
Natural Language Interface Framework for
Spatial Object Composition Systems*

Hiram Calvo Castro 1 and Alexander Gelbukh 1,2
1 Center for Computing Research (CIC), National Polytechnic Institute (IPN),

Av. Juan de Dios Bátiz s/n, esq. Av. Mendizábal, México, D.F., 07738. México
hcalvo@sagitario.cic.ipn.mx, gelbukh@cic.ipn.mx; www.gelbukh.com

2 Chung-Ang University, Seoul, Korea

Resumen: Los Sistemas de Composición Espacial de Objetos (Sistemas SOC, por sus siglas en
inglés) involucran tareas de combinación virtual de objetos físicos (como partes de muebles)
con el propósito de crear objetos complejos nuevos o disponer los objetos en el espacio. En este
artículo presentamos un marco para implementar Interfaces en Lenguaje Natural enfocadas a
sistemas SOC. Proponemos el uso de una gramática de reglas de reescritura, a la cual ll amamos
Gramática de Traducción Directa, para traducir solicitudes en lenguaje natural a comandos
computacionales interpretables por el motor del Sistema SOC. En este artículo damos ejemplos
para comandos imperativos en español.
Palabras clave: Lenguaje Espacial, Solicitudes de Acción, Interacción con Diálogos.

Abstract: Spatial Object Composition (SOC) systems involve tasks of virtual combination of
physical objects (such as furniture parts) with the purpose of creating new, complex objects or
arranging the objects in space. In this paper we present a framework for implementing Natural
Language Interfaces focused on SOC systems. We propose the use of a rewriting rules grammar
(which we call Direct Translation Grammar) to translate action queries in natural language to
computational procedures interpretable by the SOC engine. Examples are given for imperative
commands in Spanish.
Keywords: Spatial Language, Action Queries, Dialogue Interaction

1 Introduction

Spatial Object Composition (SOC) refers to
manipulating physical or virtual prefabricated
pieces (such as furniture parts) to assemble
them creating new objects or scenes, for exam-
ple, is off ice design task. There are many com-
puter applications dealing with SOC, for exam-
ple, the systems for computer-aided design of a
room or a house. The objects that are to be
placed in the room are predefined (furniture,
doors, windows, etc.) and can be selected from
a catalog to be placed in the virtual scene where
the user wants to place them.

Obviously, SOC is not limited to house de-
sign. Since we live in a spatial world of decom-

* Work done under partial support of Mexican

Government (CONACyT, SNI), IPN (PIFI, CGEPI),
and RITOS-2. The second author is currently on
Sabbatical leave at Chung-Ang University.

posable objects, there are many applications of
this kind. For example, suppose a user wants to
construct a bookcase. To do this, he or she first
selects some planks from a catalog of prefabri-
cated planks and then fits these parts together
until the desired bookcase is constructed. This
is an example of creating a new object.

By their nature, such systems are intended to
be used by persons without any computer-
related knowledge and skill s. Thus their inter-
faces must be intuitive and must not require any
training or instruction. A perfect means of such
interaction is natural language in the same form
as it would be used for interaction with a human
worker. Indeed, human-computer interaction in
such systems is mostly imperative: the user
gives a command and the computer executes
the requested task. These commands can be
given in natural language using imperative
tense. Hence our motivation to develop a

framework for integration of Natural Language
Interfaces with SOC systems.

Within the proposed framework it is possi-
ble to translate the input sentence “Could you
put the chair next to the table, please?” into a
sequence of commands directly interpretable by
the system’s engine:

 move
� � � � � � � � � 	
 � � � � � � � � � � � � � � �
 � � � �

Here, obj_ x stands for an object x, getpos
for a function that gets the position of the ob-
ject, and ++ for the operation that changes a
position to the nearest available one. The whole
instruction means that the system must place � � � � � � � � 	

(the chair the user referred to) at
the nearest position available next to that of � � � � � � � �

(the table already existing in the
scene). We do this by transforming the original
sentence step by step as follows:

Could you put the chair next to the table,
please?

Could you put the chair next to the table
put the chair next to the table
put obj_chair1 next to the table
put obj_chair1 next to obj_table1
put obj_chair1 nextto obj_table1
put obj_chair1 (getpos(obj_table1)++)
move(obj_chair1,(getpos(obj_table1)++))

In this paper, we describe the formalism we
developed for such transformation, which in-
cludes the features that, in our experience, are
necessary for successful translation of such type
of sentences. Unfortunately space limitations
will not allow us to give a meaningful example
of their application.

The paper is organized as follows. Section 2
discusses the related work on Natural Language
Interfaces (NLIs). Section 3 examines the char-
acteristics of SOC systems relevant for their
integration with a NLI. Section 4 introduces the
grammar used in our framework, called Direct
Translation Grammar. Section 5 explains the
technicali ties of object reference and context
management in our grammar. In Section 6, a
simple example is given. Finally, in Section 7
conclusions are drawn.

2 Related Work

Historically first systems with a Natural Lan-
guage Interface (NLI) were developed on the ad
hoc basis for a specific application. Some ex-
amples of such systems are:

• DEACON (Direct English Access Control)
(Craig et al., 1966), a question answering
system,

• SHRDLU (Winograd, 1972), allowing to
move virtual geometric blocks by verbal
commands,

• LUNAR (Woods, Kaplan and Nash-Webber,
1972), which allowed to query a lunar rock
database,

• LADDER (Hendrix et al., 1978), which an-
swers questions about naval logistics data.

As the world model was interwoven in these
programs’ operation, changing the application
domain for these systems would be an expen-
sive and complicated process.

Later, other systems with a NLI designed
with a broader scope of application arose. They
were mainly oriented to database information
retrieval, e.g.: INTELLECT (Harris, 1984),
TEAM (Grosz et al., 1987), JANUS (Weische-
del, 1989), and SQUIRREL (Barros, 1995).

There are recently developed works that
handle imperative language for multiple pur-
poses. For example, KAIRAI (which means
‘puppet’) has several virtual robots (avatars)
that can move forward, turn, or push an object
(Shinyama, Tokunaga and Tanaka, 2000; Asoh
et al., 1999). By manipulating them using com-
mands, the user can move and place the objects
in the virtual world. This system is developed
for Japanese. A similar system AnimAL uses a
NLI to control the movements of an avatar in a
virtual environment (Di Eugenio, 1993; 1996;
Webber, 1995). Di Eugenio considered the
problem of understanding phrases of the form
do x to do y, as in cut a square in half to make
two triangles.

We are not aware, however, of any recent
works specifically devoted to provide a NLI
framework for SOC systems in general.

3 Characteristics of SOC Systems

The SOC systems in general restrict the use of
natural language in a number of ways. In our
framework, we rely on these restrictions to
simpli fy the corresponding mechanisms. Spe-
cifically, SOC systems have the following char-
acteristics relevant for NLI design:

1. They have predefined basic objects that
can be used to construct new ones. This
permits us to begin with a reduced set of
object names to be recognized.

2. Objects have properties by which they
can be referred to, e.g., red plank as op-
posed to green plank. Properties let us
keep small our set of object names.

3. There is a visual spatial representation
common to the user and the computer.
With this, the user is aware that the only
existing objects are those that can be ob-
served in the catalogues and in the current
scene. Only the observable objects are
relevant for the composition task.

4. Objects have a limited number of ac-
tions that can be applied to them. They
can be mapped to the corresponding com-
puter commands.

The user and the computer manipulate a fi-
nite set of objects with properties and actions
attached to these objects. To design a suitable
NLI, we must find a mechanism that relates
natural language sentences with the correspond-
ing computer commands. This relation is im-
plemented through Direct Translation Grammar
presented in the next section.

4 Direct Translation Grammar

Since the transformational model by Chomsky
appeared in 1957 (Chomsky, 1957), a number
of models within the generative paradigm have
been suggested, such as Case Grammar (Fill -
more, 1968), Functional Grammars (Kay,
1979), and recently, Phrase Structure Grammars
(Gazdar, 1987; Sag and Wasow, 1999). Tradi-
tionally, generative grammars are designed to
model the whole set of sentences that a native
speaker of a natural language considers accept-
able (Pullum, 1999). Generative linguistics
views language as a mathematical object and
builds theories similar to the sets of axioms and
inference rules in mathematics. A sentence is
grammatical i f there is some derivation that
demonstrates that its structure corresponds to
the given set of rules, much as a proof demon-
strates the correctness of a mathematical propo-
sition (Winograd, 1983).

Phrase Structure Grammars (PSG), from
which HPSG (Sag, 1999) is the most widely
known, follow this generative paradigm. To
analyze a sentence, it is hierarchically struc-
tured to form phrase-structure trees. PSGs are
used to characterize these phrase-structure trees.
These grammars consist of a set of non-terminal
symbols (phrase-structure categories such as
Noun, Verb, Determiner, Preposition, Noun

Phrase, Verbal Phrase, Sentence, etc.), a set of
terminal symbols (lexical items such as buy,
John, eaten, in, the, etc.), and a set of rules that
relate a non-terminal with a string of terminal or
non-terminal symbols (Joshi, 1992). To analyze
a sentence, suitable rules can be applied to the
terminal symbol string until the non-terminal
symbol � is reached. The phrase-structure tree
obtained during this process can be analyzed
later to generate computer commands equiva-
lent to the input sentence.

However, this process can be done directly
if we change the purpose of our grammar to that
of using the grammar rules to reach computer
commands directly instead of breaking natural
language sentences into parts of speech (phrase
structures) and then converting this structure to
computer commands. Thus our purpose is dif-
ferent from that of generative grammars in that
we are not interested in determining whether or
not a sentence is well-formed. In addition, we
are not interested in modeling the whole lan-
guage but only its small subset relevant for the
user’s task in question.

The grammar we suggest to translate natural
language sentence into computer commands is a
rewriting rules grammar with additional charac-
teristics to handle context and object reference.
We call this grammar Direct Translation Gram-
mar (DTG).

Within DTG, lexical and morphological
treatment is included, and the categories used
refer to syntactic and semantic concepts of the
sentences. Because of this we can consider
DTG a semantic grammar (Burton, 1992). In
semantic grammars, the choice of categories is
based on the semantics of the world and the
intended application domain, as well as on the
regularities of the language. Although they are
not widely used nowadays, semantic grammars
have several advantages such as eff iciency,
habitabili ty—in the sense of (Watt, 1968), han-
dling of discourse phenomena, and the fact that
they are self-explanatory. They allow using
semantic restrictions to reduce the number of
alternative interpretations that can be consid-
ered at a certain moment, in contrast to highly
modular systems, which fragment the interpre-
tation process.

4.1 Definition

We define a Direct Translation Grammar as an
ordered list of rewriting rules that have the form
α → β, where α and β are strings consisting of

one or more of the following elements (which
we explain below) in any order:

1. natural language words,
2. tags with properties,
3. wildcards,
4. names of external procedures,
5. symbolic references to objects, and
6. embedded functions for context control

and object reference handling, see Sec-
tion 5.

Two rules with the same α are not allowed.

4.2 Rule Order

Since several rules can be applicable to a string
at the same time, processing of the rules is or-
dered. First, the rules with α consisting only of
natural language words are considered, begin-
ning with those with a greater number of words.
If none of them can be applied, the rest of the
rules are considered according to the number of
elements that form α, longest ones being con-
sidered first. This is because the elements li ke
the red table must be considered before the
elements containing just the table. Indeed, a
longer string of words means a more specific
reference to an object.

Each time a rule is applied, the processing of
the rules restarts from the top of the list in the
order just explained.

The process finishes when no rule can be
applied; the resulting string is the output of the
program. The translation process is considered
successful if the resulting string consists only of
symbolic references to objects and names of
external procedures. To avoid infinite cycling,
the process is aborted if some rule is applied

more than once and its application results in a
previously obtained string; in this case transla-
tion is considered unsuccessful, and the user is
asked to rephrase his or her utterance.

4.3 Rule Components

In this section we explain each element used in
the rules, in the order in which they are li sted in
Section 4.1.

4.3.1 Natural language words

Initially, an input sentence consists only of
words. The example put the chair next to the
table is a sentence composed by 7 words that
will be translated into a sequence of computer
commands. Words are letter strings and do not
have any properties.

4.3.2 Tags with properties

Tags with properties have the form

 δ{ p1, p2, ..., pn} ,

where δ is the name of the tag and p1, p2, ..., pn

its properties in the form � � � � � � � � � � � 	
�
 �
 � � � � � � � � � � � � �. Table 1 presents the most
common properties and their possible values.

This construction resembles the traditional
feature structures. However, feature structures,
as defined by Kay (1979), undergo inheritance
mechanisms and unification. Our tags are not
related to such mechanisms.

For example, the following rule converts the
Spanish word pon ‘put please’ into a tag � � � � �
‘ to put’ :

 � ! ! " � # $ � � � � � � � � � � � % � & % � ' � (% �
 ‘putimperative)) * to put’

Notation Property Possible values
C category N (noun), V (verb), ADJ (adjective), ADV (adverb), PRO (pronoun), DEFART

(definite article), INDART (indefinite article), OBJ (object), POS (position)
G gender M (masculine), F (feminine), N (neutral)
N number S (singular), P (plural)
T verbal tense PRES (present), INF (infiniti ve), IMP (imperative), SUBJ (subjunctive)
S subject form for verbs, the number and gender of the subject (this is morphologically rele-

vant for Spanish): SM, SF, PM, PF (singular / plural, masculine / feminine)
O object form for verbs: the number and gender of the object (morphologicall y relevant for

Spanish)
A dative object form for verbs: the number and gender of the indirect (dative) object (morphologi-

call y relevant for Spanish)
Q quantity V, L, R, U, M (very littl e, littl e, regular, much/many, very much/many)

Table 1. Some properties and their values used in the examples

This rule substitutes every occurrence of pon
in the input string by the tag � # $ � � � � � � � � � � �
% � & % � � � (% �, whose properties are interpreted
as follows: category is verb, tense is imperative,
subject is of second person singular, (implicit)
dative object is of first person singular.

4.3.3 Wildcards

Wildcards are defined by a label optionally
followed by a set of properties (as defined in
Section 4.3.2) contained in square brackets:
 ϕ[p1, p2, ..., pn].

They provide a mechanism for generalizing a
rule to avoid redundant rule repetitions. A wild-
card makes it possible to apply a rule over a set
of tags that share one or more properties. The
scope of a wildcard is limited to its rule.

A wildcard ϕ matches with a tag δ if the δ
has all properties listed for ϕ and with the same
values. For example, both wildcards ' � � � � �
and � � � � � � � � % & % � match with the tag
 � # $ � � � � � � � � � � � % � & % � � � (% �, but � � � � � �
� � � � � % � does not, since this tag does not have
the property Tense with value Present.

When used in the right-hand side of the rule,
a wildcard can be used to modify properties by
specifying another value for the property that it
originally matched. For example, consider the
frequently used pair of words podrías juntarlo
‘could you please put it together’ , which is a
poli te euphemism for the imperative júntalo
‘putimperative it together’ . To transform it into
imperative, we first apply the following rules:

 � � $ � � 	 ! ! " � � # $ � � � � � � � %
 � � � % � & % � (1)
‘could you ! ! " can’ � � � � $ � ! ! " � � � � $ � � � � � � � � � � � � � � % � � (2)
‘put it together ! ! " to put together’

and then use a wildcard to transform any such
construction into an imperative; note the use of
a wildcard to change the property T from INF
to IMP:

 � � # $ � � � � � � � %
 � � � % � & % � ' � � � � � � � � � � �
‘can’ ! ! " ' � � � � � � � (3)

which results in the following output string:
� � � � $ � � � � � � � � � � � � � � % � � (4)
‘ to put together’

Due to the wildcards, the rule (3) works for any
poli te expression in the form podrías ‘could
you’ + infinitive verb.

Usually, properties found within brackets
are accessed for the object whose name appears
immediately to the left of these brackets. How-
ever, access to the properties for other objects
outside brackets is possible through the use of
the dot notation defined as follows. Consider
the following string:

� � � � $ � � � � � � � � � � � � � � % � � � � � � � � 	
‘put it together’ ‘a bit more’

the collocation un poco más ‘a bit more’ is
transformed into a quantity adverb by the rule

� � � � � � 	 ! ! " � � � � ' � � � � � � � � (5)

which then is transformed into the verb’s prop-
erty by the rule:

' � � � � � � � � �' � � � � � ! ! " ' � � � � � � � � (6)

This rule sequence means the following: if a
verb A is followed by an adverb B with some
quantity, then add to this verb the property
Quantity with the same value that it has in B.
The latter construction is expressed in (6) as
B.Q standing for the value of Q in B.

If a property is specified for a wildcard
without any value, this indicates that matching
the wildcard requires the property to be present
regardless of its value.

Note that due to this replacing capabili ty
wildcards are not reduced to unification of
properties (Knight, 1992).

4.3.4 External procedures

External procedures with arguments are formed
by a procedure name followed by arguments:
 $ � � # � � $ # � � � # � � $ � � � � $ � � � � � � � � $ � � � ,
where n is a natural number. This number can
be 0; in this case the procedure has no argu-
ments. Unlike functions, procedures do not
return any value. They are executed by the SOC
system’s engine after successful application of
rules over an utterance. For example, ! " # $% & ' �
is an external procedure that places object

(
 in

position) .

4.3.5 Symbolic references to objects

A scene is an object composed by other objects.
In their turn, these objects can be composed of
other objects. For example, catalogs are objects
composed of elements that are objects as well .

Such compositionali ty permits us to estab-
lish nested contexts to resolve the reference to
an object depending on the scene in the focus of

the user’s attention in a given moment. Each
one of the objects inside the scene has proper-
ties that can be accessed by our conversion
rules by means of the tags.

In contrast to grammatical properties, which
are described exclusively within our conversion
rules, object properties are defined by the SOC
system and can vary. These properties can be,
for example, position, size, components, color,
material, alterabili ty, shape, and a set of actions
that can be applied to the given object.

Labels beginning with � � � �
 denote symbolic

references to objects, e.g., � � � � � � � � � � refers to
a particular box appearing in a particular scene.

5 Object Reference and Context
Management

For each noun, pronoun, or noun phrase we
need to find a unique symbolic reference to a
particular object meant by the user. However,
the same expression (as string of letters) can be
used to refer to different particular objects, de-
pending on the context. To transform an ex-
pression into a symbolic reference, we should
first determine the context for it (Pineda, 2000).

To provide context handling, we consider
context as an object (called scene object) that
contains other objects. A context change occurs
when the user shifts his or her attention from
the object itself to its components, or vice
versa. E.g., the user can consider a catalog, or
objects from this catalog, or parts of specific
objects from the catalog. Here we can see that
catalog objects belong to one context (the cata-
log), while objects in it belong to another con-
text. Each of these contexts is called a scene.

Similarly to SQUIRREL (Barros, 1995), in
our model context and object reference are
managed by stacks. However, in contrast to
SQUIRREL, we allow the grammar to create
and manipulate several stacks.

Embedded functions for context and object
reference management Embedded func-
tions for objects and context management oper-
ate on stacks; see Table 2. These functions are
executed in-line, that is, they are evaluated im-
mediately after application of the rule that gen-
erated them in the string and before applying
the next rule.

Syntactically, embedded functions are de-
noted by the stack name, followed by the func-
tion name, followed by an argument list (which
may be empty):

 � 	
 � � � � � � 	 � � � � �
 � � �
 � � � � …�
 � � � � ,
where n is a natural number (possibly zero). A
function returns an object, an empty string, or a
special object NIL.

Conditionals A conditional expression is
used for making decisions during the rule proc-
essing. Its format is:

� � � � � � � � 	 � � � � � 	 � � � � � 	 � � � � � �
� � � � � � � � � � � � 	 � � � � 	 � � � � � 	 � � � � �

� � � � � � 	 � � � � � �
� � � � �
where the parts � � � � � � and � � � � are optional.
This in-line function returns string1 if condition1
is met, string2 if condition2 is met, etc.

An example of the use of both embedded
functions and conditional markers is given in
the next section.

6 Example

Due to space limitations, we can only pre-
sent a simple example with a few DTG rules,
see Figure 1. This example shows how an im-
perative sentence is translated into computer
commands. In the lower part of the figure, the
stages of transformation are shown along with
the rules applied at each stage.

Function Description ! " # $! % $ & � pushes the object x onto the stack s and returns an empty string ' () *) + , pops the top object from the stack s and returns an empty string. If the
stack was empty, returns NIL * - . / 0 1 ' (1 *) + , returns the object name from the top of the stack s without popping it. If
the stack was empty, returns NIL * - . / 0 1 ' (' / 2 3 0 4 + ' 5) 6 7 , searches for the first object with the value v of the property p, starting
from the top of the stack s. If no object is found, returns NIL .

Table 2. Embedded functions and procedures.

It is supposed that the sentence in question is
a query presented in the context (scene) of a
catalog that shows numbered elements.

In this example, the system manipulates two
stacks: a visual context stack 7 ' and a conversa-
tion context stack 0 ' . The visual context stack
represents the objects in the common view of
the system and the user, namely, the objects
shown in the screen. This stack is maintained
directly by the SOC system’s engine and not by
the grammar. The conversation context stack
contains the objects mentioned during the dia-
logue and grows as the dialogue develops.

Rule R1 is used for handling object refer-
ence; see Section 5. The object mentioned in
the user’s utterance is sought first in the com-
mon view; it can be referred either by name (la
sill a ‘ the chair’) or by a property (la roja ‘ the
red one’) . If it is not found in the common
view, then the most recently mentioned object
with the given name is sought in the past con-
versation history.

Rule R2 eliminates words that are not mean-
ingful for the request, e.g. poli te expressions.

Rules R3 to R6 state that el, la, los, las ‘ the’
are forms of the definite article (corresponding
in Spanish to different genders and numbers).

Rule R7 uses wildcards to convert a combi-
nation of article and adjective into a noun, e.g.,

el tercero li t. ‘ the third’ is converted into a sub-
stantive ‘ the third one’ .

Rule R8 is finally applied after the rule R1
has rewritten � � � � � � � � � � � 	 �
 � ‘ the third one’
and � � � � � � � � � 	 �
 � ‘ the fourth one’ as refer-
ences to specific objects, * - . 0 2 1 � � � � � � and * - . 0 2 1 � � � � � � . They are also added to the con-
versational context stack for future reference.

7 Conclusions

Spatial Object Composition (SOC) systems
have characteristics that facili tate translating
directly from natural language sentences into
computer commands. Namely, in a SOC Sys-
tem, the language used is imperative; objects
are previously defined and can be combined to
create new ones; they have properties; they are
always present; a spatial common representa-
tion exists visually; and a limited number of
actions exist over these objects.

Given these characteristics, we have shown
how such translation can be done with the Di-
rect Translation Grammar. We have presented a
framework based on this grammar and a
mechanism for object reference and context
management. The problem of resolving object
references is solved within this framework

Grammar:

R1. � � � �� � � � � � � � � � � � � � � � !" # 7 ' (# " 3 ' 1 +$ 2 % / 6 � , & ' () 1 4 / $ 7 ' (# " 3 ' 1 +$ 2 % / 6 � ,/ * ' / " # 7 ' (# " 3 ' 1 +) 3 *) / 3 1 + 6 � , & ' () 1 4 / $ 7 ' (# " 3 ' 1 +) 3 *) / 3 1 + 6 � ,/ * ' / " # 0 ' (# " 3 ' 1 +$ 2 % / 6 � , & ' () 1 4 / $ 0 ' (# " 3 ' 1 +$ 2 % / 6 � ,/ * ' / / 3 3 * 3/ $, " #
R2. � , " # / 3 / $ 0 " 2 / $ 1 3 / � + - . ! , " # / 3 / $ 0 " 2 � 5 -
R3. / * ! / * / � �� � � � � � 5 � � � 0 1
R4. * 2 ! / * / � �� � � � � � 5 � � � - 1
R5. * * ' ! / * / � �� � � � � � 5 � � 2 0 1
R6. * 2 ' ! / * / � �� � � � � � 5 � � 2 - 1
R7. � � � �� � � � � � � � � � �� � 3 � ! � � � � � � � � � �
R8. , " # / 3 / $ 0 " 2 � � � � 4 � 3 � 5 � � � � 4 � 3 � ! 0 ' () 5 ' 4 +� , 0 ' () 5 ' 4 + � , , " # # +� 5 � ,
Sentence: 6 7 8 9 : ; < = > ? 8 @ ? A B C D 8 9 8 E < C A 8 E F 9 8 8 ? F 8 9 < 8 9 G H 8 ? < = A 9 F G I

 ‘Let me see... what’s the difference between the third and the fourth one?’

R2 gives: J K L M N M O P K Q M R S M N P M N T U M R P V Q N S T
R3 gives: J K L M N M O P K Q M R W X YZ [\] ^ \ U _ Y _ ` a S M N P M N T U M R W X YZ [\] ^ \ U _ Y _ ` a P V Q N S T
R7 gives: J K L M N M O P K Q M R W X YZ [\] ^ \ U _ Y _ ` a S M N P M N T W X Y _ b _ \ a U M R W X YZ [\] ^ \ U _ Y _ ` a P V Q N S T W X Y _ b _ \ a
R1 gives: J K L M N M O P K Q T c d P Q S e f g h e i T c d P Q S e f g h e j
R8 gives: J K L L k T c d P Q S e f g h e i U T c d P Q S e f g h e j l

side effect: P m n o V m p k T c d P Q S e f g h e i l U P m n o V m p k T c d P Q S e f g h e j l
Figure 1. Example of DTG Rules and sentence processing

through a context stacks mechanism and condi-
tionals embedded in the rules of the DTG.

The system can be extended to allow creat-
ing new rules out of existing ones. Then its
capabili ties can be dynamically extended
through the dialogue with the user. This is a
topic of our future work.

References

Asoh, Hideki, T. Matsui, J. Fry, F. Asano, and
S. Hayamizu. 1999. A spoken dialog system
for a mobile off ice robot, in Proceedings of
Eurospeech ‘99, pp.1139-1142, Budapest.

Barros, Flavia de Almeida. 1995. A Treatment
of Anaphora in Portable Natural Language
Front Ends to Data Bases, PhD Thesis. Uni-
versity of Essex, UK.

Burton, Richard. 1992. Phrase-Structure
Grammar. In Shapiro, Stuart ed., Encyclope-
dia of Artificia l Intelli gence. Vol. 1.

Chomsky, Noam. 1957. Syntactic Structures.
Reprint Edition (1975), Mouton de Gruyter.

Craig, J., S. Berezner, C. Homer, and C.
Longyear. 1966. DEACON: Direct English
Access and Control. In Proceedings of
AFIPS Fall Joint Conference, Vol 29, pp.
365-380, San Francisco, CA.

Di Eugenio, Barbara. 1993. Understanding
Natural Language Instructions: a Computa-
tional Approach to Purpose Clauses. Ph.D.
thesis, University of Pennsylvania, Decem-
ber. Technical Report MS-CIS-93-91.

Di Eugenio, Barbara. 1996. Pragmatic over-
loading in Natural Language instructions.
International Journal of Expert Systems 9.

Fill more, Charles. 1968. The case for case. In
Universals in Linguistic Theory. Edited by
Bach, Emmon and Harms, Robert T., 1-90.
Chicago: Holt, Rinehart and Winston.

Gazdar, Gerald. 1982. Phrase Structure Gram-
mar, in P. Jacobsen, and G.K. Pullum, eds.,
The Nature of Syntactic Representation,
Reidel, Boston, MA.

Grosz, Barbara, D. Appelt, P. Martin, and
F.C.N. Pereira. 1987. TEAM: An Experi-
ment in the Design of Transportable Natu-
ral-Language Interfaces. In Artifi cial Intelli -
gence, vol 32, pp 173-243.

Harris, Larry. 1984. Experience with
INTELLECT: Artificial Intelli gence Tech-
nology Transfer. In The AI Magazine, 2:2,
pp 43-50.

Hendrix, Gary, E. Sacerdoti, D. Sagalowowicz,
and J. Slocum. 1978. Developing a Natural
Language Interface to Complex Data. In
ACM transactions on Database Systems;
3:2, pp 105-147.

Joshi, Aravind. 1992. Phrase-Structure Gram-
mar. In Shapiro, Stuart ed., Encyclopedia of
Artifi cial Intelli gence. Vol. 1. John Wiley &
Sons, Inc. Publishers, New York.

Kay, Martin. 1979. Functional grammar. In
Proceedings of the 5th Annual Meeting of the
Berkeley Linguistic Society. 142-158.

Knight, Kevin. 1992. Unification. In Shapiro,
Stuart ed., Encyclopedia of Artifi cial Intelli -
gence. Vol. 2. John Wiley & Sons, Inc. Pub-
lishers, New York.

Pineda, Luis and G. Garza. 2000. A Model for
Multimodal Reference Resolution. In Com-
putational Linguistics, 26:2, pp. 139-193.

Pullum, Geoff rey. 1999. Generative Grammar,
In Frank C. Keil and Robert A. Wilson
(eds.), The MIT Encyclopedia of the Cogni-
tive Sciences, pp. 340-343, Cambridge, MA,
The MIT Press.

Sag, Ivan and T. Wasow, Syntactic Theory: A
Formal Introduction. CSLI Publications,
1999.

Shinyama, Yusuke, T. Tokunaga and H. Ta-
naka. 2000. Kairai - Software Robots Un-
derstanding Natural Language. Third Int.
Workshop on Human-Computer Conversa-
tion, Bellagio, Italy.

Watt, W., Habitabili ty. 1968. American Docu-
mentation 19, pp. 338-351.

Webber, Bonnie. 1995. Instructing animated
agents: Viewing language in behavioral
terms. Proceedings of the International Con-
ference on Cooperative Multi -modal Com-
munications, Eindhoven, Netherlands.

Weischedel, Ralph. 1989. A Hybrid Approach
to Representation in the JANUS Natural
Language Processor. In Proceedings of the
27th ACL, Vancouver, pp 193-202.

Winograd, Terry. 1972. Understanding Natural
Language. New York: Academic Press.

Winograd, Terry. 1983. Language as a Cogni-
tive Process. Volume I: Syntax. Stanford
University. Addison-Wesley Publishing
Company.

Woods, Willi am, R. Kaplan, and B.L. Nash-
Webber. 1972. The Lunar Science Natural
Language Information System: Final Report.
BBN Report No. 2378. Bolt, Beranek and
Newman Inc. Cambridge, MA.

