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Abstract. One of the problems of e-Business is to find relevant documents for making correct decisions. 
The main problem of the Internet is the huge amount of documents that makes it difficult to find the 
relevant ones, hence the importance of the methods allowing for improving the quality of document 
retrieval. We discuss some linguistic problems of document retrieval on the Internet related to the 
following natural language phenomena: (1) morphological processes: e.g., takes, took, taken are grammar 
forms of take, (2) polysemy and homonymy: most words have several senses, e.g., bank is a financial 
institution, shore, bench, etc., (3) non-linearity of syntactic relations: in case of a query that contains word 
combinations, the words forming a word combination can be separated by other words in the documents. 
Some linguistic-based methods and strategies related to the discussed problems are proposed that improve 
the quality of document retrieval or show the necessity of application of linguistic methods. 

1. Introduction 
Conducting e-business in Internet assumes business communication (such as offers and requests of goods 
or services) between people who do not coincide in space and time (hence the need in using the Internet), 
using automatic means due to the huge amount of information (search in huge databases) and the time 
constraints (the one who first discovers an advantageous offer gets it). Hence the vital necessity in robust 
natural language understanding technology for e-business, given that most of business communication is 
conducted in natural language. In addition, due to standardization difficulties, there is a general consensus 
on that the language of communication of e-business software agents in Internet will eventually be plain 
English. In particular, the problem of word sense disambiguation discussed below in this paper is one of 
the central problems in both automatic (agent-driven) and manual (traditional) business communication in 
Internet. Consider an intentionally simplistic example: a human or software agent that looks in Internet 
for, say, flowers, risks buying musical instruments instead if it interprets incorrectly the word viola in the 
description of the offer. 
In addition, any person involved in decision-making in e-Business knows that though Internet is a great 
source of information, it is very difficult to find the specific data one is interested in. Usually search 
engines find the documents on the basis of keywords occurring “near” each other in the document. Some 
specialized techniques are applied for ranking the documents from the more relevant for the user to less 
relevant, according to the system’s estimation. However, these methods of documents ranking fail very 
often.  
Usually, the documents are texts written in natural language. Thus, application of linguistic techniques 
allows for improving quality of document retrieval. We discuss some linguistic problems of document 
retrieval on the Internet related to the following natural language phenomena:  
(1) Morphological processes: e.g., takes, took, taken are grammar forms of take. This causes the 

necessity of identification of such forms, and, thus, the development of systems for morphological 
analysis, which is to be applied during indexing and/or during text search. 

(2) Polysemy and homonymy: most words have several senses, e.g., bank is a financial institute, shore, 
bench, etc. It is necessary to distinguish between such words that are represented by the same letter 
string but express mean different meaning; such a task is called automatic word sense 
disambiguation. Indeed, a user searching for international banks in Mexico should not be presented 



with documents about an international campus on the banks of the Usumacinta River in Mexico. 
Thus, some elements of semantic analysis are necessary to improve the quality of text search. 

(3) Non-linearity of syntactic relations: if the query contains a word combination, the words of this word 
combination can be separated by other words in the documents. For example, for the query Mexican 
banks the user expects to get the document with the phrase Mexican hotels and banks, but not those 
with the phrase For any Mexican banks in Madrid are easy to find. 

The paper is organized as follows. First we discuss the problems related to automatic morphological 
analysis and present an approach that allows for rapid development of such systems for different 
languages with little effort. Then we evaluate the plausibility of application of word sense disambiguation 
in information retrieval. We show that information retrieval will benefit from application of word sense 
disambiguation methods. Finally, we compare two possibilities of searching for word combinations: a 
method based on syntactic analysis that determines important dependencies between words, and a bigram 
method that only considers immediately neighboring words. We show that the linguistically-motivated 
method based on syntactic analysis shows much better retrieval quality. 

2. Automatic Morphological Analysis 
Natural language morphology studies the structure of words and its relation with grammatical categories 
of a given language. The objective of the automatic morphologic analysis is to carry out morphologic 
classification of word forms. For example, the analysis of the grammar form takes shows that it is a verb 
in present tense, 3rd person, singular number, and its normalized form (lemma) is (to) take. 
In case of English, the problem of morphological analysis is not so difficult—usually the words have two 
or three grammar forms that differ from their lemma in a very simple and regular way, the only exception 
being the irregular verbs. In case of the majority of the other European languages, though, it is much more 
complicated. For example, Spanish has 65 main verb forms (e.g., den ‘let them give’), or more than 200 
cliticized forms (e.g., dénmelo ‘let them give him to me’). The situation is even more complicated in 
Slavic languages, like Russian or Czech. Say, nouns in Russian have 12 forms, adjectives more than 30, 
and verbs more than 150 forms (taking into account the participles). 
The systems of document retrieval should be able to identify different grammar forms as belonging to the 
same lemma to ensure completeness of the retrieval results. Thus, some elements of morphological 
analysis are necessary for systems in any language, even in the morphology-poor English language. In 
this section, we describe an approach that allows for construction of morphological analysis modules with 
little effort and time; detailed description of other approaches can found in [2, 6, 11].  
The complexity of the morphological system of a language for the task of automatic analysis does not 
depend very much on the number of the grammar classes or on homonymy of flexions, because the 
algorithms for processing flexions are rather straightforward. Instead, it mainly depends on number of 
stem alternations that cannot be guessed without consulting a dictionary. For example, consider Spanish 
verbs mover–muevo ‘to move / I move’ vs. correr–corro ‘to run / I run’; looking at the verbs, it is 
impossible to deduce whether they have alternations or not. The same problem is present in English, for 
example, looking at verbs to take vs. to brake, one cannot say which one is irregular; this is the dictionary 
knowledge. 
At one extreme is the approach to morphological analysis that stores all grammatical forms in a 
dictionary, along with the lemma and all necessary grammatical information associated with each form. 
With this approach, a morphological system is just a very large several-column database. Modern 
computers have the possibility of storing databases containing all grammatical forms for large dictionaries 
of inflective languages: a rough approximation for Spanish is 20 to 50 megabytes. Nevertheless, these 
models have their own shortcuts: it is difficult to add new words to the dictionary, it is impossible to 
implement the processing of unknown words, etc. 
Thus, it is necessary to develop linguistically-based morphological models and the corresponding 
algorithms. However, not all methods are equally convenient in use and easy to implement. There are two 
important points that make the differences between different approaches: 

• Static or dynamic method of processing of stem allomorphs (variants of the stem, such as 
goose/geese), and  

• Morphological models that are used. 
There are two methods of processing of stem allomorphs: static and dynamic. With the static method, all 
stem allomorphs are stored in the dictionary (usually there are two to four allomorphs, so the dictionary 



size is not significantly affected; note that the majority of words (say, in Russian more than 70 percent) do 
not have stem alternations. The allomorphs are generated beforehand; this is not difficult because the 
information about each stem is available.  
With the dynamic method, allomorphs are constructed dynamically, with the aim of reconstructing 
allomorphs that would be stored in the dictionary with the static method. The corresponding rules cannot 
be standardized, so the number of such rules is quite large, usually more than a thousand rules. Besides, 
they do not have any intuitive correspondence in common knowledge of the language. For example, in 
order to generate the dictionary stem for Russian stem okon- ‘window’, it is necessary to delete the 
inner -o-, which gives okn-. A corresponding example for English—just to demonstrate the kind of 
processes—is took: it is necessary to change -oo- to -a- and add -e to obtain take. Without any beforehand 
information about the possible type of the stem this is difficult and leads to the necessary to develop and 
apply many unintuitive rules. This method is of high complexity (so-called NP-complete) [4]. Therefore, 
the static method is more reasonable and easy to implement than the dynamic one. 
The other dilemma deals with the kind of morphological models. The obvious direct way for developing 
the morphological models is to create a new morphological class for any paradigm that exists in the 
language, thus, the number of classes is calculated up to 1500 for Czech [8] or 1000 for Russian [1]. 
These classes are artificial, created for the purposes of analysis.  
The other possibility is to use the morphological models that already exist for generation. Say, in case of 
Russian there are about 40 morphological classes. These models are described in traditional grammars, 
because these grammars are oriented to generation. Besides, they correspond very well to the intuition of 
native speakers. To use these models for analysis, it is necessary to apply special techniques that allow for 
applying generation instead of direct analysis. Usually, generation is much simpler than analysis. Such a 
technique is known in artificial intelligence as “analysis through generation.” In our case, it is applied as 
follows: The system first generates all possible hypotheses based on the possible flexions and then tries to 
generate the grammar forms according to each hypothesis using the corresponding stem and its 
morphological class taken from the dictionary. Note that there is a small number of classes, while the 
peculiarities of words are described using grammar marks for words, such as the presence of alternations, 
the absence of singular (pluralia tantum), etc. These marks are interpreted during the process of 
analysis/generation.  
Obviously, it is much easier for development of a system to have a small number of morphological 
classes, which correspond very well to the intuition of speakers. Sometimes these classes already exist, 
but if they do not exist, it is easier to characterize the words in a given language applying the simple and 
intuitive classification. 
Accordingly, we suggest an approach based on static method of processing of stem allomorphs (i.e., all 
allomorphs are stored in the dictionary) and on application of the natural morphological models created 
for generation using the analysis-through-generation procedure. 
The first stage of our method is data preparation. The words of a language are described in terms of the 
chosen morphological models. Then the stem dictionary is generated with all possible allomorphs of each 
stem. Note that the stem allomorphs should be marked according to the algorithm of their generation—for 
example, first, second, etc. This information is necessary during grammar form generation, namely, for 
choosing the correct stem allomorph. 
The next stage is the development of the algorithm of morphological analysis. The following modules 
(parts of algorithm) are necessary: 

1. Module of generation of hypotheses. These hypotheses are based on the correspondence between 
flexions and sets of possible values of grammar categories (flexion → values), e.g., in English, 
flexion -s can express plural for nouns or 3rd person singular for verbs, etc. 

2. Module of choice of stem allomorphs. This choice is based on the correspondence between the 
sets of values of grammar categories of morphological classes and the number of the stem 
allomorph (values → number of the stem allomorph). For example, consider English verb stems 
verify/verifi- as allomorphs; the first allomorph is used for the present tense (except for the 3rd 
person singular form), and the second one for the past or present 3rd person singular form. This 
can be indicated using masks, patterns, direct programming, etc. Note that we do not need the 
reverse correspondence because we apply this module only for generation.  



3. Module of choice of flexions: which flexion is used for a given set of grammar categories of a 
given class (values → flexion). For example, in English for plural of nouns the flexions -s or -es 
are used depending on the last letters of the stem.  

The irregular forms should be processed separately. They are stored in the dictionary with their lemma 
and values of grammar categories (number, tense, etc.). Therefore, their analysis is just searching in the 
dictionary (the hypothesis of the irregular form with zero flexion should always be considered). Their 
generation also consists of searching in the dictionary, though for the lemma and the corresponding 
values of grammar categories. 
The procedure of generation is very simple. The input is (1) a set of values of grammar categories and (2) 
a string that identifies the word (stem allomorph or lemma). The procedure implies obtaining the 
information from the dictionary (the morphological class, etc.), choice of the correct stem allomorph, and 
choice of the correct flexion (see the above description of the corresponding modules). 
With the suggested approach, the procedure of analysis is simple. The input is a string of characters. The 
procedure is as follows: (1) formulation of the hypotheses for all possible flexions, (2) a call of the 
generation procedure for each hypothesis, (3) comparison of the result of generation with the input. If 
they coincide then the hypothesis is correct. Note that it is important to apply generation because 
otherwise some incorrect forms would be analyzed as correct ones, for example, *taked (instead of took). 
Indeed, both the stem take- and the flexion -d exist, but they are incompatible, which is verified through 
generation (the correct form took will be generated, which does not coincide with the input *taked). Not 
analyze the words incorrectly is important not to generate wrong analyses. For example, the string 
learned stands only for past tense of the verb to learn, but not for its past participle, which cannot be 
verified without generation and comparison (cf. lesson learnt vs. question asked). 
We have developed the systems for automatic morphological analysis on the basis of this approach for 
Russian, English, and Spanish languages. It took relatively little time and effort: from several weeks of 
work of one person for English, several months for Spanish [2] and up to a year for Russian [9], which 
has a more complex morphology. 

3. Automatic Word Sense Disambiguation 
Words in a typical explanatory dictionary have different meanings (senses); this phenomenon is known as 
polysemy. However, a word has only one of these dictionary senses in each specific text. The problem of 
choice of a word sense used in a given text is called a word sense disambiguation problem. There are 
different methods of word sense disambiguation. They can be classified into two main groups: statistical 
methods (see, for example, [7]) and methods based on application of different knowledge sources (see, 
for example, [12]).  
Below we describe an experiment that allows for evaluation of the usefulness of using word sense 
disambiguation techniques in Internet search. Indeed, if texts are indexed by word senses instead of just 
letter strings, then given a query bill1 ‘financial document’, the system would not present the documents 
containing bill2 ‘garden instrument’. How often does this situation occur? The idea behind our evaluation 
is as follows: If word senses are too close (too similar), then, on the one hand, the user will be unable to 
distinguish them for his or her informational need and, on the other hand, automatic word sense 
disambiguation in the texts of the documents will not be reliable. Therefore, an information retrieval 
system should not distinguish between such senses, not to compromising its recall (the completeness of 
the search results). However, if the senses are sufficiently different, then an information retrieval system 
should distinguish between them to improve its precision (absence of noise in the results) because they 
represent different meanings, some of them being related to the user information need and others being 
unrelated to it. 
We propose to measure the semantic distances (similarity) between different senses of the same word. 
Note that such measurement normally is useful for specific purposes because usually the distance is 
measured between words. We measure the distance between two given senses as the relative number of 
equal or synonymous words in their definitions in an explanatory dictionary (in our experiments with 
Spanish texts we used the Anaya explanatory dictionary of Spanish). By equal words we mean equal 
lemmas, i.e., we do not distinguish words in different morphological forms (go, goes, gone, etc.). For 
detecting synonyms we use a Spanish dictionary of synonyms. 
We show that a considerable part of word senses of the same word are quite different, and, thus, they 
should be distinguished for the purposes of information retrieval. On the other hand, another considerable 



part of word senses of the same word are rather close; these senses either should not be distinguished in 
information retrieval or their definitions should be changed. 
We used Anaya dictionary as a source for definitions of the word senses. This dictionary has more than 
30,000 headwords, which have more that 60,000 word senses. For morphological processing, we applied 
a Spanish morphological analyzer and generator developed in our laboratory [2]. All definitions in the 
dictionary were normalized and the part of speech tagging procedure was applied to determine the part of 
speech of each word [10]. We also used a synonym dictionary of Spanish that contains about 20,000 
headwords. This dictionary is applied for detecting synonymous words in definitions when we measure 
the distances between senses. 
Below we give an example of the data (normalized definitions from Anaya dictionary) that was used. The 
definition of the Spanish word fabricar ‘fabricate’ in one of the senses is as follows:  
Fabricar: transformar materias primas en productos semielaborados, o estos en productos ya 

acabados. 
 

‘Fabricate: transform raw materials into semi-elaborated products, or the latter into already 
terminated products.’ 

The normalized version of this definition is as follows: 
Fabricar: transformarverb materianoun primaadj enprep productonoun semielaboradopart ,punct oconj estopron 

enprep productonoun yaadv acabadopart . punct 
 

‘Fabricate: transformverb rawadj materialnoun intoprep semi-elaboratedpart productnoun ,punct orconj thedet 
latteradj intoprep alreadyadv terminatedpart productnoun . punc’ 

where conj stands for conjunction, adv for adverb, prep for preposition, adj for adjective, det for 
determiner, part for participle, and punct for punctuation mark. There are some words that were not 
recognized by our morphological analyzer (about 3%), which are marked as unknown. 
It is obvious that at the stage of comparison it is desirable to ignore the auxiliary words (such as 
conjunctions or articles) because normally they do not add any semantic information or add some 
arbitrary information; for example, prepositions often depend on the subcategorization properties of a 
particular verb in the given language. 
In the experiment, we measured the similarity between two different word senses of the same word. We 
used the commonly accepted measure of similarity between two texts that is analogous to the well-known 
Dice coefficient, see, for example [5]: 
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where W1 and W2 are sets of words in the two definitions; |W1∩W2| stands for the number of words that 
occur in both texts, while the symbol “ o ” indicates that we calculate such intersection using synonyms. 
The processing procedure was as follows. For each word in the dictionary, we measured the similarity 
between its senses. Obviously, words with only one sense were ignored. In Anaya dictionary, there are 
about 13,000 words with only one sense (out of 30,000 words in total). Since similarity is a symmetrical 
relation, it was calculated only once for each pair of senses of each word. Note that we considered 
homonyms as different words and not as different senses. Normally, this is the way that they are 
represented in the dictionaries: as different groups of senses. Besides, the homonyms by definition have 
different meanings, so this mode of their treatment is the most appropriate for our research. 
We conducted several experiments with different weighting coefficients, i.e., different manners of 
treating synonyms. The results show that the weighting of synonyms obviously changes the obtained 
values, decreasing the similarity.  
Since the similarity is a fraction, some fractions are more probable than others; specifically, due to a high 
number of short definitions, there were many figures with small denominators, such as 1/2, 1/3, 2/3, etc. 
To smooth this effect, we represented the experimental results by intervals of values and not by specific 
values. The number of intervals can be different, but should not be very large. We use five intervals, 
where the first interval contains the number of sense pairs with zero similarity. We use this interval 
because we know beforehand that there are many senses without intersection. The other intervals are 
equal, see Table 1. 



Table 1. Sense pairs per intervals in the Anaya dictionary. 
Interval of distances Number of sense pairs Percent of sense pairs 

0.00-0.01 46205 67.43 
0.01-0.25 14725 21.49 
0.25-0.50 6655 9.71 
0.50-0.75 600 0.88 
0.75-1.00 336 0.49 

Our experiment presents an argument for (1) the possibility of improvement of information retrieval by 
word sense disambiguation because overwhelming majority of word senses are significantly different and 
(2) for the need to merge some sense pairs into larger senses useful for information retrieval, or maybe for 
the need to change their definitions in the dictionary.  

4. Automatic Detection of Word Combinations 
One of the advanced options for information retrieval is search using word combinations, such as to 
polish leather. A traditional search engine will present the documents that contain both these words 
located not very far one from another. However, this is not a guarantee that the words are related; their 
co-occurrence can be mere coincidence, for example, to polish stone using leather. To guarantee that the 
documents are relevant for the query expressed by the word combination, it is necessary to perform 
syntactic analysis and detect that there is a syntactic relation between the two words. To what degree can 
it improve the performance of the search engine? Below we present an evaluation of the use of syntactic 
relations as compared with the bigram methods, which merely consider co-occurrences of the words. 
We experimented with a randomly selected Spanish text downloaded from Internet (Cervantes Digital 
Library). In our experiment, we used a probabilistic parser and a context-free grammar with unification 
for Spanish language developed in our Laboratory [3]. Namely, we applied a program that (1) performs 
syntactic analysis, (2) obtains word combinations with corresponding relation between words, (3) filters 
them, and (4) stores them in a database.  
For filtering, we use both syntactic and morphological features. Say, we filter out the relations with 
pronouns and articles according to the morphological filters. In addition, we apply syntactic filters, 
according to which only word combinations that have the following syntactic relations are stored in the 
database: verb–subject, verb–object (direct or indirect), noun–modifier (an adjective or another noun), 
verb–modifier (adverb). All other syntactic relations are discarded. The name of relation is stored as well. 
Some special cases are: (1) coordinative relation (for example, to read newspaper and magazine should 
give two word combinations to read newspaper and to read magazine), so, we split such a phrase; (2) 
relation with a preposition. In case of prepositions, we took the dependent word of the preposition and 
marked its relation with the governing word of the preposition (the head of the prepositional phrase). This 
is justified by the fact that prepositions usually express grammar relations (say, in some languages these 
relations can be expressed by grammatical cases), so they are not important for lexical links. On the other 
hand, the choice of a preposition is important linguistic information. Therefore, in this case we store all 
three members.  
As a baseline we used a method of gathering word combinations that takes all word pairs that are 
immediate neighbors (bigrams). We incorporated certain intelligence into the baseline method. Namely, 
after the modification, it ignores the articles and takes into account the prepositions. We will consider an 
example of our analysis for the Spanish sentence  
Mamá compró una torta pequeñita y un pastel con una bailarina con zapatillas de punta. 
‘Mother bought a little bun and a cake with a dancer in ballet-shoes.’ 
The following syntactic tree corresponds to this sentence. Indentation represents dependencies in the tree: 
for example, the verb in the line 1 has dependents in the lines 2, 14, and 15; the conjunction in the line 2 
has dependents in the line 3 and in the line 6, etc. Note that the words are normalizes morphologically, as 
described above. We mark with boldface the syntactic categories used in our grammar: V stands for verb, 
N for noun, SG for singular, etc. The name of syntactic relation is indicated in curly brackets.  Note that 
the name of the relation is stored with the dependent word, because the governor can have several 



dependents. In parenthesis given are the word and its lemma along with their English translation, e.g. 
(compró: comprar / bought: to buy).  

1  V(SG,3PRS,MEAN) (compró: comprar / bought: to buy) 2  ├─CONJ_C {obj}  (y: y / and: and) 3  │  ├─N(SG,FEM) {coord_conj} (torta: torta / bun: bun) 4  │  │ └─ADJ(SG,FEM) {mod}  (pequeñita: pequeñito / little: little) 5  │  │   └─ART(SG,FEM) {det} (una: un / a: a) 6  │  └─N(SG,MASC) {coord_conj}  (pastel: pastel / cake: cake) 7  │    └─PR {prep}  (con: con / with: with) 8  │      └─N(SG,FEM) {prep} (bailarina: bailarina / dancer: dancer) 9  │        ├─PR {prep}  (con: con / in: in) 10 │        │ └─N(PL,FEM) {prep}  (zapatillas: zapatilla / shoes: shoe) 11 │        │   └─PR {prep}  (de: de / of: of) 12 │        │     └─N(SG,FEM) {prep} (punta: punta / point: point) 13 │        └─ART(SG,FEM) {det} (una: un / a: a)  14 ├─N(SG,FEM) {subj} (mamá: mamá / mother: mother) 15 └─$PERIOD  (.: .,) 
The following word combinations were found in this sentence. Note that the word combinations 4 and 7 
are filtered out due to the morphological filters. 

1. comprar (obj) torta{Sg} (buy (obj) bun{Sg}) 
2. comprar (obj) pastel {Sg} (buy (obj) cake {Sg}) 
3. torta (mod) pequeñito (bun (mod) little) 
4. * torta (det) un (bun (det) a) 
5. pastel (mod) [con] bailarina {Sg} (cake (mod) [with] dancer {Sg}) 
6. bailarina (mod) [con] zapatilla {Pl} (dancer (mod) [with] shoe {Pl}) 
7. * bailarina (det) un (dancer (det) a) 
8. zapatilla (mod) [de] punta {Sg} (shoe (mod) [with] point {Sg} //= ballet shoe) 
9. comprar (subj) mamá {Sg} (buy (subj) mother {Sg}) 

The parsed text contains 741 words grouped in 60 sentences. The average length of a sentence was 12.4 
words. Apart, we marked syntactic relations in these sentences manually. For the baseline method, the 
total number of words was 588 because among 741 words there were 153 articles and prepositions in the 
sentences. The following results were obtained. The total number of correct word combinations 
(determined by the manual markup) was 208. Of these, 148 word combinations were found by our 
method. At the same time, the baseline method found correctly as few as 111 word combinations. On the 
other hand, our method reported incorrectly only 63 word combinations (false alarms), while the baseline 
method marked as possible word combinations 588 × 2 – 1 = 1175 pairs, of which 1175 – 111 = 1064 are 
false alarms. 
These figures give us the following values of precision and recall (precision is the share of the correctly 
reported items among all reported items; recall is the share of reported items among the items that ideally 
should be reported). For our method, the precision was 148 / (148 + 63) = 0.70 and recall 148 / 208 = 
0.71. For the baseline method, the precision was 111 / 1175 = 0.09 and recall 111 / 208 = 0.53. It can be 
seen that the recall of our method is better and precision is much better than those of the baseline method. 

5. Conclusions 
We have analyzed the plausibility of application of three linguistically-based techniques for document 
retrieval in Internet. 
The first problem is related with identification of different grammar forms as “the same word,” which is a 
necessary stage of information retrieval process. It is performed using a system of automatic 
morphological analysis. We suggested an approach that allows for development of such systems with 
little time and effort for different languages. The approach is based on static processing of allomorphs and 
the analysis-through-generation methodology. 
The second problem touched upon distinguishing of different senses of the words in information retrieval. 
We have shown that the distinguishing of words senses allows for better satisfaction of the user’s 
information need. However, not all senses are to be distinguished: some senses are too similar to be 
reliably distinguished both by the user and by the system; these senses are to be merged into larger ones. 



The third problem was related to advanced retrieval strategy using word combinations. We have 
described an experiment that demonstrates that application of syntactic analysis increases recall and 
precision of the search engine in case of queries containing word combinations. 
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