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Abstract. We propose a novel approach to recognise textual entailment (RTE)
following a two-stage architecture – alignment and decision – where both stages
are based on semantic representations. In the alignment stage the entailment can-
didate pairs are represented and aligned using predicate-argument structures. In
the decision stage, a Markov Logic Network (MLN) is learnt using rich relational
information from the alignment stage to predict an entailment decision. We eval-
uate this approach using the RTE Challenge datasets. It achieves the best results
for the RTE-3 dataset and shows comparable performance against the state of the
art approaches for other datasets.

1 Introduction

Recognising Textual Entailment (RTE) consists in deciding, given two text segments,
whether the meaning of one segment (the (H)ypothesis) is entailed from the meaning
of the other segment (the (T)ext) [7]. In order to address the task of RTE, most meth-
ods rely on machine learning algorithms. For example, a baseline method proposed
by Mehdad and Magnini [18] measures the word overlap between the T-H pairs. An
overlap threshold is computed over some training data.

Another approach for RTE is to determine some sort of alignment between the T-H
pairs. Since T is usually longer, H is aligned to a portion of T, and the best alignment
is used to compute a similarity score. A limitation of such approaches is that instead
of recognising a non-entailment, an alignment that fits an optimisation criterion will be
returned [17], and thus the alignment by itself is a poor predictor for non-entailment.
To solve this problem, de Marneffe et al. [17] divide the RTE task such that the align-
ment and the entailment decision are separate processes. The alignment phase is based
on matching graph representations (i.e. dependency relations) of the T-H pair. For the
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entailment decision, rules which strongly suggest implications are designed. A specific
rewrite rule between T and H can be positive if they represent entailment or negative
otherwise.

Except for Garrette et al. [8], previous work using machine learning is based on
propositional representations with simple attribute-value pairs as features. Garrette et al.
[8] combines first order logic and statistical methods for RTE. The approach uses dis-
course structures to represent T-H pairs, and a Markov Logic Network (MLN) model to
perform inference in a probabilistic manner over implicativity and factivity, word mean-
ing, and coreference. A threshold on the entailment decision given the MLN model out-
put is manually set. Since their phenomena of interest are not present in the standard
RTE datasets, they use handmade datasets. For other related work in the field, we refer
the reader to [1].

In this paper we describe an RTE approach following a multi-stage architecture. In
contrast to de Marneffe et al. [17], both stages are based on semantic representations
in an attempt to measure entailment based on the similarity of answers to the questions
Who did what to whom, when, where, why and how. This is done through shallow se-
mantic parsing using a Semantic Role Labelling (SRL) tool. Furthermore, instead of
using simple similarity metrics to predict the entailment decision, we use rich relational
features extracted from the output of the predicate-argument alignment structures be-
tween T-H pairs. These are fed to an MLN framework, which learns a model to reward
pairs with similar predicates and similar arguments, and penalise pairs otherwise. Dif-
ferent from [8], we do not use a manually set threshold for the entailment decision
and we evaluate our method on the standard RTE Challenge datasets, which are larger
and contain naturally occurring linguistic constructions that can have an effect on the
entailment decision. We compare our approach to previous works for RTE based on
alignment techniques, and on probabilistic modelling. Our approach achieves the best
performance on the RTE-3 dataset, and competitive results on other datasets.

2 Experimental Design

Our approach to RTE is based on a two-stage architecture: i) alignment, where predicate-
argument structures of H and T are aligned; and ii) entailment decision, where the align-
ments are considered to extract features (i.e. first order logic predicates) and these are
used to build an MLN model.

2.1 Alignment Stage

We represent the T-H pair with SRLs as generated by SENNA [6] and use TINE [20, 21]
to align any number of predicates and arguments between T and H. Instead of simply
matching surface forms, TINE performs a flexible alignment of verb predicates by mea-
suring (i) how similar their arguments are (argScore), (ii) and how related the predi-
cates realisations are (lexScore). Both scores are combined as shown in Equation 1 to
measure the similarity between the two predicates (Av,Bv) from a pair of sentences
(A,B).
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sim(Av,Bv) = wlex× lexScore(Av,Bv)

+ warg × argScore(Aarg,Barg) (1)

where wlex and warg are the weights for each component, argScore(Aarg,Barg)
is the similarity between the arguments, computed as the cosine distance between the
bag-of-words of the predicates’ arguments Av, Bv. lexScore(Av,Bv) is the similar-
ity score of the predicates extracted using Dekang Lin’s thesaurus [14]. The pair of
predicates that maximise Equation 1 produces an alignment with an one-to-one verb-
arguments relation.

2.2 Entailment Decision Stage

In the entailment decision stage we use an MLN to predict the entailment relation of
a given T-H pair. Statistical relational learning [9], as opposed to a propositional for-
malism, is focused on representing and reasoning over domains with a relational and
probabilistic structure. These models use first-order representations to describe the re-
lations between the domain variables and probabilistic graphical models to reason over
uncertainty.

MLN [19] provides a natural choice for this task as it unifies first order logic and
probabilistic graphical models in a framework that enables the representation of rich
relational information (such as syntactic and semantic relations) and inference under
uncertainty. This framework learns weights for first order logic formulas, which are then
used to build Markov networks that can be queried in the presence of new instances.

As an inherently semantic task, RTE should naturally benefit from knowledge about
the relationships among elements (variables) in a text, in particular to check whether
(some of) these relationships are equivalent in both T and H. It is extremely difficult to
fully capture relational knowledge using standard propositional formalisms (attribute-
value pairs), as it is hard to predict how many elements are involved in a relationship
(e.g., a compound argument) or all possible values of these elements, and it is not pos-
sible to represent the sharing of values across attributes (e.g. the agent of a predicate
which is also the object of another predicate).

The basis for our first order logic formulas are the alignments produced in the pre-
vious stage. At inference time, an aligned pair with similar situations and similar partic-
ipants will likely hold an entailment relation. An alignment consists of a pair of verbs
and their corresponding arguments. Several features extracted from these alignments are
used as predicates to build a Markov Network. We formulate a relational model based
on these predicates along with shallow features used to support the decision when there
is no evidence of an alignment for a T-H pair.

Relational Model Our model takes advantage of MLN’s ability to handle relational
information, and it also takes into consideration the semantic relations between the
arguments and verbs. The motivation to design the relational formulas is based on how
the alignment stage works. The alignment is performed via heuristics, which means that
some of the decisions may introduce incorrect or poor information about the relations
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between the participants and situations of the entailment candidate pair. In order to
alleviate this problem, the relational features reward or penalise each of the aligned
verbs from the first stage by making explicit their semantic relation. In addition, the
relational features generalise each of the arguments aligned by TINE.

The following variables are created to represent this information: Arg and V erb.
Figure 1 shows the relationships between these variables in a Markov network.

FArg FVerb

Arg Verb

Entailment

Combo

Direct

Fig. 1. Markov network of our RTE model

The value of Arg is the label given by the SRL parser for the aligned arguments
(e.g., ARG1). The value of V erb is the lexical realisation of the verbs, i.e., the aligned
verbs themselves. Furthermore, the aligned arguments and the aligned verbs have fea-
tures: FArg is the set of features related to the arguments, and FV erb is the set of
features related to the verbs.

The features for each token of aligned arguments are as follows:

Lexical Word, lemma and PoS of each token.
Similar Words The 20 most similar words from Dekang Lin’s thesaurus for each to-

ken. A predicate is created for each similar word.
Hypernyms The first three levels of the hypernym tree above each noun in its first

sense in WordNet. A predicate for each hypernym is created.

These argument features are represented by the following formula:

Token(aid, pid,+tfeature) ∧Arg(aid, vid, pid)⇒ Entailment(+d, pid)

where tfeature takes the value of each of the previous features, aid and vid are the
values of the Arg and V erb variables

For the aligned verbs, the following features are extracted:

Bag-of-words VerbNet bowfeature is the lexical realisation of the classes shared be-
tween the verbs in VerbNet. Looking at the semantic classes of the aligned verbs
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brings extra information about how similar they are:

BowV N(vid,+bowfeature) ∧ V erb(vid, pid)⇒ Entailment(+d, pid)

Strong Context strfeature compares components in Equation 1. If the value of
argScore(Aarg,Barg) is larger than that of lexScore(Av,Bv), this feature is
set to 1, i.e., the similarity of the context of the aligned verbs is stronger than the
relationship between them; it is 0 otherwise:

StrongCon(vid,+strfeature) ∧ V erb(vid, pid)⇒ Entailment(+d, pid)

Similarity VerbNet simvnfeature is set to 1 if the verbs share at least one class in
VerbNet; 0 otherwise:

SimV N(vid,+simvnfeature) ∧ V erb(vid, pid)⇒ Entailment(+d, pid)

Similarity VerbOcean simvofeature is 1 if the verbs have the similar relation as
given by VerbOcean [5];4 0 otherwise:

SimV O(vid,+simvofeature) ∧ V erb(vid, pid)⇒ Entailment(+d, pid)

Token Verbs The predicate contains the lemmas of the aligned verbs:

TokenV erb(vid,+tokenvfeature) ∧ V erb(vid, pid)⇒ Entailment(+d, pid)

Finally, the relation between Arg and V erb is defined by the formula:

Arg(aid, vid, pid) ∧ V erb(vid, pid)⇒ Entailment(+d, pid)

The formulas sharing variables vid and aid indicate relationships between the aligned
arguments and the aligned verbs, as well as their corresponding features given the SRL
structure. pid relates the previous predicates to the decision of an entailment pair. Many
of these formulas can take up multiple values through multiple groundings (e.g. the hy-
pernyms of nouns). The predicate Entailment(+d, pid) takes two possible values for
the decision d: true or false. The + operator indicates that a weight will be learned
for each grounding of the formula. The entailment decision is a hidden variable in the
MLN model and it is used to query the MLN.

In the alignment stage, sometimes TINE cannot align a T-H pair, mostly because
SENNA does not produce any SRL structure for certain T-H pairs. To be able to make a
decision for these pairs using MLNs, we add the variables Combo and Direct as shallow
supporting features for the entailment decision in Figure 1. Combo holds the value
cfeature, which consist of all the combinations of unigrams between the H-T pair.
The following predicate is defined for each unigram combination:

Combo(pid,+cfeature)⇒ Entailment(+d, pid)

4 VerbOcean contains different relations between verbs.
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The Direct variable holds the value simdfeature with 1 if the verbs hold an entailment
relation as given by the Directional Database [13];5 0 otherwise:

Direct(pid,+simdfeature)⇒ Entailment(+d, pid)

The Markov network built from these formulas can then be queried for an entailment
decision. For a new T-H pair, the model predicts a decision based on the type of ar-
guments it has, the features of the words in the arguments, the alignment between its
verbs, the relations between such verbs, and the shallow support features.

3 Experimental Results

We use the Alchemy6 toolkit and the datasets from the RTE challenges 1-3 [7, 2, 10],
which are publicly available, to evaluate our MLN model. To predict the entailment
decision we take the marginal probabilities that Alchemy outputs for a given query, i.e.,
the Entailment predicate. The query with the highest probability gives the entailment
decision.

For a fair comparison, we evaluate our approach against previous work for RTE
that is also based on alignment techniques. de Marneffe et al. [17] use a two-stage
alignment similar to ours, but with dependency trees instead of SRLs. In addition, the
entailment decision problem is represented with a vector of 54 features, where these
features try to capture entailment and non-entailment by focusing on negations and
quantifiers. Training and is performed using a logistic regression classifier. Chambers
et al. [4] improve the alignment stage in [17] and combine it with a logical framework
for the second stage [16]. The inference in the logical framework is expressed by a
sequence of edits over texts expressions, where the edits represent operations that affect
monotonicity over texts expressions. The logical framework maps alignments into a
sequence of edits that defines the entailment decision. MacCartney et al. [15] propose a
phrase-base alignment that uses external lexical resources. They improve the first stage
via knowledge about semantic similarity and an extra, specific dataset for the training
of the alignment stage.

Table 1. Accuracy against previous work based on alignment over the RTE datasets

Method RTE-1 RTE-2 RTE-3
de Marneffe et al. [17] - 60.5% 60.5%

Chambers et al. [4] - - 63.62%
MacCartney et al. [15] - 60.3% -

Relational Model 57% 55% 65%

Table 1 shows that our approach outperforms previous work for the RTE-3 dataset.
However, the results are less positive for RTE-2. A possible reason for this error is the

5 It contains directional lexical entailment rules.
6 http://alchemy.cs.washington.edu/
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low performance of our alignment technique. TINE only finds alignments for a subset
of the test sets: 162 pairs (out of 287) for RTE-1, 463 pairs (out of 800) for RTE-2, and
385 pairs (out of 800) for RTE-3. Therefore, the proportionally fewer noisy alignments
obtained for RTE-3 could have contributed to the better performance of the approach
on this dataset. Another reason for the differences in performance across datasets can
be the way the RTE datasets were built. RTE-3 contains longer T parts, with longer
contexts, and therefore our method can find good quality alignments. This also seem to
affect the overall performance of the participating systems, since the average accuracy
(across all participating systems) for RTE-1 is 55%, while it is 59% for RTE-2, and
61% for RTE-3.

Our approach predicts a larger proportion of the TRUE class for RTE-3 than for
RTE-2. There is a big gap between precision (54%) and recall (70%) for the RTE-3
dataset. Whereas for the RTE-2 this gap is smaller, with 52% precision and 57% recall.
This behaviour could be because TINE finds more alignments for the TRUE pairs.

To further analyse the impact of poor alignment decisions, we test our model on
the subsets of the datasets for which TINE produced an alignment. We compare the
relational model only with the alignment features (i.e. without the shallow features)
against a Support Vector Machine (SVM)-based approach. For the SVM algorithm, we
compute a common and strong RTE baseline: the overlap of lemmas between T-H pairs
as features, and use a linear kernel to learn the binary entailment decision [18]. Table
2 shows the results, where the relational model clearly outperforms the SVM model,
and by a large margin on the RTE-3 dataset. This shows the potential of the relational
features and MLNs for RTE.

Table 2. Accuracy on a subset of RTE 1-3 where an alignment is produced by TINE for T-H

Algorithm RTE-1 RTE-2 RTE-3
SVM 50% 51% 56%
Relational model 57% 55% 78%

For a comparison covering the other main aspect of our approach – its probabilistic
nature –, in a second evaluation experiment we compare our approach against other
methods based on probabilistic modelling.

Glickman and Dagan [11] model entailment via lexical alignment, where the web
co-occurrences for a pair of words are used to describe the probability of the hypothesis
given the text. Harmeling [12] propose a model that, with a given sequence of transfor-
mations over a parse tree, keeps entailment decisions with a certain probability. Wang
and Manning [22] merge the alignment and the decision into one step, where the align-
ment is a latent variable. The alignment is used into a probabilistic model that learns
tree-edit operations on dependency parse trees. Beltagy et al. [3] extend the work in
[8] to be able to process large scale datasets such as those from the RTE challenges.
The method transforms distributional similarity judgments to weighted inference for-
mulas, where the distributional similarity (i.e. If X and Y occur in similar contexts they
describe similar entities) describes the degree of entailment between pairs.
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Table 3. Accuracy against previous work based on probabilistic modelling over the RTE datasets

Method RTE-1 RTE-2 RTE-3
Glickman and Dagan [11] 59% - -

Harmeling [12] - - 59.3%
Wang and Manning [22] - 63% 61.1%

Beltagy et al. [3] 57% - -
Relational Model 57% 55% 65%

Table 3 shows a similar behaviour as the previous comparison: our approach leads
to considerably better results on RTE-3, but lower performance for RTE-2. In addition,
for the RTE-1 dataset, which has also been used by most of these other approaches, our
relational model shows very competitive performance. In particular, it achieves the same
performance as Beltagy et al. [3], which also use a MLN for the entailment decision.

4 Conclusions

We have described a proposal on using a relational statistical learning framework for the
RTE task. Our experiments showed promising results. The main source of errors was
found to be the alignment step, which has low coverage and can produce noisy align-
ments. However, we showed that when an alignment is found, the relational features
improve the final entailment decision.

Future work includes improvements in the alignment stage as well as incorporating
a more robust set of support features, such as using syntactic structures along with the
semantic structures into a combined relational model. In other words, we could use
different types of alignments (e.g., monolingual word alignment, syntactic alignment)
that are based on heuristics, where the objective of the MLN formulas will be to penalise
or reward the decisions made by different aligners. We also plan to define formulas that
relate decisions across aligners.
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