b and Fig. 4.3c, where the network correctly makes the association between
the aspect-terms and its corresponding sentiment bearer, leading to accurate prediction.
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(A) Attention weights for aspect “cosi sandwiches” for IAN.

(B) Attention weights for aspect “cosi sandwiches” for IARM.

(C) Attention weights for aspect “coffee” for IARM.

FIGURE 4.3: Attention weights for IAN and IARM for the sentence “Coffee is a better deal than
overpriced cosi sandwiches”.

The incorporation of information from neighboring aspects is done in Eq. (4.18).
The amount of incorporation is calculated by the β attention weights in Eq. (4.13). The
visualization of β attention (Fig. 4.4a) shows this phenomenon — the information from
aspect “coffee” is being channeled into to the target AASR of “cosi sandwiches” for
three hops. It can be supposed this information pertains to the sentiment bearer of as-
pect “coffee” — “better”. “better” provokes a comparison between two aspects. As
such, it induces the first aspect, “coffee”, having positive sentiment and other one aspect,
“cosi sandwiches”, having negative sentiment. Lack of such modeling in IAN leads to
misassociation, which is followed by misclassification.

Often conjunction has major role in structure and semantics of the sentence. As an
example, “my favs here are the tacos pastor and the tostada de tinga” contains two as-
pects “tacos pastor” and “tostada de tinga” that are connected with conjunction “and”.
Hence, they share a common sentiment-bearing term “favs”. Fig. 4.4b illustrates how
IARM is capable of mining such patterns — by exchanging information between as-
pects. Similar case appears in Fig. 4.5, where aspects “atmosphere” and “service”
share “good” as sentiment marker, caused by the presence of “and”.

4.5.2 Error Analysis
We found that IARM misclassifies in certain scenarios. For instance, the aspect “choices
of sauces” is misclassified as neutral in the sentence “They bring a sauce cart up to your
table and offer you 7 or 8 choices of sauces for your steak (I tried them ALL).”. We
suppose this is caused by the misinterpretation of the sentiment-bearing phrase “7 or 8
choices of sauces”, as the quantity seven or eight is a relative term. The Understanding of
such cases comes from commonsense. Hence, we believe that addition of commonsense
knowledge to our model would help it correctly classify such cases.
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(A) MemNet β attention weights for sentence
“Coffee is a better deal than overpriced cosi

sandwiches.”.

(B) MemNet β attention weights for sentence
“my favs here are the tacos pastor and the

tostada de tinga.”.

FIGURE 4.4: MemNet β attention weights for IARM.

FIGURE 4.5: MemNet β attention weights for the sentence “service was good and so was the
atmosphere”.

Another similar case where IARM fails is while classifying the aspect “breads”
within sentence “Try the homemade breads.”. Our model fails to interpret the corre-
sponding sentiment-bearing term “try” as positive, due to its default sentiment being
neutral. Thus, it misclassifies the aspect as neutral. We suppose that the inclusion of
commonsense knowledge would aid IARM in making the correct prediction.
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4.5.3 Hop-Performance Relation
Fig. 4.6 shows how the hop count influences the performance of IARM. We observed
that three and ten are the best hop count for restaurant and laptop domain, respectively.
Also, it is observable that the plot of restaurant domain is smoother than the plot of
laptop domain. We suppose that higher count of restaurant samples (Table 4.2) has led
to this relatively smoother plot.

Another interesting observation is the overall declining trend of performance with
the increase of hops, for restaurant domain, with two peaks at hop 3 and 10. This could
be indicative of cyclic nature MemNet, the peaks denoting the start and end of a cycle.
Laptop domain, however, exhibits a rather zig-zag pattern than a cyclic trend.

FIGURE 4.6: Hop-Accuracy plot for both domains.

4.6 Conclusion
This chapter has described a novel framework for aspect-based sentiment analysis, namely
IARM. IARM exploits the dependency among constituent aspects within a sentence, us-
ing recurrent neural network and memory network, to improve their sentiment classifi-
cation performance. We empirically verify this claim. Specifically, our model surpasses
the state of the art by 1.6% overall, on two domains. That said, there still exist various
paths for further improvement — improvement of aspect-aware sentence representa-
tions, improvement of aspect matching and dependency mining schemes, and more.
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Chapter 5

DialogueRNN: An Attentive RNN for
Emotion Recognition in Conversations

5.1 Introduction
By the virtue of internet and proliferation of internet-enabled devices, like smartphones,
tablets, laptops, communication and discussion over various topics through the means of
internet has exploded over last few decades. These discussions are often conversational
in nature, facilitated by platforms like Facebook, Twitter, YouTube, etc. Various par-
ties are looking to make sense of this copious amount of conversational data to estimate
public perception of their products, service, policies, or any subject matter. This estima-
tions are often performed in terms of emotions. To this end, in this chapter, we discuss
an RNN-based emotion recognition in conversation (ERC) method that could attend to
these needs.

Existing works in the literature, even the SOTA (Hazarika et al., 2018), mostly ig-
nore the importance of individual parties. Especially, the models are not cognizant to
the speaker of the target utterance and history of the speaker within the conversation.
On the other hand, our model (DialogueRNN) strives to overcome these limitations by
profiling individual parties during the flow of the conversation. We model the emotion
of target utterance as a function of three factors — its speaker, its global context defined
by preceding utterances, and its emotional context. As illustrated in Fig. 5.1, the role of
preceding utterances is crucial in determining the context and in turn emotion of the cur-
rent utterance. Inclusion of these factors into our model has significantly outperformed
the state of the art (Table 5.3). Besides, our method is capable of working on multi-
party scenario, in a scalable fashion, unlike the SOTA where the number of parameter
increases linearly with the number of parties.

The presented model in this chapter, DialogueRNN, utilizes three GRUs (Chung et
al., 2014) — namely speaker GRU, global GRU, and emotion GRU. The inbound utter-
ance is passed to global GRU and speaker GRU to update the global context and speaker
state, respectively. To provide global GRU speaker context, we also feed the current
speaker state to global GRU. We believe that pooling these global GRU outputs would
provide contextual information from the preceding utterances by various participants.
Again, the speaker state is updated using speaker GRU, with the pooled global context
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She’s been in New York three and a half years. Why all of 
the sudden? [ neutral ]

Why does that bother you? [ neutral ]

What’s going on here Joe? [frustrated]

PA    

Maybe he just wanted to see her again? [ neutral ]

He lived next door to the girl all his life, why  
wouldn’t he want to see her again? [ neutral ]

How do you know he is even thinking about 
it? [frustrated]

PB    

S

L

L

L

S

S

L

S

S

S

S
L

speaker
listener

L

FIGURE 5.1: Illustration of a dialogue where PA’s emotion is directly influenced by the behavior
of PB .

to provide reference to the inbound utterance. This updated speaker state is fed to emo-
tion GRU produce emotion representation of the inbound utterance. Emotion GRU also
considers the emotion representation of the previous utterance as context and this might
also aid in predicting possible emotion shift. Finally, this new emotion representation is
fed to a softmax classifiers for emotion prediction.

Emotion GRU and global GRU model inter-party relationship. In contrast, party
GRU profiles the parties individually along the conversation flow. DialogueRNN assem-
bles these three GRUs in a specific manner that results in a custom RNN, that beats the
state-of-the-art emotion classifiers (Hazarika et al., 2018; Poria et al., 2017), possibly
due to conversation-specific improved context representation.

The remaining chapter is structured as — Section 5.2 mentions related works; Sec-
tion 5.3 discusses our approach in details; Section 5.4 describes the experimental set-
tings; Section 5.5 presents the results and analyses of our experiments; and finally, Sec-
tion 5.6 makes a concluding remark to finish this chapter.

5.2 Related Works
Emotion detection has experienced cross-disciplinary interest due to its application in
various fields such as cognitive science, psychology, natural language processing, and
more (Picard, 2010). Initially, the work of Ekman (1993) established correlation be-
tween emotion and facial cues, which inspired the idea of multimodal emotion recog-
nition. Later, Datcu and Rothkrantz (2008) blended audio with visual information for
multimodal emotion recognition. One of the earliest works on emotion recognition in
the context of NLP was done by Alm et al. (2005), that introduced text as a modal-
ity. Text-based emotion recognition was further advanced by Strapparava and Mihalcea



56
Chapter 5. DialogueRNN: An Attentive RNN for

Emotion Recognition in Conversations

(2010). Contextual information was utilized in the work of Wöllmer et al. (2010) for
multimodal emotion recognition. In the recent years, deep learning-based methods were
employed for multimodal emotion recognition (M. Chen et al., 2017; Poria et al., 2017;
Zadeh et al., 2018a,d).

Since, humans often express their emotions through conversations, it necessary to
understand the dynamics of conversations to understand human emotion. Ruusuvuori
(2013) argues the influence of emotion in conversations. Richards et al. (2003) suggests
that emotion dynamics in conversations is inter-personal in nature. This motivated us to
model inter-personal interactions in our method. Also, to adopt the sequential nature of
conversations, we employ recurrent connection, following Poria et al. (2017).

Thanks to the successful application of memory networks (Sukhbaatar et al., 2015), it
has been applied to solve various NLP problems, such as, machine translation (Bahdanau
et al., 2014), question answering (Kumar et al., 2016; Sukhbaatar et al., 2015), speech
recognition (Graves et al., 2014), and many more. Hence, memory networks was chosen
to model inter-speakers interaction by Hazarika et al. (2018), which produced state-of-
the-art performance.

5.3 Methodology

5.3.1 Problem Definition
Given M parties, represented as p1, p2, . . . , pM , in a conversation, the goal is to assign
appropriate emotion labels (happy, sad, neutral, angry, excited, and frustrated) to each
of the containing N utterances u1, u2, . . . , uN . The speaker of utterance ut is ps(ut),
where s represents the mapping between an utterance and corresponding party index.
Further, each ut ∈ RDm is represented by a feature vector, extracted as discussed in
Section 3.3.1.

5.3.2 Our Model
We make the following three assumptions as to the factors that influence an utterance in
a conversation:

1. the speaker,

2. the context defined by the previous utterances,

3. the emotion within the previous utterances.

The presented model DialogueRNN,1 depicted in Fig. 5.2a, incorporates these factors as
follows — we model each party with a party state that evolves along the conversation
when the corresponding party speaks. This traces the emotion dynamics within the con-
versation, that eventually influences individual utterances. Further, we construct a global

1Implementation available at https://github.com/senticnet/conv-emotion

https://github.com/senticnet/conv-emotion
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state per utterance, shared among the parties, as context representation which encodes
information from the previous utterances and party states. This provides necessary con-
text for informative party states. At last, target emotion representation is derived from
the party state and previous speaker states as context. This is fed to classifiers for final
emotion classification.

We employ three GRU cells (Chung et al., 2014) to update global, party, and emotion
state, respectively. The GRU cells computes a new state, based on the previous state and
new input:

ht = GRU∗(ht−1, xt), (5.1)

where t represents time-step (an utterance in our case), ht−1 and ht are the previous state
and new updated state, respectively and xt is the new input. Each GRU cell has two sets
of parameters — W

{r,z,c}
∗,{h,x} and b{r,z,c}∗ .

5.3.2.1 Global State (Global GRU)

Through the joint encoding of utterance and speaker state, global state captures the con-
text of an inbound utterance, which is also speaker-specific utterance representation.
Pooling over these global states aids in extracting inter-utterance and inter-speaker de-
pendencies that helps to generate better context representation. We model this context
representation using GRUG cell of output size DG , with ut and qs(ut),t−1 as inputs:

gt = GRUG(gt−1, (ut ⊕ qs(ut),t−1)), (5.2)

where W {r,z,c}
G,h ∈ RDG×DG , W {r,z,c}

G,x ∈ RDG×(Dm+DP ), b{r,z,c}G ∈ RDG , qs(ut),t−1 ∈ RDP ,
gt, gt−1 ∈ RDG , DG is the global state vector size, DP is the party state vector size, and
⊕ denotes concatenation.

5.3.2.2 Party State (Party GRU)

Our model traces each participating speaker with fixed sized vectors q1, q2, . . . , qM along
the conversation. These states hold speaker-specific information within the conversation,
pertaining emotion recognition. These states are updated taking into account the current
(time-step t) role of a party (either speaker or listener) and the inbound utterance ut. At
the beginning of the conversation, all of these party state vectors are set to null vectors.
The primary motivation of this unit is to enforce the knowledge of the speaker of each
utterance.

Speaker Update (Speaker GRU) — In general, responses are constructed based on
context, defined by the previous utterances in a conversation. Thus, the context ct for
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utterance ut is constructed as follows:

α = softmax(uTt Wα[g1, g2, . . . , gt−1]), (5.3)
softmax(x) = [ex1/Σie

xi , ex2/Σie
xi , . . . ], (5.4)

ct = α[g1, g2, . . . , gt−1]
T , (5.5)

where g1, g2, . . . , gt−1 are previous t − 1 global states (gi ∈ RDG ), Wα ∈ RDm×DG ,
αT ∈ R(t−1), and ct ∈ RDG . Eq. (5.3) calculates attention scores (importance measure)
over the preceding global states that correspond to the preceding utterances, with re-
spect to the inbound utterance ut. In other words, based on emotional relevance to the
inbound utterance ut, commensurate amount of attention score is assigned to the preced-
ing contextual utterances. At last, Eq. (5.5) calculates the context vector ct by pooling
the preceding global states with α.

In order to update the current speaker state qs(ut),t−1 to qs(ut),t, GRUP of size DP is
employed. GRUP performs this updation by taking into account the inbound utterance
ut and context ct:

qs(ut),t = GRUP(qs(ut),t−1, (ut ⊕ ct)), (5.6)

where W
{r,z,c}
P,h ∈ RDP×DP , W {r,z,c}

P,x ∈ RDP×(Dm+DG), b{r,z,c}P ∈ RDP , and qs(ut),t,
qs(ut),t−1 ∈ RDP . This step infuses inbound utterance information and its context, de-
fined as the outputs of global GRU, into to the speaker state qs(ut) that aids in emotion
classification downstream.

Listener Update (Listener GRU) — Here, we model the influence of inbound utter-
ance ut from the speaker on the listeners. Two updation schemes were experimented
with:

• leave the listener states uninfluenced:

∀i 6= s(ut), qi,t = qi,t−1; (5.7)

• introduce GRUL that changes the listener states by taking into account the context
ct and non-verbal visual cues (facial expressions) vi,t:

∀i 6= s(ut), qi,t = GRUL(qi,t−1, (vi,t ⊕ ct)), (5.8)

where vi,t ∈ RDV , W {r,z,c}
L,h ∈ RDP×DP , W {r,z,c}

L,x ∈ RDP×(DV+DG), and b{r,z,c}L ∈
RDP . We extract the listener visual features of party i for utterance ut using a
model trained on FER2013 dataset by Arriaga et al. (2017), where DV = 7.

We reached the conclusion experimentally that the simpler first scheme is enough,
given the result that the second scheme performs very similarly with higher number of
parameters due the extra GRUL. We surmise that this indifference is caused by the
fact that a listener is pertinent only when he/she utters. Simply put, a silent party is
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non-existent in a conversation. As such, as soon as a party speaks, the corresponding
party state qi is updated using context ct containing information from previous utterance,
making explicit listener state tracking redundant. Table 5.3 verifies this observation.

5.3.2.3 Emotion Representation (Emotion GRU)

The emotion representation et, corresponding to utterance ut, is generated from speaker
state qs(ut),t and the previous emotion representation et−1. Due to the importance of
context to the emotion of the inbound utterance, relevant contextual information from
the other party states qs(u<t),<t is passed through et−1 to form the emotion representation
et. This connects party states to each other. This connection is modeled with GRUE of
size DE :

et = GRUE(et−1, qs(ut),t), (5.9)

where e{t,t−1} ∈ RDE , W {r,z,c}
E,h ∈ RDE×DE , W {r,z,c}

E,x ∈ RDE×DP , b{r,z,c}E ∈ RDE , and
emotion representation vector is of size DE .

It is noticeable that information on other party states are already being fed to speaker
state through global state. Hence, it could be argued that previous emotional state et−1
is unnecessary. However, we experimentally show in ablation study (Section 5.5.6) that
without the presence of emotion GRU the performance drops. In addition, speaker and
global GRUs together form the encoder network, whereas the emotion GRU plays the
role of decoder. As such, inter-party connections formed in these two cases are not
necessarily equivalent.

5.3.2.4 Emotion Classification

We feed to emotion representation et to a two-layer perceptron with the second layer
with softmax activation for emotion classification of utterance ut:

lt = ReLU(Wlet + bl), (5.10)
Pt = softmax(Wsmaxlt + bsmax), (5.11)
ŷt = argmax

i
(Pt[i]), (5.12)

where Wl ∈ RDl×DE , bl ∈ RDl , Wsmax ∈ Rc×Dl , bsmax ∈ Rc, Pt ∈ Rc, and ŷt is the
estimated label of utterance ut.

5.3.2.5 Training

Categorical cross-entropy with L2-regularization is employed as loss (L) for training:

L = − 1∑N
s=1 c(s)

N∑
i=1

c(i)∑
j=1

logPi,j[yi,j] + λ ‖θ‖2 , (5.13)
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where there are total N dialogues, dialogue i having c(i) number of utterances; Pi,j
and yi,j are probability distribution over the emotion labels and expected emotion label
for utterance j of dialogue i; λ denotes the regularization weight; and θ contains the
parameters:

θ = {Wα,W
{r,z,c}
P,{h,x}, b

{r,z,c}
P ,W

{r,z,c}
G,{h,x}, b

{r,z,c}
G ,W

{r,z,c}
E,{h,x}, b

{r,z,c}
E ,Wl, bl,Wsmax, bsmax}.

Adam Kingma and Ba (2015) optimizer, based on SGD, was employed to train the
network. On the other hand, the hyper-parameters were optimized using grid search.
Those are enlisted in Table 5.1.

Algorithm 3 DialogueRNN algorithm

1: procedure DIALOGUERNN(U , S) . U=utterances in the conversation, S=speakers
2: Initialize the participant states with null vector:
3: for i:[1,M] do
4: q0,i ← 0

5: Set the initial global and emotional state as null vector:
6: g0 ← 0
7: e0 ← 0
8: Pass the dialogue through RNN:
9: for t:[1,N] do

10: et, g, qt ← DIALOGUECELL(et−1, g, qt−1, Ut, St)

11: return e

12: procedure DIALOGUECELL(_e, g, _q, u, s)
13: Update global state:
14: gt ← GRUG(gt−1, u⊕ _qs)
15: Get context from preceding global states:
16: c← Attention([g1, g2, . . . , gt−1], u)
17: Update participant states:
18: for i:[1,M] do
19: if i = s then
20: Update speaker state:
21: qs ← GRUP(_qs, u⊕ c)
22: else
23: Update listener state:
24: qi ← _qi
25: Update emotion representation:
26: e← GRUE(_e, qs)
27: return e, g, q

5.3.3 DialogueRNN Variants
The basic model is summarized in Algorithm 3. However, we experimented with the
following variants of DialogueRNN (Section 5.3.2):
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DialogueRNN + Listener State Update (DialogueRNNl) — Both speaker and lis-
tener states are updated using two distinct GRUs with the updated speaker state qs(ut),t,
as in Eq. (5.8).

Bidirectional DialogueRNN (BiDialogueRNN) — This is the bidirectional variant
of DialogueRNN. Two distinct forward and backward DialogueRNN modules are used
for forward and backward pass of the input utterance sequence, respectively. Emotion
representation outputs from these two RNNs are concatenated and fed to the classifier
(Section 5.3.2.4). We believe context from both past and future utterances would im-
prove classification performance. However, this cannot be used in real-time scenarios.

DialogueRNN + attention (DialogueRNN+Att) — Attention pooling is applied over
all the surrounding output emotion representations from DialogueRNN, for each utter-
ance ut. Attention scores are calculated by matching target emotion representation et
with the rest of emotion representations e6=t in the dialogue, as described in Eqs. (5.14)
and (5.15). This filter information from both past and future utterance based on rele-
vance.

Bidirectional DialogueRNN + Emotional attention (BiDialogueRNN+Att) — At-
tention pooling is applied over all the surrounding output emotion representations from
BiDialogueRNN, for each utterance ut. Attention scores are calculated by matching
target emotion representation et with the rest of emotion representations e6=t in the dia-
logue:

βt = softmax(eTt Wβ[e1, e2, . . . , eN ]), (5.14)

ẽt = βt[e1, e2, . . . , eN ]T , (5.15)

where et ∈ R2DE , Wβ ∈ R2DE×2DE , ẽt ∈ R2DE , and βTt ∈ RN . At last, ẽt are passed to a
classifier for emotion recognition, as in Section 5.3.2.4.

Hyperparameter DialogueRNN BiDialogueRNN DialogueRNN+Att BiDialogueRNN+Att
DG 300 150 150 150
DP 400 150 150 150
DE 400 100 100 100
Dl 200 100 100 100
lr 0.0001 0.0001 0.0001 0.0001
λ 0.00001 0.00001 0.00001 0.00001

TABLE 5.1: Hyper-parameter for DialogueRNN variants; lr = learning rate.
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5.4 Experimental Setting

5.4.1 Datasets Used
IEMOCAP (Busso et al., 2008), AVEC (Schuller et al., 2012), and MELD (Poria et al.,
2019b) are the three multimodal datasets used to evaluate our models. MELD is used
exclusively in multimodal setting. Training and test partitions of IEMOCAP and AVEC
datasets do no share speakers. Table 5.2 presents the split of samples for all the datasets.

Dataset Partition
Utterance Dialogue

Count Count

IEMOCAP
training + validation 5810 120

test 1623 31

AVEC
training + validation 4368 63

test 1430 32

MELD
training 9989 1039

validation 1109 114
test 2610 280

TABLE 5.2: Dataset split ((train + val) / test ≈ 80%/20%).

IEMOCAP (Busso et al., 2008) multimodal dataset consists of dyadic conversations
among ten unique speakers. The constituent utterances of each conversation are an-
notated with one of the six emotion labels — anger, happy, sad, neutral, excited, and
frustrated. The first 8 speakers from sessions one to four are exclusive to training set
and the remaining two belong to the test set.

AVEC (Schuller et al., 2012) multimodal dataset is built using SEMAINE database (McK-
eown et al., 2012) as basis, that contains dyadic conversation between an artificially in-
telligent agent and human subjects. Each containing utterance in a dialogue comes with
four real valued annotations of affective nature — valence ([−1, 1]), arousal ([−1, 1]),
expectancy ([−1, 1]), and power ([0,∞)).

MELD (Poria et al., 2019b) multimodal multi-party dataset is built by extending
EmotionLines dataset (Hsu et al., 2018), that contains dialogues from the TV series
Friends. Unlike IEMOCAP and AVEC, the dialogues in MELD contain three parties
on average. MELD consists of textual, audio, and visual data from 1,400 dialogues and
13,000 utterances.

5.4.2 Baselines and State of the Art
DialogueRNN and its variants are compared against the following baseline methods:
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c-LSTM (Poria et al., 2017) — Inter-utterance dependency is captured using bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997), resulting in context-aware utterance
representations. This does not consider speaker information.

c-LSTM+Att (Poria et al., 2017) — This is a variant of the c-LSTM described above.
To mine better context from the neighboring utterances, attention mechanism is applied
on the output of bi-LSTM, as described in Eqs. (5.14) and (5.15).

TFN (Zadeh et al., 2017) — Intra- and inter-modal interactions are modeled using
vector outer product. It does not use neighboring context information. This model is
specific to multimodal case.

MFN (Zadeh et al., 2018a) — Multi-view learning is employed for modality fusion
with memory content. It also does not use neighboring context information. This model
is specific to multimodal scenario as well.

CNN (Kim, 2014) — This CNN-based model adopts the textual feature extraction
network (Section 3.3.1.1) and operates solely with target utterance. As such, lower per-
formance is expected.

Memnet (Sukhbaatar et al., 2015) — Following the work of Hazarika et al. (2018),
memory slots consist in preceding utterance representations and inbound utterance is
used as query. The output of memory network is fed to softmax classifier for emotion
recognition.

CMN (Hazarika et al., 2018) — CMN employs two GRUs for two speakers in a
dyadic conversation. The preceding utterances of each speaker is fed to the correspond-
ing GRU. The output vectors of these GRUs form the memory of a memory network,
which accepts the target utterance representation as its query. The output of this memory
network is passed to a softmax classifier for emotion classification. This is the state-of-
the-art method for emotion detection in conversations.

5.4.3 Modalities
The primary focus of our model is textual modality due to its prevalence over visual and
acoustic modalities. Still, to diversify its effectiveness we experimented with multimodal
data as well.

5.5 Results and Discussion
Table 5.3 presents the performance (F1-score) of various baseline methods and Dia-
logueRNN variants on IEMOCAP and AVEC dataset for textual modality. As per our
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expectation, all the baseline methods and the state-of-the-art CMN are surpassed by all
the DialogueRNN variants.

5.5.1 Comparison with the State of the Art
The performance of DialogueRNN and the state-of-the-art CMN is compared for text
modality.

5.5.1.1 IEMOCAP

Following Table 5.3, DialogueRNN outperforms the SOTA by 2.77% accuracy and
3.76% f1-score on average, on IEMOCAP dataset. We surmise that the improvement
in performance is achieved by the following elementary differences between our model
and the SOTA:

1. modeling of party state using GRUP (Eq. (5.6));

2. modeling of utterances with respect to the corresponding speaker (Eqs. (5.2)
and (5.6));

3. and global context modeling using GRUG in (Eq. (5.2)).

Due to IEMOCAP containing six emotion labels, which are unbalanced, it is nec-
essary to explore model performance per emotion label. The SOTA CMN is signifi-
cantly outperformed by DialogueRNN on five among the six labels. The exception is
frustrated class, where CMN surpasses DialogueRNN by 1.23% f1-score. It might be
possible that DialogueRNN would beat CMN using a frustrated class-specific classifier.
On the other hand, the DialogueRNN variants already outperform CMN on frustrated
class (Table 5.3).

5.5.1.2 AVEC

CMN is beaten by our model DialogueRNN on all of the four attributes, namely valence,
arousal, expectancy, and power. This is observable in Table 5.3 where DialogueRNN
produces significantly lower MAE and higher pearson correlation coefficient (r) across
all four attributes. We posit this is achieved by the modeling of party state and emotion
GRU in DialogueRNN, which CMN lacks.

5.5.2 DialogueRNN vs. DialogueRNN Variants
We compare DialogueRNN against its variants on textual modality in the context of
IEMOCAP and AVEC dataset.
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DialogueRNNl — The explicit updation of listener state does not result improved per-
formance, as we originally expected. Further, it leads to slightly inferior results, as
can be seen in Table 5.3 (DialogueRNNl) for both IEMOCAP and AVEC. Strangely,
DialogueRNNl performs better than DialogueRNN on happy emotion label by 1.71%
f1-score. This overall performance drop is most likely caused by the training of one
extra GRU cell to accommodate listener update. Since, a party becomes relevant only
when he/she verbally participates in the conversation, the listener GRU does not bring
anything the model but noise. We surmise this noise leads to performance drop.

BiDialogueRNN — Owing to the bidirectional nature of BiDialogueRNN, it captures
contextual information from both past and future utterances. As such, evidenced by
Table 5.3 BiDialogueRNN performs better than DialogueRNN overall on both datasets.

DialogueRNN+Attn — In contrast to BiDialogueRNN, DialogueRNN+Attn filters in-
formation from both past and future utterances using attention mechanism. This enriches
emotional context as compared to BiDialogueRNN, resulting in improvement of 1.23%
f1-score on IEMOCAP and lower MAE and higher r for AVEC.

BiDialogueRNN+Attn — This setup combines the improvements of both of the previ-
ous two variants. This results in even better context representation. Following Table 5.3,
this has led to 6.62% and 2.86% improvement in f1-score over the state-of-the-art CMN
and simple DialogueRNN on IEMOCAP. This setting also yields the best performance
on all the attributes in AVEC.

5.5.3 Multimodal and Multi-Party Setting

Methods
IEMOCAP AVEC

MELD
(Multi Party)

F1
Valence

(r)
Arousal

(r)
Expectancy

(r)
Power

(r) F1
CNN – – – – – 55.02
TFN 56.8 0.01 0.10 0.12 0.12 –
MFN 53.5 0.14 25 0.26 0.15 –

c-LSTM 58.3 0.14 0.23 0.25 -0.04 56.70
CMN 58.5 0.23 0.30 0.26 -0.02 –

DialogueRNNtext 59.9 0.28 0.36 0.32 0.31 –
BiDialogueRNNtext 60.3 0.30 0.34 0.34 0.32 –

BiDialogueRNN+atttext 62.7 0.35 0.59 0.37 0.37 –
BiDialogueRNN+attMM 62.9 0.37 0.60 0.37 0.41 57.03

TABLE 5.4: Comparison against the baselines for trimodal (T+V+A) and multi-party setting.
BiDialogueRNN+attMM stands for BiDialogueRNN+att in multimodal setting.

Following Table 5.4, we obtain 4.4% f1-score improvement over the state-of-the-
art CMN (Hazarika et al., 2018), on IEMOCAP for multimodal scenario. We observe



68
Chapter 5. DialogueRNN: An Attentive RNN for

Emotion Recognition in Conversations

0.8


0.6


0.4


0.2


0.0

40 41 42 43

Turn Utterance Emotion

41 PA: Because I paid it on 
time. fru

Turn Utterance Emotion DialogueRNN CMN

44 PA:   But if I call back, I have to go through 
this whole rigmarole again. fru fru neuTest Utterance:

C
M

N
D

ia
lo

gu
eR

N
N

Turns 393837363534333231
Speaker PAPBPAPBPAPBPBPBPBPB PAPAPA

Turn Utterance Emotion

42 PB: Yeah, since it was a computer 
glitch … you should just call back neu

Emotion neuneufruneuneuneuneuneuneuneuneuneuneu

FIGURE 5.3: Comparison of attention scores over utterance history of CMN and DialogueRNN.

consistent improvement on all four attributes of AVEC dataset for multimodal input
as well. However, the improvement over textual modality for the same DialogueRNN
model is negligible 0.2%. We surmise that this is caused by the simple fusion mechanism
(just concatenation), since multimodal fusion is not the focus of this chapter.

For multi-party multi-modal scenario, the improvement over the baseline c-LSTM
(Poria et al., 2017) is minimal 0.33% f1-score. However, we must take into account the
variation of party counts between dialogues and total of ten parties.

5.5.4 Case Studies
Dependency on preceding utterances (DialogueRNN) — The attention layer over
the global states (output of GRUG) is one of the key parts of our model. In Fig. 5.3, we
compare the α attention scores (Eq. (5.3)) on the preceding contextual utterances against
the attention scores of the same set of utterances of CMN. It is visible that the attention of
DialogueRNN is more focused compared to CMN, where the attention scores are diluted
over the utterances. We suppose this unfocused scores has led to misclassification in case
of CMN. Since, we observe similar patterns across various samples, we surmise this
could be indicative of the confidence of the model about its decision. We also observe
a shift in emotion, from neutral to frustrated, in the inbound utterance by PA (turn 44)
over the previous utterance. CMN fails to predict this change for we suppose due to
week dependency (α attention) with the context utterances, leading to misclassifying
the inbound utterance as neutral. In contrast, our model detects this emotion shift by
strongly attending to turn 41 and 42 by PA and PB, respectively, leading to correct
prediction. This illustrates the ability of DialogueRNN to capture the self and inter-party
dependencies that lead to emotion shift.
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of view I must say anger anger

past future

FIGURE 5.4: Illustration of the β attention weights over emotion representations et for a segment
of conversation between a couple; PA is the woman, PB is the man.

Dependency on future utterances (BiDialogueRNN+Att) — Fig. 5.4 depicts the
evolution of β attention for inbound utterances (Eq. (5.14)) over an excerpt of five turns
from a dyadic conversation. It is noticeable that party PA is neutral and in contrast PB
is angry. We also observe the expected pattern that PA’s utterances (turn 5, 7, and 8)
strongly attend to the neutral turn 8, which is located in the future with respect to turn
5 and 7. Turn 5 attends to both past and future (turn 5 and 8, respectively) utterances,
respectively. We observed similar inter-utterance dependencies between inbound and
past/future utterances.

Another instance of fruitful focus on future utterance would be the turns of PB —
turn 6 and 9. These two utterances attend to distant contextual utterances (turn 49 and 50)
which are representative of irate state of PB. Even though, DialogueRNN misclassifies
target turn 6, our model is able to match a similar emotional state (anger) with the real
state (frustrated). Such errors by our model are explored in Section 5.5.5.

Dependency on distant context — Fig. 5.5 shows the histogram of correctly predicted
IEMOCAP test utterances over the relative distance between the inbound utterance and
its corresponding most (left plot) and second-most (right plot) important context utter-
ance. We observe the expected trend of decreasing number of context sentence with
increasing relative distance. Nonetheless, a significant proportion (around 18%) of these
correctly predicted utterances focus on far away utterances that are 20−−40 turns away.
This is indicative of the importance of long-lasting and distant emotional relationships
among utterances. These cases are mostly prevalent in the conversations where partici-
pants stay in specific affective mood and do not trigger emotion shift. Fig. 5.6 illustrates
such a scenario where long-term dependency is relevant. The participants in this conver-
sation mostly retain happy mood. However, the 34th utterance, “Horrible thing. I hated
it.”, appears to express negative emotion. But, upon consideration of its context, it is
evident that it expresses excited emotion actually. Our model focuses back on 11th and
14th utterance to decipher the intended emotion of the target utterance.
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FIGURE 5.6: An example of long-term dependency among utterances.

5.5.5 Error Analysis
A very prevalent tendency among the predictions is cross-prediction among related emo-
tions. The most common of such misclassifications happens for happy utterances that
are mischaracterized as excited and vice versa. Similarly, many anger and happy utter-
ances are misclassified as the other. We surmise this is caused by the subtle differences
between these pair of emotions that are hard to catch. Also, the neutral class has high
false-positives, which could be due to its majority share among the utterances.

We noticed a significant number of misclassifications at the utterances that express
different emotion than its previous utterance from the same party. Our model correctly
predicts only 47.5% of the utterances where this emotion shift occurs, as compared to
69.2% of the utterances where emotion shift is absent. Shift of emotions is caused by
many complex latent factors that often originate from the other parties. Investigating and
pointing out these factors to predict emotion shift stays an open research area.
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5.5.6 Ablation Study
The primary contribution of our method is the incorporation of party state and emotion
GRU (GRUE). In order to assess the contribution of each of these two components,
we take apart these two off the model one at a time and monitor its performance on
IEMOCAP dataset.

Following Table 5.5, the performance of our model drops by a massive 4.33% f1-
score by the exclusion of party state. This solidifies the importance of party state. We
suppose that the party state aids in mining party-specific emotional context.

Party State Emotion GRU F1
- + 55.56
+ - 57.38
+ + 59.89

TABLE 5.5: Performance of ablated DialogueRNN models on IEMOCAP dataset.

The exclusion of emotion GRU leads to performance fall of 2.51%, which is less as
compared to party state. Nonetheless, emotion GRU has pivotal importance as it likely
improves context flow from other parties through the previous emotion representation.

5.6 Conclusion
In this chapter, we showcased an RNN-based neural network, namely DialogueRNN, for
conversational emotion recognition. As compared to the state-of-the-art method CMN,
our model considers the speaker characteristics to generate enhanced context to the in-
bound utterance. DialogueRNN outperforms the state of the art on both textual and
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multimodal setting on multiple datasets. It also outperforms c-LSTM on multi-party
setting. Further, unlike the state of the art, our model is scalable to arbitrary number of
participants in conversation. Solving the issue of emotion shift would lead to improved
conversational emotion detection. As such, we leave this to our future work.
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Chapter 6

Conclusion

This chapter concludes this thesis by showcasing the contributions, listing its derived
publications, and laying out possible future directions of research.

6.1 Contributions
This thesis presents the novel methods that we developed during the course of my PhD.
We started with multimodal sentiment analysis, followed by aspect-based sentiment
analysis, and eventually worked our way to opinion mining in multimodal multi-party
conversations. We designed and trained neural network-based architectures to solve
these tasks. Further, the implementation of these architectures are made available to
public to aid future research.

We believe our work has strong potential to make significant contribution to the
already active research area of opinion mining and sentiment analysis, owing to the
recently found interest from industry and government alike. This interest has come from
myriad of potential applications in healthcare, economics, security, management to name
a few.

Theoretical Contributions
Our primary theoretical contributions consist in the following aspects we incorporated
into our methods:

• Improved Multimodal Feature Fusion — Feature fusion is a very important
step any multimodal task. Most fusion strategies in the literature only encodes
the unimodal features into unified multimodal space. However, we improve upon
this strategy by employing an auto-encoder setup to reconstruct the original uni-
modal representations. This resulted in improved multimodal sentiment and emo-
tion recognition performance.

• Improved Unsupervised Multimodal Feature Fusion — Previously, simple con-
catenation fusion was the only reasonable unsupervised feature fusion method.
However, the resulting vector often contains a lot of redundant information across
the modalities. Our auto-encoder-based fusion strategy solves this redundancy
issue.
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• Inter-Aspect Dependency Modeling — Accurate aspect-aware sentence repre-
sentation is key to effective aspect-based sentiment analysis. Often, aspects within
the same sentence obfuscates the context of each other as they can be intertwined.
Recent works on aspect-based sentiment analysis do not consider this inter-aspect
dependency. We modeled this dependency in our model that resulted in improved
performance, not only on aspects having neighboring aspects, but also single as-
pect case.

• Improved Incorporation of Speaker Information in ERC — Effective incor-
poration of speaker knowledge is important to give utterances proper context in
conversations. Existing works on ERC do not consider speaker information for
classification. We bridge this gap by profiling each participant on the fly and use
that profiling during classification.

• Scalable Multi-Party ERC — Existing ERC algorithms have dedicated training
parameters for each participant. As such, those cannot work with more partici-
pants than predefined by the model architecture. However, we dynamically profile
each speaker on the fly with their spoken utterances. This resulted in much im-
proved classification performance.

• Improved Real-time Multi-Party ERC — Our ERC model, DialogueRNN can
be adopted for real-time scenario by setting the context window for global GRU
to some fixed size. It would suffer some performance drop though, due to the loss
of long-term dependencies when necessary.

Technical Contributions
We used PyTorch (Paszke et al., 2017) to implement and optimize all the presented
neural networks. We have also made the implementations available:

• IARM (Chapter 4) — http://github.com/senticnet/IARM

• DialogueRNN (Chapter 5) — https://github.com/senticnet/
conv-emotion

• Variational Fusion (Chapter 3) — will be made available upon acceptance

6.2 Publications
The following publications stemmed from the work done in this thesis:

http://github.com/senticnet/IARM
https://github.com/senticnet/conv-emotion
https://github.com/senticnet/conv-emotion
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