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ABSTRACT
At present a lot of methods and programs for automatic
text recognition exist. However there are no effective text
recognition systems for graphic documents. Graphic
documents usually contain a great variety of textual
information. As a rule the text appears in arbitrary spatial
positions, in different fonts, sizes and colors. The text can
touch and overlap graphic symbols. The text meaning is
semantically much more ambiguous in comparison with
standard text. To recognize a text of graphical documents,
it is necessary first to separate it from linear objects,
solids, and symbols and to define its orientation. Even so,
the recognition programs nearly always produce errors. In
the context of raster-to-vector conversion of graphical
documents, the problem of text recognition is of special
interest, because textual information can be used for
verification of vectorization results (post-processing).  In
this work, we propose a method that combines OCR-
based text recognition in raster-scanned maps with
heuristics specially adapted for cartographic data to
resolve the recognition ambiguities using, among other
information sources, the spatial object relationships. Our
goal is to form in the vector thematic layers
geographically meaningful words correctly attached to the
cartographic objects.
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1 INTRODUCTION

A huge amount of geographic information collected in the
last centuries is available in the form of maps printed or
drawn on paper. To store, search, distribute, and view
these maps in the electronic form they are to be converted
in one of the digital format developed for this purpose.
The simplest way of such a conversion is scanning the
paper map to obtain an image (a picture) stored in any of
the raster graphical formats such as TIFF, GIF, etc. After
that, a raster-to-vector conversion may be applied to
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include obtained vector maps into Geographic
Information Systems (GIS).

Though raster representation has great advantages in
comparison with the hard copy form, it still does not
allow much a semantic processing of the information
shown in the map, such as:

• Search for objects:
Where is Pittsburgh? What large river is in Brazil?

• Answering questions on the spatial relations:
Is Tibet in China? Is Nepal in Tibet? Is a part of Tibet
in China?

• Generation of specialized maps:
Generate me a map of railroads and highways in
France.

• Scaling and zooming:
Generate me a 1:125 000 map of Colombia. Show me
more details at the point under cursor.

• Compression:
Objects like points, arcs, or areas can be stored much
more efficiently than pixels.

Note that these are semantic tasks rather than image
manipulation. E.g., when zooming in or out, objects and,
most importantly, their names should appear or disappear
rather than become smaller or larger. Indeed, when
zooming out the area of London, the name Greenwich
should not become small to unreadable but should
disappear (and appear in a reasonable font size when
zooming in).

This suggests storing and handling of a map as a
database of objects (points, arcs, areas, alphanumeric,
etc.)—vector database—having certain properties, such as
size, geographic coordinates, topology, and name.
Specifically, the name of the object is to be stored as a
letter string rather than a set of pixels as originally
scanned from the hard copy. Thus, such vector
representation can solve the listed above semantic tasks,
but only to some extent [1].

However, automatic recognition of such strings
(toponyms) in the raster image of the map present some
particular difficulties as compared with the optical
character recognition (OCR) task applied to standard texts
such as books:

• The strings are out of context, which prevents from
using standard spelling correction techniques based
on the linguistic properties of coherent text.
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Moreover, often such strings are even not words of a
specific modern language, which further limits
applicability of the standard linguistic-based spelling
correction methods.

• The background of the string in the map is very noisy
since it can contain elements of geographic notation
such as shading or hatching, cartographic objects
such as cities or rivers, and even parts of other
strings, e.g., name of a city inside of the area covered
by the name of the country; see Figure 1.

• In addition, often the letters of the string are not
properly aligned but instead are printed under
different angles and along an arc; this happens with
the names of linear and area objects, e.g., rivers or
countries; see Figure 1.

• Unlike standard task, in toponym recognition it is not
only required to recognize the string itself but also to
associate it with a specific cartographic object, e.g.,
city, river, desert, etc.

On the other hand, in many cases additional information
is available that can give useful cues for ambiguity
resolution. One of such information sources is existing
databases (usually available from the country
Government, postal service, etc.) providing spatial
relationships between entities (e.g., a list of cities
classified by administrative units) or even exact
coordinates.

In this paper we discuss how such additional
information can be used to workaround the problems
arising in recognition of the inscriptions in the maps,
associating them with specific cartographic objects, and
importing information on these objects from available
databases.

First we describe the general scheme of our method.
Then we discuss various sources of evidence taking into
account, when available, in error detection and correction:
information of the existing names and linguistic
information, on the distribution of the letters of the string
in the source raster image, and pre-existing geographic
information such as coordinates of objects. Then global
verification of consistency of the recognition results is
described. Finally, conclusions are drawn and future work
directions are outlined.

2 PREVIOUS WORK

The text segmentation and its subsequent recognition in
raster images are very difficult problems; they are
complicated by the presence of the text embedded in
graphic components and the text touching graphics [2].
These challenging problems have received numerous
contributions from the graphic recognition community
[3]. However, there have not been yet developed any
efficient programs to solve the task automatically. Thus,
in the most works human operator is involved. For
example, [4] proposes that the operator draws a line

through the text, marking it as text and revealing its
orientation.

In [5] and [6], the algorithms are developed to extract
text strings from text/graphics image. However, both
methods assume that the text does not touch or overlap
with graphics. For maps, the problem is much more
complex, since the touching or overlapping as well as
many other character configurations are commonly
presented in maps. That is why [7], [8], and [9] developed
the methods for text/graphics separation in raster-scanned
(color) cartographic maps.

In [9] a specific method of detecting and extracting
characters that are touching graphics in raster-scanned
color maps is proposed. It is based on observation that the
constituent strokes of characters are usually short
segments in comparison with those of graphics. It
combines line continuation with the feature line width to
decompose and reconstruct segments underlying the
region of intersection. Experimental results showed that
proposed method slightly improved the percentage of
correctly detected text as well as the accuracy of character
recognition with OCR results.

In [7] and [8], the map is first segmented to extract all
text strings including those that are touched other symbols
and strokes. Then, OCR using Artificial Neural Networks
(ANN) is applied to output the coordinates, size, and
orientation of alphanumeric character strings present in
the map. Then, four straight lines or a number of curves
computed in function of primarily recognized by ANN
characters are extrapolated to separate those symbols that
are attached. Finally, the separated characters are input
into ANN again for their final identification.
Experimental results showed 95–97% of successfully
recognized alphanumeric symbols in raster-scanned color
maps.

In the present work, we use the output obtained with this
method in combination with pre-existing geographical
information in semantic analysis of ambiguities for
“geographically meaningful” word formation. We focus
on text processing rather than image processing.

The proposed system is based both on the traditional
techniques used in the general-purpose OCR programs
and on the techniques we developed specifically for
cartographic maps. In particular, Sections 4, 5, and 8 deal
with the problems and solutions common to any OCR
task. However, even in these cases there are some
differences with the usual OCR situation. The algorithm
described in Section 4 (check against a dictionary of
existing words) in our case has to deal with much more
noisy strings than usual OCR programs developed for
clean black-on-white running text. The same can be said
of Section 5 (non-uniform spatial letter distribution): in
maps the letters are often placed at significant distances
one from another, cf. Figure 1; as well of Section 8 (check
against the general laws of a given language): maps have
many foreign or indigenous words that do not conform to
the main language of the given territory.

In contrast, Sections 6, 7, and 9 are specific for maps. In
Section 6 (check against the geographic information such



 Alexander Gelbukh et al. GEOPRO 2002 ISBN 970-18-8521-X

as expected coordinates) the consistency with the
available information about the location of an object is
used, which is obviously specific for cartographic maps.
In Section 7 (check against the cartographic notation) the
information on the expected type of the object (river,
mountain, etc.) is used.  In Section 9 (global consistency
check) it is verified that each object is recognized only
once. These techniques do not have direct analogs in
standard OCR research and thus are contributions of our
paper.

Finally, we do not use many techniques standard for
usual text OCR, which are applicable to running text but
not to toponyms in maps, for example: morphological and
syntactic analysis, semantic consistency verification [13];
paragraph layout determination, etc. In a way, the new
techniques we introduce in the Sections 6, 7, and 9 play
the same role of verification of contextual consistency,
but in the manner very specific to cartographic maps.

3 MAIN ALGORITHM

We rely on a basic OCR procedure1 (not discussed here;
see [1]) that recognizes in the map individual letters and
groups together the letters of a similar font and color
located next to each other, thus forming in a hypothetical
string. In this process, errors of various types can be
introduced; our purpose is to detect and correct them.

The recognition algorithm for the whole map works
iteratively. At each step, the basic OCR procedure selects
for processing the longest and most clearly recognized
string and returns it for error correction and subsequent
adding to the database being constructed. Upon its
processing, the string is removed from the raster image,
and the next string is selected. The algorithm stops when
no more letter strings can be found in the vector image.

This design allows for recognition of the names of large
areas, which are usually represented by large letters
scattered across the corresponding area, with many names
of smaller objects between the letters of the area name. In
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extracted and recognized. Neither does it depend much on the
type of graphical document being processed. It can be adapted
to different subject domains.

the example shown in Figure 1, first the word Leninsk will
be recognized and removed from the image, then the word
Volga, and only then the letters of the word Russia can be
grouped together in a string.

The basic OCR procedure returns, for each string it
recognizes, the string itself, e.g., “RUSSIA,” and the
geographic coordinates in the map of the frame containing
each individual letter, e.g., R, U, etc. In fact, the word can
be recognized with errors, e.g., “RNSoSIA,” where U is
erroneously recognized as N due to a nearby river, and the
circle representing a city is erroneously taken for the
letter o. Such errors are detected and corrected using the
following algorithm.

1. The obtained string is looked for in a list (dictionary)
of expected toponyms, which (if the word is found)
provides the semantic information associated with it,
such as the type of object (e.g., city, river), its spatial
relationships (e.g., administrative unit it is in), and its
geographic coordinates if available. This information
is verified using different sources of evidence, such
as spatial distribution of the letters in the raster
image, the coordinates of the letters, etc.

2. In addition, similar strings (e.g., RUSSIA, ASIA,
Angola, etc. for RNSoSIA) are looked for in the
dictionary and for them, the same information is
retrieved and the same check is performed, an
additional source of evidence being the probability of
the corresponding changes in the letters of the string.

3. The scores of all sources of evidence are multiplied
to obtain the overall score of a variant. We consider
that all sources of evidence give the probability of an
error of the corresponding type (misrecognition of a
letter, misplacing the name in the map, etc.), and that
such errors are independent.

4. The variant with the best score S1 is considered.
5. If this best variant is good enough (S1 ≥ α, where α is

a user-defined threshold), then:
5.1 If the score of the best variant significantly

differs from the score of the second best one
(S1 / S2 > β, a user-defined threshold) then this
variant is accepted and is added to the database
together with its associated information.

5.2 Otherwise, human intervention is requested, and
the variants are presented to the operator in the
order of their scores.

6. Otherwise (S1 < α), no correction is applied to the
recognized string. It is checked against the linguistic
restrictions on the words of a given language, see
Section 8.
6.1 If no anomalies are found, it is considered a new

toponym absent in our dictionary and is added to
the database as is and is associated with a nearby
object using an algorithm not discussed here.

6.2 If an anomaly is found, the string is considered
not recognized and human intervention is requested.

 

Leninsk 

Figure 1. Intersection of strings in a map.
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7. After all strings in the map are recognized, global
check is performed, see Section 9.

Note that when the different sources of evidence are
combined, they are taken with user-defined weighs
depending on the quality of the map, the reliability of the
basic OCR procedure, etc. We here do not discuss the
choice of these values.

Below, we will consider each source of evidence used in
the presented algorithm, as well as the global check
procedure.

4 TEXTUAL INFORMATION

We suppose that there is available a list (dictionary) D of
toponyms that can be found in a map. The list can contain
much more toponyms than the map in hand—for example,
all cities of the country, all seas of the world, etc. Such a
list can be compiled as a combination of different sources
such as governmental statistical databases, police
databases, analysis of newspapers available in Internet,
etc.

For a given string s, e.g., RNSoSIA, a set of all strings
similar to s in the dictionary D can be easily constructed
[[10]]. By a similar string, a string s' is considered that
differs from s in at most a certain number of the following
disturbances:

• Substitution of a letter for another letter,
• Omission of a letter,
• Insertion of a letter.

With each such disturbance, a probability can be
associated; in case of several disturbances, the
corresponding probabilities are multiplied to obtain the
overall probability of that s (RNSoSIA) was obtained from
s' (say, RUSSIA) by this sequence of errors. For the string
itself (s' = s if it is present in D), the probability is 1.

The probabilities of the disturbances can depend on the
specific letters involved, if this information is available.
E.g., the probability of substitution of I for J is higher
than W for L. Similarly, the probability of omission of I is
higher than that of M. In a cartographic map, the
probability of insertion of o is high because of the
notation for cities.

We do not deep here in the issue of automatically
learning the corresponding probabilities. If the map is
large or has some standard type and quality, the statistical
model can be trained by means of processing a part of the
same map or another map of similar quality and manually
verifying the results. Alternatively, the iterative procedure
described in Section 10 can be used to automatically
adjust the model to the specific map.

5 SPATIAL LETTER DISTRIBUTION
INFORMATION

As we have mentioned, the basic OCR procedure returns
the coordinates of each letter. This can give us two
characteristics of the recognized string:

• Whether the letters are aligned along a straight line,
• The distance between each adjacent pair of letters.

Only the names of some linear and area objects (e.g.,
rivers or lakes), but not punctual objects (e.g., cities),
should have non-linear letter alignment. Note that the
information on the type of the object for a specific variant
of error correction as described in Section 4 is available
from the dictionary. If the string is not found in the
dictionary and is associated with a nearby object in the
map (see step 6 of the algorithm, Section 3), again, the
type of the object is known. Note that non-linear
alignment is admitted for non-punctual objects but not
required.

The distance between adjacent letters gives information
on the probability of insertion of deletion type error.
Deletion type error (a letter is to be inserted to obtain a
valid word) is highly probable if the distance between the
two neighboring letters is about twice larger than the
average distance between the letters in the string (it can be
the space between different words too). Similarly,
insertion type error (a letter is to be deleted from the
string to obtain a valid word) is highly probable if the
mean distance between the letter in question and its
neighboring letters is about twice smaller than the
average. Note that in these cases the corresponding
correction of the word is not only acceptable but also
required: the score of a string with this type of defects is
decreased.

6 GEOGRAPHIC INFORMATION

When the original string or a spelling correction candidate
string is found in the dictionary, the dictionary can
provide at least two types of spatial information on the
corresponding object:

• Its inclusion in a larger area, such as a province, state,
etc. These areas form a hierarchy.

• Its geographic coordinates.

This information can be used to filter out the candidates
that are very close as to their spelling to the original string
returned by the basic OCR procedure but are not located
in the area in question. E.g., let the OCR procedure
returned the string Xalapa in the area of Mexican state of
Oaxaca. Such a string indeed exists in the list of Mexican
cities, but the corresponding city is in the state of
Veracruz. On the other hand, there is a city Jalapa
precisely in the state of Oaxaca. With this, it should be
considered more probable that the string Xalapa was a
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result of a recognition error and that the correct string is a
similar string Jalapa.

Moreover, very frequently the dictionary contains
several objects with the same name, of the same or
different type. When analyzing a map of Canada, the
object corresponding to a recognized string London is to
be a small Canadian city and not the large British city, so
that the correct number of inhabitants for the object could
be imported from the dictionary to the database being
constructed. When analyzing an inscription Moscow in
the coordinates  (57° N, 35° E), its interpretation as a river
rather than city is more probable.

If only the hierarchical information is available (“Jalapa
city is in Oaxaca state”), it can be used to filter out
undesirable variants only if the coordinates are available
for one of larger areas one or more steps up the hierarchy
(but small enough to serve for disambiguation).
Alternatively, it might happen that the corresponding
larger area has been earlier recognized in the same map.
However, due to the order of recognition from smaller to
larger objects (see beginning of Section 3), this is hardly
probable. The corresponding check can be performed at
the post-processing stage—global verification, see
Section 9, when all areas have been recognized.

In the best case, the full coordinate information is
available in the dictionary for the object. Then the
probability of that the inscription in question represents
the given object can be estimated as )exp( 2bda − , where
b is a coefficient depending on the scale of the map and
the fonts used, a is the normalizing coefficient, and d is
the distance from the inscription to the object. This
distance can be heuristically defined as follows:
• For a punctual object (such as a city) represented by

only one coordinate pair p, the inscription is expected
to be next to the point p. Thus, we can take d as the
minimum distance from the point p to any of the
frames containing the individual letters of the string.

• For linear objects (such as rivers) represented by a
sequence of coordinate pairs pi, the inscription is
expected to follow the shape of the arc. Thus, we can
take d as the average distance from the frames
containing each letter to the broken line (or otherwise
interpolated arc) defined by the points pi. To put it in a
slightly simplified way, to measure the distance
between a letter and the broken line, the two adjacent
points pi, pi+1 nearest to the letter are found and the
distance from the letter to the straight line connecting
the two points is determined.

• For an area object S (such as a province) represented
by a sequence of coordinate pairs pi corresponding to
its contour, the inscription is expected to be in the
middle of the area and the letters are expected to be
distributed by the whole area. Thus, we can take

∫∫ ′
=

S
dxdyyxfd ),( , where f (x, y) is the minimum

distance from the point (x,y) to any of the letters of the
string. The integral is taken by the intersection S' of the
area S and the whole area of the given map (in case a

part of S proves to be out of the boundaries of the
given map). Note that a similar integral by the contour
would not give the desired effect. Since the number of
candidates generated at the step 2 of the algorithm
from Section 3 is rather small, and the area objects are
much less numerous than other types of the objects in
the map, we do not consider computational efficiency a
major issue for our purposes. Neither precision is
important for us. Thus, it is enough to compute the
integral by, say, Monte-Carlo method.

In fact, the coefficient b (and thus a) in the formula
above is different for these three cases. We do not discuss
here the issue of the selection of this scaling coefficient.

7 NOTATIONAL INFORMATION

Notation in the map can give additional information to
filter out undesirable variants. In some maps, rivers are
explicitly marked as “river” or “r.” and similarly
mountains, peninsulas, etc. Specific font family, size, and
color are usually associated with various types of objects
(e.g., cities, and rivers). Though this information can
provide very good filtering, it is not standard and is to be
manually specified for each individual map, which limits
the usefulness of such filtering capability in a practical
application.

The practical system should provide the operator the
means to specify such notational elements, at least the
prefixes such as “river.” They are important for the
comparison of the string with the dictionary. Indeed, for
the string “river Thames” what is to be looked up in the
dictionary is “Thames” and not “river Thames.”
Alternatively, such prefixes can be detected automatically
in a large map:

• For each string consisting of several words, both the
complete variant and the variants without the first or
last word are to be tried.

• If for a specific type of objects (e.g., rivers) in most
cases the string is found after taking of the word
“river,” then this is to be considered as notation for this
type of objects.

Similarly the font features for a specific type of objects
can be automatically learnt from a large map.

Finally, some precautions should be taken with such
type of filters. For example, in Spanish rivers are marked
as “río” ‘river’; however the string Río de Janeiro should
not be filtered out as a name of the city (if capital letters
are not properly distinguished in the map).

8 LINGUISTIC INFORMATION

The checks described in this section are applied only to
the strings not found in the dictionary for which the
dictionary-based correction failed (no suitable similar
string was found in the dictionary), see the step 6 of the
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algorithm from Section 3. In this case, general properties
of the given language can be used to detect (though not
correct) a possible recognition error.

One of simple but efficient techniques of such
verification is bigram (or trigram) control [[12]]. In many
languages, not any pair (or triplet) of letters can appear in
adjacent positions of a valid word. For example, in
Spanish no consonant except r and l can be repeated; after
q no other letter than u can appear, etc. The statistics of
such bigrams (or trigrams) is easy to learn from a large
corpus of texts. The multiplication of the bigram
frequencies for each adjacent pair of letters in the word
(and similarly for trigrams) gives a measure of its well-
formedness, which can be compared with a user-defined
threshold; if a bigram not used at all in the given language
appears, the word is immediately marked as probably
incorrect.

Other properties of words specific to a given language
can be verified: e.g., in Japanese all syllables are open.

If a recognized string for which no variants of correction
by the dictionary are found does not pass any of the
linguistic filters, it is presented to the human operator for
possible correction.

Note that since toponyms are frequently words of
another language (say, indigenous languages) or proper
names of foreign origin, linguistic verification can
produce a large number of false alarms.

9 GLOBAL CONSTRAINT
VERIFICATION

After all inscriptions in the map have been recognized,
some global constraints should be checked.

1. Uniqueness. To each object, only one inscription
should correspond. If two inscriptions have been
associated with the same object, one or both of them
is to be re-assigned. Even though the information on
the probability of each of the two candidates is
available at this point and could allow for automatic
selection of one of the candidates, we believe that
such conflicts should not be arbitrated automatically
but the human intervention is to be requested instead.
Of course, the probability information can be used to
suggest the most likely variant to the human operator.

An exception from this rule is linear objects such as
long rivers. Several inscriptions can be assigned to
such object provided that their text is the same, the
distance between them is much larger than their
lengths, and their length are much smaller than the
length of the object (river).

2. Inclusion. The hierarchical information available
from the dictionary (see Section 6) can be applied at
this point. Recall that our algorithm recognizes the
names of, say, cities before recognition of the names
of areas. So at the time of recognition of the string
“Xalapa” the information “Xalapa City is in Veracruz

State” could be checked since we did not know yet
where Veracruz State is in the map. Now that all
strings have been recognized, this information can be
checked (now we know where Veracruz is) and the
error discussed in Section 6 (Xalapa mistaken for
Jalapa recognized in Oaxaca State) can be detected.
In this case, again, human intervention can be
requested. Alternatively, the process of error
correction can be repeated for this string, and then the
global verification is repeated for the objects
involved in the resulting changes.

10 CONCLUSIONS AND FUTURE
WORK2

We have shown that the problem of recognition of
inscriptions in the map, assigning them as names to
specific objects (e.g., cities), and importing—using these
names as keys—properties of these objects (e.g.,
population) from existing databases involves both
traditional techniques of image recognition and methods
specific for cartographic maps processing. Our algorithm
combines various sources of evidence, including
geographic coordinates and object inclusion hierarchy, to
choose the best candidate for error detection and
correction.

One obvious direction of future development is refining
the heuristics used in the discussed sources of evidence
and adding new sources of evidence. For example, the
basic recognition procedure can return the probability (the
degree of certainness) of each letter in the string, or even
a list of possible letters at the given position in the string
along with their respective probabilities. The idea is that if
the basic recognition procedure is sure that the letter in
question is exactly the one it recognized (as opposed to
just looking like this), the letter should not be changed in
error correction, and vice versa.

Another issue possibly to be addressed in the future is
the computational complexity, especially the method used
to compute the integral in Section 6.

Yet another possible modification of the algorithm is an
attempt to recognize all strings before error detection and
correction. In many cases this can allow to apply the
hierarchical information during the main cycle of the
algorithm and not at the stage of post-processing, see the
discussion in the item 2 in Section 9.

However, the most important direction of future
research is automatic training of the statistical models,
automatic learning of the notational information, and
automatic determination of the parameters used in various
heuristics of our method.

                                                          
2 In this work we focused on maps with texts. There are many

maps with numerical labels (elevations, geographical
coordinates, and so on). See [1], [7], and [8] for discussion
on this type of maps.
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The parameters could be adjusted by application of the
algorithm iteratively while varying the parameters, say,
according to the gradient descending method. For this,
however, an automatically computable measure of the
quality of the result is to be determined.

The training of the statistical model and learning of the
notation can be done using an iterative re-estimation
procedure [[10]].
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