

Unsupervised WSD with a Dynamic Thesaurus*

Javier Tejada-Cárcamo,
1,2

Hiram Calvo
1
, Alexander Gelbukh

1

1
 Center for Computing Research, National Polytechnic Institute, Mexico City, 07738, Mexico

2
 Sociedad Peruana de Computación, Arequipa, Peru

jawitejada|@|hotmail.com, hcalvo|@|cic.ipn.mx, gelbukh|@|gelbukh.com

Abstract. Diana McCarthy et al. (ACL-2004) obtain the predominant sense for
an ambiguous word based on a weighted thesaurus of words related to the am-
biguous word. This thesaurus is obtained using Dekang Lin’s (COLING-ACL-
1998) distributional similarity method. Lin averages the distributional similarity
by the whole training corpus; thus the list of words related to a given word in
his thesaurus is given for a word as type and not as token, i.e., does not depend
on a context in which the word occurred. We observed that constructing a list
similar to Lin’s thesaurus but for a specific context converts the method by

McCarthy et al. into a word sense disambiguation method. With this new me-
thod, we obtained a precision of 69.86%, which is even 7% higher than the su-
pervised baseline.

1 Introduction

Word Sense Disambiguation (WSD) task consists in determining the intended sense

of an ambiguous word in a specific context. For example, doctor has three senses

listed in WordNet: (1) person who practices medicine, (2) person who holds Ph.D.
degree from an academic institution; and (3) a title conferred on 33 saints who distin-

guished themselves through the orthodoxy of their theological teaching. The WSD

task consists in determining which sense is intended, e.g., in the context The doctor

prescribed me a new medicine. This task is important, for example, in information

retrieval, where the user expects the documents be selected based on a particular

sense of the query word; in machine translation and multilingual querying systems,

where an appropriate translation of the word must be chosen in order to produce the

translation or retrieve the correct set of documents, etc.

The WSD task is usually addressed in two ways: (1) supervised learning: applying

machine-learning techniques trained on previously hand-tagged documents and (2)

unsupervised learning: automatically learning, directly from raw word grouping, clues

that lead to a specific sense, according to the hypothesis that different words have
similar meanings if they occur in similar contexts [4, 6].

The Senseval competitions are devoted to the advances of the state-of-the-art me-

thods for WSD. For instance, the results of Senseval-2 English all-words task are

presented in Table 1. This task consists of 5,000 words of running text from three

* Work done under partial support of Mexican Government (CONACyT, SNI) and IPN (PIFI,

SIP, COTEPABE). The authors thank Rada Mihalcea for useful comments and discussion.

Penn Treebank and Wall Street Journal articles. The total number of words that are to

be disambiguated is 2,473. Sense tags are assigned using WordNet 1.7. The third

column in the table shows whether a particular system uses manually tagged data for

learning. As one can notice, the best systems are those which learn from previously

manually tagged data. However, such a resource is not available for every language,

and it can be costly to build. Because of this, we will focus on unsupervised methods,

such as those used by the system UNED-AW-U2.

Table 1. Top-10 Systems of Senseval-2

Rank System Type Precision Recall Attempted

1 SMUaw supervised 0.690 0.690 100%

2 CNTS-Antwerp supervised 0.636 0.636 100%

3 Sinequa-LIA - HMM supervised 0.618 0.618 100%

– WordNet most frequent sense supervised 0.605 0.605 100%

4 UNED - AW-U2 unsupervised 0.575 0.569 98.908

5 UNED - AW-U unsupervised 0.556 0.550 98.908

6 UCLA - gchao2 supervised 0.475 0.454 95.552

7 UCLA - gchao3 supervised 0.474 0.453 95.552

8 CL Research - DIMAP unsupervised 0.416 0.451

9 CL Research - DIMAP (R) unsupervised 0.451 0.451 100%

10 UCLA - gchao supervised 0.500 0.449 89.729

Choosing always the most frequent sense for each word yields a precision and re-

call of 0.605. The most frequent sense heuristic is a good strategy, since the baseline

of 60% would be ranked among the first four systems; we included this algorithm in

Table 1 for comparison. The most frequent sense can be obtained from WordNet: it is

listed there first in the list of senses for a word—more specifically, the senses in
WordNet are ordered according to the frequency data in a manually tagged corpus

SemCor [10]; senses that do not occurr in SemCor are ordered arbitrarily. Therefore,

any algorithm relying on WordNet ordering of senses is supervised; in particular, it is

not applicable for languages or genres for which the frequency data is not available.

McCarthy et al. [6] proposed an unsupervised algorithm to find the predominant

sense for each word, without addressing the WordNet/SemCor frequency data. They

rely on the Lin thesaurus [4] for determine word relatedness. Given a word w, they

consider all words u related to w in the Lin thesaurus. They choose a sense wsi of w

and a sense usj of u that maximize a sense relatedness measure between senses in

WordNet. The word u is then said to vote for the sense wsi of w; the strength of such a

vote is a combination of the sense relatedness between wsi and usj in WordNet and the

word relatedness between w and u in the Lin thesaurus. The sense wsk that receives
more and stronger votes is predicted to be the predominant sense of the word w and,

in particular, can be used in the most frequent sense heuristic for WSD; see Figure 1.

Note that this WSD method does not use at all the context of the word; it always

assigns the same sense to the same string regardless of the context. The sense chosen

as predominant for a word depends solely on the corpus used to build the thesaurus,

i.e., this information is tied to a word as type and not as token.

Figure 1. Finding the predominant sense using a static thesaurus as in [6].

In this paper we propose considering context words to dynamically build a thesau-
rus of words related to a specific occurrence (token) of the word to be disambiguated.

This thesaurus is built based on a dependency co-occurrence database (DCODB)

previously collected from a corpus. Each co-occurrent-with-context word votes for a

sense of the word in question as in the McCarthy et al.’s method, but in this case this

gives the most suitable sense for this word in a particular context; see Figure 2.

Figure 2. Our proposal: create a dynamic thesaurus based

on the dependency context of the ambiguous word.

context word c2 context word c 3

word to disambiguate w

...

senses

Dependency
co-ocurrence

DataBase

r1
r2

r3
r4
r5
r6
r7
r8
r9

word word

Dependency relationships

context word c 1

c1
c2
c3

w

rn=terms most similar to vector <w,c1,c2,c3,…>

compared with cosine measure

In Section 2.1 below we explain how the Dependency Co-Ocurrence DataBase

(DCODB) resource is built. In Section 2.2 we explain our way of measuring the re-

levance of co-occurrences based on information theory. In Sections 2.3 and 2.4, we

explain more details of our method. In Section 3 we present experimental results that

show that the performance of our method is as good as that of some supervised me-

thods. Finally, in Section 4 we draw the conclusions.

2 Methodology

2.1 Building the Dependency Co-Occurrence Database (DCODB)

Dependency relationships are asymmetric binary relationships between a head word

and a modifier word. A sentence builds up a tree which connects all words in it. Each

word can have several modifiers, but each modifier can modify only one word [1, 7].

We obtain dependency relationships in a given corpus automatically using the

MINIPAR parser. MINIPAR has been evaluated with the SUSANNE corpus, a subset

of the Brown Corpus, where it recognized 88% of the dependency relationships with

an accuracy of 80% [5]. We apply three simple heuristics for extracting head-

governor pairs of dependencies:

1. Ignore prepositions; see Figure 3.

2. Include sub-modifiers as modifiers of the head; see Figure 4.
3. Separate heads that are lexically identical but have different parts of speech; this

helps to keep contexts separated.

winds

of

change

winds

change

Figure 3. Ignoring
prepositions.

beautiful

flowers

sell

beautiful

sell

flowers

Figure 4. Including sub-modifiers
as modifiers of the head.

2.2 Statistical Model

We use the vector-space model with TF-IDF (term frecuency—inverse document

frequency) weighting. This model is often used for classification tasks and for mea-

suring document similarity. Each document is represented by an n-dimensional vec-

tor, where n is the number of different words (types) in all documents of the collec-

tion. In our method, we treat a head as a document title, and all its modifiers in the

corpus as the contents of such a “documents” that gives a vector corresponding to this

head. The TF (term frequency) value for each dimension of this vector is the number

of times this modifier modified this head in the training corpus (normalized as ex-

plained below). We can represent the vector as

() () () (){ },,,...,,,,
,,,2,2,1,1 jnjnjjjjj

fmodfmodfmodheadVector =

where:

headj is the given head word,

modi,j is a modifier word,

fi,j is the a normalized number of times modi,j modified headj:

() ,max
,

,

,

jl

ji

ji
freq

freq
f =

where:

freqi,j is the frequency of the modifier i with headj,

max(freqi,j) is the highest frequency number of the modifiers of headj.

The weight wij of the modifier i for the head j is a product of the normalized fre-

quency vector {fi,j} of the head (TF) and its inverse frequency (IDF). TF shows the

importance of each modifier with respect to the modified head, so that the weight of

their relationship increases when the modifier appears more frequently with this head.

IDF shows the relevance of a modifier with regard to the other heads in the database

(DCODB), in such a way that the weight of the modifier decreases if it appears more

often with other heads in the DCODB, and increases when it appears with fewer
heads. This means that very frequent modifiers do not help to discriminate heads. IDF

is calculated as

,log
i

i

n

N
idf =

where:

N is the total number of heads,

i
n

is the total number of heads which are at least once modified by modifier i.

Given a training corpus, building the database of the vectors associated with all

heads as explained above is a one-time process.

2.3 Disambiguation Process

Given the database described above, we can disambiguate a given word w in a context

C made up of words: C = {c1, c2, … cn}. The first step for this consists in obtaining a

weighted list of terms related with w. The second step consist in using these terms to

choose a sense of w as in the algorithm by McCarthy et al. [6]. The following sections

explain these steps in detail.

2.3.1 Obtaining the Weighted List of Terms Related with w

A word is related with another one if they are used in similar contexts. In our method

this context is defined by syntactic dependencies; see Figure 2. Given an ambiguous

word w, its dependencies c1, c2, c3, etc. form a vector ���� = <w, c1, c2, c3, …, wj, …>.

We compare it with all vectors ��� = <��,�, ��,�, ��,�, … ��,� , …> from DCODB using the

cosine similarity measure:

()
∑∑

∑

==

=
→

×
→

→→

×

×
=⋅=

n

j ji

n

j j

n

j jij

i

i
i

rw

rw

rw

rw

rwmeasurecos

1

2

,1

2

1 ,

)()(

,_
rr .

The value obtained is used as a similarity weight for creating the weighted list of

related terms. Note that this procedure suffers the data sparseness problem, because

the number of modifiers of an ambiguous word is between 0 and 5—considering only

one level of the syntactic tree—whereas the number of non-zero coordinates in the

majority of vectors in the DCODB is much higher. Table 2 shows an example of

calculation of the cosine measure. Given the vector ���� formed by the word w and its

context words (based on dependency relationships from the sentence where w is

found), the DCODB is queried with all the rn words to compare with each vector ������.

For example, the cosine measure between ���� and ������ is given by:

cos_measure(����, ������) =
��·
����·�����·�����·
���
·
���
·
���
·
���
·
�

�������������
��
��
��
���
��������
��
��
��
��
�
� 0.832.

Table 2. Example of cosine measure calculation

j

c1 c2 c3 … cn o1 o2 o3 … om cos_measure

w 1 1 1 … 1 0 0 0 0 1

r1 1 6 2 … 0 0 0 3 0 0.992165

r2 0 4 1 … 3 4 1 1 0 0.92665

r3 4 3 1 … 0 0 0 4 4 0.831966

… …

r13 0 0 2 … 4 0 0 1 5 0.68319

… …

2.3.2 Voting Algorithm

Here we describe our modifications to the voting algorithm by McCarthy et al. [6].

This algorithm allows each member of the list of related terms (thesaurus that is dy-

namic in our proposal or static in [6]) to contribute for a particular sense of the ambi-

guous word w. The weight of the term in the list is multiplied by the semantic distance

between each of the senses of a term risj and the senses of the ambiguous word wsk.

The highest value of semantic distance determines the sense of w for which the term ri

votes. Once all terms ri have voted (or a limit has been reached), the sense of w which

received more and stronger votes is selected. See Figure 5 for the pseudo-code of the

algorithm.

In the following section we describe the measure of similarity used in this algo-

rithm.

2.4 Similarity Measure

To calculate the semantic distance between two senses we use WordNet::Similarity

package [11]. This package is a set of libraries which implement similarity measures

and semantic relationships in WordNet [8, 9]. It includes similarity measures pro-

posed by Resnik [12], Lin [4], Jiang-Conrath [2], Leacock-Chodorow [3], among

others. In order to follow McCarthy et al. approach, we have chosen the Jiang-

Conrath similarity measure as they did. The Jiang-Conrath measure (jcn) uses exclu-

sively the hyperonym and hyponym relationships in the WordNet hierarchy, which is

consistent with our tests because we consider only disambiguation of nouns. The
Jiang-Conrath measure obtained the second best result in the experiments presented

by Pedersen et al. [10]. In that work they evaluate several semantic measures using

the WordNet::Similarity package. The best result was obtained with the adapted Lesk

measure [10], which uses information of multiple hierarchies but is less efficient.

The Jiang-Conrath measure uses a concept of information content (IC) to measure

the specificity of a concept. A concept with a high IC is very specific—for example,

dessert_spoon—while a concept with a lower IC is more general, such as hu-

man_being. WordNet::Similarity uses SemCor to compute the IC of WordNet con-

cepts. The Jiang-Conrath measure is defined as follows:

)),,((IC2)(IC)(IC),(
212121
cclcsccccdist

jcn
×−+=

where:

IC is the information content,

lcs (lowest common subsumer) is the lowest common node of two concepts.

Sense voting algorithm:

 for each ambiguous word w

 build vector ���� =<w,c1,c2,…,cn> of its context words

 for each vector ����� in DCODB,

 calculate weight(�����)=cos_measure(����, ������

 sort vectors �� from highest to lowest cos_measure; ������ has the greatest weight

 for each word ri corresponding to the head of each vector �����

 for each sense risj of word ri

 for each sense wsk of word w,

 calculate a=max(a,similarity(risj, wsk)·weight(�����))

 sense wsk corresponding to the last maximum receives a vote of a units.

 stop if i > max_neighbors (maximum number of vectors)

 return max(votes(wsk))

Figure 5. Sense voting algorithm

3 Experimental Results

We tested our approach on English text. The dependency co-occurrence database
(DCODB) was built from raw data (i.e., without considering the sense tags; thus our

method is unsupervised) taken from 90% of SemCor. Then, we evaluated the ap-

proach by automatically tagging the remaining 10% of SemCor and comparing the

results with the hand-tagged senses. We have experimented with different values of

max_neighbors—the number of most similar vectors from the DCODB that we con-

sider for disambiguating each word. We have tested the top-10, 20, 30, 40, 50, 70,

100, and 1000 most similar terms from our dynamic thesaurus; see Figure 6.

The values of precision and recall are similar because the Jiang-Conrath measure

always returns a similarity value when two concepts are compared. Slight deviations

are due to inexistence of certain ambiguous words in WordNet. The best results were

69.86% by using 70 neighbors training with 90% of SemCor (used as raw text) eva-

luated with the remaining 10% as the gold standard.
The most frequent sense of 90% of the manually annotated SemCor corpus against

the 10% as gold standard of the same corpus yields a precision and recall of 62.84

(coverage is 100%); so our results are approximately 7% higher than the supervised

most frequent sense heuristic.

McCarthy et al. report 64% using a term list from a static Lin thesaurus. However,

they present results with SENSEVAL-2, so that we cannot make a direct comparison;

however, we can do a rough estimation, given that using the most frequent sense

heuristic with the frequency counts from SemCor yields 62.84 while using the most

frequent sense heuristic with the frequency counts from SENSEVAL-2 corpus yields

60%.

72.00

56.00

58.00

60.00

62.00

64.00

66.00

68.00

70.00

Maximum number of neighbors

Precision Recall

Precision 64.23 69.44 67.36 66.43 67.80 68.15 69.86 69.86 65.06

Recall 59.86 68.02 65.98 65.98 67.34 68.08 69.38 69.38 64.62

10 20 30 40 50 60 70 100 1000

%

Figure 6. Automatic tagging of 10% SemCor, varyinig max_neighbors.

4 Conclusions

The method by McCarthy et al. [6] to obtain the predominant sense of a word consid-

ers a weighted list of terms related to that word as type (not token). It can be used for

WSD task with very good results in the class of unsupervised methods. The related

terms are obtained by Lin’s method for building a thesaurus [4]. In the WSD task, this

list is always the same for each occurrence of a word (token), because it does not

depend on the context; this is why we called this method static thesaurus. In our me-
thod, that list is different for each occurrence of the word (token) depending on both

its syntactic (dependency) context and the corpus used for building the co-occurrence

database.

Our method is also unsupervised. It disambiguates a corpus more with better pre-

cision when trained with (another section of) the same corpus, as shown by our expe-

riments when training with 90% of SemCor used as raw text (this is why our method

is unsupervised) and evaluating with the remaining 10%. We compared this against

obtaining the most frequent sense from the same subset of SemCor and evaluating

with the remaining 10% (which is a supervised method). Our precision was 69.86%

vs. 62.84% of that supervised baseline, while our method is unsupervised.

As future work, we plan to carry out more experiments by comparing our results

with the hand-tagged section of the SENSEVAL-2 corpus, all-words test. This will
allow us to compare our system with the systems presented at of SENSEVAL-2. We

believe the results might be similar, given that using the most frequent sense heuristic

with frequency counts from SemCor yields a 62.84 while using the frequency counts

from SENSEVAL-2 corpus yields 60%.

SemCor is a small corpus, ca. 1 million words, compared with the British National

Corpus (BNC, approximately 100 million words). As part of our future work, we plan

to train our method with BNC.

On the other hand, Figure 6 is very irregular and we would not say that the opti-

mum number of max_neighbors is always 70. In addition, terms from the weighted

list (our dynamic thesaurus) are not always clearly related with each other. We expect

to build a resource to improve the semantic quality of such terms.
Finally, it is difficult to determine the main factor that has greater impact on the

proposed disambiguation method: the process of obtaining a weighted list of terms

(the dynamic thesaurus) or the maximization algorithm. This is because the DCODB

sometimes does not provide terms related with a word, and besides, the definitions for

each sense of WordNet are sometimes very short. In addition, as it has been stated

previously, for several tasks the senses provided by WordNet are very fine-graded, so

that a semantic measure may be not accurate enough.

References

1. Hays, D. (1964). Dependency theory: a formalism and some observations. Language, 40
(4): 511–525.

2. Jiang, J., & Conrath, D. (1997). Semantic similarity based on corpus statistics and lexical
taxonomy. International Conference on Research in Computational Linguistics. Taiwan.

3. Leacock, C., M. Chodorow. (1998). Combining local context and WordNet similarity for
word sense identification. C. Fellbaum (ed.) WordNet: An electronic lexical database,
265–283.

4. Lin, D. (1998). Automatic retrieval and clustering of similar words. COLING-ACL 98.
Canada.

5. Lin, D. (1998). Dependency-based Evaluation of MINIPAR. Workshop on the Evaluation
of Parsing Systems. Spain.

6. McCarthy, D., Koeling, R., Weeds, J., Carroll, J. (2004). Finding predominant senses in
untagged text. 42nd Annual Meeting of the Association for Computational Linguistics.
Spain.

7. Mel’čuk, I. A. (1987). Dependency syntax; theory and practice. Albany, N.Y.: State

University of New York Press.
8. Miller, G. (1993). Introduction to WordNet: An On-line Lexical Database. Princeton

Univesity.
9. Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J. (1990). Introduction to

WordNet: An On-line Lexical database. International Journal of Lexicography, 3: 235–
312.

10. Patwardhan, S., Banerjee, S., Pedersen, T. (2003). Using measures of semantic relatedness
for word sense disambiguation. In A. Gelbukh (ed.), CICLing-2003: 4th International
Conference on Intelligent Text Processing and Computational Linguistics. Mexico.

Lecture Notes in Computer Science. Springer.
11. Pedersen, T., Patwardhan, S., & Michelizzi, J. (2004). WordNet::Similarity—Measuring

the Relatedness of Concepts. 19th National Conference on Artificial Intelligence (AAAI-
2004), pp. 1024–1025.

12. Resnik, P. (1995). Using information content to evaluate semantic similarity in a
taxonomy. 14th International Joint Conference on Artificial Intelligence, pp. 448–453.

