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Abstract: - For most English words dictionaries give various senses: e.g., “bank” can stand for a financial insti-
tution, shore, set, etc. Automatic selection of the sense intended in a given text has crucial importance in many 
applications of text processing, such as information retrieval or machine translation: e.g., “(my account in the) 
bank” is to be translated into Spanish as “(mi cuenta en el) banco” whereas “(on the) bank (of the lake)” as “(en 
la) orilla (del lago).” Current methods of such disambiguation involve local maximization of coherence: for 
every word they select the sense that has more in common with the surrounding words, taking into account all 
their senses. Since the words are processed independently, this is logically inconsistent: the choice of a sense 
for a word can be affected by the nearby words’ senses other than the ones chosen by the algorithm when proc-
essing those words. This leads to sub-optimal coherence between the chosen senses of close words. In this pa-
per, we consider global optimization of such coherence and show that it can be improved as compared with the 
best existing approaches, leading to superior results. Due to high dimensionality of the search space, a genetic 
algorithm is used to find a near-optimal combination of sense choices. 

Key-Words: - Natural Language Processing, Word Sense Disambiguation, Lesk Relatedness Measure, Machine 
Translation, Information Retrieval, Genetic Algorithm. 

 
1 Introduction 
Nearly any word we use in everyday communication 
has several possible interpretations, called senses. 
For example, the word bank can be interpreted as a 
financial institution, river shore, stock of some ob-
jects, etc. The word bill can be interpreted as a bank-
note, law proposal, mouth of a bird, agricultural tool, 
etc. The very word word can be interpreted as a unit 
of speech or text, advice, message, promise, pass-
word, a unit of computer memory, a unit of DNA 
sequence, etc. If you take any word that comes to 
your mind and look it up in a dictionary, you will 
probably be surprised with the number of different 
interpretations it allows. 

Obviously, for correct understanding of a text, the 
reader—be it a human being or a computer pro-
gram—must be able to determine what sense is in-
tended for each word in the text. Indeed, if I advise 
you to keep your money in a reliable bank, would 
you carry it to a financial institution or a river shore? 

If I tell this to a robot, wouldn’t it choose a river 
shore? 

Apart from message understanding, there are a 
number of important applications where automati-
cally determining the correct sense of a word is cru-
cial. One of them is information retrieval. Suppose 
the user of an Internet search engine such as Google 
types in a query asking for banks in Chicago. First, 
the program should clarify which sense of bank the 
user needs—for example, asking the user to choose it 
from a menu; suppose the user chooses a financial 
institute. Now for each document containing the 
word bank the program has to automatically decide 
whether it is the requested sense that appears in the 
text. For example, of the following two texts: 

– There are two Citybank branch banks in the 
central area of Chicago, 

– The hotel is located at the beautiful bank of 
Michigan Lake, with an amazing view of Chi-
cago’s skyscrapers 

ipn
Alexander Gelbukh, Grigori Sidorov, Sang Yong Han. Evolutionary Approach to Natural Language Word Sense Disambiguation through Global Coherence Optimization. Transactions on Communications, 1(2), 2003, p. 11–19.

http://www.gelbukh.com


 

only the first one is relevant to the user’s query, even 
if both contain the words bank and Chicago. 

Another important application where automatic 
selection of the intended sense of a word is crucial is 
automatic translation. The two texts above are trans-
lated into Spanish as 

– Hay dos sucursales de Citybank en el área cen-
tral de Chicago, 

– El hotel está en la hermosa orilla del lago Mi-
chigan, con una impresionante vista a los rasca-
cielos de Chicago; 

note different translations of bank (underlined). Ob-
viously, incorrect choice of translation variants of a 
word renders the translated text completely incom-
prehensible. For example, a sentence my cat broke 
when I used it to lift my car, which has no reasonable 
interpretation, could be an (incorrect) translation of a 
Spanish phrase mi gato se rompió cuando lo usé 
para levantar mi carro: indeed, the Spanish word 
gato has senses cat and jack (used to jack up cars). If 
you have ever used an automatic translation system, 
you perhaps have noticed hundreds of such errors. 

A typical explanatory dictionary lists for each 
word its different senses. Words having more than 
one sense are called polysemous; in fact, nearly any 
word appearing in a text is polysemous. Given a 
specific dictionary and a specific occurrence of a 
word in a specific text, the problem of the choice, out 
of the senses listed for this word in this dictionary, of 
the one intended for this occurrence is called the 
word sense disambiguation (WSD) problem [7]. A 
typical WSD program takes in input a text and cop-
ies it to its output, marking each polysemous word 
with the intended sense according to the explanatory 
or bilingual dictionary used. E.g., with the dictionary 
[1] the output for the first text in our example above 
would be There2 are1 two1 Citybank branch3 banks2-1 
in1-2 the1-1 central1 area2 of2-1 Chicago. 

In spite of the great attention the problem has re-
ceived in the last years and important developments 
achieved, the precision of the state-of-the art algo-
rithms is far from being satisfactory. In this paper, 
we suggest a new WSD technique, consisting in 
global optimization of text coherence using a genetic 
algorithm. By text coherence we mean the total word 
sense relatedness in the text: the more related the 
words in the text to each other the better the coher-
ence of the text. 

In the next section, we describe the related work 
in WSD and in application of genetic algorithms to 
disambiguation tasks. In Section 3 we present the 
Lesk word relatedness measure used to construct the 
fitness function for our genetic algorithm. In Section 
4 we present the data structure we use to represent 

the relevant numerical information about the text, 
and in Section 5 we formally define the correspond-
ing mathematical problem. In Section 6 we present 
our algorithm and in Section 7 describe the obtained 
results. In Section 8 we discuss these results and list 
some future work directions. Finally, in Section 9 the 
conclusions are drawn. 

2 Related Work 
In modern computational linguistics, there are two 
approaches to disambiguation. Perhaps the most 
popular one is based on statistics extracted, using 
machine-learning methods, from the texts themselves 
[15]. The source of information in this case are cor-
pora, i.e., very large pools of texts (from several 
megabytes to several gigabytes), preferably with 
some kinds of linguistic markup. An extreme point 
of view within this approach is that it is enough to 
wait for the amount of available data to grow so that 
statistics would do the rest of the work [4]. There 
appears a problem of where these texts can be ob-
tained and how they can be marked up automatically, 
semi-automatically, or manually. 

Another approach is based on exploiting existing 
(and creating new ones) sources of linguistic knowl-
edge, basically, different kinds of dictionaries [5]. 
Although not without its own problems, this ap-
proach allows to avoid some drawbacks of corpus-
based approaches and to use available linguistic in-
formation in a reliable, ready-to-use form. In this 
paper, we follow this approach. 

The work done in WSD can also be classified into 
two main groups: statistical methods [12], [15], [18], 
[19] and methods based on application of different 
knowledge sources [14], [16], [19], [20]. 

Many methods in WSD and similar tasks are 
based on optimization of some word relatedness 
measure, which gives a numerical estimate of the 
probability of two words (or word senses) to appear 
in the same text fragment [10], [14]; the senses are 
chosen that are more probable in a given context. 
Padwardhan et al. [17] have compared different such 
measures and reported the Lesk relatedness measure 
[3], [14] to be one of the most promising one, so that 
it is this measure that we have chosen for our ex-
periments. It is based on the use of existing explana-
tory dictionaries, see more details in Section 3. In 
fact, however, our method does not rely on a specific 
word relatedness measure, and in the future we plan 
to experiment with other measures, too. 

Word relatedness can be measured between two 
senses of a word or between a word sense and a lex-
eme. For example, one can measure the relatedness 



 

between the sense bank2 ‘financial institute’ and the 
sense branch3 ‘office’ or between the sense bank2 
‘financial institute’ and the lexeme branch, without 
specifying its specific sense (‘stick’, ‘science’, ‘of-
fice’, ‘offspring’, ‘ramification’, ‘power’, ‘instruc-
tion’, etc.). 

Given a word relatedness measure, the problem is 
to choose the senses for each word in such a manner 
that increases the word relatedness. This can be done 
in a local or global manner. The existent algorithms 
use the local optimization: for each word, the sense 
that has better relatedness with the surrounding 
words is chosen. The relatedness is measured be-
tween each sense of the given word and the context 
words considered as lexemes but not specific senses. 
No attempt is made to choose a combination of 
senses in the whole text that globally optimizes the 
relatedness between all senses. 

Araujo [2] described a method of global optimi-
zation for a similar disambiguation problem, namely, 
part-of-speech (POS) tagging. She used a genetic 
algorithm [13] to find the best combination of POS 
tags in a sentence. Our method is inspired by that 
work. 

3 Word Relatedness Measure 
There are many possible word relatedness measures 
[17]. Here we introduce the Lesk relatedness meas-
ure we used for our experiments. 

We consider words senses as definitions in an ex-
planatory dictionary. With this, the senses are treated 
as short texts (namely, definitions) in the same lan-
guage as the word under consideration. Moreover, 
we use a “bag-of-words” approach, i.e., we reduce 
such definitions to sets of lexemes. The latter term 
refers to morphological normalization (stemming): 
different morphological forms of the textual words 
reduced to a common root; for example, give, gives, 
gave, given are the forms of the same lexeme to give. 
Such a reduction is performed during data preproc-
essing [8]. 

For estimating relatedness between two sets of 
words, we use a measure analogous to the Dice coef-
ficient [11], [12] that gives a numerical estimation of 
the degree of intersection between two sets. The 
simplest way to measure such intersection is to cal-
culate the number of common words in the two sets; 
this is referred to as the Lesk measure. As was men-
tioned, the occurrences of different wordforms of the 
same lexeme (root, or stem) in the two texts are 
counted as intersections, as if they were the same 
word. Recently we have improved Lesk measure to 
also take into account the synonyms of words in the 

two sets [19]. Note that we do not consider the syno-
nyms as an additional “weak” knowledge source as 
in [20], but the synonyms are treated as textual inter-
sections. In our opinion, the basis of this idea is that 
the synonyms express practically the same concept, 
and the differences in shades of meaning can be ig-
nored in our tasks. 

In Lesk algorithm [14], the intersection is meas-
ured between the definition of a sense of the word 
(considered as a bag of words) and the context of the 
specific occurrence of the given word, again consid-
ered as a bag of words. Note that in this case what is 
compared is a specific sense of a word and a lexeme 
without specifying its sense, see discussion in Sec-
tion 2. To form the word set representing a lexeme, 
the dictionary definitions of all its senses are joined 
together. Similarly, in case of morphological or POS 
ambiguity of a word in the context, in our experi-
ments we joined together the definitions for all its 
possible interpretations. 

In our method, however, we only use the related-
ness between two specific senses of words and not 
between a sense of a given word and the lexemes 
(joint senses) of its surrounding context.  

One should distinguish between relatedness of 
two words or word senses in language and in a spe-
cific text. Relatedness in language expresses the 
possibility of two words to be used in a description 
of the same situation. Meanwhile, relatedness in a 
text expresses the plausibility of the hypotheses that 
these two particular word occurrences are actually 
used in a description of the same situation. While the 
former type of relatedness does not depend on the 
position of the words in any particular text, the latter 
one generally decreases with the linear distance be-
tween the words: the words used far from each other 
are hardly related to the description of the same 
situation. 

Accordingly, we smooth the relatedness measure 
depending on the distance, considering it to be zero 
if the distance between the two words exceeds a cer-
tain threshold (text window size). 

4 The Data Structure 
To represent the numerical problem at hand, we use 
the following data structure: 

– The whole text is subdivided into a set of text 
fragments, which can correspond to sentences, 
paragraphs, sections, etc. Currently we consider 
the whole text as one long fragment. 

– A text fragment f is a sequence of words. 
– A word w is a set of word senses. 



 

– A sense s is characterized by a (variable dimen-
sion) matrix M = M(w,s) of distances to the 
neighboring words. 

– Its row i refers to a word wi ≠ w from the same 
text fragment within a W/2 linear distance from 
the given word, where W is the window size. For 
the reasons discussed below, the number of rows 
in the matrix for different words can be different. 

– The element j in the row i corresponds to the 
sense sj of the neighboring word wi. Note that the 
lengths of the rows vary within the matrix. 

– The value Mij (w,s) specifies the relatedness (as 
discussed in Section 3) between the current sense 
s of the current word w and the sense sj of the 
neighboring word wi. 

In our experiments we used a symmetric window 
of the same size W for all words, though this is not 
required by the algorithm. Since the words at the 
beginning and at the end of the text fragment have 
fewer neighbors, the matrix for these words has 
fewer rows. Some words—such as proper names—
are absent from the dictionary and thus have no 
senses; in this case, the matrix M has no rows (if w 
has no senses) or zero length on the row (if wi has no 
senses), correspondingly. Currently in our data struc-
ture we consider all words, including the functional 
words such as prepositions or articles and the words 
absent from the dictionary. 

It is natural to expect that the relatedness measure 
be symmetric, i.e., Mij(wksm) = Mkm(wisj). However, 
in practice it is not always so. This can be due to a 
number of reasons. For example, the formulas used 
in practice to calculate relatedness (see Section 3) are 
not symmetric with regards to the details of defini-
tion expansion or the use of synonyms and other 
related words. Also, the dictionaries used in this 
process are not always symmetric: for example, if the 
dictionary lists a word w as a synonym of a word u, 
it is not guaranteed that it also lists u as a synonym 
of w.  

5 The Problem 
The problem consists in selecting, for each word, one 
sense that is more likely to be the intended sense in 
the given text. Various heuristics can be applied to 
find a plausible combination of choices. In other 
words, upon the described numerical representation 
this weakly formulated problem can be formalized in 
various ways. 

The standard Lesk algorithm is formalized as fol-
lows: for each word, select the sense that has maxi-
mum average relatedness to the nearby words. Here 
is the algorithm solving this problem: 

for each word w 
for each sense s 

∑= ji ij swMsscore
,

),()(  (1) 
select sbest = max arg (score( s )) 

We do not normalize the score to calculate the aver-
age since this does not affect the result. In case of 
equal scores for two or more senses, we choose the 
first one of them. 

This approach is based on the hypothesis that the 
correct sense of the word wi is not known and the 
probability for the sense to be the intended one is 
distributed uniformly. The average relatedness is the 
relatedness of a given sense to the senses of the other 
word weighted by the probability of those senses. 

However, this idea suffers from a logical incon-
sistency: upon termination of the algorithm, only one 
sense of each nearby word is selected. Thus, the 
choice of the sense for the word w is affected by the 
words wi’s senses that will be rejected (or even have 
been rejected) by the same algorithm at other steps. 

One can attempt to solve this problem by a hy-
pothesis that the correct sense for the word wi is the 
one that is most related with the sense s under con-
sideration. With this, instead of average as in the 
formula (1) above, the maximum relatedness in the 
row is to be considered: 

    ∑= i ijj
swMsscore ),(max)( . (2) 

                                                                                                                                                                             

Our experiments show that this option gives better 
results; see Section 7. However, it does not solve the 
problem: the sense selected by the max function in 
the formula and thus assumed by our hypothesis is 
not guaranteed to be chosen by the algorithm when 
processing the word wi. 

One can further play with the probabilities of the 
senses. For example, they can be automatically ex-
tracted from a corpus. The problem is that there are 
few available corpora marked with word senses, and 
they do not exist for many languages other than Eng-
lish. What can be done without sense-marked cor-
pora is to assume that the less the number of the 
sense the higher its probability, i.e., that in the dic-
tionary the lexicographers list the most probable 
senses first. 

However, playing with probabilities does not re-
solve the logical inconsistency of the traditional 
method: the choice of the sense is affected by the 
other words’ senses that are not guaranteed to be 
chosen in the final result. 

A logically consistent problem formulation is as 
follows: choose such the combination of choices of 
senses of all words in the text with maximum aver-



 

age distance between the senses. If there are several 
such combinations, choose one of them. 

Such a task is consistent because we take into ac-
count only the distances between the senses that, 
according our choice, are actually present in the 
given text. 

6 The Algorithm 
Since the task formulated in Section 4 is solved in-
dependently for each fragment, we consider only one 
fragment. 

Let N be the number of words in the text frag-
ment and ni be the number of senses of the word wi. 
Denote N the set of natural numbers. A combination 
of choices of senses is a function 

f : {1, ..., N} → N 

such that 1 ≤ f (i) ≤ ni. Denote F the set of all such 
functions. An imaginable algorithm for solving the 
task is as follows: 

for each sequence f ∈ F 
for each word wk 

∑= i wfik kfwMwscore
i

))(,()( )(,  
∑= N

k kwscorefscore )()(  (3) 

fbest = max arg (score( f )) 
for each word wk 

select sbest = fbest ( k ) 

The algorithm consists of finding such a way f of 
assigning senses to words that maximizes the aver-
age relatedness score(wk) between these senses. Note 
that the senses other than the selected ones are not 
involved in the process. 

The size of the search space is 

∏=
N

i
inF . 

Consider a text of N = 1000 words, such that each 
second word has at least 3 senses. Then the search 
space is 3500 = 3 × 10238. This is not an exaggerated 
example: in a randomly selected text used for our 
experiments, the average number of senses per word 
was 3.82 (750 senses in total by 196 words); with 
this text the search space was about 1.7 × 10114. 

To select the best sequence, we used a genetic al-
gorithm. The parameters of the algorithm were as 
follows: 

– The chromosome was a sequence of natural 
numbers varying from 1 to ni, where ni is the 
number of senses of the word wi. If the word has 

no senses, i.e., is absent from the dictionary, the 
corresponding position in the chromosome was 
unused (in our implementation, for simplicity we 
just filled it with a value –1 in all individuals and 
do not change this value during mutation). 

– The initial content of the pool was generated at 
random: for each individual and each position i 
in its chromosome, the value was generated ran-
domly with the uniform distribution in the do-
main between 1 and ni. 

– The fitness function was score( f ) as defined by 
the formula (3) above. The objective was to 
maximize the fitness function. 

– Generational type of genetic algorithm was used 
(as opposed to a steady-state type). That is, two 
pools were used, so that at each generation all 
parents were replaced with the respective off-
springs, so that no individuals of a new genera-
tion could mate with individuals of the previous 
ones. This also means that the replacement 
method was set to appending: the new individu-
als are appended to the new pool. 

– No generation gap was used, i.e., no predefined 
number of individuals was cloned to the new 
generation. 

– The selection method was roulette wheel: the 
probability of an individual to be selected for 
crossover (or cloning, as described below) was 
proportional to its fitness value. 

– The generation scheme was as follows: the se-
lected pair of parents was replaced with two off-
springs formed by exchanging the selected parts 
of the parents’ chromosomes. With some prob-
ability the parents were simply cloned to the new 
generation instead of being mated. 

– The crossover probability was determined by the 
parameter called crossover rate. It controlled the 
crossover option: whether the two selected indi-
viduals were mated and two children formed as a 
result of crossover or the two parents were sim-
ply copied to the new generation. The bigger 
crossover rate the more probably the parents are 
mated. 

– The crossover method was simple: a single 
crossover point was selected at random; the 
genes up to and including the crossover point 
were copied to the respective child, and the re-
maining genes were copied to the alternate child. 

– The mutation scheme was as follows: each child 
was selected or no for mutation with the prob-



 

ability determined by the parameter called muta-
tion rate. If selected, a single mutation point i 
was selected at random (with the uniform distri-
bution). 

– A mutation at a point i was a random change of a 
gene in its respective domain, i.e., from 1 to ni, 
where ni is the number of senses of the word wi.  

– We used elitism to speed up convergence. This 
implies the following two modifications to the 
standard behavior of the algorithm. First, two 
copies of the best individual are cloned to the 
new generation’s pool, thus ensuring its survival. 
Second, at each crossover action, out of four in-
dividuals—the two parents and two children—
two best ones are placed into the new pool. In 
this way, if a child is not as good as either par-
ent, it will not be selected, and a parent will sur-
vive instead. 

– The termination condition was convergence: the 
algorithm stopped when all individuals in the 
pool had the same fitness value. In fact we ex-
perimented with continuing calculations after 
convergence and observed slight improvement in 
the results. 

– We experimented with different pool sizes, mu-
tation rates and crossover rates, as discussed in 
the next section. 

7 Experimental Results 
As baselines, we have implemented the following 
algorithms: 

– Random. A random sense is selected for each 
ambiguous word; no heuristics applied. 

– All zeroes. The first sense given in the dictionary 
is selected, regardless to the context. As our ex-
periments show, this works better than a random 
choice, which can be explained by the fact that 
the lexicographers list the most frequent senses 
first. 

– Average Lesk. The Lesk algorithm in the modifi-
cation that maximizes the average relatedness of 
a sense to the context words, as in the for-
mula (1) in Section 5.  

– Maximum Lesk. The Lesk algorithm in the modi-
fication that maximizes the maximum related-
ness of a sense to a context word, as in the for-
mula (2) in Section 5. 

We experimented with a 196 words long Spanish 
text taking from an Internet news site. In comparison 
with the baselines, our algorithm found better sense 
assignments, as can be seen from the following table, 
which shows the scores obtained for the correspond-
ing assignments according to the formula (3) in Sec-
tion 6; the same data can be seen in the graphical 
form in Fig. 1. 

Algorithm Score 
Random 52.8 
All zeroes 62.4 
Average Lesk 106.1 
Maximum Lesk 114.6 
Genetic 130.7 

0

20

40

60

80

100

120

140

0 50 100 150 200
Generation

Fi
tn

es
s

Best in population
Worst in population
Maximum Lesk
Average Lesk
All zeroes
Random

 
Fig. 1. Convergence of the algorithm. 

The fitness of the best and worse individual in the population is shown for each generation. For 
comparison, the fitness of the solutions found with four baseline methods is shown. 



 

In the table, the data for the genetic algorithm with 
the pool of 500 individuals and mutation rate and 
crossover rate both equal to 0.9 are given. 

Fig. 1 shows the convergence curve for the algo-
rithm with these parameters, the upper curve repre-
senting the best individual in the generation and the 
lower curve the worst one. The algorithm converged 
after 217 iterations, when all individuals reached the 
fitness of 130.651. The fitness reached by the base-
line algorithms is shown for comparison; one can see 
that the algorithm surpassed the best baseline after 
70 iterations. The total execution time to conver-
gence was more than a minute on a Pentium III com-
puter. We believe that this is explained by a very 
inefficiently implemented generic library we used; 
an efficient implementation should give much better 
timing. 

We experimented with different parameters that 
can affect both convergence and the best score 
found. Fig. 2 shows how pool size affects the behav-
ior of the algorithm; here mutation rate and crossover 
rate were set to 0.9. One can see that with more than 

50 individuals our algorithm surpasses the best base-
line, while with more than 200 individuals the results 
do not depend significantly on the pool size, show-
ing very slight increasing as the pool size increases. 
However, after 500 individuals increasing the pool 
size does not lead to better convergence, while the 
increased amount of calculations deteriorates the 
speed of the algorithm (but not the result). 

Fig. 3 shows that the algorithm is not very sensi-
tive to the mutation rate and crossover rate. Still, best 
results were obtained with mutation rate 1.0 and 
crossover rate 0.9. In these calculations, the pool size 
was equal to 300. The mutation rate curve is given 
for crossover rate equal to 0.9 and the crossover rate 
curve for mutation rate equal to 1.0. On the other 
hand, convergence of the algorithm is significantly 
affected by the mutation rate and crossover rate, 
being the best values, with still reasonably good 
results, mutation rate of 0.4 and crossover rate of 1.0. 

We also compared the automatically selected 
senses with the senses selected manually by a lin-
guist prior to computational experiments. We tried 
different texts and different parameter settings for 
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Fig. 2. Behavior of the algorithm depending on the pool size. 

The fitness of the solution found after convergence is shown (left-hand axis) along with that of four baseline 
methods. The curve labeled “Convergence” shows the number of iterations until convergence (right-hand axis). 
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Fig. 3. Behavior of the algorithm depending on the mutation rate and crossover rate. 

The curves have the same meaning as in Fig. 2. 



 

the genetic algorithms. In all our experiments, the 
assignment made by the genetic algorithm showed 
slightly better agreement with the manually assigned 
senses than all baselines except for the all zeroes 
heuristic.  

Surprisingly, the latter heuristic performed 
slightly better than all versions of Lesk algorithm, 
including the genetic one. We explain this by low 
quality of text preprocessing tools (such as morpho-
logical normalizer) and of word relatedness measure 
we used. This circumstance, however, does not de-
tract from the advantage of our algorithm over one of 
the state-of-the art techniques, but only shows that 
we should use better linguistic tools and/or annota-
tion methodology. 

8 Discussion and Future Work 
Our experiments show that our method exhibits a 
superior results as compared with existing tech-
niques. This is no surprise since it attempts to glob-
ally optimize the text cohesion, while the methods 
we used as baseline optimize it locally, i.e., inde-
pendently for each word. 

In the form we have presented it here, our method 
is good only for rather short texts. This is no problem 
in many cases, for example, when the method is ap-
plied to dictionary definitions [9] or short news re-
ports. To apply our method to longer texts they 
should be partitioned into shorter fragments. This 
can be performed by linguistic-based text segmenta-
tion [6] or just using a kind of sliding window (inter-
secting segments). Probably a reasonable segmenta-
tion can improve the result. The choice of the seg-
mentation method is a topic of the future research. 

To improve the obtained results, we plan to try 
varying a number of other parameters of our algo-
rithm. For example, the window size for non-zero 
relatedness measure (Section 3) should be more care-
fully selected; asymmetric or of variable-size win-
dows can be tried. 

Currently in our data structure we consider all 
words, including the functional words such as prepo-
sitions or articles and the words absent from the dic-
tionary; we can try to eliminate them from the data 
structure. However, it is not quite clear what to do 
with words between functional and significant ones 
(e.g., Spanish word sobre has the meanings ‘on’, 
‘envelope’, and ‘to exceed’). 

Yarowsky’s [21] principles “one sense per docu-
ment” (or fragment) and “one sense per collocation” 
are to be implemented by their incorporation into the 
fitness function. Other similar heuristics can be in-

corporated, too: e.g., to give certain preference to the 
first sense, or to the most frequent sense, etc. 

We plan to experiment with other word related-
ness measures, for example, with those discussed in 
[17]. Also, we plan to try other global optimization 
methods, such as iterative backward-forward re-
estimation of the probabilities or dynamic program-
ming. 

Finally, we believe that the complexity of calcu-
lating the new individual’s fitness after crossover, 
which in our current implementation is quadratic in 
the text fragment length (to calculate the new relat-
edness matrix), can be made linear: only the values 
near the crossover point need to be re-calculated. 
The implementation of this idea is not trivial and 
probably will require a more complicated representa-
tion of the chromosome, such a tree of smaller sub-
fragments. 

9 Conclusions 
We have presented a novel algorithm for word sense 
disambiguation. The algorithm chooses the senses 
that optimize text cohesion in terms of a word relat-
edness measure (we experimented with Lesk meas-
ure). In contrast to the existing algorithms, our 
method optimizes the total word relatedness globally 
(within a relatively short text fragment) and not at 
each word independently. Namely, it looks for such 
a combination of senses that would optimize the total 
word relatedness. To find the global optimum, we 
used genetic algorithm. 

Our experiments show that our method gives bet-
ter results than existing state-of-the-art techniques. 
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