
A Hierarchy of Linguistic Programming Objects

Dr. Grigori Sidorov,
Dr. Alexander Gelbukh

Centro de Investigación en Computación, Instituto Politécnico Nacional,
Av. Juan de Dios Bátiz, A.P. 75-476, C.P. 07738, México D.F.,

+52 (5) 729-6000, ext. 56544, 56602, fax 586-2936,
{sidorov, gelbukh}@pollux.cic.ipn.mx, gelbukh@micron.msk.ru

Abstract*

In the paper, the general structure of some programming
objects useful in linguistic analysis is suggested. The
structure of the most abstract linguistic object is dis-
cussed; such an object1 can serve as the root of the hierar-
chy of linguistic objects. We suggest that this abstract
linguistic object be a linguistic sign. Two possible meth-
ods for hierarchy of linguistic programming objects con-
struction are discussed (with parameters and with inheri-
tance).

Also discussed is the structure of signifier, syntactics, and
semantics objects, that are properties of a linguistic sign.
Syntactics and semantics should be defined through the
most common linguistic structures that naturally appear in
linguistic algorithms, namely, a string, tree, and network.
This is determined by the relations between linguistic
signs in language.

As an example, a simple program that uses the discussed
object hierarchy to perform sentence and paragraph detec-
tion for ASCII text with tables is described.

1. Introduction

It is well-known that object-oriented approach to model-
ing complex objects greatly simplifies the models and
software development [3]. Linguistic modeling is not an

* The work done under partial support of CONACYT,
Project 26424-A, and SNI, Mexico.
1 Unless especially mentioned, by an object we mean what
corresponds to a type or class in programming languages.
This usage should not be confusing in the context and
better corresponds to the usage common in linguistics: a
morpheme is not called a linguistic type or class, but in-
stead a linguistic object, while it can be subdivided (sub-
classed in programming terminology) into such linguistic
objects as prefix, suffix, infix, etc.

Probably the reason for this terminological difference is
also linguistic: the English words class and type require a
complement in genitive plural: “class of morphemes”,
while “class morpheme” sounds ungrammatically and
confusing outside the programming slang.

exception since language is extremely complex and vague
system. Object-oriented approach in linguistics has been
discussed in many recent works [4, 5, 7, 9]. However,
these works do not start from the very beginning of the
problem: from the discussion of the most abstract linguis-
tic objects, in spite of the practical and theoretical impor-
tance of this issue.

In an object hierarchy always there is the most abstract
object2, the root, which is the parent of all the other ob-
jects. The object-oriented point of view at the linguistic
modeling gives rise to a few interesting questions.

• Is it true that any linguistic object belongs to one of the
traditional levels known in theoretical linguistics: pho-
nology, morphology, syntax, semantics, and pragmat-
ics [1, 6]?

• If so, is it necessary to have a set of separate most
abstract linguistic objects for each level, i.e., inde-
pendent object hierarchies for the levels?

• If not, what should the most abstract linguistic object
be, i.e., what features are common to all linguistic enti-
ties?

• What properties3 should such an object have?

Linguistics is highly structured science. Traditionally
there are some different levels of research (syntax, etc.),
which are usually studied separately. In the modern lin-
guistics the tendency for interlevel interactions is obvious
(cf. the lexical component in generative grammars), how-
ever, these interactions are external, not an organic part of
the corresponding theories, because usually they start at
one of the fixed levels. In our opinion, the synthesis of
ideas of different levels of linguistic research is very im-
portant, provided that it allows for preserving the level
structure where it is relevant and necessary.

In particular, we think that there should exist some fea-
tures common for all the linguistic objects, and this set of
features should determine the base object linguistic object

2 Or a set of objects in case of a set of related hierarchies
that do not have any common root.
3 Members and methods, as they are called in program-
ming.

PDF PS www.gelbukh.com

Grigori Sidorov, Alexander Gelbukh. A Hierarchy of Linguistic Programming Objects. Proc. ENC'99, Segundo Encuentro de Computación,
Pachuca, Hidalgo, September 12–15, 1999.

hierarchy. This abstract object should not belong to any of
the traditional linguistic levels but instead should organi-
cally unify them.

It is useful to address the history of linguistics in search
for a concept that would have always considered impor-
tant by different linguistic schools and would unify all the
traditional linguistic levels.

Thus, what concept was (1) most widely discussed in
linguistics in its historical development, (2) is abstract
enough and (3) does not belong to any specific linguistic
level but instead is common for all such levels? It is a
linguistic sign. Thus, the corresponding programming
object (type, or class) can be used as the most abstract
linguistic object in the object hierarchy.

What is a linguistic sign? Practically all linguistic theories
that proclaim the explanations of the basic language phe-
nomena use this notion. Starting from the ancient Greece,
then F. de Saussure, Prague linguistic school, Ch. Morris,
L. Bloomfield and other linguists discussed this notion a
lot4. A very good discussion of the practical use of this

4 The only exception seems to be the generative linguistics
introduced by N. Chomsky, that does not pay much atten-
tion to this concept, probably because the sign seems to be

notion for language description can be found in [6], from
that we adopted some of the discussed ideas.

In simple words, a sign is a function: a way to express
(associate) some meaning with some observable thing.
The thing used to express the meaning is called signifier,
the meaning expressed with it is called signified. How-
ever, the signs used in language have yet third, key fea-
ture: they affect each other when are used together. All
phenomena related to such mutual affection are called
their syntactics5 [6]. These three properties of the sign are
so important for it that they are called sides6, like sides of
some physical objects: an object can’t have only one side
or not have any.

• Signifier is the “visible” part of the sign, usually the
substance. Roughly speaking, for a dollar coin this is
the metal disk with the corresponding picture; for the
word “bird” these are letters of this word: b-i-r-d (or
the corresponding phones).

• Signified is the relation between a sign, the concept,
and the world object. Roughly speaking, for a dollar
coin this is the value of one dollar; for the word “bird”
this is the concept of a bird, a flying creature with
feathers.

• Syntactics is the relations between signs in a flow of
speech. This is a specific and very important part of a
linguistic sign. Roughly speaking, it tells us what
words can be used together and in what form, for ex-
ample, bird + flies is a grammatical English phrase,
but bird + fly or in + flew are not; the word well in the
context well done has another meaning than in the con-
text deep well7, etc.

Signs that are not linguistic do not have any syntactics: a
dollar coin used together with a ten-dollar bill or a
hundred pounds check keeps exactly the same “mean-
ing” of one dollar value.

Signified is also called semantics8 of the sign. The term
“meaning” is generally avoided in the precise definitions,

rather abstract entity and generative linguistics was always
looking for formal and clear models. However, even in
this school one of the sign’s properties, syntactics, is
deeply worked out.
5 In Spanish: significante, significado, sintáctica.
6 The term sides was introduced first for signs that are just
functions signifier → signified and referred to these two
sides, like two sides of a leaf of paper without which a leaf
can’t be thought of. In that time, syntactics was not intro-
duced yet.
7 In Spanish: bien hecho, pozo profundo.
8 By semantics we will mean semantic and pragmatics,
because the difference between them is not significant for
our discussion.

template
Sign <T>

Sentence =
Sign <word>

Superphrase =
Sign <sentences>

Morpheme =
Sign <Phoneme>

Word =
Sign <Morpheme>

Phoneme

Text =
Sign <Superphrase>

Word
Combination =
Sign <word>

Fig. 1. The linguistic object hierarchy using
parameters.

though can be used when it is clear that it refers to seman-
tics.

The majority of linguistic entities are signs9, because they
have signifier, semantics, and syntactics. Some entities
don’t have semantics (like phonemes).

So far the concept of sign had little practical consequences
because it is too abstract. However, in our opinion it
proves to be useful in object-oriented programming as the
most abstract linguistic entity.

2. Linguistic object hierarchy

As we have seen, the objects of the linguistic hierarchy
should be derived from the sign.

However, most of linguistic objects are complex, i.e., their
parts, the signifier, signified and syntactics are struc-
tures10, or at least sets. We suggest that these parts be
considered as sets, or more complicated structures, of
other linguistic objects, i.e., signs (the only partial excep-
tion is signifier, see Section 3).

There are two basic methods to construct a linguistic ob-
jects hierarchy. The first is to consider a sign a pa-
rametrized class (template in C++), and the second is to
use inheritance.

2.1 The method using parameters

Different types of signs differ in the type of the constituent
signs: a phrase is at least a set11 of words, a word a set of
morphemes, etc. How can this be reflected in the hierar-
chy? Unfortunately, C++ inheritance does not allow for
construction of objects in this way: one can’t just derive a
set of Xs from the class X. To solve this problem, pa-
rametrized classes, or so-called templates, can be used. In
simple words, a parametrized type represent objects, hav-
ing a constituent(s) of some variable type X, e.g., set of Xs.

Use of parametrized abstract structures such as set of Xs
allows to interpret traditional levels without separating
them completely. Objects (types) of each level are con-
structed from the names of the objects of the previous
level, which is the type of their constituents, as a parame-
ter (e.g., morphemes are constructed from phonemes; they
in their turn are the material for words; sentences are con-
structed from words, etc.).

The hierarchy built using templates and their parameters is
shown on Fig. 1. With the dotted lines the template pa-
rameters are related with the corresponding objects, and
with solid lines the dependencies between a template and

9 Be will use terms sign and linguistic sign as synonyms.
10 Containers in C++ terminology.
11 We say at least a set to avoid the discussion of the pre-
cise structure at this point. Again, this corresponds to a
container: something consisting of some elements.

its instance are shown. Note that in this type of hierarchy
there is no inheritance at all, since we use the Whole-Part
relationships instead of more traditional Is-A relationship.

The Sign template is a linguistic sign that has seman-
tics, syntactics, and signifier objects as its
properties, or parts. All the other linguistic entities but the
phoneme are based on the sign template with different
parameters.

From the programming point of view these objects can be
regarded as polymorphic collections for data storage. In
the method with templates the type of the objects consti-
tuting these sets is a parameter: e.g., a the semantics, syn-
tactics, and signifier of a word are sets of the correspond-
ing values for morpheme.

The phoneme has no semantics, i.e., its corresponding
polymorphic collection is empty. The other objects are:
the morpheme, the word (lexeme), the word com-
bination (collocation), the sentence, the super-
phrase unit, and the text. All of them are in-
stances of the sign template.

In runtime, the objects are constructed by the program
level by level. At each level, their signifiers are
constructed from the objects that are the template
parameters, their syntactics are their own syntactics,
and their semantics is constructed from the seman-
tics and syntactics of the parameter and their own.
For example, the meaning of a word is constructed from
meanings of morphemes and their position in word; the
same for the sentence, etc. There can be exceptions, e.g.,
phraseologisms, when a unit can’t be directly constructed
as a plain combination of its parts. Then the correspond-
ing parameter does not participate in semantics, but
instead only in syntactics and signifier.

It is useful to give here some comments about the dis-
cussed hierarchy.

• The term “word” is used in the sense of lexeme, i.e.,
an abstract unit that have a wordforms as its substance
[6: 99]).

• Sometimes morpheme and word (lexeme) are consid-
ered not to be signs [6], instead, only morphs and
wordforms are considered signs. We prefer the oppo-
site point of view, introducing the object represen-
tation for morphs and word forms, where they are
treated as signifiers (see Section 3).

The presence of parameters allows to organize a work of
the program like a kind of conveyer where the correspond-
ing objects are processed, and the result is transduced to
the next object (e.g., after processing of phonemes, the
morphemes are processed, after this words, etc.). This
reflects one of traditional approaches to linguistic program
development, introduced in the frame of the Meaning ⇔
Text theory [6].

2.2 The method using inheritance

In our opinion this method of linguistic object hierarchy
development is more flexible and productive.

In this method a full-scheme object-oriented approach is
used. This method allows to preserve polymorphism, and
so seems better than the method of templates, though the
structures of hierarchy are very much alike. The hierarchy
is shown on Fig. 2.

The difference with the first method is that the objects
have no parameters and they are not instances of the
sign as a template, but instead are derived from it and,
thus, inherit from it. The sign here is not a template, but
the parent object. These objects should have specific
methods for handling other signs (e.g., morphemes should
process signs in a different way than sentences).

The program that uses such a hierarchy for text analysis
should implement a sort of a loop, that starts with one, the
most elementary, sign and then goes up like a spiral, creat-
ing the more complex objects in hierarchy, but not loosing
the created ones that instead become parts of the signifier,
syntactics, and semantics of new constructed objects.

We will not discuss in details the possible relations be-
tween signifier, syntactics, and semantics of the two signs
in their combination; such a linguistic investigation is
beyond the frame of this article. Here will only give a few
examples.

• When the English morpheme -s ‘plural’ is incorpo-
rated in a word, its signifier is added to the signifier of
a word; its semantics is added to the word’s semantics.
At the same time it is added to the word’s syntactics,
because, for example, the relative clause should now
have the verb in plural (“… which are/were …”). At
the same time, the syntactics of a word influences the
signifier of the morpheme -s ‘plural’, prescribing what
variant (-es or -s) is allowed.

• Another example deals with phraseology. Two words
hot and dog separately mean something absolutely dif-
ferent than together: hot dog. This proves that their
semantics is determined by their syntactics. By these
examples we demonstrate that sign properties can in-
fluence any of the properties of another sign.

3. Signifier, syntactics, and semantics
objects

What are the objects that constitutes sign’s properties? As
it was mentioned above, they are polymorphic collections
that contain other signs. The only partial exception is a
signifier object. It can contain not only signs but also
some material forms, because the signifier is a bridge
between the world of signs and the material world, so it
must be able to deal with both signs and real world object
(such as acoustic features, etc.). The suggested structure
of this object is shown on Fig. 3.

The base object is a material form. From this object
derived are the substance and representation
objects. The substance is a physical, material form of
linguistic entities, e.g., acoustic features, and the repre-
sentation is an abstraction for a set of entities: e.g.,
morphs -s and -es represent the morpheme -s ‘plural’.

The next level objects for the substance are: acous-
tic, written, gesticulating, maybe more
objects can be added.

Yet another level of objects for the representation
contains: phone, suprasegment unit (intonation,
stress, etc.), morph, and word form. We don’t need to
introduce any more representations because the higher
structures (sentences, texts, etc.) consist of word forms.
Representations can have different substances. For exam-
ple, morphs can have written or acoustic substance.

The sign object has syntactics and semantics
object as its properties. We will not discuss here their
structure; in fact, this structure is one of the main topics of
the computational linguistics in general. There are works
that discuss this question in practical aspect [2, 8], though
not in terms of objects. Thus, the structure of syntac-
tics and semantics objects will be discussed only
from the point of view of corresponding linguistic struc-
tures that can be their properties.

There are three basic kinds of structures that are widely
used in nearly all linguistic models: a string (linear struc-
ture), a tree, a network.

For example, the linear structures are the only possible
surface structures, the tree structures are widely used in
syntax research, the network structures often appear as
semantic network for lexicon or world knowledge model-
ing, and also are used for semantic representation of the
text.

We will try to show that the presence of these structures
corresponds to the relationships of signs.

The sign can have different number of relations with other
signs, see Fig. 4. The significance of the particular rela-
tions does not matter here, instead, only the number of the
relationships is important.

It is obvious that the linguistic structures correlate with
possible number of relations between signs. The signs that

Word
combination

Sign

Superphrase

SentenceMorpheme WordPhoneme

Text

Fig. 2. The linguistic object hierarchy using inheritance.

only allow for one arrow going to the sign and one going
from it (“one and one”), form a string. Those that allow
for one arrow to the sign and many ones from it (“one and
many”), form a tree structure. Finally, those that allow for
many arrows to the sign and many ones from it (“many
and many”), form a network structure. The many-and-
many relation can not be implemented in a flow of speech
because at a moment of speaking it is possible to produce
just one sign. This is the reason to consider it only as a
possible structure for semantics, not syntactics.
The other two possible types of relations between signs
occur in a flow of speech and constitute sign’s syntac-
tics.

The syntactics object should have the corresponding
properties for handling string and tree structures; a se-
mantics object should have a property for the network
structures. Thus, any object in the hierarchy is able to
operate with possible linguistic structures, determined by
intersign relations.

For example, a word is a linear structure of morphemes
plus relations between them. In linguistics these relations
usually are not described as a tree structure, but it can be
interpreted with such a formalism. The root of the word is
the head of the tree, and the grammatical morphemes are
the nodes. At the same time, the word is a part of all pos-
sible types of networks, i.e., a part of a lexicon, that de-
fines its meaning.

One more example: the sentence is a linear structure of
words with relations that form a syntactic tree.

4. Example: A program for text
structure elements detection

As a simple example of usage of objects similar to those
discussed in the paper, we will present a program that uses
them for a little bit different task: for the functions per-
forming parsing in a text converter. However, the parsing
objects can’t be derived from the base linguistic object
(the sign), because they have different nature. In contrast
to the objects described above, that are declarative, the
parsing objects are procedural. So it may be useful to have

a syntactic parser object that makes sentences from
words, or superphrase parser object that makes super-
phrase unit (or paragraphs) from sentences, etc.

We used the developed objects in a simple program that
can serve as an example of manipulation with such ob-
jects. This program detects sentences and paragraphs in a
plain ASCII text containing non-linguistic elements such
as tables or multi-column text, headers, abbreviations, etc.

Actually this program is a first stage of a text parser, since
a parser can not proceed with a text if it is unaware of
what it should analyze. Usually a text parser first of all
deals with sentences. Paragraphs may be necessary for
some information retrieval system which can analyze the
co-occurrences of words in the same paragraph.

The problem of sentence detection is not as trivial as it
could seem since we can’t treat the period as an unambi-
guous sentence end marker. There are some situations
where a period doesn’t denote the sentence end (abbrevia-
tions, numbers, etc.); sometimes we can’t find the period
where it is expected (headers, etc.); sometimes the sen-
tences are organized in an unusual manner (such as in
tables or multi-column text, where each column contains
its own text data). Also the page numbering with empty
lines before and after it may interfere the processing be-
cause usually the empty lines denote paragraph bounda-
ries, which are also sentence boundaries.

From the algorithmic point of view, some simple heuristic
rules were used, such as:

• If a period appears after a one-letter word, then this
most likely is an abbreviation and not a sentence
boundary,

• If a paragraph boundary (several spaces at the begin-
ning of the line) is encountered, then if the previous
line also is a paragraph and all the letters are capital-
ized, then this is a header, otherwise it is a separate
paragraph (sentence), etc.

Such rules allow to process all situations except tables or
multi-column text. In traditional structural approach, a lot
of buffers, flags, etc., would be necessary to deal with
such data, and even then correct processing of the data
would be not guaranteed. Using object-oriented approach
it is possible to create a new parsing objects for each ta-
ble’s column, and they process the columns as if the text
in columns were a non-tabular text.

To solve the problem, the following objects were created.
First of all a sign was created, and sentences and words
like in the suggested hierarchy were derived from it. In
such a simple program we ignored some important proper-
ties of the sign and dealt only with the graphical forms.
Then the line object was used. The input text is broken
down into lines basing on its graphical form. The lines are
not true language signs with all the sign’s properties, in-
stead, they have only signifier and syntactics.
As a simple solution, the corresponding object was still
derived from the sign, but its semantics was not used,

Material Form

Word form

Morph

Suprasegment

Representation

Phone

Substance

Acoustic

Gesture

Written

Fig. 3 The material form object hierarchy

i.e., it was empty. As an addition to declarative objects
(sentence, line and word), we designed some procedural
object (text parsing objects).

Thus, sentences are the parser’s output, lines are its input,
and words are the entities that it operates upon.

The program works in the following way. It takes lines of
the text one by one and analyses their syntactics (accord-
ing to the rules above) to form the paragraphs. In the same
manner it analyses the syntactics of words and punctuation
marks to form the sentences.

We tested this program on some Spanish, English, and
Russian texts. Only minor changes were necessary to
reflect the difference of the punctuation rules for each
particular language (we had to rewrite only one virtual
method of the sentence).

5. Conclusions

The usage of linguistic objects hierarchy simplifies and
unifies the linguistic software development. In object-
oriented approach to development of natural language
processing algorithms, it is useful to use an abstract lin-
guistic object that corresponds to the linguistic sign, and
the hierarchy of linguistic objects derived from it.

The usage of the most widespread structures in linguistic
analysis (string, tree, network) is determined by the prop-
erties of a sign’s syntactics. These structures must be
constituents (members, properties) of the corresponding
objects.

A simple example of usage of the developed linguistic
objects was presented.

Bibliography

1. Allen, J. Natural Language Understanding. The Ben-
jamin/Cummins Publishing Co., 1995.

2. Berleant, Daniel. Engineering "word experts" for
word sense disambiguation // Natural Language Engi-
neering 1: 339-362 (1995).

3. Booch, G. Object-oriented analysis and design, with
applications. 2nd ed., Redwood City, CA: The Benja-
min/Cummins Publishing Co., 1994.

4. Daelemans W., Gazdar G., Smedt K. de, Inheritance
in Natural Language Processing. Computational Lin-
guistics, Vol.18, No.2, 1992. pp. 205–215.

5. Hudson A. English Word Grammar. Oxford: Black-
well, 1990.

6. Mel’èuk I. Cours de Morphologie General. Vol. 1.;
Rus. transl.: Course of general morphology, Moscow–
Viena, 1997.

7. Levrat B., Amghar T. Using Classes of Objects, Poly-
morphism and Object Oriented Programming Para-
digms in the modelizaton of synonymy. Dialogue’96,
Computational Linguistics and its Applications, Pro-
ceeding, Moscow, 1996. pp. 128-130.

8. Small, S.L., and C.J. Rieger. Parsing and compre-
hending with word experts (a theory and its realiza-
tion). In Lehnert and Ringle (eds.), Strategies for Natu-
ral Language Processing, 1982, pp. 89-147.

9. Zajac R. Inheritance and Constraint-Based Grammar
Formalisms. Computational Linguistics, Vol.18, No.2,
1992. pp. 159–180.

 One in, one out

Semantics

Syntactics

String (linear strucutre)

Tree strucutre

Network strucutre

 Many in, many out

 One in, many out

⇒

⇒

⇒

Fig. 4 Relations between signs and corresponding structures.

