
Pre-conceptual Schema: a UML Isomorphism

for Automatically Obtaining UML Conceptual Schemas

Carlos Mario Zapata Jaramillo,
1
 Fernando Arango Isaza,

1
 Alexander Gelbukh

 2

Universidad Nacional de Colombia,

Carrera 80 No. 65-223 Oficina M8-112 Medellin, Colombia
{cmzapata, farango}@unalmed.edu.co

Computing Research Center (CIC), National Polytechnic Institute,

Col. Zacatenco, 07738, DF, Mexico
www.Gelbukh.com

Abstract. Software development methodologies improve model quality. Con-
ceptual schemas are representations of the universe of discourse for develop-
ment purposes. UML had become a de-facto standard in software modeling.
Obtaining UML diagrams from natural language descriptions is a very attrac-
tive goal. In this paper we present a proposal for improving some drawbacks
from the previous work on this area. We call the proposed representation a
preconceptual schema. It is an intermediate stage between natural language
and UML conceptual Schemas. Finally, we show a case study for rules apply-
ing.

1 Introduction

Quality has been increasingly important in software development; from the point of

view of Software Engineering, quality in software is the result of the application of a

disciplined and methodological approach, covering all aspects of software life cy-

cle [1].

Through a methodological approach, models have capital importance, because

they permit specification understanding, communication among members of devel-

opment team, future maintenance of the system, and reuse of code and specifica-

tions. In this methodological approach, UML had become a de-facto standard for

software development [2].

Two trends in Software Engineering have become to gain importance for ana-

lysts:

– Firstly, CASE tools have improved capabilities of analysts to create UML dia-

grams. The main goal of CASE tools is support for drawing and editing dia-

grams, but responsibility for domain knowledge and obtaining of UML dia-

grams from natural language is left to analysts [3].

– Secondly, there is an increasing wave for the automated obtaining of UML

diagrams. In this trend, responsibility for domain knowledge and obtaining of

C. M. Zapata Jaramillo, F. Arango Isaza, A. Gelbukh. Pre-conceptual Schema: a UML

Isomorphism for Automatically Obtaining UML Conceptual Schemas. In: Advances in

Computer Science and Engineering. J. Research in Computing Science, 19:3–14, 2006.

UML diagrams from natural language is left to computers, and theoretical stud-

ies have been made for rules definition to achieve this goal.

There are several works on the second trend [4–9], but certain problems are still

open. Generally speaking, many proposals in this trend tends to work on only a kind

of diagram (Entity-Relationship Model, Class diagram, and so on), but in the pres-

ence of two or more diagrams, consistency problems are common.

In this paper, adopting the second trend, we propose an approach for automated

UML diagrams obtaining through the use of a new graph named “Preconceptual

Schema” and a set of translation rules.

This paper has been organized as follows: in section 2 we survey some works on

automated UML obtaining; then, in section 3 we describe Preconceptual Schema as

a new approach to this issue. Section 4 is devoted to the definition of rules for auto-

matic transformation from Preconceptual Schemas and three kinds of UML dia-

grams. A case study in Spanish language is developed in section 5, and in sections 6

and 7 we discuss some conclusions and future works, respectively.

2 Automated UML obtaining: a survey

Many researchers in the world are trying to obtain UML conceptual schemas in an

automated way from natural language. This trend has been a dream for modelers

since the early attempts of Peter Chen, the father of Entity – Relationship Model

(ERM) [10], who defined a set of rules to obtain ERM from an English discourse

[11]. They were simple rules, but it was possible to find many counter-examples for

each of them; for this reason, Chen named them “suggestions” more than “rules”.

In the same way of thinking, Coad and Yourdon defined another set of rules for

Class Diagram, in the early years of object-orientation [12]. Neither Chen nor Coad

and Yourdon had the intention to automate their rules, but they generated the basis

for a new research in modeling.

Progress in Software Engineering has increased development and use of many new

tools, named Computer-Aided Software Engineering (CASE) Tools [3]; for model-

ers, these tools have become electronic assistants for model drawing. However,

CASE technology has been founded under the assumption that modelers have to

interpret the domain of discourse and they may convert natural language specifica-

tions into the required diagrams, and then they can use CASE tools for drawing

these diagrams. Automated assistance begins in this moment, but there’s no help in

previous stages of the process.

A semi-automated approach has been developed by LInguistic assistant for Domain

Analysis (LIDA) Project [4]. In LIDA, a classification for kinds of words is made

along a discourse in natural language; LIDA identifies nouns, verbs, and adjectives,

and it calculates frequencies of word’s appearance in the text. With this information

at hand, modeler must decide if the word will be mapped to a class, an attribute, an

operation or a relationship in the class diagram. Mapping process is, therefore,

owned by the modeler, with little assistance of the LIDA tool.

Rapid Application and Database Development (RADD) Project [5] was designed to

obtain ERM from natural language in an automated way, and initiating a “moder-

ated” dialogue to enhance completeness of the diagram. However, RADD was

designed for ERM, and its creators didn’t define mapping for another kinds of con-

ceptual schemas, e.g. UML diagrams.

A different approach was defined by Cyre in Automatic Specification Interpreter

(ASPIN) Project [6]. In ASPIN, modeler can create multiple diagrams (e.g. timing,

State-Transition, Blocks, etc.) for describing a control system specification, and then

ASPIN can create a consolidated representation of the system, based on those dia-

grams. Although ASPIN doesn’t use natural language (it only accepts a restricted

form of language, specific to the domain of control systems), its approach is useful

for demonstrating the possibility of joining diagrams together in a single representa-

tion (it uses Conceptual Graphs for this purpose). However, ASPIN only works with

control systems domain, and lacks generality for working with another paradigm

(such as UML, for example).

CM-BUILDER project [8] was developed for automated UML class diagram acqui-

sition. The process begins from natural language specifications, but it requires a

previous knowledge about domain of the problem. This knowledge must be repre-

sented through semantic nets, with almost every category of the class diagram in

them. Semantic nets, like these, are very complex to acquire, and they don’t guar-

antee mapping process if a word doesn’t match a category in them.

NL-OOPS (Natural Language Object – Oriented Product System) Project [7] uses a

semantic net for mapping process too. However, rules used by the process lack of

generality, and identified elements must belong to several categories simultane-

ously. Therefore, mapping process requires active participation of the analyst, who

must decide the final category for every element.

Both CM-BUILDER and NL-OOPS were developed for UML class diagram acqui-

sition and they don’t identify elements for another UML diagrams. On the opposite,

NIBA Project [9] was developed for multiple UML diagrams acquisition (mainly

class and activity diagrams). It uses the so called KCPM (Klagenfurt Conceptual

Predesign Model), a model with various kinds of elements to achieve mapping proc-

ess, from tables to certain dynamic diagrams. KCPM is not unified, and its use

depends on the kind of target diagram; as a consequence, it’s difficult to guarantee

consistency between diagrams, because every element for every diagram comes

from different forms of KCPM.

Work has been done in this area, but problems still remain; particularly, problems

are unsolved for consistency reasons, standardization (UML is a standard, but many

works try to obtain some other formalism), and connectivity between formalisms. In

the next section, we define a new proposal for an intermediate stage between natural

language and UML conceptual Schema: Preconceptual Schema.

3 A new approach: Preconceptual Schema

3.1 Justification

Some of the works listed in the previous section uses an intermediate formalism, in

order to facilitate mapping process. Semantic nets, tables, dynamic graphs and

conceptual graphs are some of the mechanisms used by these projects for represent-

ing natural language discourse.

An intermediate formalism acts as a facilitator of the mapping process between

natural languages and UML diagrams. It’s needed because natural language repre-

sentation lacks of certain elements and relationships required for mapping process.

3.2 Definition

In this paper we use a new kind of intermediate formalism, and we call it “Precon-

ceptual Schema”. The term “preconceptual” was coined by Heidegger [13] and it

refers to previous information, acquired in some way, of a concept. In the knowl-

edge stages, Piaget [14] identifies a stage, later to linguistic knowledge, but previous

to conceptual knowledge, and he called it “preconceptual stage”.

In some way, we are trying to gather some useful information for mapping process

from natural language to UML diagrams. To achieve this goal, we need an interme-

diate stage, founded in the linguistic information, but with certain knowledge of the

later phase of the process: the conceptual one. As a consequence, our approach

needs a new schema, an intermediate schema for facilitating mapping process be-

tween natural language specifications and UML diagrams. We called it “Preconcep-

tual Schema” PS because of the above reasons. Our main goal is the definition of PS

syntax and to prove UML diagrams can be contained in PSs.

PS must accomplish three asserts:

• PS must be obtainable from natural language (demonstration is out-of-

scope of this paper).

• PS must be isomorphic with UML diagrams (through the set of rules de-

fined in section 4).

• PS must be rewritable in a disambiguated form of language, a simple dis-

course with little or no ambiguities.

Acting as an isomorphism, PS must represent generalities of UML diagrams, as an

integrated view of the same model. For this reason, consistency problems must dis-

appear, because starting point for every diagram drawing is the same.

3.3 Notation

In ASPIN [6], they used Conceptual Graphs CG as an intermediate formalism for

representation of many diagrams simultaneously. The reasons for this election are

representativeness and versatility. But, thinking about our goals, Conceptual Graphs

poses some drawbacks for us:

• Representation of a concept, which is included in various phrases simulta-

neously, is complicated. For this goal, CGs use a dotted line called “cor-

reference”; however, this mechanism is more intricate as far as the same

concept appears over and over again.

• CGs are preeminently structural graphs. For the sake of variety, we need a

schema capable of representing both structural and dynamic properties, and

CGs only can represent structural features.

• Usage of a symbol for many kinds of representations produces ambiguity.

In CGs concepts are used for both nouns, verbs and adjectives, and rela-

tionships are used for both semantic cases and other semantic relations.

Preconceptual Schemas are founded on CG, but we have made some changes for

supporting main features of the mapping process. The main symbols in Preconcep-

tual Schemas are Concepts (rectangles) and relationships (ovals), but differing from

CGs, in concepts we can only put nouns, and in relationships we can only put verbs.

If a concept is repeated too many times in a discourse, in PSs will appear only once;

furthermore, all the relationships to this word in the discourse will be represented as

relationships with this only one concept. In this way, PSs will be integrated graphs

and they will not be like many CGs with correferents.

For dynamic purposes, in PSs there are two new elements:

• Thick arrows express implication. These elements only can be connected

from one relationship to another, and it means the target verb it’s only per-

formed if the source verb is performed (as a precondition in if-then

phrases).

• Rhombs express conditionals. In the inner space of the rhomb, we can put

expressions with concepts and operators; these expressions must be true or

false.

Similarly to CGs, in PSs thin arrows represents directed connections. In PSs, They

must be:

• Concept-relationship connection: it means one concept achieves an activity

expressed by the relationship.

• Relationship-concept connection: it means one concept receives an activity

expressed by the relationship. In this case, we can include a preposition in

the arrow (if it’s needed)

• Conditional-relationship connection: it means one activity (expressed by

the relationship) will be executed if the answer for the conditional matches

the word included in the arrow (we must include that word).

In directed connections, we can include a number for distinguishing actions before

and after an implication occurs.

In Figure 1 we can see the main symbols of PSs.

CONCEPTRELATIONSHIP DECISION IMPLICATION CONNECTION

Fig. 1. Main symbols of Preconceptual Schema

3.4 Additional Considerations

In order to define and use properly PSs, we must warn you about two special con-

siderations:

• We have only defined the main symbols used in PSs. Users of PSs must

decide the best way to express their needs in terms of them.

• Concepts admit the use of compound nouns. Again, user must decide us-

age.

In the next section, we define a set of rules for automated transformation between

PSs and three kinds of UML 2.0 diagrams: class, communication (in previous ver-

sions of UML, it was called “collaboration” diagram) and state machine diagrams.

4 Rules for automated transformation from Preconceptual

schema to UML 2.0 diagrams

In the previous section, we defined main features of PSs as an intermediate formal-

ism to perform transformation between natural language specification and UML

diagrams. Rules for obtaining PSs from natural language are out-of-scope of this

paper. Instead of, we must present rules for transformation from PSs to three UML

diagrams, for Spanish language (some rules can be different in English language).

4.1 Rules for Class Diagram

4.1.1. A source concept from a “tiene” relationship is a candidate class.

4.1.2. A target concept from a “tiene” relationship is a candidate attribute.

4.1.3. Both the source and target concepts from an “es” relationship are candidate

classes (an exception is made if one or both concepts are adjectives or proper

nouns). The relationship itself is a candidate inheritance with source concept as a

candidate daughter class, and target concept as candidate parent class.

4.1.4. A concept defined as a candidate class by one or more rules, and as a candi-

date attribute by another set of rules, is a class.

4.1.5. Relationships corresponding to either activity verbs or realization verbs are

candidate operations of target concepts (if these concepts are defined as candidate

attributes by one or more rules, the operations are assigned to their owner candidate

classes).

4.1.6. A candidate operation between two classes generates a candidate association

between these classes.

4.1.7. A “tiene” relationship between two concepts, which are identified as candi-

date classes by one or more rules, generates a candidate aggregation relationship,

with source concept as the whole and target concept as the part.

4.1.8. Concepts identified as object classes in communication diagram are candidate

classes in class diagram.

4.1.9. Relationships identified as messages between objects in communication dia-

gram are candidate operations of target object class in class diagram.

4.2 Rules for Communication Diagram

4.2.1. The source set of concepts and relationships from an implication connection is

a candidate guard conditions.

4.2.2. Expressions included in conditionals are candidate guard conditions.

4.2.3. Target relationships after either an implication or a conditional are messages.

The source concept will be source object class and target concept will be target

object class. There must be series of messages jointed by objects.

4.3 Rules for State Machine Diagram

4.3.1. Past participle messages identified in communication diagram are candidate

states for target object class.

4.3.2. Sequence between states in State Machine Diagrams depends on identified

and numbered sequences in communication diagrams.

5 A case Study in Spanish language for rules applying

The rules described in section 4 are for Spanish language, because our Research

Group is trying to obtain conceptual diagrams from specifications in this language.

The case study relates to a pizzeria and its production and delivery processes. In

Figure 2 we can see Preconceptual Schema from this domain, and in Table 1 we

summarize the application of some rules. The application of the rules for this case

study was hand-made for academic purposes; as a future work, we are planning to

build a CASE tool with the automation of this method.

Fig. 2. Preconceptual Schema of production and delivery process of a pizzeria.

Some pieces of this diagram must be rewritten as follows:

• Clients are persons.

• Details have a quantity, an observation and a product.

• If the difference between delivery hour and exit hour is lower than 30 min-

utes, then dispatcher registers payment, else dispatcher makes a devolution

report.

• Whenever client calls, dispatcher registers order.

Note how this way of textual representation of PSs must express, in a single way,

the Universe of Discourse associated with a model of the world.

Table 1. Rules application for some elements of PS.

PS Element UML Diagram UML Element UML associ-

ated element

Applied Rule

Client Class Candidate Class Person 4.1.1., 4.1.3.

Order Class Candidate Class 4.1.1.

Product Class Candidate Class 4.1.2., 4.1.4.

Address Class Candidate Attrib-
ute

Person 4.1.2.

Register Class Candidate Opera-
tion

Order 4.1.5., 4.1.9.

Chef prepares
product

Communication Guard Condition Assign 4.2.1.

Deliver Communication Candidate Message Deliverer,
Order

4.2.3.

Delivered State Machine Candidate State Order 4.3.1.

From Table 1, we can see how product is initially defined as a candidate attribute by

4.1.2. rule and then redefined as a candidate class by 4.1.4. rule. Furthermore, in

UML associated element appears some elements needed for the element definition;

e. g. “Client” needs “Person” for its inheritance, and “deliver” needs source object

class (“deliverer”) and target object class (“order”).

With the hand-made application of rules described in section 4, we must obtain

diagrams showed in Figures 3, 4 and 5.

6 Conclusions

In this paper we have presented Preconceptual Schemes, an intermediate stage be-

tween natural language specifications and UML diagrams. Furthermore, we have

developed a set of rules for automated obtaining of three kinds of UML diagrams:

class, state machine, and communication diagrams. We have assumed Preconcep-

tual Scheme as being obtainable from natural language (demonstration is out-of-

scope of this paper), and we have concentrated in the next transformation stage.

With the case study, we showed it’s possible to obtain those UML diagrams (class,

state machine, and communication diagrams) with some limitations, but with the

main features of the diagrams. Preconceptual Schemas are even very simple, and

they represent restricted natural language specifications; however, they lack of

mechanisms for representing words like adverbs and adjectives. Even with limita-

tions, they can describe a domain of discourse in a complete and understandable

way.

-TELEFONO

-CEDULA

-NOMBRE

-DIRECCION

PERSONA

+SE UBICA()

-NOMBRE

ZONA

+REALIZA()

+REGISTRA()

+ENTREGA()

+DESPACHA()

+REGISTRA(in HORA DE ENTREGA : boolean(idl))

-NUMERO

-FECHA

-HORA DE SALIDA

-HORA DE ENTREGA

PEDIDO

-CANTIDAD

-OBSERVACION

DETALLE

+PREPARA()

-PRECIO DE LISTA

-NOMBRE

PRODUCTO

CLIENTE

+ASIGNA()

REPARTIDOR

DESPACHADOR

Fig. 3. Resultant Class Diagram from PS in the Figure 2.

Object1 : Top Package::DESPACHADOR Object2 : Top Package::PEDIDO

1: REGISTRA()

3: DESPACHA()

5: REGISTRA(HORA DE ENTREGA:boolean(idl))

Object3 : Top Package::REPARTIDOR

2: ASIG
NA()

4:
 E

N
T
R

E
G

A
()

Fig. 4. Communication Diagram from PS in the Figure 2.

REGISTRADO
DESPACHADO

ENTREGADO

[CLIENTE LLAMA]

ASIGNADO

[CHEF PREPARA PRODUCTO]

DELIVERER STATE

MACHINE

ORDER STATE MACHINE

Fig. 5. Resultant State Machine Diagrams from PS in the Figure 2.

7 Future Work

− As a continuation of this work, it will be needed the definition of additional sets

of rules for automated obtaining of UML diagrams (e.g. timing or activity dia-

grams), and additional rules for the diagrams here described (e.g. rules for multi-

plicity of associations in Class diagram, rules for “on exit” actions in state ma-

chine diagram, and so on). Furthermore, we must develop a prototype to prove

application of this work in the second trend described by section 1 (introduction).

− We must generate rules for Preconceptual Scheme obtaining from natural lan-

guage.

− Furthermore, we must generate new mechanisms for representation in Preconcep-

tual Schemas (e.g. adverbs and adjectives) for extending their functionality and

scope.

References

1. Pressman, R.: Software Engineering: A Practitioners' Approach. 5th edn, McGraw-Hill,
Inc, New York (2001)

2. OMG: UML Specification. Available: http://www.omg.org/uml
3. Burkhard, D. and Jenster, P.: Applications of Computer-Aided Software Engineering

Tools: Survey of Current and Prospective Users. Data Base Vol. 20, No. 3 (1989) 28-37
4. Overmyer, S.P., Lavoie, B., y Rambow, O.: Conceptual modeling through linguistic analy-

sis using LIDA. In: Proceedings of ICSE 2001, Toronto, Canada. (2001)
5. Buchholz, E. y Düsterhöft, A.: Using Natural Language for Database Design. In: Proceed-

ings Deutsche Jahrestagung für Künstliche Intelligenz. (1994)
6. Cyre, W.: A requirements sublanguage for automated analysis. International Journal of

Intelligent Systems, Vol. 10, No. 7. (1995) 665-689.

7. Mich L.: NL-OOPS: From Natural Natural Language to Object Oriented Requirements
using the Natural Language Processing System LOLITA. Journal of Natural Language
Engineering, Cambridge University Press, Vol. 2, No. 2. (1996) 161-187.

8. Harmain, H. y Gaizauskas, R. : CM-Builder: An Automated NL-based CASE Tool. In:
Proceedings of the fifteenth IEEE International Conference on Automated Software Engi-
neering (ASE’00), Grenoble. (2000)

9. NIBA Project.: Linguistically Based Requirements Engineering - The NIBA Project. In:
Proceedings 4th Int. Conference NLDB'99 Applications of Natural Language to Informa-
tion Systems, Klagenfurt. (1999) 177 – 182.

10. Chen, P. P.: The Entity–Relationship Model: Toward a Unified View of Data. ACM
Transactions on DataBase Systems, Vol. 1, No. 1. (1976)

11. Chen, P. P.: English Sentence Structure and Entity–Relationship Diagrams. Information
Science, No. 29, Vol. 2. (1983) 127-149.

12. Coad, P. y Yourdon, E.: Object – Oriented Analysis. New Jersey: Yourdon Press.
(1990)

13. Heidegger. M.: Protokoll zu einem Seminar über den Vortrag "Zeit und Sein". En: Zur
Sache des Denkens, Tübingen (1976) 34.

14. Piaget, J.: The origins of intelligence in children (2nd ed.). New York: International
Universities Press (1952)

