

Evolutionary Approach
to Natural Language Word Sense Disambiguation

through Global Coherence Optimization

ALEXANDER GELBUKH,1,2 GRIGORI SIDOROV,1 and SAN-YONG HAN 2
1 Natural Language and Text Processing Laboratory,

Center for Computing Research, National Polytechnic Institute,
Av. Juan Dios Batiz s/n, Zacatenco 07738, DF

MEXICO
{gelbukh, sidorov}@cic.ipn.mx, www.gelbukh.com

2 Chung-Ang University, Seoul,
KOREA

hansy@cau.ac.kr

Abstract: - For most English words dictionaries give various senses: e.g., “bank” can stand for a financial insti-
tution, shore, set, etc. Automatic selection of the sense intended in a given text has crucial importance in many
applications of text processing, such as information retrieval or machine translation: e.g., “(my account in the)
bank” is to be translated into Spanish as “(mi cuenta en el) banco” whereas “(on the) bank (of the lake)” as “(en
la) orilla (del lago).” Current methods of such disambiguation involve local maximization of coherence: for
every word they select the sense that has more in common with the surrounding words, taking into account all
their senses. Since the words are processed independently, this is logically inconsistent: the choice of a sense
for a word can be affected by the nearby words’ senses other than the ones chosen by the algorithm when proc-
essing those words. This leads to sub-optimal coherence between the chosen senses of close words. In this pa-
per, we consider global optimization of such coherence and show that it can be improved as compared with the
best existing approaches, leading to superior results. Due to high dimensionality of the search space, a genetic
algorithm is used to find a near-optimal combination of sense choices.

Key-Words: - Natural Language Processing, Word Sense Disambiguation, Lesk Relatedness Measure, Machine
Translation, Information Retrieval, Genetic Algorithm.

1 Introduction
Nearly any word we use in everyday communication
has several possible interpretations, called senses.
For example, the word bank can be interpreted as a
financial institution, river shore, stock of some ob-
jects, etc. The word bill can be interpreted as a bank-
note, law proposal, mouth of a bird, agricultural tool,
etc. The very word word can be interpreted as a unit
of speech or text, advice, message, promise, pass-
word, a unit of computer memory, a unit of DNA
sequence, etc. If you take any word that comes to
your mind and look it up in a dictionary, you will
probably be surprised with the number of different
interpretations it allows.

Obviously, for correct understanding of a text, the
reader—be it a human being or a computer pro-
gram—must be able to determine what sense is in-
tended for each word in the text. Indeed, if I advise
you to keep your money in a reliable bank, would
you carry it to a financial institution or a river shore?

If I tell this to a robot, wouldn’t it choose a river
shore?

Apart from message understanding, there are a
number of important applications where automati-
cally determining the correct sense of a word is cru-
cial. One of them is information retrieval. Suppose
the user of an Internet search engine such as Google
types in a query asking for banks in Chicago. First,
the program should clarify which sense of bank the
user needs—for example, asking the user to choose it
from a menu; suppose the user chooses a financial
institute. Now for each document containing the
word bank the program has to automatically decide
whether it is the requested sense that appears in the
text. For example, of the following two texts:

– There are two Citybank branch banks in the
central area of Chicago,

– The hotel is located at the beautiful bank of
Michigan Lake, with an amazing view of Chi-
cago’s skyscrapers

ipn
Alexander Gelbukh, Grigori Sidorov, Sang Yong Han. Evolutionary Approach to Natural Language Word Sense Disambiguation through Global Coherence Optimization. Transactions on Communications, 1(2), 2003, p. 11–19.

http://www.gelbukh.com

only the first one is relevant to the user’s query, even
if both contain the words bank and Chicago.

Another important application where automatic
selection of the intended sense of a word is crucial is
automatic translation. The two texts above are trans-
lated into Spanish as

– Hay dos sucursales de Citybank en el área cen-
tral de Chicago,

– El hotel está en la hermosa orilla del lago Mi-
chigan, con una impresionante vista a los rasca-
cielos de Chicago;

note different translations of bank (underlined). Ob-
viously, incorrect choice of translation variants of a
word renders the translated text completely incom-
prehensible. For example, a sentence my cat broke
when I used it to lift my car, which has no reasonable
interpretation, could be an (incorrect) translation of a
Spanish phrase mi gato se rompió cuando lo usé
para levantar mi carro: indeed, the Spanish word
gato has senses cat and jack (used to jack up cars). If
you have ever used an automatic translation system,
you perhaps have noticed hundreds of such errors.

A typical explanatory dictionary lists for each
word its different senses. Words having more than
one sense are called polysemous; in fact, nearly any
word appearing in a text is polysemous. Given a
specific dictionary and a specific occurrence of a
word in a specific text, the problem of the choice, out
of the senses listed for this word in this dictionary, of
the one intended for this occurrence is called the
word sense disambiguation (WSD) problem [7]. A
typical WSD program takes in input a text and cop-
ies it to its output, marking each polysemous word
with the intended sense according to the explanatory
or bilingual dictionary used. E.g., with the dictionary
[1] the output for the first text in our example above
would be There2 are1 two1 Citybank branch3 banks2-1
in1-2 the1-1 central1 area2 of2-1 Chicago.

In spite of the great attention the problem has re-
ceived in the last years and important developments
achieved, the precision of the state-of-the art algo-
rithms is far from being satisfactory. In this paper,
we suggest a new WSD technique, consisting in
global optimization of text coherence using a genetic
algorithm. By text coherence we mean the total word
sense relatedness in the text: the more related the
words in the text to each other the better the coher-
ence of the text.

In the next section, we describe the related work
in WSD and in application of genetic algorithms to
disambiguation tasks. In Section 3 we present the
Lesk word relatedness measure used to construct the
fitness function for our genetic algorithm. In Section
4 we present the data structure we use to represent

the relevant numerical information about the text,
and in Section 5 we formally define the correspond-
ing mathematical problem. In Section 6 we present
our algorithm and in Section 7 describe the obtained
results. In Section 8 we discuss these results and list
some future work directions. Finally, in Section 9 the
conclusions are drawn.

2 Related Work
In modern computational linguistics, there are two
approaches to disambiguation. Perhaps the most
popular one is based on statistics extracted, using
machine-learning methods, from the texts themselves
[15]. The source of information in this case are cor-
pora, i.e., very large pools of texts (from several
megabytes to several gigabytes), preferably with
some kinds of linguistic markup. An extreme point
of view within this approach is that it is enough to
wait for the amount of available data to grow so that
statistics would do the rest of the work [4]. There
appears a problem of where these texts can be ob-
tained and how they can be marked up automatically,
semi-automatically, or manually.

Another approach is based on exploiting existing
(and creating new ones) sources of linguistic knowl-
edge, basically, different kinds of dictionaries [5].
Although not without its own problems, this ap-
proach allows to avoid some drawbacks of corpus-
based approaches and to use available linguistic in-
formation in a reliable, ready-to-use form. In this
paper, we follow this approach.

The work done in WSD can also be classified into
two main groups: statistical methods [12], [15], [18],
[19] and methods based on application of different
knowledge sources [14], [16], [19], [20].

Many methods in WSD and similar tasks are
based on optimization of some word relatedness
measure, which gives a numerical estimate of the
probability of two words (or word senses) to appear
in the same text fragment [10], [14]; the senses are
chosen that are more probable in a given context.
Padwardhan et al. [17] have compared different such
measures and reported the Lesk relatedness measure
[3], [14] to be one of the most promising one, so that
it is this measure that we have chosen for our ex-
periments. It is based on the use of existing explana-
tory dictionaries, see more details in Section 3. In
fact, however, our method does not rely on a specific
word relatedness measure, and in the future we plan
to experiment with other measures, too.

Word relatedness can be measured between two
senses of a word or between a word sense and a lex-
eme. For example, one can measure the relatedness

between the sense bank2 ‘financial institute’ and the
sense branch3 ‘office’ or between the sense bank2
‘financial institute’ and the lexeme branch, without
specifying its specific sense (‘stick’, ‘science’, ‘of-
fice’, ‘offspring’, ‘ramification’, ‘power’, ‘instruc-
tion’, etc.).

Given a word relatedness measure, the problem is
to choose the senses for each word in such a manner
that increases the word relatedness. This can be done
in a local or global manner. The existent algorithms
use the local optimization: for each word, the sense
that has better relatedness with the surrounding
words is chosen. The relatedness is measured be-
tween each sense of the given word and the context
words considered as lexemes but not specific senses.
No attempt is made to choose a combination of
senses in the whole text that globally optimizes the
relatedness between all senses.

Araujo [2] described a method of global optimi-
zation for a similar disambiguation problem, namely,
part-of-speech (POS) tagging. She used a genetic
algorithm [13] to find the best combination of POS
tags in a sentence. Our method is inspired by that
work.

3 Word Relatedness Measure
There are many possible word relatedness measures
[17]. Here we introduce the Lesk relatedness meas-
ure we used for our experiments.

We consider words senses as definitions in an ex-
planatory dictionary. With this, the senses are treated
as short texts (namely, definitions) in the same lan-
guage as the word under consideration. Moreover,
we use a “bag-of-words” approach, i.e., we reduce
such definitions to sets of lexemes. The latter term
refers to morphological normalization (stemming):
different morphological forms of the textual words
reduced to a common root; for example, give, gives,
gave, given are the forms of the same lexeme to give.
Such a reduction is performed during data preproc-
essing [8].

For estimating relatedness between two sets of
words, we use a measure analogous to the Dice coef-
ficient [11], [12] that gives a numerical estimation of
the degree of intersection between two sets. The
simplest way to measure such intersection is to cal-
culate the number of common words in the two sets;
this is referred to as the Lesk measure. As was men-
tioned, the occurrences of different wordforms of the
same lexeme (root, or stem) in the two texts are
counted as intersections, as if they were the same
word. Recently we have improved Lesk measure to
also take into account the synonyms of words in the

two sets [19]. Note that we do not consider the syno-
nyms as an additional “weak” knowledge source as
in [20], but the synonyms are treated as textual inter-
sections. In our opinion, the basis of this idea is that
the synonyms express practically the same concept,
and the differences in shades of meaning can be ig-
nored in our tasks.

In Lesk algorithm [14], the intersection is meas-
ured between the definition of a sense of the word
(considered as a bag of words) and the context of the
specific occurrence of the given word, again consid-
ered as a bag of words. Note that in this case what is
compared is a specific sense of a word and a lexeme
without specifying its sense, see discussion in Sec-
tion 2. To form the word set representing a lexeme,
the dictionary definitions of all its senses are joined
together. Similarly, in case of morphological or POS
ambiguity of a word in the context, in our experi-
ments we joined together the definitions for all its
possible interpretations.

In our method, however, we only use the related-
ness between two specific senses of words and not
between a sense of a given word and the lexemes
(joint senses) of its surrounding context.

One should distinguish between relatedness of
two words or word senses in language and in a spe-
cific text. Relatedness in language expresses the
possibility of two words to be used in a description
of the same situation. Meanwhile, relatedness in a
text expresses the plausibility of the hypotheses that
these two particular word occurrences are actually
used in a description of the same situation. While the
former type of relatedness does not depend on the
position of the words in any particular text, the latter
one generally decreases with the linear distance be-
tween the words: the words used far from each other
are hardly related to the description of the same
situation.

Accordingly, we smooth the relatedness measure
depending on the distance, considering it to be zero
if the distance between the two words exceeds a cer-
tain threshold (text window size).

4 The Data Structure
To represent the numerical problem at hand, we use
the following data structure:

– The whole text is subdivided into a set of text
fragments, which can correspond to sentences,
paragraphs, sections, etc. Currently we consider
the whole text as one long fragment.

– A text fragment f is a sequence of words.
– A word w is a set of word senses.

– A sense s is characterized by a (variable dimen-
sion) matrix M = M(w,s) of distances to the
neighboring words.

– Its row i refers to a word wi ≠ w from the same
text fragment within a W/2 linear distance from
the given word, where W is the window size. For
the reasons discussed below, the number of rows
in the matrix for different words can be different.

– The element j in the row i corresponds to the
sense sj of the neighboring word wi. Note that the
lengths of the rows vary within the matrix.

– The value Mij (w,s) specifies the relatedness (as
discussed in Section 3) between the current sense
s of the current word w and the sense sj of the
neighboring word wi.

In our experiments we used a symmetric window
of the same size W for all words, though this is not
required by the algorithm. Since the words at the
beginning and at the end of the text fragment have
fewer neighbors, the matrix for these words has
fewer rows. Some words—such as proper names—
are absent from the dictionary and thus have no
senses; in this case, the matrix M has no rows (if w
has no senses) or zero length on the row (if wi has no
senses), correspondingly. Currently in our data struc-
ture we consider all words, including the functional
words such as prepositions or articles and the words
absent from the dictionary.

It is natural to expect that the relatedness measure
be symmetric, i.e., Mij(wksm) = Mkm(wisj). However,
in practice it is not always so. This can be due to a
number of reasons. For example, the formulas used
in practice to calculate relatedness (see Section 3) are
not symmetric with regards to the details of defini-
tion expansion or the use of synonyms and other
related words. Also, the dictionaries used in this
process are not always symmetric: for example, if the
dictionary lists a word w as a synonym of a word u,
it is not guaranteed that it also lists u as a synonym
of w.

5 The Problem
The problem consists in selecting, for each word, one
sense that is more likely to be the intended sense in
the given text. Various heuristics can be applied to
find a plausible combination of choices. In other
words, upon the described numerical representation
this weakly formulated problem can be formalized in
various ways.

The standard Lesk algorithm is formalized as fol-
lows: for each word, select the sense that has maxi-
mum average relatedness to the nearby words. Here
is the algorithm solving this problem:

for each word w
for each sense s

∑= ji ij swMsscore
,

),()((1)
select sbest = max arg (score(s))

We do not normalize the score to calculate the aver-
age since this does not affect the result. In case of
equal scores for two or more senses, we choose the
first one of them.

This approach is based on the hypothesis that the
correct sense of the word wi is not known and the
probability for the sense to be the intended one is
distributed uniformly. The average relatedness is the
relatedness of a given sense to the senses of the other
word weighted by the probability of those senses.

However, this idea suffers from a logical incon-
sistency: upon termination of the algorithm, only one
sense of each nearby word is selected. Thus, the
choice of the sense for the word w is affected by the
words wi’s senses that will be rejected (or even have
been rejected) by the same algorithm at other steps.

One can attempt to solve this problem by a hy-
pothesis that the correct sense for the word wi is the
one that is most related with the sense s under con-
sideration. With this, instead of average as in the
formula (1) above, the maximum relatedness in the
row is to be considered:

 ∑= i ijj
swMsscore),(max)(. (2)

Our experiments show that this option gives better
results; see Section 7. However, it does not solve the
problem: the sense selected by the max function in
the formula and thus assumed by our hypothesis is
not guaranteed to be chosen by the algorithm when
processing the word wi.

One can further play with the probabilities of the
senses. For example, they can be automatically ex-
tracted from a corpus. The problem is that there are
few available corpora marked with word senses, and
they do not exist for many languages other than Eng-
lish. What can be done without sense-marked cor-
pora is to assume that the less the number of the
sense the higher its probability, i.e., that in the dic-
tionary the lexicographers list the most probable
senses first.

However, playing with probabilities does not re-
solve the logical inconsistency of the traditional
method: the choice of the sense is affected by the
other words’ senses that are not guaranteed to be
chosen in the final result.

A logically consistent problem formulation is as
follows: choose such the combination of choices of
senses of all words in the text with maximum aver-

age distance between the senses. If there are several
such combinations, choose one of them.

Such a task is consistent because we take into ac-
count only the distances between the senses that,
according our choice, are actually present in the
given text.

6 The Algorithm
Since the task formulated in Section 4 is solved in-
dependently for each fragment, we consider only one
fragment.

Let N be the number of words in the text frag-
ment and ni be the number of senses of the word wi.
Denote N the set of natural numbers. A combination
of choices of senses is a function

f : {1, ..., N} → N

such that 1 ≤ f (i) ≤ ni. Denote F the set of all such
functions. An imaginable algorithm for solving the
task is as follows:

for each sequence f ∈ F
for each word wk

∑= i wfik kfwMwscore
i

))(,()()(,
∑= N

k kwscorefscore)()((3)

fbest = max arg (score(f))
for each word wk

select sbest = fbest (k)

The algorithm consists of finding such a way f of
assigning senses to words that maximizes the aver-
age relatedness score(wk) between these senses. Note
that the senses other than the selected ones are not
involved in the process.

The size of the search space is

∏=
N

i
inF .

Consider a text of N = 1000 words, such that each
second word has at least 3 senses. Then the search
space is 3500 = 3 × 10238. This is not an exaggerated
example: in a randomly selected text used for our
experiments, the average number of senses per word
was 3.82 (750 senses in total by 196 words); with
this text the search space was about 1.7 × 10114.

To select the best sequence, we used a genetic al-
gorithm. The parameters of the algorithm were as
follows:

– The chromosome was a sequence of natural
numbers varying from 1 to ni, where ni is the
number of senses of the word wi. If the word has

no senses, i.e., is absent from the dictionary, the
corresponding position in the chromosome was
unused (in our implementation, for simplicity we
just filled it with a value –1 in all individuals and
do not change this value during mutation).

– The initial content of the pool was generated at
random: for each individual and each position i
in its chromosome, the value was generated ran-
domly with the uniform distribution in the do-
main between 1 and ni.

– The fitness function was score(f) as defined by
the formula (3) above. The objective was to
maximize the fitness function.

– Generational type of genetic algorithm was used
(as opposed to a steady-state type). That is, two
pools were used, so that at each generation all
parents were replaced with the respective off-
springs, so that no individuals of a new genera-
tion could mate with individuals of the previous
ones. This also means that the replacement
method was set to appending: the new individu-
als are appended to the new pool.

– No generation gap was used, i.e., no predefined
number of individuals was cloned to the new
generation.

– The selection method was roulette wheel: the
probability of an individual to be selected for
crossover (or cloning, as described below) was
proportional to its fitness value.

– The generation scheme was as follows: the se-
lected pair of parents was replaced with two off-
springs formed by exchanging the selected parts
of the parents’ chromosomes. With some prob-
ability the parents were simply cloned to the new
generation instead of being mated.

– The crossover probability was determined by the
parameter called crossover rate. It controlled the
crossover option: whether the two selected indi-
viduals were mated and two children formed as a
result of crossover or the two parents were sim-
ply copied to the new generation. The bigger
crossover rate the more probably the parents are
mated.

– The crossover method was simple: a single
crossover point was selected at random; the
genes up to and including the crossover point
were copied to the respective child, and the re-
maining genes were copied to the alternate child.

– The mutation scheme was as follows: each child
was selected or no for mutation with the prob-

ability determined by the parameter called muta-
tion rate. If selected, a single mutation point i
was selected at random (with the uniform distri-
bution).

– A mutation at a point i was a random change of a
gene in its respective domain, i.e., from 1 to ni,
where ni is the number of senses of the word wi.

– We used elitism to speed up convergence. This
implies the following two modifications to the
standard behavior of the algorithm. First, two
copies of the best individual are cloned to the
new generation’s pool, thus ensuring its survival.
Second, at each crossover action, out of four in-
dividuals—the two parents and two children—
two best ones are placed into the new pool. In
this way, if a child is not as good as either par-
ent, it will not be selected, and a parent will sur-
vive instead.

– The termination condition was convergence: the
algorithm stopped when all individuals in the
pool had the same fitness value. In fact we ex-
perimented with continuing calculations after
convergence and observed slight improvement in
the results.

– We experimented with different pool sizes, mu-
tation rates and crossover rates, as discussed in
the next section.

7 Experimental Results
As baselines, we have implemented the following
algorithms:

– Random. A random sense is selected for each
ambiguous word; no heuristics applied.

– All zeroes. The first sense given in the dictionary
is selected, regardless to the context. As our ex-
periments show, this works better than a random
choice, which can be explained by the fact that
the lexicographers list the most frequent senses
first.

– Average Lesk. The Lesk algorithm in the modifi-
cation that maximizes the average relatedness of
a sense to the context words, as in the for-
mula (1) in Section 5.

– Maximum Lesk. The Lesk algorithm in the modi-
fication that maximizes the maximum related-
ness of a sense to a context word, as in the for-
mula (2) in Section 5.

We experimented with a 196 words long Spanish
text taking from an Internet news site. In comparison
with the baselines, our algorithm found better sense
assignments, as can be seen from the following table,
which shows the scores obtained for the correspond-
ing assignments according to the formula (3) in Sec-
tion 6; the same data can be seen in the graphical
form in Fig. 1.

Algorithm Score
Random 52.8
All zeroes 62.4
Average Lesk 106.1
Maximum Lesk 114.6
Genetic 130.7

0

20

40

60

80

100

120

140

0 50 100 150 200
Generation

Fi
tn

es
s

Best in population
Worst in population
Maximum Lesk
Average Lesk
All zeroes
Random

Fig. 1. Convergence of the algorithm.

The fitness of the best and worse individual in the population is shown for each generation. For
comparison, the fitness of the solutions found with four baseline methods is shown.

In the table, the data for the genetic algorithm with
the pool of 500 individuals and mutation rate and
crossover rate both equal to 0.9 are given.

Fig. 1 shows the convergence curve for the algo-
rithm with these parameters, the upper curve repre-
senting the best individual in the generation and the
lower curve the worst one. The algorithm converged
after 217 iterations, when all individuals reached the
fitness of 130.651. The fitness reached by the base-
line algorithms is shown for comparison; one can see
that the algorithm surpassed the best baseline after
70 iterations. The total execution time to conver-
gence was more than a minute on a Pentium III com-
puter. We believe that this is explained by a very
inefficiently implemented generic library we used;
an efficient implementation should give much better
timing.

We experimented with different parameters that
can affect both convergence and the best score
found. Fig. 2 shows how pool size affects the behav-
ior of the algorithm; here mutation rate and crossover
rate were set to 0.9. One can see that with more than

50 individuals our algorithm surpasses the best base-
line, while with more than 200 individuals the results
do not depend significantly on the pool size, show-
ing very slight increasing as the pool size increases.
However, after 500 individuals increasing the pool
size does not lead to better convergence, while the
increased amount of calculations deteriorates the
speed of the algorithm (but not the result).

Fig. 3 shows that the algorithm is not very sensi-
tive to the mutation rate and crossover rate. Still, best
results were obtained with mutation rate 1.0 and
crossover rate 0.9. In these calculations, the pool size
was equal to 300. The mutation rate curve is given
for crossover rate equal to 0.9 and the crossover rate
curve for mutation rate equal to 1.0. On the other
hand, convergence of the algorithm is significantly
affected by the mutation rate and crossover rate,
being the best values, with still reasonably good
results, mutation rate of 0.4 and crossover rate of 1.0.

We also compared the automatically selected
senses with the senses selected manually by a lin-
guist prior to computational experiments. We tried
different texts and different parameter settings for

0
20
40
60
80

100
120
140

0 200 400 600 800 1000
Pool Size

Fi
tn

es
s

170

220

270

320

370

N
um

be
r

of
 G

en
er

at
io

ns

Genetic algorithm
Maximum Lesk
Average Lesk
All zeroes
Random
Convergence

Fig. 2. Behavior of the algorithm depending on the pool size.

The fitness of the solution found after convergence is shown (left-hand axis) along with that of four baseline
methods. The curve labeled “Convergence” shows the number of iterations until convergence (right-hand axis).

0
20
40
60
80

100
120
140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mutation Rate

Fi
tn

es
s

50
100
150
200
250
300
350
400

N
um

be
r

of
 G

en
er

at
io

ns

0
20
40
60
80

100
120
140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Crossover Rate

Fi
tn

es
s

250

300

350

400

450

500

N
um

be
r

of
 G

en
er

at
io

ns

Fig. 3. Behavior of the algorithm depending on the mutation rate and crossover rate.

The curves have the same meaning as in Fig. 2.

the genetic algorithms. In all our experiments, the
assignment made by the genetic algorithm showed
slightly better agreement with the manually assigned
senses than all baselines except for the all zeroes
heuristic.

Surprisingly, the latter heuristic performed
slightly better than all versions of Lesk algorithm,
including the genetic one. We explain this by low
quality of text preprocessing tools (such as morpho-
logical normalizer) and of word relatedness measure
we used. This circumstance, however, does not de-
tract from the advantage of our algorithm over one of
the state-of-the art techniques, but only shows that
we should use better linguistic tools and/or annota-
tion methodology.

8 Discussion and Future Work
Our experiments show that our method exhibits a
superior results as compared with existing tech-
niques. This is no surprise since it attempts to glob-
ally optimize the text cohesion, while the methods
we used as baseline optimize it locally, i.e., inde-
pendently for each word.

In the form we have presented it here, our method
is good only for rather short texts. This is no problem
in many cases, for example, when the method is ap-
plied to dictionary definitions [9] or short news re-
ports. To apply our method to longer texts they
should be partitioned into shorter fragments. This
can be performed by linguistic-based text segmenta-
tion [6] or just using a kind of sliding window (inter-
secting segments). Probably a reasonable segmenta-
tion can improve the result. The choice of the seg-
mentation method is a topic of the future research.

To improve the obtained results, we plan to try
varying a number of other parameters of our algo-
rithm. For example, the window size for non-zero
relatedness measure (Section 3) should be more care-
fully selected; asymmetric or of variable-size win-
dows can be tried.

Currently in our data structure we consider all
words, including the functional words such as prepo-
sitions or articles and the words absent from the dic-
tionary; we can try to eliminate them from the data
structure. However, it is not quite clear what to do
with words between functional and significant ones
(e.g., Spanish word sobre has the meanings ‘on’,
‘envelope’, and ‘to exceed’).

Yarowsky’s [21] principles “one sense per docu-
ment” (or fragment) and “one sense per collocation”
are to be implemented by their incorporation into the
fitness function. Other similar heuristics can be in-

corporated, too: e.g., to give certain preference to the
first sense, or to the most frequent sense, etc.

We plan to experiment with other word related-
ness measures, for example, with those discussed in
[17]. Also, we plan to try other global optimization
methods, such as iterative backward-forward re-
estimation of the probabilities or dynamic program-
ming.

Finally, we believe that the complexity of calcu-
lating the new individual’s fitness after crossover,
which in our current implementation is quadratic in
the text fragment length (to calculate the new relat-
edness matrix), can be made linear: only the values
near the crossover point need to be re-calculated.
The implementation of this idea is not trivial and
probably will require a more complicated representa-
tion of the chromosome, such a tree of smaller sub-
fragments.

9 Conclusions
We have presented a novel algorithm for word sense
disambiguation. The algorithm chooses the senses
that optimize text cohesion in terms of a word relat-
edness measure (we experimented with Lesk meas-
ure). In contrast to the existing algorithms, our
method optimizes the total word relatedness globally
(within a relatively short text fragment) and not at
each word independently. Namely, it looks for such
a combination of senses that would optimize the total
word relatedness. To find the global optimum, we
used genetic algorithm.

Our experiments show that our method gives bet-
ter results than existing state-of-the-art techniques.

Acknowledgements
The work was done under partial support of Mexican
Government (CONACyT, SNI), IPN (CGPI, CO-
FAA), and Invited Professorship Program of CAU.
The first author is currently on Sabbatical leave at
Chung-Ang University.

References:
[1] Apresyan, Yu. D. New Comprehensive English-

Russian Dictionary. Russky Yazyk, 1993.
[2] Araujo, L. Part-of-speech tagging with evolu-

tionary algorithms. In A. Gelbukh (Ed.), Com-
putational Linguistics and Intelligent Text Proc-
essing, CICLing-2002. Lecture Notes in Com-
puter Science N 2276, Springer-Verlag, 2003,
p. 230–239.

[3] Banerjee, S., and T. Pedersen. An adapted Lesk
algorithm for word sense disambiguation using
WordNet. In A. Gelbukh (Ed.), Computational
Linguistics and Intelligent Text Processing, CI-
CLing-2002. Lecture Notes in Computer Sci-
ence N 2276, Springer-Verlag, 2003, p. 136–
145.

[4] Brill, E. Processing natural language without
natural language processing. In A. Gelbukh
(Ed.), Computational Linguistics and Intelligent
Text Processing, CICLing-2003. Lecture Notes
in Computer Science, N 2588, Springer-Verlag,
2003, p. 360–369.

[5] Bolshakov, Igor A., Alexander F. Gelbukh, and
Sofia N. Galicia-Haro. Electronic Dictionaries:
for both Humans and Computers. In Václav Ma-
toušek et al. (Eds.). Text, Speech and Dialogue,
TSD-99. LNCS, N 1692, Springer-Verlag, 1999,
p. 358–361.

[6] Bolshakov, I.A., and A. Gelbukh. Text segmen-
tation into paragraphs based on local text cohe-
sion. Text, Speech and Dialogue, TSD-2001.
Lecture Notes in Artificial Intelligence N 2166,
Springer-Verlag, 2001, pp. 158–166.

[7] Edmonds, P., and A. Kilgarriff (Eds.), Journal of
Natural Language Engineering, Vol. 9 no. 1,
2003. Special issue based on Senseval-2;
www.senseval.org.

[8] Gelbukh, A., and G. Sidorov. Approach to con-
struction of automatic morphological analysis
systems for inflective languages with little ef-
fort. In A. Gelbukh (Ed.), Computational Lin-
guistics and Intelligent Text Processing, CI-
CLing-2003. Lecture Notes in Computer Sci-
ence, N 2588, Springer-Verlag, 2003, p. 215–
220.

[9] Gelbukh, A., and G. Sidorov. Automatic selec-
tion of defining vocabulary in an explanatory
dictionary. In A. Gelbukh (Ed.), Computational
Linguistics and Intelligent Text Processing, CI-
CLing-2002. Lecture Notes in Computer Sci-
ence N 2276, Springer-Verlag, 2003, p. 300–
303.

[10] Hirst, G. and St-Onge, D. Lexical chains as rep-
resentations of context for the detection and cor-
rection of malapropisms. In: C. Fellbaum (Ed.),
WordNet: An electronic lexical database, Cam-
bridge, MA: The MIT Press, 1998, 305–332.

[11] Jiang, J.J. and D.W. Conrad. From object com-
parison to semantic similarity. In: Pacling-99,
Pacific Association for Computational Linguis-
tics, 1999, Waterloo, Canada, p. 256–263.

[12] Karov, Ya. and Sh. Edelman, Similarity-based
word-sense disambiguation. Computational lin-
guistics, Vol. 24, 1998, p. 41–59.

[13] Lawrence Davis, editor. Handbook of Genetic
Algorithms. Van Nostrand Reinhold, New York,
New York, The 1991.

[14] Lesk, M., Automatic sense disambiguation using
machine-readable dictionaries: how to tell a pine
cone from an ice cream cone. Proc. of ACM
SIGDOC Conference. Toronto, Canada, 1986,
p. 24–26.

[15] Manning, C. D. and H. Shutze, Foundations of
statistical natural language processing. Cam-
bridge, MA, The MIT press, 1999, 680 pp.

[16] McRoy, S., Using multiple knowledge sources
for word sense disambiguation. Computational
Linguistics, Vol. 18(1), 1992, p. 1–30.

[17] Patwardhan, S., S. Banerjee, and T. Pedersen.
Using measures of semantic relatedness for
word sense disambiguation. In A. Gelbukh
(Ed.), Computational Linguistics and Intelligent
Text Processing, CICLing-2003. Lecture Notes
in Computer Science, N 2588, Springer-Verlag,
2003, p. 241–257.

[18] Pedersen, T., A baseline methodology for word
sense disambiguation. In A. Gelbukh (Ed.),
Computational Linguistics and Intelligent Text
Processing, CICLing-2002. Lecture Notes in
Computer Science N 2276, Springer-Verlag,
2003, p. 126–135.

[19] Sidorov G. and A. Gelbukh, Word sense disam-
biguation in a Spanish explanatory dictionary.
Proc. of TALN-2001, Tours, France, July 2–5,
2001, p. 398–402.

[20] Wilks, Y. and Stevenson, M., Combining weak
knowledge sources for sense disambiguation.
Proc. of IJCAI-99, 1999, p. 884–889.

[21] Yarowksy, D., Word-sense disambiguation us-
ing statistical models of Roget’s categories
trained on large corpora. Proc. of COLING-92,
Nante, France, 1992, p. 454–460.

