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We present a polynomial-time path-finding algorithm in AND-OR graphs Given p arcs and n nodes, the
complexity of the algorithm is O(np), which is superior to the complexity of previously known algorithms.
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1 INTRODUCTION

We address a mathematical programming problem with min-max inequalities that is reduced
to finding extremal paths in AND-OR graphs. We precede the paper by a short note related to
the history of the problem- we recall some graph-theoretical results that have been obtained
in the halls of the Institute for Control Problems (ICP), Moscow, USSR, in the 1970s.

In 1970, Dinic [17] has improved the famous Ford-Fulkerson method for finding the
maximum flow in a network by augmenting the flow along many shortest paths and delicately
reconstructing the network, it has been the first polynomial-time max-flow algorithm. An
even faster algorithm for the max-flow problem has been developed by Karzanov [23] who
has introduced intermediate "pre-flows" that do not satisfy the conservation constraints at
each node. Over the past years, a long sequence of more and more efficient max-flow
algorithms, polishing and improving Dinic’s and Karzanov’s algorithms, has been proposed
in the literature (see, e.g., [7, 11, 22]). In 1978, Dinic [18] has addressed the shortest path
problem in graphs and suggested a bucket-based version of Dijkstra’s algorithm, today the
bucket implementations proved to be most effective on many practical problems Arlazarov
et al. [12] have devised a new construction for the transitive closure of a directed graph.
Known in the West literature as "Four Russians’ Algorithm", this efficient construction is
widely used in matrix multiplication and other applications 10]. Weisfeiler, Adelson-Velsky
and their collaborators [31 have investigated the classical graph isomorphism problem and
designed an ingenious enumeration method based on an algebraic generalization of the arc
length notion.
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Adelson-Velsky has studied general critical (longest) paths with non-linear arc lengths
arising in a project management context. Levner [25, 26] has proposed to use the critical
paths in graphs for solving scheduling problems, over the past years the approach became
widespread in the scheduling theory (see, e.g., [29]) Adelson-Velsky, Arlazarov, and their
collaborators have created a chess-playing computer program KAISSA, which won the first
world computer-chess championship, they have suggested fast and simple ways for evalu-
ating the game states (i.e., the node weights in game trees) and discarding non-perspective
paths in the trees [2-6].

Today, the subject of path optimization in graphs had exploded, compared with its state
in the 1970s. Nevertheless, the algorithmic ideas derived by the ICP people almost three
decades ago are still vital and up to date.

The mathematical programming problem considered in this paper can be formulated as a
path-finding problem in weighted directed AND-OR graphs in which arcs are identified
with tasks while nodes represent their starting and finishing endpoints. A starting point of
a task is represented by an AND-node if its execution can be started after all its
preceding tasks have been solved, and by an OR-node if it can be started as soon as any
one of its preceding tasks is solved. The time needed to execute a task is represented by an
arc length. The problem that emerges, is to implement all the tasks in the graph
in minimum time.

This type of problems has many real-world applications. Their study has been started by
Elmaghraby [20] in the early 1960s. Crowston [14], and De Mello and Sanderson 15] have
applied the problems in AND-OR graphs for the planning ofproduction systems, Gillies and
Liu [21] and Adelson-Velsky and Levner [8] have used them for scheduling of tasks in
computer communication systems. The AND-OR graphs appear to be a powerful tool for the
automatic text processing and problem solving in the artificial intelligence [28]. Routing
problems in AND-OR graphs arise in mathematical analysis of extremal problems in
context-free grammars [24], games [32], and hypergraphs [13].

The problem under consideration generalizes the shortest path and critical path problems
in graphs. Several fast methods for its solution have been suggested in the literature. A
polynomial algorithm has been suggested by Dinic [19] who has elegantly solved a special
case when the graph has no zero-length cycles. Another special case- in which arc lengths
are non-negative, AND-OR graphs are bipartite, arcs leading to the OR-nodes are of zero
length, and zero-length cycles are permitted- has been solved by Adelson-Velsky and
Levner [8, 9] in O(pp’) time (p’ is the number of arcs entering the AND-nodes andp the total
number of arcs). Mohring et al. [27] have solved an equivalent problem in bipartite graphs,
with the same complexity. The present paper gives a full description of an improved, O(np)-
time algorithm for general (not necessarily bipartite) AND-OR graphs with n nodes, and
provides the proof of its correction.

The paper is organized as follows: in Section 2 we define the problem, Section 3
presents a new polynomial algorithm, Section 4 analyzes its properties, Section 5 concludes
the paper.

2 PROBLEM FORMULATION

The input to the scheduling problem under consideration is (G, s, z), where G (V, E) is a
directed graph, V is the node-set, VI n, E is the arc-set, IE] =p, z z(vi, vj) is
an arc length function, and s is a node called the start whose occurrence time is given
by t(s)-- to.
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We assume that V A U O t.) {s}, A being the set of AND-nodes and O the set of OR-
nodes. The problem is to find the earliest occurrence times t(vj), for all vj V, satisfying the
following conditions"

t(s) to,

t(vj) >_ max + v(vi, vj))
vP(v.i)

(t(vi)

t(vj) >_ min + v(vi, vj))
vieP(vj)

(t(vj)

t(v) >_ to, for all v.

(1)
if vj A, (2)

if vj O, (3)

(4)

Here P(v) denotes the set of nodes that are immediate predecessors to v. Relations (2)
formally describe the conditions occurring in the AND-nodes of standard PERT/CPM
project management models, whereas relations (3) formally state that just one of the pre-
ceding activities for node vj may be finished before the vj occurs. The problem turns into the
critical path problem if O is empty, and into the shortest path problem ifA is empty. Without
the loss of generality, we assume that P(v) is non-empty for any node v, v s (otherwise, we
would have several start nodes which could be glued together into a single start node). We
will denote this problem by P.

Conditions (2) and (3) are represented in the graph G by the arcs from vi to vj of length
z(vi, vj). We start our considerations with the following graph transformations that permit us
to present the constraints (4) in graph form (without violating the problem size order).

(a) if the graph has an OR-node u having immediate successors vj ofOR type, then we add a
new AND-node fi with z(u, fi) 0, and the arcs (u, Vj) are replaced by the arcs (fi, Vj)
with z(t, vj) z(u, vj) (see Fig. below, where the squares denote OR-nodes and the
circles AND-nodes),

(b) we add arcs (s, vj) of zero length leading from the start s to all AND-nodes vj in G
(including those added in the previous transformation).

Due to these transformations, we may assume that any OR-node in G has a preceding
AND-node or s, in particular, G does not contain zero-length cycles consisting only of
OR-nodes. It should be noted that in contrast to the graph model in [8, 9], in this paper the
arcs entering OR-nodes are allowed to be ofnon-zero length. Ifthe graph has an AND-node u
having immediate successors v of AND type, then we add a new OR-node fi with
z(u, fi) 0, and the arcs (u, Vj) are replaced by the arcs (fi, vj) with z(fi, Vj) "IT(U, Vj), similar
to the transformation (a). As a result, a general (non-bipartite) graph is reduced to a bipartite
graph with the number of nodes increased not more than twice. Hence, without the loss of
generality, from now on we will consider the bipartite graphs only.

.O

FIGURE The graph transformation.
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DEFINITIONS .4 set ofvalues {t(Vi)}, j n, satisfying inequalities (1) to (4) is called
afeasible solution to the problem P. Thefeasible solution providing the minimum values t(vj)
for all vj among allfeasible solutions, is called optimal, or earliest, occurrence times, and is
denoted by {t*(vj)}.

Let F be the graph obtained from G after the transformations (a) and (b) are done. Let H
denote the problem of finding the optimal occurrence times {t*(vj)} in the new graph F
subject to (1)-(4). Obviously, the problems P and H are equivalent.

3 ALGORITHM

The new algorithm is based on the previous algorithm presented in [8, 9], differing from the
latter in the following aspects: (i) the new algorithm is designed to treat general AND-OR
graphs with possibly non-zero arcs entering OR-nodes, (ii) a revised labeling procedure
permits to improve the algorithm complexity.

The algorithm works iteratively. At each iteration, it finds a node with the smallest
occurrence time. In this respect, it is similar to the algorithms by Dijkstra [16] and Dinic
[19]. However, in contrast to Dijkstra’s or Dinic’s algorithms, our algorithm is not greedy in
the sense that, at each step, it does not make an immediate choice that looks best at the
moment. In fact, it always behaves in a complementary, "anti-greedy", mode, namely, at
each iteration, it first finds all the nodes whose occurrence times are non-minimal and
paints them red, as a consequence, all the unpainted nodes are proved to gain the minimum
occurrence times.

At each iteration, the graph is reduced to a smaller one. Let l"h denote the graph derived at
the end of the (h 1)th iteration (h 1,2 ). For every node v in Fh the algorithm assigns
a time label t(v) and maintains a status St(v) 6 {uncolored, red, black}. All nodes start out
uncolored and later become red or black. Initially, t(s) to, the time labels for all other nodes
are not defined. At termination, the algorithm either provides the minimum occurrence times
for all nodes, or reveals that the given problem has no solution.

Each iteration consists of three procedures" Node-Painting, Node-Sorting, and Graph-
Reduction. Consider an iteration h. Let Out(s) denote the set of all nodes v which are the
heads of the arcs leaving s. Before the first iteration starts, we sort all nodes vi in Out(s) in
non-decreasing order of their lengths (s, vi). For each OR-node, v.j, we compute its in-degree
and assign its value to a variable rj. We will re-evaluate (namely, decrement) the rj-values so
that when a current rj becomes 0 this will mean that all the predecessors to node vj are
painted red.

Procedure Node-Painting consists of three steps, S1 to $3, where $3 is performed
repeatedly. At each iteration, during these steps each arc is scanned at most once, and some
yet-not-colored nodes are painted red, until at some instant no uncolored node can be
painted red.

Intuitively, the main idea behind the painting procedure at Steps S1-$3 below is to paint
red all the nodes in 1-’h which have the occurrence times greater than the earliest occur-
rence time possible in Fh, as a consequence, all the unpainted nodes will have the time
labels t(v) equal to the earliest occurrence time among the nodes of Fh. Further, we will
paint red all the not-yet-painted AND- and OR-nodes taking into account the following
rules.

(i) Any AND-node may be painted red if any of its predecessors is red, and
(ii) any OR-node may be painted red if all of its predecessors are already red
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Now we can describe the steps of the painting procedure at each iteration.

Step S1 [Initial painting] For each positive-length arc (vi, vj), vi s, consider its head vj. If
it is an AND-node then paint it red. If it is an OR-node then decrement rj by 1, when rj
becomes 0, paint vj red.

Step $2 [Initial painting continued] For each zero-length arc (vi, vj) such that its tail V is
red, consider its head v. If it is an AND-node then paint it red. If it is an OR-node then
decrement rj by 1, when r becomes 0, paint vj red. When a node is painted red, all its leaving
arcs of zero length are added to a FIFO queue to be examined and processed in the same
manner later at this step.

Two cases are possible after the initial painting at Steps S 1-$2 is finished.

Case C1 All nodes are painted red. This means that the initial graph has a cycle of positive
length, and moreover, the times of the nodes in the cycle will become infinitely large when
the algorithm runs (infinitely long) further, in this case, the problem has no feasible solution,
so the algorithm reveals this fact and stops.

Case C2 Some nodes (or, possibly, all ofthem) are not painted red. Then an unpainted node
of maximum distance from s (that is, of maximal z(s, vi)-value) is chosen as a pivot, and the
algorithm goes to Step $3.

Step $3 [Choosing a pivot and painting] Among the unpainted nodes in Out(s), choose an
AND-node v** of maximum length z(s, v, )** z(s, v**) maxiout(s) z(s, vi), and paint it
red. Then paint red the not-yet-painted nodes, as described in the rules (i)-(ii) just above
starting from the node v**. Ifthere are still not painted nodes in Out(s), then the operation just
described is executed with the next maximal node in Out(s). That is, the algorithm chooses
the (next) maximal not-yet-painted node in Out(s), paints it red and applies the rules (i)-(ii).
This "descend" is repeated until all nodes in Out(s) become painted red. When all nodes in
Out(s) become red, select the last node considered as v**, and denote it as v*.

The node v* is painted black, the nodes connected with the v* by zero-length arcs are
painted black as well. All black nodes have the minimum time t(v*) in ’h. This finishes the
procedure Node-Painting.

Remarks

(1) If the problem is unfeasible due to the presence of a positive-length cycle in a given
graph, then at the beginning of some iteration all arcs (s, vi) in a current graph l"h will be
of the same length, and, after Steps S 1-$2, all the nodes in lh will be painted red.

(2) At Steps S1-$3 of each iteration, each arc is examined at most once.
(3) All the arcs examined at Steps $2-$3 are of length zero.
(4) All the nodes are reachable from the start s through directed paths in G. Indeed, for the

AND-nodes this trivially follows from the preliminary transformation (b) described
above, for the OR-nodes it follows from the fact that any such node is preceded by an
AND-node or s (this follows from the transformation (a)). Therefore, in Case C2, Out(s)
contains at least one unpainted node.

After the procedure Node-Labeling is finished, Graph-Reduction is applied. Let v’ be an
immediate successor of v*, and v" an immediate successor of v’ (where, of course, v’ is of
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OR-type, and v" of AND-type). The node v* is removed from Fh, and the arcs incident to v*
are reconstructed as it is described below.

(a) If z(v*, v’) 0, then (v*, vt) is removed from Fh, node v" is made connected with s by an
arc (s, v") whose length is defined as follows. If there is no arc (s, V’) in Fh, then such an
arc is inserted in the graph (instead of the removed arcs, (v*, v’) and (v’, V’)), with
z(s, v") z(s, v*) + z(V, v"). If there is an arc (s, v") in Fh, then z(s, v") is recalculated
as follows z(s, v")= max(z(s, v"), z(s, v*)+ z(v’, v")). After all nodes v" are scanned
and connected with s, OR-node v is removed from 1-’h.

(b) If z(v*, vt) > 0, then a new AND-node w is added into each arc (v*, v’) of this kind, with
z(v*, w) z(v*, v’) > 0 and z(w, v) 0. Then (v*, w) is removed from Fh, node w is
made connected with s by an arc (s,w) whose length is defined as follows

w) v*) + v’).
(c) If, at some iteration, an AND-node w preceding an OR-node v have been added to F,

and at some later iteration, another "new AND-node" w preceding the same OR-node v
is to be added (according to the role described in paragraph (b)), then only one of them,
which provides a smaller distance from s to v’, is leit z(s, v’) min(z(s, w) + z(w, v’),
z(s, w’) / t(w’, v’)). Another node, together with its incident arcs, is removed.

(d) When all arcs leaving v* are removed from Fh during the transformations (a)-(c) above,
the node v* and the arc (s, v*) are removed as well.

(e) The new AND-nodes w are added to Out(s) and ordered so that all nodes vi in Out(s)
remain sorted in non-decreasing order of their lengths z(s, vi). Notice that the resulted
graph is also bipartite.

During the graph reduction, the total number of nodes in Out(s) changes from iteration to
iteration at first it may grow due to new AND-nodes added (but it never exceed n), and then
this number decreases. The algorithm finishes when the set Out(s) is exhausted, all node
times having been defined. Otherwise, a new iteration (starting from Step S 1) is executed
with the reduced graph Fh, with all its nodes made again unpainted. As a result of Graph-
Reduction, either an OR-node is removed from the current graph Fh, or at least one "old"
AND-node is substituted by a "new" AND-node (if the latter will be chosen as v* at a later
iteration then an OR-node will be removed). Thus, the total number of executions of the
procedure Graph-Reduction cannot exceed r/AND-[-nOR rt (where, clearly, t/AND is the
number of AND-nodes, and r/OR the number of OR-nodes in the initial graph G).

4 ALGORITHM ANALYSIS

At each iteration, either (i) an AND-node is removed from the graph Fh (see paragraph (d) in
the previous section), or (ii) an OR-node is removed from the graph (see paragraph (a) in the
previous section), or (iii) an AND-node all leaving arcs ofwhich are positive is substituted by
a new AND-node (or by several new AND-nodes) with a leaving arc of zero length. Clearly,
the situation (iii) may happen not more than r/AND times where r/AND is the number of
AND-nodes in G. Although the total number of arcs leading from the AND-nodes in Out(s)
to their immediate OR-successors may be quadratic in n (and the number ofnew AND-nodes
added to Out(s) even may grow at some iterations), lOut(s)[ never exceeds the total number n
of nodes in G. This property is guaranteed by the rule in paragraph (c).
To summarize, after each iteration, the following states are possible:

(1) either all ofthe nodes are painted red after the steps S and $2 ofNode-Painting, then the
problem has no solution, or
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(2) all AND-nodes of the initial graph G have been removed (so that their minimum times
have been defined, and, therefore, the times for all OR-nodes are also defined), this
means that the problem has been solved, or

(3) after Graph-Reduction terminates, set Out(s) is not yet empty, then the algorithm goes
to the next iteration. Observe that this construction does not mimic the structure of
Dijkstra’s shortest-path algorithm.

Consider now the properties of the algorithm in more detail.

DEFINITIONS Let t(vj) be the optimal solution to the problem II. Any arc (vi, vj) such that
t(vj) t(vi) + z(vi, vj) where vi P(vj), is called critical, or binding. A path is called critical

if it either consists ofa single node or consists ofcritical arcs. Given the optimal solution to
the problem II and a node vj, a critical sub-network Ner(Vj) originating at vj is defined
recursively as follows: (1) Vj

_
Ncr(Vj), and (2) if vk Ncr(Vj) and t(vj) t(vi) d- "c(vi, Vj),

then vi Ner(Vj) and (vi, vk) Ncr(Vj).

We can see that the critical path in the problem II may be neither the shortest nor the
longest path in F (see Ref. [9], for details and examples).
The following theorem establishes the relationships between the critical paths and the

optimal values of the decision variables, t*(vj).

THEOREM [9]

1. If vi E Ncr(Vj), then there exists a simple (i.e., acyclic) critical path L (vi,... lj),
starting at vi and terminating at vj, in which all nodes and arcs belong to Ncr(Vj).

,j-I2. The length 2(vi,...,vj) of the critical path L, defined as s=i z(vs, vs+), equals
t* r

3. If the problem II has a feasible solution, then the starting node s belongs to all critical
sub-networks Ncr (vj), j 1,..., n.

The proof, which follows directly from the definitions of the critical sub-network and the
critical path, is skipped here. (The detailed proof can be found in [9]).

Consider now an iteration h. Assign the labels {red, black} to the nodes of 1-’h as described
in the previous section, and define the ranks of the red-labeled nodes as follows.

The first pivot v** labeied red at the first run of Step $3 receives rank k 1, when a node v
is painted red at a current run of Step $3 through an arc (u, v), then the rank of v is set to the
rank of u plus (The AND-nodes receive odd ranks while the OR-nodes receive even ranks).
The following two lemmas establish useful properties of the black- and red-labeled nodes.

LEMMA ("The times ofred-labeled nodes v v*, is not minimal") Ifthe optimal solution
to Problem II exists, then the earliest occurrence time ofany red-labeled node, exceptfor v*
and those painted by v*, is greater than to + z* to + mintout(s) z(s, vi), where Out(s) is the
set ofheads of the arcs leaving the start node s in r’h.

Proof Any node painted red at Steps S and $2 evidently does not possess the minimum
time because its time is at least the sum of the minimum time plus a positive arc length. The
proof for the nodes painted at Step $3 is by induction on the rank k. Consider any iteration,
say h. Let Ak denote the set of all red-labeled nodes of the rank k at that iteration.

Let us first verify the result for k 1. For the node v** A, we have
Since v** v*, s P(v**), and z(s, V**) "* "tS(S, V1) mintout(s) z(s, Vi) then

t(V**) > t(s) + z(S, v**) > to + "c(s, vt).
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Suppose that the required result is true for all the ranks not greater than k, that is, for the
earliest occurrence times of the nodes vi from tO_<kA., t(vi) > to + z(s, v).

Let vj Ak+. Then we have

If vj A and vi P(vj) N Ak then t(vj) > t(vi) + z(vi, vj) t(vi) > to + z(s, v ),
If vj 0 and vi P(vj) (tOs_<kAs), then t(vj) min t(vi) > to + z(s, vl)

vP(vj)

Lemma is proved.

LEMMA 2 ("The time of any black-labeled node is minimal in Ih ") Let Fh be a graph
obtained at the hth iteration of the algorithm. If a feasible solution to II in graph
exists, then the earliest occurrence time of the black-labeled node v* is equal to

to + "r* to + "r(s, v*) to + mintout(s) r(s, vi).

Proof The proof is based on three simple observations. First, notice that the choice of any
pivot node v** is done among those nodes in Out(s) of which the incoming arcs
(v, v**), v - s, are all of zero length (otherwise v** cannot be of minimal "distance" (=time)
from s in a current graph, and it is painted at Step S 1). A pivot v** being fixed, we will call
"lower nodes" those nodes v in Out(s) for which z(s, v) < z(s, v**), and "upper nodes" v for
which (s, vl) > r(s, v**).

Our second observation is as follows. If a v**, being painted red at Step $3, causes that all
"lower" nodes v in Out(s) are also painted red (while all the "upper" nodes in Out(s) have
also been painted red, due to our algorithm, at some earlier iterations), then t(v) > t(v*), for
all v, that is, v** is correctly selected as the minimum-time node v*. And, third, if after
painting the nodes starting from a pivot v**, some lower node v in Out(s) remains unpainted
then either the latter node v will paint all the remaining not-yet-painted nodes in Out(s) (and,
therefore will be the minimum-time node v*) at the next step of the "descend" at the same
iteration h, or a new unpainted node will be discovered, and the descend will continued until
some pivot node v** will paint all lower nodes in Out(s). This proves the lemma.

Notice that the procedure Graph-Reduction does not change the occurrence times of the
nodes, and in this sense the routing problem in the reduced graph Fh is equivalent to the
problem II in the initial graph G.

Similar to [8, 9], the new algorithm operates with two main procedures, Node-Labeling
and Graph-Reduction. The Node-Labeling -just as in [8, 9] has the complexity O(p). After
each run of Graph-Reduction at least one node of G will be removed, so the total number of
runs of this procedure cannot exceed n, where n is the number ofnodes in G, this is a point of
departure from the algorithm in [8, 9] where the number ofruns of Graph-Reduction required
in the worst case is O(p). Thus, we are able to improve the algorithm complexity.

THEOREM 2 The complexity of the algorithm is O(np).

Proof We first estimate how many operations each iteration h requires. For each node vi in
Fh, the input contains the list of arcs (vi, vj) leaving the node. In addition, for each OR-node,
vj, we compute its in-degree r.

At Steps S 1-$2, the painting procedure includes examining all arcs of positive length in

1-’h and their successive arcs. The required time is at most O(p).
For Step $3 of Node-Painting (in total, during all their invocations at a given iteration h),

the labeling procedure can be implemented by examining each arc in Ih not more than once.
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Indeed, during all runs of Step $3 (within a certain fixed iteration), the algorithm will
examine in tum each arc, say (vi, vj) that leaves a red-labeled node vi (and that has not yet
been examined). During each examination, the algorithm treats an OR-node as follows: it
updates the value rj for the head-node vj decrementing it by 1, and when the new rj 0, the
node vj is painted red, as for an AND-node, the node is painted red immediately as soon its
predecessor is red. Having been once examined at some mn of Step $3, the arc (vi, vj) is not
examined anymore at further runs of this step at the considered iteration. Thus, at any given
iteration, during all repetitions of Step $3, the labeling procedure takes O(p) operations.
At each iteration, graph Fh is reduced by one node so that the total number of iterations is at
most n, the number of nodes in the initial graph G. Thus, the overall time of the labeling
procedure during all iterations is O(np).
Now we estimate how many operations the reconstruction of the graph requires. It is

sufficient to scan only the arcs leading to the immediate successors of the nodes from the set
Out(s), and each arc is examined only once, their number is at most O(p). Since the total
number of iterations is O(n), the Graph-Reduction requires at most O(np) operations.
When a new AND-node is added to Out(s) or an AND-node changes its position in the

ordered Out(s), the order can be maintained in O(n) operations, and even in O(log n) if we
use the balanced-tree data structure (the AVL-trees). This may happen only when an arc is
removed from the current graph by procedure Graph-Reduction, i.e., this happens at most
p times. Thus, the total cost of maintaining Out(s) to be ordered is not greater than
O(np). Therefore, the total complexity of the suggested algorithm is O(np). The claim is
proved. .

Concluding this section, let us consider an illustrative example presented in Figure 2.
First, it should be noted that the greedy Dinic-type algorithm is unable to solve the

instance. Indeed, it is known that the Dinic algorithm can label any AND-node only after all
its predecessors are labeled (see 19]); hence, nodes v and u can never be labeled by the latter
algorithm. At the same time, as we can easily see, this problem instance is solvable, and our
proposed algorithm will solve the problem as follows. This example illustrates that the
greedy algorithm cannot properly treat the AND-OR graphs with zero-length cycles.

Initialization St(s) St(v) St(u) St(a) St(b) {uncolored}, t(s) O.

Iteration 1 Steps S1-$2 are void as there is no positive-length arc (vi, vj), vi =/: s, in the
instance considered. No node is painted red.

s 0 b

FIGURE 2 The initial graph: an example.
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Step $3 [Choosing a pivot and painting] Choose the AND-node u as v** since
v(s, u) 20 v** maxtout(s) r(s, vi), and paint it red. Then paint red the not-yet-painted
nodes, starting from the node u in accord with the rules (i)-(ii) first a, then v, then b. All
the nodes are painted red, so the node u is chosen as the pivot v*. Then, the node u,
as well as a, v, and b are all painted black and assigned the optimal occurrence times
t*(u) t*(a) t*(u) t*(a) 20. The problem is solved.

5 CONCLUDING REMARKS

Our algorithm can find the earliest occurrence times in a more general problem, in which,
along with the max-operator (see (2) in Section 2), there is the summation operation defined
for some AND-nodes.

t(vj) > y (t(v,) + "(Vi, 1,’j))
viP(vj)

for some vj A

Any superposition of the max-operator and the sum-operator is also allowed, since the
superposition function in an AND-node can be decomposed into several new AND-nodes
with just max-operators and sum-operators. It is worth of noticing that in the latter case there
appears one more reason for introducing zero-length cycles such a cycle appears if an
argument t(v) is met several times, in different places, in the superposition function.
Furthermore, the proposed algorithm can be easily modified to solve a generalized problem
in which the max-operator in AND-nodes is substituted by superior functions (defined in
Knuth [24]).
When arc lengths in the AND-OR graph in the considered problem are of arbitrary sign,

the proposed algorithm is inapplicable. Although it is easy to construct a dynamic pro-
gramming algorithm that solves the problem in pseudo-polynomial time [30], the question
whether the problem is polynomial solvable, is still open.
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