

Knowledge-poor Approach to Constructing Word Frequency Lists,
with Examples from Romance Languages

Mikhail Alexandrov
Center for Computing Research, National
Polytechnic Institute (IPN), Mexico

dyner@cic.ipn.mx

Xavier Blanco
Department of French and Romance Philol-
ogy, Autonomous University of Barcelona

Xavier.Blanco@uab.es

Alexander Gelbukh
Center for Computing Research, National
Polytechnic Institute (IPN), Mexico;
Chung-Ang University, Seoul, Korea

www.Gelbukh.com

Pavel Makagonov
Mixteca University of Technology, Mexico

mpp2003@inbox.ru

Resumen: Las listas de palabras con sus frecuencias se usan ampliamente en muchos
procedimientos de agrupamiento y categorización de textos. Usualmente para la compila-
ción de tales listas se usan las aproximaciones basadas en morfología (como el stemmer
de Porter) para unir las palabras con el mismo significado. Desafortunadamente, tales
aproximaciones requieren de muchos recursos lingüísticos dependientes de lenguaje
cuando se trabaja con datos multilingües y colecciones multitemáticas de documentos. En
este artículo se proponen dos procedimientos basados en formulas empíricas de similitud
entre palabras. Un simple ajuste de los parámetros de las fórmulas permita su adecuación
a diferentes lenguajes europeos. Se demuestra la aplicación de las fórmulas con ejemplos
reales del francés, italiano, portugués y español.
Palabras clave: stemming, indexación, métodos independientes de lenguaje, métodos es-
tadísticos

Abstract: Word frequency lists extracted from documents are widely used in many pro-
cedures of text clustering and categorization. Usually for compilation of such lists mor-
phological-based approaches (such as the Porter stemmer) to join the words having the
same base meaning are used. However such an approach needs many language-dependent
linguistic resources or knowledge when working with multilingual data and multi-
thematic document collections. We suggest two procedures based on empirical formulae
of word similarity. Simple adjustment of the parameters of the formulae allows tuning
them to different European languages. We demonstrate the application of our formulae on
real examples from French, Italian, Portuguese, and Spanish.
Keywords: stemming, indexing, language-independent methods, statistical methods

1 Introduction
The typical procedure for constructing a word
frequency list consists in the following two
steps:
1. All words are ordered alphabetically and

their counts are set to 1.
2. Every word is substituted by its stem or

lemma (normal dictionary form).

3. Equal strings are joined together and their
counts are summed up.

By the normal form we mean singular for nouns,
indefinite infinitive for verbs, etc. Such a trans-
formation is called lemmatization. It relies on
morphological rules and a large morphological
dictionary. It provides practically ideal accu-
racy on known words and good accuracy on the

words absent in the dictionary [Gelbukh, 2003;
Gelbukh and Sidorov, 2003].
Instead of the normal form, the words can be

truncated to their stems, which often reflect
their invariant meaning; e.g., sad, sadly, sad-
ness, saddens, saddened are truncated to the
same stem sad-. This method is much simpler
since it uses only lists of suffixes and suffix
removal rules, without any dictionaries [Porter,
1980]. Its accuracy is lower than that of lemma-
tization. Still it relies on language-dependent
resources.
Makagonov [2002] suggested an empirical

formula for testing word similarity and demon-
strated how to use such a formula for stemming
in constructing word frequency lists. The for-
mula itself was based on the number of the
coincident letters in the initial parts of the two
words and the number of non-coincident letters
in their final parts. The frequency list is ob-
tained by an iterative procedure, which com-
pares word pairs and determines their common
part.
Our experiments with Romance languages

show that one of suggested empirical formulae
provides 80%–90% accuracy (F-measure), with
2%–5% of false collatings and 20%–25% of
failuries to collate similar words. This is rather
acceptable in semi-automatic setting since the
human expert can easily join the similar words
after the grouping procedure [Alexandrov,
2004].
However, many important issues concerning

application of the empirical formulae for stem-
ming remain open. In this paper we compare
the application of two different formulae and
consider two iterative procedures on real texts
in four Romance languages—French, Italian,
Portuguese, and Spanish—in the domain widely
discussed currently in the European Commu-
nity: mortgage and crediting. To evaluate the
accuracy of the results, we use characteristics
from both mathematical statistics and informa-
tion retrieval.

2 The Algorithms
2.1 Formulae for Testing Word

Similarity
The empirical formulae used in the procedure
of constructing word frequency list test a hy-
pothesis about word similarity. We consider
only the languages where the word base (the
morphologically invariant part) is located at the

beginning of the word. This is generally true for
the European languages.
 We consider two classes of formulae:
1. The formulae that do not take into account

the position of the final part in a word pair;
2. The formulae that do take it into account.
 The formulae of the first class can be repre-
sented in the following form:
n/s ≤ F (y),
F(y) = a + b1y + b2y2 + ... + bkyk, (1)
where:
n: the total number of final letters differing

in the two words,
y: the length of the common initial sub-

string,
s: the total number of letters in the two

words,
F(y): the model function.
For example, for the words sadly and sadness,
the maximal common initial substring is sad-,
thus the differing final parts are -ly and -ness so
that n = 6, y = 3, and s = 12.
 When the inequality holds, the hypothesis
about word similarity is accepted. Using the
Inductive Method of Model Self-Organization
(IMSOM) by Ivahnenko [1980] we found that
the best formula (in the considered class) is
lineal, with the following parameters:

French: n/s ≤ 0.481 – 0.024 y
Italian: n/s ≤ 0.571 – 0.035 y
Portuguese: n/s ≤ 0.528 – 0.029 y
Spanish: n/s ≤ 0.549 – 0.029 y

 The formulae of the second class can be rep-
resented in the following form:
D(y,N) ≤ 0,
D(y, N) = ∑)(if δ(i), i = y + 1, ..., N
F(i)= a + b1/i + b2/i2 + ... + bk/ik,

(2)

where:
y: the length of the common initial sub-

string,
N: the length of the longest word in the list,
δ(i): indicator of letters at the i-th position
We set δ(i) = 0, 0.5, or 1 if i is greater than the
lengths of both words, of the length of one of
the two words, or less than, or equal to, the
lengths of both words, respectively. For exam-
ple, for the words sadly and sadness, the maxi-

mal common initial substring is sad-, so that y =
3, δ(4) = δ(5) = 1, δ(6) = δ(7) = 0.5, δ(8) =...=
δ(15) = 0 (N = 15).
 When the inequality holds, the hypothesis
about word similarity is accepted. Using
IMSOM, we found that the best model is in-
verse lineal with the following parameters:

French: F(t) ≤ –0.21 + 0.029 / t
Italian: F(t) ≤ –0.26 + 0.015 / t
Portuguese: F(t) ≤ –0.24 + 0.016 / t
Spanish: F(t) ≤ –0.27 + 0.033 / t

These formulae can be considered an initial
approximation for further tuning on other
romance languages.
Testing word similarity one can commit two

types of errors: join words that are not similar
(false positive) or fail to join words which are
similar (false negative). Obviously since the
empirical formula is constructed on the basis of
statistical regularities of a language, it leads to
the both types of errors. Tuning the parameters
we can control the balance between these two
kinds of errors, but not to completely avoid
them.
 Our approach for testing word similarity is
not applicable to irregular words: it is impossi-
ble to construct a simple formula that could
detect the similarity between English irregular
verbs such as buy and bought—these words
have only one common letter in the initial part
of the string. This situation sometimes occurs in
the Romance languages considered in this paper.

2.2 Constructing Word Frequency List
We consider two procedures:
A1. Algorithms based on joining a pair of adja-

cent similar words, and
A2. Algorithms based on joining a group of

similar words.
Each of the two algorithms can use any of

the empirical formulae described above, or any
other one. The two algorithms differ in their
capability of word conflation, independently of
the formulae used.
 First of all, the text or a group of texts is
transformed into a sequence of words. All
stopwords (including short words) are elimi-
nated from the list. Then with each word, a
counter is associated and set to the initial
value 1. Then all words are ordered alphabeti-
cally, equal strings are joined together, and their
counts are summed up.

The two variants of the algorithm work as
follows.
Algorithm A1 (pair-wise) From the begin-
ning of the list, the first word similar (according
to the formula) to the next one is looked for.
The two words are replaced with one new
“word”—their common initial part, with the
counter set to the sum of the counters of the two
original words. Then the procedure is repeated
(from the same position in the list, since we
know that there are no similar words above the
current position), until no pair of similar words
is found.
Algorithm A2 (chain-wise) From the begin-
ning of the list, the first word similar to the next
one is looked for. Then second word of the pair
is compared with the next word, etc., thus
building a maximal chain in which every two
adjacent words are similar. The whole chain is
replaced with one new "word"—their common
initial part, with the counter set to the sum of
the counters of all original words. Then the
process continues from the next position in the
list.
Example Suppose we have the following list
of Spanish words ordered alphabetically, with
the following counts: transformación (7), trans-
formado (5), transformamos (7), traducción (6),
traductor (7), transporte (11), transportado (2).
The digits in brackets mean the number of
word’s repetitions.
The following table shows the first steps of

the work of the pair-wise algorithm:
 Initial list First iteration
→ transformación (7)

transformado (5)
transformamos (7)
traducción (6)
traductor (7)
traduje (4)
transportado (2)
transporte (11)

→ transforma- (12)
transformamos (7)
traducción (6)
traductor (7)
traduje (4)
transportado (2)
transporte (11)

 Second iteration Third iteration
→ transforma- (19)

traducción (6)
traductor (7)
traduje (4)
transportado (2)
transporte (11)

�
→

transforma- (19)
traduc- (13)
traduje (4)
transportado (2)
transporte (11)

The following table shows the work of the
chain-wise algorithm:

 Initial list First grouping
→ transformación (7)

transformado (5)
transformamos (7)
traducción (6)
traductor (7)
traduje (4)
transportado (2)
transporte (11)

�
→

transforma- (19)
traducción (6)
traductor (7)
traduje (4)
transportado (2)
transporte (11)

 Second grouping Third grouping
�
�
→

transforma- (19)
tradu- (17)
transportado (2)
transporte (11)

�
�
�
→

transforma- (19)
tradu- (17)
transport- (13)

2.3 Discussion

The suggested algorithms prove to be sensible
not only to the parameters of the formula but to
the size of the word list. Namely, the shorter the
list the greater the probability of conflation.
This especially affects short words.
 For example, in a short vocabulary the prob-
ability for the following English words

bead
bear
beat

to occur together is high, and according to the
formulae from [Makagonov, 2002], these words
will be considered similar and conflated by the
algorithm. In case of a large vocabulary these
words would be separated:

bead
...etc...
beagle
beagling
...etc...
bear
...etc...
beast
beastliness
...etc...
beat

However, in this case many short words that
ought to be conflated will be separated in the
vocabulary by unrelated words:

cat
catalogue
cataplasm
catastrophe
catenary

cats
These examples were taken from our private
communication with M. Porter, the author of
the stemming algorithm [Porter, 1980].
 The former situation is a problem. However,
we assume that in the one domain so different
short words do not frequently occur. As to the
latter situation, we did observe such cases.
However, this is not dangerous because these
related words can be easily revealed manually,
since in practice an expert usually checks the
results of the work of the algorithm.
3 Experimental Results
The algorithms were checked on real document
collections. The goals of these experiments
were:
– To compare the quality of the formulae for a
given language,

– To compare the quality of algorithms for a
given language,

– To compare the quality of a given algorithm
for different languages.

Document Collections We considered the
documents on a popular theme: mortgage and
crediting. This theme is narrow enough to pro-
vide a representative set of similar words. To
reduce the number of comparisons we ran-
domly selected some paragraphs from the
document collections. Then we obtained alpha-
betical lists of words, exemplified in the follow-
ing table:

French Italian
absence
accepte
accord
accorde
accordee
...etc...

 accedere
acquistare
acquisto
adatte
adatto
...etc...

Total: 456 words Total: 567 words

Portuguese Spanish
abrange
abrangencia
abrangendo
acessoes
acima
...etc...

 abaratado
abogado
abogados
acceder
actual
...etc...

Total: 506 words Total: 536 words

French (455 tests = 115 similar + 340 non-similar)
Formula + algorithm (1) + A1 (2) + A1 (1) + A2 (2) + A2
Similar cases
Not similar cases

104
351

88
367

126
329

111
344

False alarms
Omissions

7
18

3
30

18
7

10
14

False positive Pp 2.0% 0.9% 5.3% 2.9%
False negative Pn 15.7% 26.1% 6.1% 12.2%

Total errors 17.7% 27.0% 11.4% 15.1%
Recall R 84.3% 73.9% 93.9% 87.8%
Precision P 93.3% 96.6% 85.7% 91.0%

F-measure 88.6% 83.7% 89.6% 89.4%

Italian (566 tests = 140 similar + 426 non-similar)
Formula + algorithm (1) + A1 (2) + A1 (1) + A2 (2) + A2
Similar cases
Not similar cases

149
417

120
446

193
373

166
400

False alarms
Omissions

39
30

19
39

65
12

45
19

False positive Pp 9.2% 4.2% 15.3% 10.6%
False negative Pn 21.4% 27.9% 8.6% 13.6%

Total errors 30.6% 32.1% 23.9% 24.2%
Recall R 78.6% 72.1% 91.4% 86.4%
Precision P 73.8% 84.2% 66.8% 72.9%

F-measure 76.1% 77.7% 77.2% 79.1%

Portuguese (505 tests = 138 similar + 367 non-similar)
Formula + algorithm (1) + A1 (2) + A1 (1) + A2 (2) + A2
Similar cases
Not similar cases

136
369

117
388

159
346

141
364

False alarms
Omissions

15
17

9
30

27
6

17
14

False positive Pp 4.1% 2.5% 7.4% 4.6%
False negative Pn 12.3% 21.7% 4.3% 10.1%

Total errors 16.4% 24.2% 11.7% 14.7%
Recall R 87.7% 78.3% 95.7% 89.9%
Precision P 89.0% 92.3% 83.0% 87.9%

F-measure 88.3% 84.7% 88.9% 88.9%

Spanish (535 tests = 165 similar + 370 non-similar)
Formula + algorithm (1) + A1 (2) + A1 (1) + A2 (2) + A2
Similar cases
Not similar cases

164
371

128
407

183
352

167
368

False alarms
Omissions

22
23

8
45

34
16

23
21

False positive Pp 5.9% 2.2% 9.2% 6.2%
False negative Pn 13.9% 27.3% 9.7% 12.7%

Total errors 19.8% 29.5% 18.9% 18.9%
Recall R 86.1% 72.7% 90.3% 87.3%
Precision P 86.6% 93.8% 81.4% 86.2%

F-measure 86.3% 81.9% 85.6% 86.7%

Results In our experiments we examined the
results of algorithm's work manually. The
above tables show the result of automatic
processing for the formulas (1) or (2) above in
combination with the algorithms A1 or A2. The
quality of the result is judged by a single-value
parameter called F-measure [Baeza-Yates et al.,
1999]:

precisionrecall
F 11

12
+

= .

4 Conclusions
We have suggested knowledge-poor algorithms
for constructing word frequency lists with
stemming. Our empirical formulae do not re-
quire any morphological dictionaries of a given
language. This is useful for working with mul-
tilingual databases and multi-thematic docu-
ment collections. The accuracy of the suggested
algorithms is very promising.
In the future we plan to construct several

other empirical formulae and consider other
algorithms. We plan to take into account some
statistical regularities extracted from the text
itself (we thank M. Porter for useful
suggestions on such modifications).
Acknowledgements
The work was done under partial support of
Mexican Government (CONACyT, SNI, CGPI-
IPN). The third author is currently on Sabbati-
cal leave at Chung-Ang University, Korea.

References
Alexandrov, M., X. Blanco, P. Makagonov
(2004): Testing Word Similarity: Language
Independent Approach with Examples from
Romance. In: F. Meziane el al. (Eds.) “Natu-
ral Language for Information Systems”,
Springer, LNCS, N 2515 (to appear).

Baeza-Yates, R., B. Ribero-Neto (1999): Mod-
ern Information Retrieval. Addison Wesley.

Gelbukh, A. (2003): Exact and approximate
prefis search under access locality require-
ments for morphological analysis and spell-
ing correction. Computación y Sistemas, vol.
6, N 3, 2003, pp. 167–182.

Gelbukh, A., G. Sidorov (2003): Approach to
construction of automatic morphological
analysis systems for inflective languages
with little effort. In: Computational Linguis-
tics and Intelligent Text Processing (CI-
CLing-2003), Lecture Notes in Computer
Science N 2588, Springer, pp. 215–220.

Ivahnenko, A. (1980): Manual on typical algo-
rithms of modeling. Tehnika Publ., Kiev (in
Russian).

Makagonov, P., M. Alexandrov (2002):
Empirical formula for testing word
similarity and its application for constructing
a word frequency list. In: A. Gelbukh (Ed.),
Computational Linguistics and Intelligent
Text Processing (CICLing-2002), Lecture
Notes in Computer Science, N 2276,
Springer Verlag, pp. 425-432.

Porter, M. (1980): An algorithm for suffix
stripping. Program, 14, pp. 130–137.

