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ABSTRACT  
Graphical documents such as cartographic maps contain a 
great variety of textual elements appearing in different 
spatial positions, in different fonts, sizes, and colors, 
touching and overlapping graphical symbols. This greatly 
complicates automatic optical recognition of such textual 
elements in the process of raster-to-vector conversion of 
graphical documents.  In this work, we propose a method 
that combines OCR-based text recognition in raster-
scanned maps with heuristics specially adapted for 
cartographic data to resolve the recognition ambiguities 
using various sources of evidence. Our goal is to form in 
the vector thematic layers geographically meaningful 
words correctly attached to the cartographic objects. 
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1 Introduction 

Huge amount of geographic information collected in the 
last centuries is available in the form of maps printed or 
drawn on paper. To store, search, distribute, and view 
these maps in the electronic form they are to be converted 
in one of digital formats developed for this purpose. The 
simplest way of such conversion is scanning the paper 
map to obtain an image (a picture) stored in any of the 
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raster graphical formats such as TIFF, GIF, etc. After that, 
a raster-to-vector conversion can be applied to include 
obtained vector maps into a Geographic Information 
System (GIS). 

Though raster representation has important advantages 
in comparison with the hard copy form, it still does not 
allow semantic processing of the information shown in 
the map, for example: 

• Search for objects: Where is Pittsburgh? What large 
river is there in Brazil? 

• Answering questions on the spatial relations: Are 
Himalayas in China? Is Nepal in Himalayas? Is a 
part of Himalayas in China? 

• Generation of specialized maps: Generate a map of 
railroads and highways of France. 

• Scaling and zooming: Generate a 1:125 000 map of 
Colombia. Now, show more details at the point 
under cursor. 

• Compression:  Objects such as points, arcs, or areas 
can be stored much more efficiently than pixels. 

Note that these are semantic tasks rather than image 
manipulation. E.g., when zooming in or out, objects and, 
most importantly, their names should appear or disappear 
rather than become smaller or larger. Indeed, when 
zooming out the area of London, the name Greenwich 
should not become small to unreadable but should 
disappear (and appear in an appropriate font size when 
zooming in). 

This suggests storing and handling of a map as a 
database of objects (points, arcs, areas, alphanumeric, 
etc.)—vector database—having certain properties, such as 
size, geographic coordinates, topology, and name. 
Specifically, the name of the object is to be stored as a 
letter string rather than a set of pixels as originally 
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scanned from the hard copy. Thus, such vector 
representation can solve the listed above semantic tasks, 
but only to some extent [1]. 

However, automatic recognition of such strings 
(toponyms) in the raster image of the map presents some 
particular difficulties as compared with the optical 
character recognition (OCR) task applied to standard texts 
such as books: 

• The strings are out of context, which prevents from 
using standard spelling correction techniques based on 
the linguistic properties of coherent text. Often such 
strings are even not words of a (modern) language, 
which further limits applicability of the standard 
linguistic-based spelling correction methods [12]. 

• The background of the string in the map is very noisy 
since it can contain elements of geographic notation 
such as shading or hatching, cartographic objects such 
as cities or rivers, and even parts of other strings, e.g., 
name of a city inside of the area covered by the name 
of the country; see Figure 1. 

• In addition, the letters of the string are not properly 
aligned but instead are printed under different angles 
and along an arc; this happens with the names of linear 
and area objects, e.g., rivers or countries; see Figure 1. 

• Unlike standard task, in toponym recognition it is not 
only required to recognize the string itself but also to 
associate it with a specific cartographic object, e.g., 
city, river, desert, etc. 

On the other hand, in many cases additional 
information is available that can give useful cues for 
ambiguity resolution. One of such information sources is 
existing databases (usually available from the country 
Government, postal service, etc.) providing spatial 
relationships between entities (e.g., a list of cities 
classified by administrative units) or even exact 
coordinates; see [14] for extensive discussion of this topic. 

In this paper we discuss how such additional 
information can be used to workaround the problems 
arising in recognition of the inscriptions in the maps, 
associating them with specific cartographic objects, and 
importing information on these objects from available 
databases. 

First we describe the general scheme of our method. 
Then we discuss various sources of evidence taking into 
consideration, when available, in error detection and 
correction: information of the existing names and 
linguistic information, on the distribution of the letters of 
the string in the source raster image, and pre-existing 
geographic information such as coordinates of objects. 
Then global verification of consistency of the recognition 
results is described. Finally, conclusions are drawn and 
future work directions are outlined. 

2 Previous Work and Present Paper 
Overview 

The text segmentation and its subsequent recognition in 
raster images are very difficult problems due to the 
presence of the text embedded in graphic components and 
the text touching graphics [2]. These challenging 
problems have received numerous contributions from the 
graphic recognition community [3]. However, there have 
not been yet developed any efficient programs to solve the 
task automatically. Thus, in the most works human 
operator is involved. For example, [4] proposes that the 
operator draws a line through the text, marking it as text 
and revealing its orientation. 

In [5] and [6], the algorithms are developed to extract 
text strings from text/graphics images. However, both 
methods assume that the text does not touch or overlap 
with graphics. For maps, the problem is much more 
complex, since the touching or overlapping as well as 
many other character configurations are commonly 
presented in maps. That is why [7], [8], and [9] developed 
the methods for text/graphics separation in raster-scanned 
(color) cartographic maps. 

In [9] a specific method of detecting and extracting 
characters that are touching graphics in raster-scanned 
color maps is proposed. It is based on observation that the 
constituent strokes of characters are usually short 
segments in comparison with those of graphics. It 
combines line continuation with the feature line width to 
decompose and reconstruct segments underlying the 
region of intersection. Experimental results showed that 
proposed method slightly improved the percentage of 
correctly detected text as well as the accuracy of character 
recognition with OCR.  

In [7] and [8], the map is first segmented to extract all 
text strings including those that are touched other symbols 
and strokes. Then, OCR using Artificial Neural Networks 
(ANN) is applied to output the coordinates, size, and 
orientation of alphanumeric character strings present in 
the map. Then, four straight lines or a number of curves 
computed in function of primarily recognized by ANN 
characters are extrapolated to separate those symbols that 
are attached. Finally, the separated characters are input 
into ANN again for their final identification. 
Experimental results showed 95–97% of successfully 
recognized alphanumeric symbols in raster-scanned color 
maps. 

In the present work, we use the output obtained with 
this method in combination with pre-existing 
geographical information in semantic analysis of 
ambiguities for “geographically meaningful” word 
formation. We focus on text processing rather than image 
processing.  

The proposed system is based both on the traditional 
techniques used in the general-purpose OCR programs 
and on the techniques we developed especially for 
cartographic maps. In particular, Section 5 deals with the 
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problems and solutions common to any OCR task. 
However, even in these cases there are some differences 
with respect to the usual OCR situation. The algorithm 
described in Section 5.1 (check against a dictionary of 
existing words) in our case has to deal with much more 
noisy strings than usual OCR programs developed for 
clean black-on-white running text. The same can be said 
of Section 5.2 (non-uniform spatial letter distribution): in 
maps the letters are often placed at significant distances 
one from another, cf. Figure 1; as well of Section 5.3 
(check against the general laws of a given language): 
maps have many foreign or indigenous words that do not 
conform to the main language of the given territory. 

In contrast, Section 4 is specific for maps. In Section 
4.3 (check against geographic information such as 
expected coordinates) the consistency with the available 
information about the location of an object is used, which 
is specific for cartographic maps. Also the information on 
the expected type of the object (river, mountain, etc.) is 
used. In Section 4.4 (global consistency check) it is 
verified that each object is recognized only once. These 
techniques do not have direct analogs in standard OCR 
research and thus are contributions of our paper. 

Finally, we do not use many techniques standard for 
usual text OCR, which are applicable to running text but 
not to toponyms in maps, for example: morphological and 
syntactic analysis, semantic consistency verification [13]; 
paragraph layout determination, etc. In a way, the new 
techniques we introduce in the Section 4 play the same 
role of verification of contextual consistency, but in the 
manner very specific to cartographic maps. 

3 Main Procedure 

We rely on a basic OCR procedure1 (not discussed here; 
see [1], [7], and [8]) that recognizes in the map individual 
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extracted and recognized. Neither does it depend much on the 
type of graphical document being processed. It can be adapted 
to different subject domains. 

letters and groups together the letters of a similar font and 
color located next to each other, thus forming a 
hypothetical string. In this process, errors of various types 
can be introduced; our purpose is to detect and correct 
them. 

The recognition algorithm for the whole map works 
iteratively. At each step, the basic OCR procedure selects 
for processing the longest and most clearly recognized 
string and returns it for error correction and subsequent 
adding to the database being constructed. Upon its 
processing, the string is removed from the raster image, 
and the next string is selected. The algorithm stops when 
no more letter strings can be found in the raster image.  

This design allows for recognition of the names of 
large areas, which are usually represented by large letters 
scattered across the corresponding area, with many names 
of smaller objects between the letters of the area name. In 
the example shown in Figure 1, first the word Leninsk will 
be recognized and removed from the image, then the word 
Volga, and only then the letters of the word Russia can be 
grouped together in a string. 

The basic OCR procedure returns, for each string it 
recognizes, the string itself, e.g., “RUSSIA,” and the 
geographic coordinates in the map of the frame containing 
each individual letter, e.g., R, U, etc.  

After this process, two major issues arise: 
�  How to associate the textual objects found in the map 

with the geographical objects found in the same 
map? In Figure 1, what are the type (city, river, 
mountain, etc.)  and the coordinates of the object 
called Leninsk? What is the name of the city located 
near the center of the map? 

�  How to detect and correct possible recognition errors 
in the textual elements? 

To solve these problems, various sources of evidence 
are to be taken into account. In the following, we will 
consider each such source of evidence, first for the 
association problem and then for the error detection and 
correction problem. 

4 Association of a Name with an 
Object 

As we have assumed, the basic OCR procedure returns 
two types of information: 

• Geographical objects. These can be of three types: 
punctual, linear, and area objects. For them, the basic 
OCR procedure returns the corresponding coordinates 
in the map (in pixels or in the corresponding 
geographical units) as will be discussed in the 
following. 

• Textual information. The basic OCR procedure returns 
a string along with the coordinates (again, in pixels or 
in geographical units) of a box containing each of its 
letters. 

 

Figure 1: Intersection of strings in a map 
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The next task for the map recognition system is to 
relate the strings (toponyms) with the objects found in the 
map. This is a non-trivial task due to several peculiarities. 

First, it is highly heuristic since one needs to model 
the way in which the human cartographer assigned the 
labels to the objects. Second, not all objects have a 
corresponding label as well as not all labels correspond to 
objects detectable in the map. 

The assignment procedure consists of two major parts: 
estimating of probability of a string to be related to an 
object, and final assignment of the strings to objects in a 
way that maximizes such probability. In the subsequent 
sections we shall consider these two tasks separately. 

4.1 Likelihood of Relatedness between a 
String and an Object 

Given a geographic object and a string, both along with 
their coordinates (in pixels or in geographical units), we 
can estimate the probability of that the string is related to 
the object. Using the Bayes formula, we can do it by 
modeling the process of placement of the names in the 
map by the cartographer. 

Indeed, denote by R the event that the string is related 
to the object and by P the event that the cartographer 
placed the string to a specific position in the map (where 
we observed it). By Bayes formula, the desired 
probability is: 

.
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Since P(P) does not depend on a specific object and thus 
does not affect the disambiguation decisions, the desired 
probability is determined by the following two factors: 

• P(P | R) reflects the strategy used by the cartographer 
to place the names of the objects next to the objects, 

• P(R) reflects the relatedness of the name with the given 
object. 

These values can be estimated heuristically taking into 
consideration various sources of evidence. We define 
these sources as mean proportional value: 
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where P is P(P | R) or P(R), correspondingly, and Pi are 
the probabilities contributed according to each source of 
evidence. 

In what follows, we discuss various independent 
sources of evidence used in our method. 

4.2 Spatial Evidence 

To define the probability P = P(P | R) of placing the 
object’s name in the observed specific position where it 
has supposedly been found in the map, we should model 
the strategy used by the cartographer for placing the name 
of this object. Then, we can assume that various 
(independent) random factors may cause the cartographer 
to deviate from the “optimal” position. The effect of 
various independent factors is approximated well by the 
normal distribution: 
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where d is the distance from the actual inscription to the 
optimal position predicted by the model, and σ is a 
coefficient (dispersion) depending on the scale of the map 
and the fonts used; its selection is discussed in the 
following. If the model predicts several possible 
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Figure 2: Simplified model for punctual objects.  
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Figure 3: Improved model for punctual objects.  
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Figure 4: Constrained placement strategy. 
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placements x1, ..., xn with probabilities p1, ..., pn and 
dispersions σ1, ..., σn, then we assume: 

,�2�1P
1
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−
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where di are the distances from the observed placement to 
the corresponding coordinates xi. 

The placement strategies are different for punctual, 
linear, and are objects. 

Punctual objects. For a punctual object (such as a city), 
which is represented by only one coordinate pair p, our 
previous work [15] suggested the following strategy of 
placing its name. We assumed that the inscription is 
expected to be next to the point p. Thus, we computed the 
distance d as minimum distance from the point p to any of 
the frames containing the individual letters of the string, 
as shown in Figure 2 (a). Though this simple model is a 
reasonably good approximation, it is not very precise. For 
example, both placements shown in Figure 2 (b) and (c) 
are predicted by the model to be optimal while (d) is not; 
this is contra-intuitive. 

The model can be improved as shown in Figure 3 (a). 
First, we observe that the names of punctual objects 
(unlike the names of linear or area objects; see Figure 1) 
are aligned along a straight line; thus, instead of the 
frames of individual letters as in Figure 2, the frame 
containing the whole string can be considered. Second, 
we consider eight possible placement strategies shown in 
Figure 3 (a). The name is placed next to the object, not 
overlapping with the object, in some small distance from 
the object. This distance is approximately the size of one 
letter. We suggest that the dispersion σi from (4) should 
be also approximately of the size of a letter frame.2 

With this improvement, examples of (locally) optimal 
placements are shown in Figure 2 (d) and Figure 3 (b), 
while the placements shown in Figure 2 (b) and (c) are, in 
accordance to our intuition, not optimal. 

The eight strategies have different probabilities pi 
in (4). For example, in the languages with left-to-right 
writing system, the placements to the right of the object 
are preferred to those to the left. The procedure for 
determining these parameters is described here in 
Section 4.5 

What is more, not all of the eight placement strategies 
can be possible in a specific environment. A specific 
placement strategy is not possible if the string would 
significantly overlap with any of other objects found in 
the map: 

                                                        
2 The model can be further improved taking into consideration 

that each individual distribution in (4) is not symmetrical: 
deviations that do not change the distance from the object are 
most probable, and toward the object are less probable that 
those away from the object. This can be done by a suitable 
deformation of the coordinate system; we omit here the details 
of this procedure. 

• Letters of other textual elements. The string may be 
placed between the letters of a string of a larger font, 
given that it does not overlap with individual letters. 

• Other punctual objects. The string may, however, 
overlap with other linear or area objects. 

• Borders of the map. The string cannot trespass beyond 
the area of the map. 

An example is shown in Figure 4, where only two 
placement strategies are possible. In such cases, in the 
formula (4) the probabilities pi of the impossible cases are 
set to zero and the other pi are re-normalized. 
Alternatively, instead of setting the corresponding 
probabilities to zero, they can be significantly decreased 
(penalized). 

Note that we assume that the operation of relating the 
names with the objects is performed after independent 
recognition of all objects and all strings in the map, so 
that the positions of other strings and objects are known at 
this moment. 

Linear objects. For linear objects (such as rivers) 
represented by a sequence of coordinate pairs pi, we 
suggest similar improvements over the procedure 
proposed in [15]. In the latter work, we indicated that the 
inscription is expected to follow the shape of the arc. Thus, 
we took d as average distance from the frames containing 
each letter to the broken line (or otherwise interpolated 
arc) defined by the points xi. To put it in a slightly 
simplified way, to measure the distance between a letter 
and the broken line, two adjacent points xi, xi+1 nearest to 
the letter are found and the distance from the letter to the 
straight line connecting the two points has been 
determined. 
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Figure 5: Simplified model for linear objects.  
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Figure 6: Improved model for linear objects. 
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Similarly to the case of punctual objects, this would 
lead to a situation shown in Figure 5 (a), which 
incorrectly predicts the case (b) rather than (c) to be 
optimal. As in the case of punctual objects, we also 
suggest considering two placement strategies shown in 
Figure 6 (a), which correctly predict the case (c) and not 
(b) in Figure 5 to be optimal. The parameters (such as pi 
and σ) and constraints (such as those shown in Figure 4) 
are treated much in the same way as in the case of 
punctual objects discussed above; we skip here the details. 

An exception is the linear objects with the width 
significantly greater than the size of the letters in the 
string. In this case, the old model should be used, as 
shown in Figure 6 (b); namely, the string is expected to be 
found in the middle of the line. Note that our processing 
of such objects is different from that of area objects in that 
the string does not need to cover the whole length of the 
object. 

Area objects. For an area object S (such as a province) 
represented by a sequence of coordinate pairs xi 
corresponding to its contour, our previous work [15] 
suggested the following approach. The inscription is 
expected to be in the middle of the area and the letters are 
expected to be distributed by the whole area. Thus, we 
can take � �

′
=

S
dxdyyxfd ),( in (3), where f (x, y) is the 

minimum distance from the point (x,y) to any of the letters 
of the string. The integral is taken over the intersection S' 
of the area S and the whole area of the given map (in case 
a part of S proves to be out of the boundaries of the given 
map). Note that a similar integral along the contour would 
not give the desired effect. Since the area objects are 
much less numerous than other types of the objects in the 
map, we do not consider computational efficiency a major 
issue for our purposes. Neither precision is important for 
us. Thus, it is enough to compute the integral by, say, 
Monte-Carlo method. 

Now we can re-interpret this procedure along the lines 
of the approach described in detail for the punctual and 
linear objects. Namely, the string that minimizes the 
integral above is the predicted “optimal” placement, with 
individual letters uniformly covering the surface of the 
area object. The observed placement can differ from the 
predicted one with the probability given by (3).  

However, in this case we deal with a set of objects—
individual letters—and not with one object, the whole 
string. Their distribution by the map can be considered 
independent. Thus, the probability of a specific 
configuration of n letters is: 

,�2�1P
1 �

2 2

2

∏
=

−
=

n

i

d i

e  (5) 

where di are the distances between the predicted and 
actual location of individual letters. 

This new interpretation allows for a meaningful choice 
of the parameter σ in (5), which in [15] was left undefined. 

The deviation in the placement of each letter can be of the 
order of about 1/3 of the distance between the letters in 
the predicted string, for the inscription not too look too 
misplaced. 

Computationally, the task of finding of the optimal 
(predicted) string that minimizes the integral discussed 
above can be treated, for example, with 2n-dimensional 
gradient descent. 

As in the case of linear objects, exceptions are to be 
considered. If the area object is too small in comparison 
with the font used in the string, it should be considered as 
punctual object. If the area object is similar to a line (very 
much longer in one dimension than in the other one), it 
can be treated as a thick or thin linear object, see 
Figure 6 (b).  

4.3 Appropriateness of a Name for an 
Object 

The previous section dealt with the component P(P | R) 
of (1) reflecting the placement strategy used by the 
cartographer. In contrast, this and the following sections 
deal with the component P = P(R), which reflects the 
appropriateness of a particular name for a particular 
object, independently of the physical location of the string 
on the map. 

Each of the following subsections discusses a specific 
contribution P = Pi in the total probability. These 
contributions are combined by (2). In all cases, except for 
the next subsection, such probabilities are, though, binary: 
the combinations of a name and an object are classified 
into possible and impossible ones. 

Typographic Evidence. As we have mentioned, the 
basic OCR procedure returns the coordinates of each 
letter. This can give us two characteristics of the 
recognized string: 

• Whether the letters are aligned along a straight line, 

• The distance between each adjacent pair of letters. 

Only the names of linear and area objects (e.g., rivers 
or lakes), but not punctual objects (e.g., cities), can have 
non-linear letter alignment. Non-linear alignment is 
admitted for non-punctual objects but not required. 

It is the responsibility of the basic OCR procedure to 
evaluate the probability P of that a string is linearly 
aligned, which is to be used in case of a punctual object. 
Note that this condition is not applicable to linear and area 
objects. 

Notational Evidence. Notation in the map gives 
additional information to filter out impossible 
combinations of names and objects. In some maps, rivers 
are explicitly marked as “river” or “ r.” and similarly 
mountains, peninsulas, etc. Specific font family, size, and 
color are usually associated with various types of objects 
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(e.g., cities, and rivers). Though this information can 
provide very good filtering, it is not standard and is to be 
automatically learnt or manually specified for each 
individual map, which limits the usefulness of such 
filtering capability in a practical application. 

Automatic learning of notation is discussed in 
Section 4.5. Alternatively, the system can provide the 
operator with the means to specify such notational 
elements, at least the prefixes such as “river.” Similarly, 
font features for a specific type of objects can be 
automatically learnt from a large map or specified by the 
operator. 

The importance of recognition of such notational 
information is two-fold. First, it helps filtering out 
impossible combinations: for example, the name of a 
punctual object cannot be specified as the name of a river. 
Another use of notational information is discussed in the 
next subsection. 

Some precautions should be taken with such type of 
filters. For example, in Spanish rivers are marked as “río” 
‘river’; however the string RÍO DE JANEIRO should not 
be filtered out as a possible name of the city (given that 
capital letters are not properly distinguished in the map). 

Geographic Evidence. This is a very powerful source 
of evidence, though it relies on extensive databases not 
always available. Suppose the string is found in a 
dictionary (database) that provides at least two types of 
spatial information on the corresponding object: 

• Its inclusion in a larger area, such as a province, state, 
etc. These areas form a hierarchy. 

• Its geographic coordinates. 

This information can be used to verify that the object 
in question recognized in the map satisfied the constraints 
specified by the database for the string in question. 

Note that when only the hierarchical information is 
available (for examole, “Jalapa city is in Oaxaca state”), 
this can be used to filter out undesirable variants only if 
the coordinates are available for one of larger areas, one 
or more steps up the hierarchy (but small enough to serve 
for disambiguation). Alternatively, it might happen that 
the corresponding larger area has been earlier recognized 
in the same map. Unfortunately, due to the order of 
recognition from smaller to larger objects (see the 
beginning of Section 3), it is hardly probable. The 
corresponding check can be performed at the post-
processing stage—global verification, see Section 4.4, 
when all areas have been already recognized. 

In the best case, the full coordinate information is 
available in the dictionary for the object. Then the task of 
verification is greatly simplified, provided that the 
coordinate grid is reliably recognized for the given map. 

The dictionary frequently contains several objects with 
same name, of the same or different type. When analyzing 
a map of Canada, the object corresponding to a 
recognized string London is to be a small Canadian city 

and not the large British city, so that the correct number 
of inhabitants for the object could be imported from the 
dictionary to the database being constructed. When 
analyzing an inscription Moscow in the coordinates  
(57° N, 35° E), its interpretation as a river rather than city 
is more probable. 

Note that for correct identification of geographic 
information associated with a toponym, some information 
about notational conventions is important for addressing 
the dictionary. Indeed, for the string “river Thames” what 
is to be looked up in the dictionary is “Thames” and not 
“ river Thames”.  

Linguistic Evidence. This is a substitute for the lack of 
knowledge on notation in a specific map. In some 
languages, the names of rivers, mountains, cities, etc., 
tend to follow some patterns that can be specified in the 
linguistic module of the recognition system. For example, 
in English a name ending in –town is more probable for a 
city than for a river. In Russian, a name ending in –ka is 
probable for a river or village, but not for a mountain. In 
Korean, a name ending in –do would probably indicate an 
island and –gan a river. 

Obviously, these clues should be taken into account as 
factors in the total probability and not as rigid constraints 
(unless they are rigid constraints in the language in hand). 

4.4 Verification of Global Constraints 

After all inscriptions in the map have been recognized, 
some global constraints should be checked. 

Uniqueness. To each object only one inscription should 
correspond. If two inscriptions have been associated with 
the same object, one or both of them is to be re-assigned. 
Even though the information on the probability of each of 
the two candidates is available at this point and could 
allow for automatic selection of one of the candidates, we 
believe that such conflicts should not be arbitrated 
automatically but the human intervention is to be 
requested instead. Of course, the probability information 
can be used to suggest most likely variant to the human 
operator. 

An exception from this rule is linear objects such as 
long rivers. Several inscriptions can be assigned to such 
an object if their text is the same, the distance between 
them is much larger than their lengths, and their length are 
much smaller than the length of the object (river). 

Inclusion. The hierarchical information available from 
the dictionary (see Section 4.3) can be applied at this 
point. Recall that our algorithm recognizes the names of, 
say, cities before recognition of the names of areas. So at 
the time of recognition of the string “Xalapa” the 
information “Xalapa City is in Veracruz State” could not 
be checked since we did not know yet where Veracruz 
State is in the map. Now that all strings have been 
recognized, this information can be checked (we already 
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know where Veracruz is) and the error discussed in 
Section 5 (Xalapa mistaken for Jalapa recognized in 
Oaxaca State) can be detected.  

4.5 Model Calibration and Automatic 
Learning of Parameters 

The process described in the previous sections depends on 
a number of parameters, such as dispersion values or 
notational conventions. For their automatic learning 
iterative model calibration is used. 

First, some approximate values are set as discussed in 
the previous sections. Then the automatic procedure of 
recognition of the map is executed. As a result, a 
(possibly incorrectly) recognized map is obtained. 

Our hypothesis is that many of the elements in such a 
map will be recognized correctly from the first attempt. 
So statistics built for the results of this recognition—such 
as the average deviation of the strings from the predicted 
locations—is expected to be a good approximation of the 
real values. 

With this new information, the parameters of the 
model (such as dispersion values) are adjusted, and the 
automatic recognition is performed again. The process is 
repeated iteratively a predefined number of times or until 
convergence. Since the results of the whole procedure are 
discrete values—associations between strings and 
objects—convergence can be indicated by repetition of 
exactly the same result. 

In our previous work, we have successfully applied 
this procedure to learning the parameters of a syntactic 
parser for natural language sentences [10]. 

With this procedure, not only numerical parameters 
can be learnt, but also notational conventions such as the 
fonts and colors associated with specific types of objects 
(rivers, cities, mountains), typical prefixes or suffixes of 
their names (such as r. for river o mt. for mountain), etc. 

Al alternative way of automatic detection of such 
prefixes in a large map is the use of a dictionary. For each 
string consisting of several words, both the complete 
variant and the variants without the first (or last) word are 
to be tested. If for a specific type of objects (e.g., rivers) 
in most cases the string is found after taking off a specific 
word (e.g., “river”), then it is to be considered as notation 
for this type of objects. 

5 Spelling Correction in Toponym 
Recognition 

Due to a very complicated layout of objects and textual 
elements in cartographic maps, words can be recognized 
with errors, e.g., “RNSoSIA” for “RUSSIA” where U is 
erroneously recognized as N due to a nearby river, and the 
circle representing a city is erroneously taken for the 
letter o, see Figure 1. We suggest detecting and correcting 
such errors using the following algorithm. 

1. Each string obtained from the basic OCR procedure 
is looked for in a list (dictionary) of expected 
toponyms, which (if the word is found) provides the 
semantic information associated with it, such as the 
type of object (e.g., city, river), its spatial 
relationships (e.g., administrative unit it is in), and its 
geographic coordinates if available. This information 
is verified using different sources of evidence, such 
as spatial distribution of the letters in the raster image, 
the coordinates of the letters, etc., as described in 
Section 4, and the probability of association of the 
string with the chosen geographic object is obtained. 

2. In addition, similar strings (e.g., RUSSIA, ASIA, 
Angola, etc. for RNSoSIA) are looked up in the 
dictionary and for them, the same information is 
retrieved and the same check is performed, an 
additional source of evidence being the probability of 
the corresponding changes in the letters of the string, 
as described below. 

3. The variant with the best score (probability) S1 is 
considered. 

4. If this best variant is good enough (S1 ≥ α, where α is 
a user-defined threshold), then: 

4.1  If the score of the best variant significantly 
differs from the score of the second best one 
(S1 / S2 > β, β is a user-defined threshold) then 
this variant is accepted and is added to the 
database together with its associated information. 

4.2  Otherwise, human intervention is requested, and 
the variants are presented to the operator in the 
order of their scores. 

5. Otherwise (S1 < α), no correction is applied to the 
recognized string. It is checked against the linguistic 
restrictions on the words of a given language, see 
Section 5.3. 

5.1  If no anomalies are found, it is considered a new 
toponym absent in our dictionary. It is added to 
the database as is and is associated with a nearby 
object using the algorithm discussed in the 
previous section. 

5.2  If an anomaly is found, the string is considered 
not recognized and human intervention is requested. 

6. After all strings in the map are recognized, global 
check is performed, see Section 4.4. If this check fails, 
human intervention can be requested. Alternatively, 
the process of error correction can be repeated for this 
string, and then the global verification for the objects 
involved in the resulting changes. 

As specified in Step 2, additional sources of evidence 
are taken into consideration when substituting a string for 
another similar string. Below we consider each of them. 

Combination of different sources of information and 
not just finding the string or its spelling variant in the 
dictionary is important. For example, geographic 
information can be used to filter out the candidates that 
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are very close to their spelling to the original string 
returned by the basic OCR procedure but are not located 
in the area in question. For instance, let the OCR 
procedure returned the string Xalapa in the area of 
Mexican State of Oaxaca. Such a string indeed exists in 
the list of Mexican cities, but the corresponding city is in 
the state of Veracruz. On the other hand, there is a city 
Jalapa precisely in the state of Oaxaca. Thus, it should be 
considered more probable that the string Xalapa was a 
result of a recognition error and that the correct string is a 
similar string Jalapa. 

5.1 Textual Information 

We suppose that there is available a list (dictionary) D of 
toponyms that can be found in a map. The list can contain 
much more toponyms than the map in hand—for example, 
all cities of the country, all seas of the world, etc. Such a 
list can be compiled as a combination of different sources 
such as governmental statistical databases, police 
databases, analysis of newspapers available in the Internet, 
etc. 

For a given string s, e.g., RNSoSIA, a set of all strings 
similar to s in the dictionary D can be constructed [10]. A 
string s' is called similar to a string s if it differs from s in 
at most a certain number of the following disturbances: 

• Substitution of a letter for another letter, 
• Omission of a letter, 
• Insertion of a letter. 

With each such disturbance, a probability can be 
associated; in case of several disturbances, the 
corresponding probabilities are multiplied to obtain the 
overall probability of that s (RNSoSIA) has been obtained 
from s' (say, RUSSIA) by this sequence of errors. For the 
string itself (s' = s if it is in D), the probability is 1. 

The probabilities of the disturbances can depend on 
the specific letters involved, if this information is 
available. For instance, the probability of substitution of I  
for J is higher than W for L. Similarly the probability of 
omission of I is higher than that of M. In a cartographic 
map, the probability of insertion of o is high because of 
the notation for cities. 

The iterative procedure described in Section 4.5 can 
be used to automatically adjust the model to the specific 
map. If the map is large or has some standard type and 
quality, the model can be trained by means of processing 
a part of the same map or another map of similar quality 
and manually verifying the results. 

5.2 Spatial Letter Distribution 
Information 

The distance between adjacent letters gives information 
on the probability of insertion or deletion type error. 
Deletion-type error (a letter is to be inserted to obtain a 
valid word) is highly probable if the distance between two 

neighboring letters is about twice larger than the average 
distance between the letters in the string (it can be the 
space between different words too). Similarly, insertion-
type error (a letter is to be deleted from the string to 
obtain a valid word) is highly probable if the mean 
distance between the letter in question and its neighboring 
letters is about twice smaller than the average. Note that 
in these cases the corresponding correction of the word is 
not only acceptable but also required: the score of a string 
with this type of defects is decreased. 

5.3 Linguistic Evidence 

The checks described in this section are applied only to 
the strings not found in the dictionary for which the 
dictionary-based correction failed (no suitable similar 
string is found in the dictionary), see the Step 5 of the 
algorithm from Section 5. In this case, general properties 
of the given language can be used to detect (though not 
correct) a possible recognition error. 

One of simple but efficient techniques of such 
verification is bigram (or trigram) control [11]. In many 
languages, not any pair (or triplet) of letters can appear in 
adjacent positions of a valid word. For example, in 
Spanish no consonant except r and l can be repeated; after 
q no other letter than u can appear, etc. The statistics of 
such bigrams (or trigrams) is easy to learn from a large 
corpus of texts. The multiplication of the bigram 
frequencies for each adjacent pair of letters in the word 
(and similarly for trigrams) gives a measure of its well-
formedness, which can be compared with a user-defined 
threshold; if a bigram not used at all in the given language 
appears, the word is immediately marked as probably 
incorrect. 

Other properties of words specific to a given language 
can be verified; e.g., in Japanese all syllables are open. If 
a recognized string for which no variants of correction by 
the dictionary are found does not pass any of the linguistic 
filters, it is presented to the human operator for possible 
correction. Note that since toponyms are frequently words 
of another language or proper names of foreign origin, 
linguistic verification can produce a large number of false 
alarms. 

6 Conclusion and Future Work 

We have shown that the problem of recognition of 
inscriptions in the map, assigning them as names to 
specific objects (e.g., cities), and importing—using these 
names as keys—properties of these objects (e.g., 
population) from existing databases involves both 
traditional techniques of image recognition and methods 
specific for cartographic map processing. Our algorithm 
combines various sources of evidence, including 
geographic coordinates and object inclusion hierarchy, to 
choose the best candidate for error detection and 
correction. (In this work we focused on maps with texts. 
There are many maps with numerical labels—elevations, 
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geographical oordinates, and so on. See [1], [7] for 
discussion on this type of maps.) 

One obvious line of future development is refining the 
heuristics used in the discussed sources of evidence and 
adding new sources of evidence. For example, the basic 
recognition procedure can return the probability (the 
degree of certainness) of each letter in the string, or even 
a list of possible letters at the given position in the string 
along with their respective probabilities. The idea is that if 
the basic recognition procedure is certain that the letter in 
question is exactly the one it recognized (as opposed to 
just looking like this), the letter should not be changed in 
error correction, and vice versa. 

Another issue possibly to be addressed in the future is 
the computational complexity, especially that of the 
method used to compute the integral in Section 4.2. 

However, the most important line of future research 
are improvements to the automatic training of the 
statistical models, automatic learning of the notational 
information, and automatic determination of the 
parameters used in various heuristics of our method. 
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