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Resumen: Las listas de palabras con sus frecuencias se usan ampliamente en muchos 
procedimientos de agrupamiento y categorización de textos. Usualmente para la compila-
ción de tales listas se usan las aproximaciones basadas en morfología (como el stemmer 
de Porter) para unir las palabras con el mismo significado. Desafortunadamente, tales 
aproximaciones requieren de muchos recursos lingüísticos dependientes de lenguaje 
cuando se trabaja con datos multilingües y colecciones multitemáticas de documentos. En 
este artículo se proponen dos procedimientos basados en formulas empíricas de similitud 
entre palabras. Un simple ajuste de los parámetros de las fórmulas permita su adecuación 
a diferentes lenguajes europeos. Se demuestra la aplicación de las fórmulas con ejemplos 
reales del francés, italiano, portugués y español.  
Palabras clave: stemming, indexación, métodos independientes de lenguaje, métodos es-
tadísticos 
 
Abstract: Word frequency lists extracted from documents are widely used in many pro-
cedures of text clustering and categorization. Usually for compilation of such lists mor-
phological-based approaches (such as the Porter stemmer) to join the words having the 
same base meaning are used. However such an approach needs many language-dependent 
linguistic resources or knowledge when working with multilingual data and multi-
thematic document collections. We suggest two procedures based on empirical formulae 
of word similarity. Simple adjustment of the parameters of the formulae allows tuning 
them to different European languages. We demonstrate the application of our formulae on 
real examples from French, Italian, Portuguese, and Spanish. 
Keywords: stemming, indexing, language-independent methods, statistical methods 

 

1 Introduction 
The typical procedure for constructing a word 
frequency list consists in the following two 
steps:  
1. All words are ordered alphabetically and 

their counts are set to 1. 
2. Every word is substituted by its stem or 

lemma (normal dictionary form). 

3. Equal strings are joined together and their 
counts are summed up. 

By the normal form we mean singular for nouns, 
indefinite infinitive for verbs, etc. Such a trans-
formation is called lemmatization. It relies on 
morphological rules and a large morphological 
dictionary. It provides practically ideal accu-
racy on known words and good accuracy on the 



 

words absent in the dictionary [Gelbukh, 2003; 
Gelbukh and Sidorov, 2003].  
Instead of the normal form, the words can be 

truncated to their stems, which often reflect 
their invariant meaning; e.g., sad, sadly, sad-
ness, saddens, saddened are truncated to the 
same stem sad-. This method is much simpler 
since it uses only lists of suffixes and suffix 
removal rules, without any dictionaries [Porter, 
1980]. Its accuracy is lower than that of lemma-
tization. Still it relies on language-dependent 
resources. 
Makagonov [2002] suggested an empirical 

formula for testing word similarity and demon-
strated how to use such a formula for stemming 
in constructing word frequency lists. The for-
mula itself was based on the number of the 
coincident letters in the initial parts of the two 
words and the number of non-coincident letters 
in their final parts. The frequency list is ob-
tained by an iterative procedure, which com-
pares word pairs and determines their common 
part. 
Our experiments with Romance languages 

show that one of suggested empirical formulae 
provides 80%–90% accuracy (F-measure), with 
2%–5% of false collatings and 20%–25% of 
failuries to collate similar words. This is rather 
acceptable in semi-automatic setting since the 
human expert can easily join the similar words 
after the grouping procedure [Alexandrov, 
2004]. 
However, many important issues concerning 

application of the empirical formulae for stem-
ming remain open. In this paper we compare 
the application of two different formulae and 
consider two iterative procedures on real texts 
in four Romance languages—French, Italian, 
Portuguese, and Spanish—in the domain widely 
discussed currently in the European Commu-
nity: mortgage and crediting. To evaluate the 
accuracy of the results, we use characteristics 
from both mathematical statistics and informa-
tion retrieval. 

2 The Algorithms 
2.1 Formulae for Testing Word 

Similarity 
The empirical formulae used in the procedure 
of constructing word frequency list test a hy-
pothesis about word similarity. We consider 
only the languages where the word base (the 
morphologically invariant part) is located at the 

beginning of the word. This is generally true for 
the European languages. 
   We consider two classes of formulae: 
1. The formulae that do not take into account 

the position of the final part in a word pair; 
2. The formulae that do take it into account.  
   The formulae of the first class can be repre-
sented in the following form:  
n/s ≤ F (y), 
F(y) = a + b1y + b2y2 + ... + bkyk,  (1) 
where: 
n: the total number of final letters differing 

in the two words, 
y: the length of the common initial sub-

string, 
s: the total number of letters in the two 

words, 
F(y): the model function.  
For example, for the words sadly and sadness, 
the maximal common initial substring is sad-, 
thus the differing final parts are -ly and -ness so 
that n = 6, y = 3, and s = 12.  
     When the inequality holds, the hypothesis 
about word similarity is accepted. Using the 
Inductive Method of Model Self-Organization 
(IMSOM) by Ivahnenko [1980] we found that 
the best formula (in the considered class) is 
lineal, with the following parameters: 

French: n/s ≤ 0.481 – 0.024 y 
Italian: n/s ≤ 0.571 – 0.035 y 
Portuguese: n/s ≤ 0.528 – 0.029 y 
Spanish: n/s ≤ 0.549 – 0.029 y 

   The formulae of the second class can be rep-
resented in the following form:  
D(y,N) ≤ 0, 
D(y, N) = ∑ )(if δ(i),    i = y + 1, ..., N 
F(i)= a + b1/i + b2/i2 + ... + bk/ik, 

(2) 

where: 
y:  the length of the common initial sub-

string, 
N:  the length of the longest word in the list, 
δ(i):  indicator of letters at the i-th position  
We set δ(i) = 0, 0.5, or 1 if i is greater than the 
lengths of both words, of the length of one of 
the two words, or less than, or equal to, the 
lengths of both words, respectively. For exam-
ple, for the words sadly and sadness, the maxi-



 

mal common initial substring is sad-, so that y = 
3, δ(4) = δ(5) = 1, δ(6) = δ(7) = 0.5, δ(8) =...= 
δ(15) = 0 (N = 15). 
   When the inequality holds, the hypothesis 
about word similarity is accepted. Using 
IMSOM, we found that the best model is in-
verse lineal with the following parameters: 

French: F(t) ≤ –0.21 + 0.029 / t 
Italian: F(t) ≤ –0.26 + 0.015 / t 
Portuguese: F(t) ≤ –0.24 + 0.016 / t 
Spanish: F(t) ≤ –0.27 + 0.033 / t 

These formulae can be considered an initial 
approximation for further tuning on other 
romance languages. 
Testing word similarity one can commit two 

types of errors: join words that are not similar 
(false positive) or fail to join words which are 
similar (false negative). Obviously since the 
empirical formula is constructed on the basis of 
statistical regularities of a language, it leads to 
the both types of errors. Tuning the parameters 
we can control the balance between these two 
kinds of errors, but not to completely avoid 
them.  
   Our approach for testing word similarity is 
not applicable to irregular words: it is impossi-
ble to construct a simple formula that could 
detect the similarity between English irregular 
verbs such as buy and bought—these words 
have only one common letter in the initial part 
of the string. This situation sometimes occurs in 
the Romance languages considered in this paper.   

2.2 Constructing Word Frequency List 
We consider two procedures:  
A1. Algorithms based on joining a pair of adja-

cent similar words, and 
A2. Algorithms based on joining a group of 

similar words. 
Each of the two algorithms can use any of 

the empirical formulae described above, or any 
other one. The two algorithms differ in their 
capability of word conflation, independently of 
the formulae used. 
   First of all, the text or a group of texts is 
transformed into a sequence of words. All 
stopwords (including short words) are elimi-
nated from the list. Then with each word, a 
counter is associated and set to the initial 
value 1. Then all words are ordered alphabeti-
cally, equal strings are joined together, and their 
counts are summed up. 

The two variants of the algorithm work as 
follows. 
Algorithm A1 (pair-wise)   From the begin-
ning of the list, the first word similar (according 
to the formula) to the next one is looked for. 
The two words are replaced with one new 
“word”—their common initial part, with the 
counter set to the sum of the counters of the two 
original words. Then the procedure is repeated 
(from the same position in the list, since we 
know that there are no similar words above the 
current position), until no pair of similar words 
is found. 
Algorithm A2 (chain-wise)   From the begin-
ning of the list, the first word similar to the next 
one is looked for. Then second word of the pair 
is compared with the next word, etc., thus 
building a maximal chain in which every two 
adjacent words are similar. The whole chain is 
replaced with one new "word"—their common 
initial part, with the counter set to the sum of 
the counters of all original words. Then the 
process continues from the next position in the 
list. 
Example   Suppose we have the following list 
of Spanish words ordered alphabetically, with 
the following counts: transformación (7), trans-
formado (5), transformamos (7), traducción (6), 
traductor (7), transporte (11), transportado (2). 
The digits in brackets mean the number of 
word’s repetitions. 
The following table shows the first steps of 

the work of the pair-wise algorithm: 
 Initial list  First iteration 
→ transformación (7) 

transformado (5) 
transformamos (7) 
traducción (6)  
traductor (7) 
traduje (4) 
transportado (2) 
transporte (11)  

→ transforma- (12) 
transformamos (7) 
traducción (6) 
traductor (7)  
traduje (4) 
transportado (2)  
transporte (11) 

     
 Second iteration  Third iteration 
→ transforma- (19) 

traducción (6) 
traductor (7)  
traduje (4) 
transportado (2)  
transporte (11) 

� 
→ 

transforma- (19) 
traduc- (13) 
traduje (4) 
transportado (2)  
transporte (11) 

The following table shows the work of the 
chain-wise algorithm: 



 

 Initial list  First grouping 
→ transformación (7) 

transformado (5) 
transformamos (7) 
traducción (6)  
traductor (7) 
traduje (4) 
transportado (2) 
transporte (11)  

� 
→ 

transforma- (19) 
traducción (6) 
traductor (7)  
traduje (4) 
transportado (2)  
transporte (11) 

    
 Second grouping  Third grouping 
� 
� 
→ 

transforma- (19) 
tradu- (17) 
transportado (2)  
transporte (11) 

� 
� 
� 
→ 

transforma- (19) 
tradu- (17) 
transport- (13) 

2.3  Discussion 
 

The suggested algorithms prove to be sensible 
not only to the parameters of the formula but to 
the size of the word list. Namely, the shorter the 
list the greater the probability of conflation. 
This especially affects short words. 
   For example, in a short vocabulary the prob-
ability for the following English words 

bead 
bear 
beat 

to occur together is high, and according to the 
formulae from [Makagonov, 2002], these words 
will be considered similar and conflated by the 
algorithm. In case of a large vocabulary these 
words would be separated: 

bead 
...etc... 
beagle 
beagling 
...etc... 
bear 
...etc... 
beast 
beastliness 
...etc... 
beat 

However, in this case many short words that 
ought to be conflated will be separated in the 
vocabulary by unrelated words: 

cat 
catalogue 
cataplasm 
catastrophe 
catenary 

cats  
These examples were taken from our private 
communication with M. Porter, the author of 
the stemming algorithm [Porter, 1980]. 
   The former situation is a problem. However, 
we assume that in the one domain so different 
short words do not frequently occur. As to the 
latter situation, we did observe such cases. 
However, this is not dangerous because these 
related words can be easily revealed manually, 
since in practice an expert usually checks the 
results of the work of the algorithm. 
3 Experimental Results 
The algorithms were checked on real document 
collections. The goals of these experiments 
were:  
– To compare the quality of the formulae for a 
given language, 

– To compare the quality of algorithms for a 
given language, 

– To compare the quality of a given algorithm 
for different languages.  

Document Collections   We considered the 
documents on a popular theme: mortgage and 
crediting. This theme is narrow enough to pro-
vide a representative set of similar words. To 
reduce the number of comparisons we ran-
domly selected some paragraphs from the 
document collections. Then we obtained alpha-
betical lists of words, exemplified in the follow-
ing table:  
  

French  Italian 
absence 
accepte 
accord 
accorde 
accordee 
...etc... 

 accedere 
acquistare 
acquisto 
adatte 
adatto 
...etc... 

Total: 456 words  Total: 567 words 
    

Portuguese  Spanish 
abrange 
abrangencia 
abrangendo 
acessoes 
acima 
...etc... 

 abaratado 
abogado 
abogados 
acceder 
actual 
...etc... 

Total: 506 words  Total: 536 words 



 

French   (455 tests = 115 similar + 340 non-similar)   
Formula + algorithm (1) + A1 (2) + A1 (1) + A2 (2) + A2  
Similar cases 
Not similar cases 

104 
351 

88 
367 

126 
329 

111 
344 

 
False alarms  
Omissions 

7 
18 

3 
30 

18 
7 

10 
14  

 

False positive  Pp 2.0% 0.9% 5.3% 2.9%  
False negative Pn 15.7% 26.1% 6.1% 12.2%  

Total errors 17.7% 27.0% 11.4% 15.1%  
Recall     R 84.3% 73.9% 93.9% 87.8%  
Precision P 93.3% 96.6% 85.7% 91.0%  

F-measure 88.6% 83.7% 89.6% 89.4%  
 

Italian   (566 tests = 140 similar + 426 non-similar)   
Formula + algorithm (1) + A1 (2) + A1 (1) + A2 (2) + A2  
Similar cases 
Not similar cases 

149 
417 

120 
446 

193 
373 

166 
400 

 
False alarms  
Omissions 

39 
30 

19 
39 

65 
12 

45 
19  

 

False positive  Pp 9.2% 4.2% 15.3% 10.6%  
False negative Pn 21.4% 27.9% 8.6% 13.6%  

Total errors 30.6% 32.1% 23.9% 24.2%  
Recall     R 78.6% 72.1% 91.4% 86.4%  
Precision P 73.8% 84.2% 66.8% 72.9%  

F-measure 76.1% 77.7% 77.2% 79.1%  
 

Portuguese  (505 tests = 138 similar + 367 non-similar)   
Formula + algorithm (1) + A1 (2) + A1 (1) + A2 (2) + A2  
Similar cases 
Not similar cases 

136 
369 

117 
388 

159 
346 

141 
364 

 

False alarms 
Omissions 

15 
17 

9 
30 

27 
6 

17 
14  

 
False positive  Pp 4.1% 2.5% 7.4% 4.6%  
False negative Pn 12.3% 21.7% 4.3% 10.1%  

Total errors 16.4% 24.2% 11.7% 14.7%  
Recall              R 87.7% 78.3% 95.7% 89.9%  
Precision          P 89.0% 92.3% 83.0% 87.9%  

F-measure 88.3% 84.7% 88.9% 88.9%  
 

Spanish   (535 tests = 165 similar + 370 non-similar)   
Formula + algorithm (1) + A1 (2) + A1 (1) + A2 (2) + A2  
Similar cases 
Not similar cases 

164 
371 

128 
407 

183 
352 

167 
368 

 

False alarms  
Omissions 

22 
23 

8 
45 

34 
16 

23 
21  

 
False positive  Pp 5.9% 2.2% 9.2% 6.2%  
False negative Pn 13.9% 27.3% 9.7% 12.7%  

Total errors 19.8% 29.5% 18.9% 18.9%  
Recall              R 86.1% 72.7% 90.3% 87.3%  
Precision          P 86.6% 93.8% 81.4% 86.2%  

F-measure 86.3% 81.9% 85.6% 86.7%  
 



 

Results   In our experiments we examined the 
results of algorithm's work manually. The 
above tables show the result of automatic 
processing for the formulas (1) or (2) above in 
combination with the algorithms A1 or A2. The 
quality of the result is judged by a single-value 
parameter called F-measure [Baeza-Yates et al., 
1999]: 

precisionrecall
F 11

12
+

= . 

4 Conclusions 
We have suggested knowledge-poor algorithms 
for constructing word frequency lists with 
stemming. Our empirical formulae do not re-
quire any morphological dictionaries of a given 
language.  This is useful for working with mul-
tilingual databases and multi-thematic docu-
ment collections. The accuracy of the suggested 
algorithms is very promising. 
In the future we plan to construct several 

other empirical formulae and consider other 
algorithms. We plan to take into account some 
statistical regularities extracted from the text 
itself (we thank M. Porter for useful 
suggestions on such modifications). 
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