
Revista Avances en Sistemas e Informática, Vol.4 No. 2, Septiembre de 2007, Medellín, ISSN 1657-7663
Edición Especial: II Congreso Colombiano de Computación – CCC2007

Resumen—Las herramientas CASE han asistido a los analistas
en el trazado de diagramas UML y otros tipos de diagramas para
el desarrollo de software. Sin embargo, la tarea previa al trazado
de diagramas, que es la comprensión del discurso del interesado,
no es soportada por las herramientas CASE tradicionales. Para
este fin, el Procesamiento del Lenguaje Natural propuso un
nuevo tipo de herramientas CASE, que incluye tanto
interpretación del lenguaje natural como generación de
diagramas UML. En este artículo se introduce UNC-
Diagramador, una novedosa herramienta CASE para la
representación gráfica del discurso del interesado mediante
esquemas preconceptuales. UNC-Diagramador también es capaz
de transformar automáticamente los esquemas preconceptuales
en tres diagramas de UML 2.0. Finalmente, el uso del UNC-
Diagramador se demuestra con un ejemplo

Palabras Clave—Herramientas CASE, Esquemas
Preconceptuales, UML 2.0, Proceso de Desarrollo de Software.

Abstract— Assistance is provided, in software development

process, to Analysts in drawing UML diagrams and others by
means of CASE tools. However, the task of the Stakeholder
discourse understanding, a previous process in diagram drawing,
is not supported by traditional CASE tools. In order to complete
this task, Natural Language Processing has proposed a new kind
of CASE tools, including both natural language interpretation
and UML diagrams generation. We introduce, in this paper,
UNC–Diagrammer, a novel CASE tool for graphically
representing the Stakeholder discourse by means of Pre-
conceptual Schemas. We also show that UNC-Diagrammer is
capable of automatically transforming Pre-conceptual Schemas

into three UML 2.0 diagrams. We finally demonstrate the use of
UNC–Diagrammer through an example.

Keywords—CASE Tools; Pre-Conceptual Schemas, UML 2.0,
Software Development Process.

I. INTRODUCTION
HEN a Stakeholder needs a solution to his/her

information problems, an Analyst can begin a software
development process. In the beginning, this process often
comes up with a series of Analyst-Stakeholder interviews,
which result in a preliminary interpretation of the problem [1].
Then, Analyst must convert his own interpretation into a set of
diagrams (commonly UML diagrams) to continue with the
process. Computer-Aided Software Engineering (CASE) has
been created to provide assistance to Analysts in drawing
these diagrams and assisting with other tasks, like code
generation, scheduling development tasks, controlling
software versions, and so on [2].

There are many CASE tools like Rational Rose [3],
ArgoUML [4], Poseidon [5], and Fujaba [6], which provide
assistance for UML diagram drawing, consistency checking,
and code generation. Unfortunately, these tools lack
mechanisms for either discourse interpretation or
representation; the Analyst must create his own diagrams and
then, aided by the CASE tool, he/she can draw them. In other
words, there is no assistance in the conceptualization of the
Stakeholder discourse, and this unguided process generates

A Novel CASE Tool based on Pre-Conceptual
Schemas for Automatically Obtaining UML

Diagrams

Una Novedosa Herramienta CASE basada en
Esquemas Preconceptuales para la Obtención

Automática de Diagramas UML
Carlos Zapata, PhD.1, Alexander Gelbukh, PhD.2, Fernando Arango, PhD.1

1Grupo de Investigación en Ingeniería de Software
Escuela de Ingeniería de Sistemas, Facultad de Minas

Universidad Nacional de Colombia Sede Medellín
2Computing Research Center, National Polytechnic Institute, Mexico

cmzapata@unal.edu.co, farango@unal.edu.co, gelbukh@gelbukh.com

Recibido para revisión 26 de Marzo de 2007, aceptado 15 de Junio de 2007, versión final 31 de julio de 2007

W

Revista Avances en Sistemas e Informática, Vol.4 No. 2, Septiembre de 2007
Edición Especial: II Congreso Colombiano de Computación - CCC 2007

118

too many interpretation problems, because Stakeholder cannot
understand UML diagrams, and, consequently, he/she cannot
validate such diagrams.

As a result, Natural Language Processing has a new trend to
generate automatically UML diagrams from natural language.
Projects like LIDA [7], RADD [8], NL-OOPS [9], CM-
BUILDER [10], and NIBA [11], are testing the future of this
trend. They are part of a new generation of CASE tools, closer
to the Stakeholders. On the downside, every CASE tool uses a
different representation of the Stakeholder discourse, and,
even worse, uses a different representation for every target
diagram.

We introduce, in this paper UNC–Diagrammer, a CASE tool for
drawing a graphical representation of the Stakeholder discourse,
the so-called Pre-conceptual Schemas [12], which contains a set of
elements translatable to UML diagrams. UNC–Diagrammer also
makes these transformations from Pre-conceptual Schemas into
three kinds of UML 2.0 diagrams: Class, Communication, and
State Machine Diagrams.

This paper is organized as follows: in Section II we discuss
the state-of-the-art in CASE tools, including a new trend in
CASE tools for automatic obtaining of UML diagrams. In
Section III we introduce UNC–Diagrammer, a CASE tool for
assisting analysts in drawing Pre-conceptual Schemas and
translating them into UML diagrams. In Section IV we present
an example of the use of UNC-Diagrammer. Finally, in
sections V and VI we present conclusions and future work.

II. CASE TOOLS: STATE-OF-THE-ART

A. Conventional CASE tools
In the early-Eighties, Manley coined the term Computer-

Aided Software Engineering (CASE) to identify a set of

processes, techniques, and tools emerged with the recently
created Software Engineering [2]. CASE Technology has been
growing up ever since this moment, but only until middle-
Nineties it could reach the top of modeling technologies, with
the development of UML-based CASE tools like Rational
Rose [3].

Nowadays, there are many UML-based CASE tools: ArgoUML
[4], Poseidon [5], Together [13], WithClass [14], Fujaba [6], and so
on. Figure 1 shows a snapshot of a screen in ArgoUML [4], a
typical UML-based CASE tool. There are seven available diagrams
to draw in ArgoUML (Class, Use Case, State Machine, Activity,
Collaboration—currently named Communications in the UML 2.0
standard—, Deployment, and Sequence Diagrams). For diagram
development in ArgoUML, the Analyst must know the diagram
syntax and must have a self-interpretation of the Stakeholder
discourse domain, so he/she can represent it in the seven available
diagrams. Furthermore, if a Stakeholder wants to take part of this
process, he/she must know the syntax of every UML diagram to
know how exactly his/her discourse matches every UML diagram.
This task is often difficult to complete for Stakeholders, because
they are people with lesser or none of the required expertise in
UML modeling.

Additionally, some of the described UML-based CASE
tools (certainly a little subset of them) have a mechanism for
consistency checking between diagrams. ArgoUML is one of
such tools, and the button “By Priority” in the bottom-left
corner in Figure 1 represents this mechanism. In conventional
CASE tools every diagram must be independently created, and
there is no unified view about either the problem or the
Stakeholder discourse. This is why consistency checking is
needed in this kind of tools. Consistency checking has been a
topic of research in Software Engineering for many years, and
even there is no satisfactory agreement about this topic.

Figure 1. Snapshot of the ArgoUML®, one of the traditional CASE tools.

A Novel CASE Tool based on Pre-Conceptual Schemas for Automatically Obtaining UML Diagrams –
Zapata, Gelbukh, y Arango

119

B. Automatic generation of UML diagrams: a new kind of
CASE tools

By the end of the Nineties, there was a number of projects
which was using natural language processing for automatic or
semi-automatic generation of UML diagrams. Some of these
projects developed CASE tools including this technology.
Their results are discussed in this Section.

Linguistic Assistant for Domain Analysis (LIDA Project) is
a semi-automated approach for building class diagrams from a
discourse in natural language. In the CASE tool generated by
the LIDA project [7], some words in the natural language
discourse are identified as nouns, verbs, and adjectives, and
the tool calculates frequencies of word appearance in the text.
Then, Analyst must decide if a specific word will be mapped
up to a class, an attribute, an operation or a relationship in the
class diagram. Mapping process is left intentionally to Analyst
and there are no rules or suggestions to ease this task. Finally,
LIDA CASE tool shows the generated diagram and makes it
available to be edited.

Rapid Application and Database Development (RADD
Project) is a project for automated obtaining of Entity-
Relationship Models (ERM) from natural language [8]. In
RADD, once an ERM is obtained, a “moderated” dialogue
starts to enhance completeness of the diagram.

Class Model Builder (CM-Builder Project) is a CASE tool
which performs linguistic analysis of documents in order to
obtain three results: a list of candidate classes, a list of
candidate relationships, and a conceptual model in an
interchange format [9]. In other words, CM-Builder was
developed for automated obtaining of UML class diagram.

Natural Language Object-Oriented Product System (NL-
OOPS Project) is a CASE tool for semi-automated obtaining
of UML class diagram [10]. The starting point is a natural
language discourse and NL–OOPS needs Analyst cooperation
in the identification process. NL–OOPS identifies elements
which can simultaneously belong to several categories.
Consequently, mapping process requires active participation
of the Analyst, who must decide about the final category for
every element.

Natural Language Requirements Analysis (NIBA Project) is
a CASE tool developed for obtaining various UML diagrams
[11]. NIBA has a strong linguistic analysis that is based in the
so-called NTMS (Naturalness Theoretical Morpho-syntax)
and the KCPM (Klagenfurt Conceptual Pre-design Model).
NIBA can generate various kinds of UML diagrams like class
and activity diagrams. For every diagram, KCPM has a
different intermediate formalism, varying from tables to
graphs. For this reason, consistency problems may arise in the
transformation process.

C. Problems to be solved
Despite the efforts of researchers in CASE tools, there are

still problems to be solved:

• Many of these CASE tools are focused on only one

diagram. In a typical software development process there
are many diagrams related to the same model.

• The only tool that does construct many diagrams is
NIBA, and every diagram needs a different intermediate
representation in this tool. For this reason, consistency
problems between diagrams can be generated.

III. UNC-DIAGRAMMER: A CASE TOOL FOR
AUTOMATIC TRANSFORMATION OF PRE-CONCEPTUAL

SCHEMAS INTO UML DIAGRAMS
UNC–Diagrammer (Universidad Nacional de Colombia—

UML Diagram maker) tries to solve the problems of the
previous section, based on two hypotheses:
• Stakeholder discourse contains the needed information

for automatic drawing of several types of UML diagrams.
• A unified representation of the Stakeholder discourse

helps to avoid some of the common consistency problems
between UML diagrams.

UNC–Diagrammer uses Pre-conceptual Schemas [12] for
representing Stakeholder discourse.

A. Pre-conceptual Schemas
A Pre-conceptual Schema (PS) [12] is an intermediate stage

of the mapping process between natural language and
conceptual UML diagrams. Consequently, a PS contains a
graphical representation of a set of UML elements originated
from different UML diagrams, in such a way that stakeholders
can “read” the diagram to understand its meaning. Figure 2
shows the basic symbols of Pre-conceptual Schemas.

Figure 2. Basic symbols of Pre-conceptual Schemas.

The contents of every symbol are the following:

• A concept can be either a noun or a noun phrase.
• A structural relationship can be a verb that refers to a

permanent relationship between two concepts. Verbs like
“to be” and “to have” are intended to be structural
relationships.

• A dynamic relationship can be a verb that refers to a
temporal relationship between two concepts. Verbs like
“to register” and “to dispatch” are intended to be dynamic
relationships.

• An implication must link two dynamic relationships. The
first one is the antecedent and the second one is the
consequent of an “if… then” relationship.

• A conditional is a clause formed by concepts and
operations between concepts. The value of a conditional
can be one of the following values: true or false.

• A connection is an oriented arrow to join:

Revista Avances en Sistemas e Informática, Vol.4 No. 2, Septiembre de 2007
Edición Especial: II Congreso Colombiano de Computación - CCC 2007

120

o A concept with a—structural or dynamic—
relationship.

o A—structural or dynamic—relationship with a
concept.

o A conditional with a dynamic relationship.

• A reference is a circle with a number within. A reference
helps to identify connections between several distant
elements.

B. An Overview of UNC–Diagrammer
UNC–Diagrammer is a CASE tool based on Pre-conceptual

Schemas with the capabilities of generating three UML 2.0
diagrams: Class, Communication, and State Machine
Diagrams. Figure 3 depicts the architecture of UNC–
Diagrammer.

Figure 3. Architecture of UNC–Diagrammer

The following is a description of the UNC–Diagrammer

functions and components:
• Pre-conceptual Schema Editor: Allows visually designing

and editing Pre-conceptual Schemas. PS Editor is based on
a subset of Microsoft Visio application. Figure 4 shows a
snapshot of the PS Editor.

• Pre-conceptual Schema File: PS Editor saves information in
a XML file which is used as an input for the next
component. The XML file mixes both graphical features
(for example, the position in the screen, the shape of the
elements, and the features of the shape) and logical features
(for example, the connections between two elements) of the
Pre-conceptual Schema. An example of the XML file
belonging to a Pre-conceptual Schema is provided in
Section 4.

• PS to UML Mapper: Automatically translates Pre-
conceptual Schemas to three UML Diagrams: Class,
Communication, and State Machine Diagrams. PS to UML
Mapper is based on the C# language.

• UML Files: PS to UML Mapper saves information of the
three obtained diagrams in one XML file. Again, the XML
file mixes both graphical features and logical features of
every target diagram into one single file. An example of the
XML file that describes the three target diagrams is
provided in Section 4.

• UML Editor: Allows visually editing the obtained UML

diagrams. UML Editor is also based on a subset of
Microsoft Visio application.
As in well-known CASE tools, Analyst must interpret

Stakeholder discourse for translating it into Pre-conceptual
Schemas. However, Pre-conceptual Schemas are closer to
Stakeholder discourse and Stakeholder can validate them. In
traditional CASE tools, Stakeholder validation is very
difficult, because Stakeholder commonly lacks technical
knowledge about UML.

For using UNC–Diagrammer, the Analyst (referred to
Figure 4) must execute the following actions:

(1) Create and edit Pre-conceptual Schemas in Edition
Space, using PS symbols.

(2) Press the “Save” button.
(3) Press the “Convert” button.
(4) Optionally, edit obtained diagrams.

IV. AN EXAMPLE OF THE USE OF UNC–DIAGRAMMER
Figure 5 presents a Pre-conceptual Schema made in UNC-

Diagrammer and corresponding to a discourse about a farm dairy.
Pre-conceptual Schema has intended to be understandable by
stakeholder, as we can see in Figure 5; the demonstration of this
assertion is outside the scope of this paper.

A Novel CASE Tool based on Pre-Conceptual Schemas for Automatically Obtaining UML Diagrams –
Zapata, Gelbukh, y Arango

121

Figure 4. Snapshot of UNC–Diagrammer

Figure 5. Pre-conceptual Schema of a farm dairy

This Pre-conceptual Schema can be expressed in the

following sentences (written in a kind of controlled language):

Cow has identification.
Cow has name.
Milk has quantity.
When cow produces milk, milk_man collects milk.
When milk.quantity<30, slaughter sacrifices cow.

These sentences are part of a broader discourse. Pre-

conceptual Schemas are the product of the Analyst
interpretation of Stakeholder discourse. Furthermore, Pre-
conceptual schemas are easily understandable by stakeholders,
who are capable of suggesting improvements to this schema.

As we stated before, UNC-Diagrammer stores a first XML

file for the Pre-conceptual Schema. Figure 6 shows a fragment
of this file. This Figure contains a set of tags for describing
the implication between the “milk.quantity<30” conditional
and the “sacrifices” dynamic relationship. Under the <shapes>
tag, the file describes the elements belonging to the Pre-
conceptual Schema. There is a set of tags (<XForm>,
<Event>, <LayerMem>, <Misc>, <Char IX=”0”>, and
<Geom IX=”0”>) for expressing graphical features of the
elements. Also, for every shape the file provides
identification, a name, a type, and a master (a special code for
identifying the type of element). The <Text> tag defines the
message displayed inside the shape. In this way, we can
describe all the elements of the Pre-conceptual Schema in
order to complete a transformation process into UML
diagrams.

Revista Avances en Sistemas e Informática, Vol.4 No. 2, Septiembre de 2007
Edición Especial: II Congreso Colombiano de Computación - CCC 2007

122

Figure 6. Fragment of the XML file for the Pre-conceptual Schema
depicted in Figure 5

Figures 7–9 show the results of pressing “convert” button,
after Pre-conceptual Schema has been created. Internally,

UNC–Diagrammer applies a set of conversion rules encoded
in C#, for automatic obtaining of Class diagram,
Communication diagram, and State Machine diagram. Analyst
can edit the resulting diagrams, using the Visio-based
templates for this task.

UML diagrams generated by UNC-Diagrammer are stored
also in a XML file, as depicted in Figure 10. In this Figure, the
“Milk” class is represented in conjunction with its attributes
and operations. Again, the XML file has a set of tags for
expressing graphical features of the diagram. Furthermore, the
image of the “Milk” class is composed by three images: one
for the name of the class, one for the attributes, and one for
the operations. In a similar way, the XML file stores all of the
obtained UML diagrams.

V. CONCLUSIONS
There is a new trend in CASE tools focused on assisting

Analysts in tasks of automated conceptual design of UML
diagrams, instead of only drawing them. UNC–Diagrammer
follows this trend, using the so-called Pre-conceptual
Schemas.

The use of UNC-Diagrammer can assist Analyst with UML
diagram generation, and provides syntax for the use of Pre-
conceptual Schemas as a way to represent stakeholder
discourse. The resulting diagrams are consistent to each other,
because they are generated from the same Pre-conceptual
Schema.

Figure 7. Snapshot of the resulting Class Diagram

A Novel CASE Tool based on Pre-Conceptual Schemas for Automatically Obtaining UML Diagrams –
Zapata, Gelbukh, y Arango

123

Figure 8. Snapshot of the resulting communication diagram

Figure 9. Snapshot of the resulting state machine diagram

UNC–Diagrammer is based on .NET and Microsoft Visio
technologies. The diagram editors use the Microsoft Visio
functionality and the transformation process is encoded in C#
under .NET.

VI. FUTURE WORK
UNC–Diagrammer has many tasks to accomplish for future

development:
• Nowadays UNC-Diagrammer is only capable to generate

Class diagrams, Communication Diagrams and State
Machine Diagrams, and the set of UML available
diagrams—including sequence diagrams, use case diagrams

and so forth—must be completed.
• Interoperability with another CASE tool must be

accomplished, to complete the process of translating UML
diagrams to source code.

• A major task of a broader project is the automatic obtaining
of Pre-conceptual Schemas from natural language (or
maybe from a controlled natural language in the beginning),
trying to make UNC–Diagrammer closer to the stakeholder,
in his/her own language.

ACKNOWLEDGMENT
This work is supported in the following projects:

“Construcción Automatica de Esquemas Conceptuales a partir

Revista Avances en Sistemas e Informática, Vol.4 No. 2, Septiembre de 2007
Edición Especial: II Congreso Colombiano de Computación - CCC 2007

124

de Lenguaje Natural”, financed by DIME and “Definición de
un Esquema Preconceptual para la Obtención Automática de
Esquemas Conceptuales de UML”, financed by DINAIN and
managed by DIME.

Figure 10. A fragment of the XML file that stores UML generated diagrams

REFERENCES
[1] R. Pressman. Software Engineering: A Practitioners' Approach 5th edn.

New York: McGraw-Hill, Inc., 2001.
[2] D. Burkhard, and P. Jenster, “Applications of Computer-Aided Software

Engineering Tools: Survey of Current and Prospective Users”, Data
Base 20, no. 3, pp. 28–37, 1989.

[3] Rational Rose. [Online] Available: http://www-
306.ibm.com/software/rational/.

[4] ArgoUML. [Online] Available: http://argouml.tigris.org/.
[5] Poseidon. [Online] Available: http://gentleware.com/index.php.
[6] Fujaba. [Online] Available: http://wwwcs.uni-paderborn.de/cs/fujaba/.
[7] S. P. Overmyer, B. Lavoie, and O. Rambow, “Conceptual modeling through

linguistic analysis using LIDA”, in Proceedings of ICSE 2001, Toronto, 2001.
[8] E. Buchholz and A. Düsterhöft, “Using Natural Language for Database

Design”, in Proceedings Deutsche Jahrestagung für Künstliche
Intelligenz, Saarbrücken, 1994.

[9] H. Harmain and R. Gaizauskas, “CM-Builder: An Automated NL-based CASE
Tool”, in Proceedings of the fifteenth IEEE International Conference on Automated
Software Engineering (ASE’00), Grenoble, 2000.

[10] L. Mich, “NL–OOPS: From Natural Natural Language to Object Oriented
Requirements using the Natural Language Processing System LOLITA”, Journal of
Natural Language Engineering 2, no. 2, pp. 161–187, 1996.

[11] NIBA Project, “Linguistically Based Requirements Engineering - The
NIBA Project”, in Proceedings 4th Int. Conference NLDB'99
Applications of Natural Language to Information Systems, Klagenfurt,
1999, pp. 177–182.

[12] C. M. Zapata, A. Gelbukh, and F. Arango, “Pre-conceptual Schema: a
UML Isomorphism for Automatically Obtaining UML Conceptual
Schemas”, Research in Computing Science: Advances in Computer
Science and Engineering, no. 19, pp. 3–13, 2006.

[13] Together. [Online] Available:
http://www.borland.com/us/products/together/index.html.

[14] WithClass. [Online] Available: http://www.microgold.com/

Carlos Mario Zapata J. Actualmente se desempeña como Profesor
Asistente en la Escuela de Ingeniería de Sistemas de la Facultad de
Minas de la Universidad Nacional de Colombia Sede Medellín. Es
Ingeniero Civil, Especialista en Gerencia de Sistemas Informáticos,
Magíster en Ingeniería de Sistemas y PhD. en Ingeniería-Sistemas;
todos los títulos son de la Universidad Nacional de Colombia. Sus
áreas de trabajo son: Ingeniería de Software, Ingeniería de
Requisitos, Procesamiento de Lenguaje Natural, Lingüística
Computacional y Estrategias Pedagógicas para la Enseñanza de la
Ingeniería.

Alexander Gelbukh es Profesor-Investigador titular «C» del
Laboratorio de Lenguaje Natural y Procesamiento de Texto del
Centro de Investigación en Computo del Instituto Politécnico
Nacional (México). Es Maestro en Ciencias (matemáticas; con
distinción) de la Universidad Estatal Lomonósov de Moscú, Facultad
de Mecánica y Matemáticas, Departamento de Matemáticas, y
Doctor en Ciencias de Computación (Ciencias Tecnológicas) del
Instituto de la Información Científica y Técnica de toda Rusia. Sus
áreas de trabajo son: Inteligencia Artificial, Procesamiento del
Lenguaje Natural y Lingüística Computacional.

Fernando Arango I. Trabaja como Profesor Asociado en la Escuela
de Ingeniería de Sistemas de la Facultad de Minas de la Universidad
Nacional de Colombia, sede Medellín. Es Ingeniero Civil de la
Universidad Nacional de Colombia, Magíster en Planeación y
Gestión de Recursos Hídricos de la Universidad de Colorado State
(Estados Unidos de América) y Doctor en Informática de la
Universidad Politécnica de Valencia (España). Sus áreas de trabajo
son: Ingeniería de Software, Ingeniería de Requisitos, Métodos
Formales y Lenguajes Declarativos.

