
Computación y Sistemas Vol. 18 No. 2, 2014 pp. 329-344
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-2-2014-035

Unsupervised Learning for Syntactic Disambiguation

Alexander Gelbukh

Centro de Investigación en Computación,
Instituto Politécnico Nacional,

Mexico

www.gelbukh.com

Abstract. We present a methodology framework
for syntactic disambiguation in natural language
texts. The method takes advantage of an existing
manually compiled non-probabilistic and non-
lexicalized grammar, and turns it into a
probabilistic lexicalized grammar by automatically
learning a kind of subcategorization frames or
selectional preferences for all words observed in
the training corpus. The dictionary of
subcategorization frames or selectional
preferences obtained in the training process can
be subsequently used for syntactic
disambiguation of new unseen texts. The learning
process is unsupervised and requires no manual
markup. The learning algorithm proposed in this
paper can take advantage of any existing
disambiguation method, including linguistically
motivated methods of filtering or weighting
competing alternative parse trees or syntactic
relations, thus allowing for integration of linguistic
knowledge and unsupervised machine learning.

Keywords. Natural language processing,
syntactic parsing, syntactic disambiguation,
unsupervised machine learning.

Aprendizaje no supervisado
para la desambiguación sintáctica

Resumen. Se presenta un marco metodológico
para la desambiguación sintáctica de textos en
lenguaje natural. El método se aprovecha de una
gramática no probabilística y no lexicalizada
existente compilada manualmente, y la convierte
en una gramática lexicalizada probabilística a
través del aprendizaje automático de una especie
de los marcos de subcategorización o
preferencias de selección para todas las palabras

observadas en el corpus de entrenamiento. El
diccionario de los marcos de subcategorización o
preferencias de selección, obtenido en el proceso
de entrenamiento, se puede utilizar
posteriormente para la desambiguación sintáctica
de nuevos textos no vistos previamente por el
algoritmo. El proceso de aprendizaje es no
supervisado y no requiere de marcaje manual
alguno. El algoritmo de aprendizaje propuesto en
este artículo se puede aprovechar de cualquier
método de desambiguación existente, incluyendo
métodos lingüísticamente motivados, para la
filtración o ponderación de los árboles sintácticos
alternativos o relaciones sintácticas alternativas,
lo que permite la integración del conocimiento
lingüístico y el aprendizaje automático no
supervisado.

Palabras clave. Procesamiento del lenguaje
natural, análisis sintáctico, desambiguación
sintáctica, aprendizaje automático no
supervisado.

1 Introduction

While there exist different definitions of syntactic
structure, generally speaking, by syntactic
structure of a natural language sentence it is
understood a description of which words can be
grouped together to form meaningful phrases or
which words add details to other words. For
example, in a sentence A young boy reads an
interesting book, the following structure of nested
phrases can be observed:

[[A young boy] [reads [an interesting book]],

where, for example, [A young boy] and [an
interesting book] are names of an entities and

330 Alexander Gelbukh

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 329-344
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-2-2014-035

[reads [an interesting book] is a name of an action
that one of these entities performs.

Another way of describing relationships
between words in a sentence is specifying which
words add more details to other words:

A young boy reads an interesting book

Here we indicate that a and young add more
details to boy, thus forming for the entity a more
specific name than just boy. The two ways of
representing syntactic information are roughly
equivalent, and in this paper, we will use them
interchangeably.

For many sentences, however, linguistic rules
allow more than one interpretation in terms of
such syntactic structure. A notable example is
prepositional phrase attachment: a sentence such
as John sees a cat with a telescope can be
interpreted as John sees [a cat with a telescope]
(John sees a cat that has a telescope) or as John
sees [a cat] [with a telescope] (John uses a
telescope to see a cat).

This phenomenon is called syntactic
ambiguity. It is one of the most difficult problems
of natural language processing. In many
languages syntactic ambiguity is greatly
increased by ambiguity of attachment of
prepositional phrases, or, more generally, of
clauses in specific grammatical cases
(grammatical cases roughly correspond to English
prepositions, but can be expressed cumulatively
within a word by changing its morphological form).

Due to space limitations, in this paper we
simplify the discussion by omitting the treatment
of a number of syntactic constructions such as
English-specific attributive chains, the passive
transformations, Spanish impersonal and reflexive
constructions, and the handling of morphological
ambiguity. Instead, we mostly concentrate on
prepositional phrase attachment and similar
phenomena (grammatical cases in synthetic
languages that have them, such as Turkish,
Finnish, or Russian).

In addition, in frame of our methodology we
construct a special data set of lexical nature that
is useful to resolve the ambiguity related to the

use of prepositions and grammatical cases. The
same data set, namely a kind of a combinatorial
dictionary, is also useful for automatic text
generation and even for foreigners learning the
language or composing texts in this language.

For this end, we describe an iterative
procedure to automatically learn such a data set
from a large text corpus and simultaneously
resolve the syntactic ambiguity in the same
corpus. The data set can later be used for
disambiguation of other, unseen texts. We have
also used it as a raw material for manual
compilation of a human-oriented dictionary of
subcategorization frames.

The problem of prepositional phrase
attachment, mainly in English, has been
addressed using both rule-based approaches [8]
and statistical lexical approaches [17]. Correct
syntactic analysis is crucial in many important
tasks of natural language processing, such as in
concept extraction [20–22], which in turn has
been demonstrated to be very important in such
tasks as sentiment analysis [23, 24] and
recognizing textual entailment [18], among others.

On the other hand, various iterative and re-
estimation methods are actively used in the field
of machine learning to calculate the probabilities
used in hidden Markov models, such as Baum-
Welch re-estimation method [3], to fit data
models, such as the expectation-maximization
method, or for grammar induction from very large
corpora [19].

While these previous works are based mainly
on “tagging” approach to parsing, in our paper we
address the problem from the point of view of
general task of syntactic disambiguation, i.e., of
choosing one of the possible syntactic trees for
the whole sentence.

We also connect the technical task of
disambiguation with well-known linguistic notions
of subcategorization frames and show that the
data obtained in disambiguation of a large corpus
can be used in semi-automatic compilation of a
kind of a combinatory dictionary or selectional
preferences dictionary. We also discuss the idea
of taking into account the probabilities of the
typical errors made by the parser, in addition to
the probabilities of some natural language
constructions.

Unsupervised Learning for Syntactic Disambiguation 331

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 329-344
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-2-2014-035

The paper is organized as follows. In
Section 2, we discuss in more detail the main
problem addressed in this paper: the ambiguity of
prepositional phrase attachment. In Section 3, we
explain the data structure central to our
methodology framework: the subcategorization
dictionary. In Section 4, we show how the
problem of syntactic ambiguity can be solved
using the subcategorization dictionary. In
Section 5, we explain how such a dictionary can
be automatically learnt from syntactically parsed
and disambiguated text.

Given that Section 4 and 5 seemingly present
a chicken-and-egg problem pattern (we need the
dictionary to analyze the training corpus from
which we extract the same dictionary), in Section
6 we present an iterative procedure that by
bootstrapping solves both problems, building the
dictionary and disambiguating the syntactic
structure of the corpus’s sentences.

In Section 7, we briefly discuss experimental
results. Section 8 outlines some ways to
generalize our framework and gives some
directions for future work. Finally, Section 9
concludes the paper.

2 Syntactic Ambiguity

Consider a simple English phrase: They moved
their office from the town to the capital. Syntactic
parsers usually use a morphological
representation of the sentence in question, which
in this case is:

NP V NP P NP P NP,

where NP is a noun phrase (or a pronoun), V is a
verb, and P is a preposition. Possible syntactic
interpretations of a sentence with such parts of
speech of words are as follows (with some
simplifications):

1. [They [moved [their office] [from the town] [to
the capital]]]: they moved it from the town;
they moved it to the capital.

2. [They [moved [their office [from the town]] [to
the capital]]]: there is an office from the town,
and they moved it to the capital.

3. [They [moved [their office [from the town] [to
the capital]]]: there is an “office from the town
to the capital,” and they moved it.

4. [They [moved [their office] [from [the town [to
the capital]]]]]: there is a “town to the capital,”
and from it, they moved the office.

5. [They [moved [their office [from [the town [to
the capital]]]]]]: there is a “town to the capital”
and an office from this town, and they moved
this office.

In Fig. 1, we show these five structures in a
graphical way using the dependency grammar
notation introduced in Section 1, which we
consider more appropriate for our discussion in
the rest of this paper.

Of these five alternative interpretations, a
native speaker would most probably choose the
structure 1 as the only possible interpretation.

M O T CT

f r o m

to



M O T CT

fr o m

to



M O T CT

f r o m

to



M O T CT

f r o m

to


M O T CT

f r o m to


Fig. 1. Possible alternative syntactic structures for the
sentence They (T) moved (M) their office (O) from the
town (T) to the capital (C), in a simplified dependency
representation.

332 Alexander Gelbukh

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 329-344
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-2-2014-035

Such a decision can be made by means of taking
into account some additional information. As we
will show below, this information can be
represented using lexical or syntactic, but not
semantic, representation, and a special dictionary
can help the parser to resolve the syntactic
ambiguity in this sentence.

This type of ambiguity is very common in
syntactic analysis. The number of variants grows
exponentially with the number of prepositions
[10], e.g., the phrase They moved their office from
the town in the North to the capital of the country
has 42 such variants of syntactic structure, etc.

Such ambiguity cannot be resolved by general
grammar rules related to the word order even
taking into account specific prepositions. Indeed,
all the five patterns shown in Fig. 1 are possible in
English with the same prepositions; here are
legitimate examples corresponding to each one of
the five variants:

1. [They [moved [their office] [from the town] [to
the capital]]]: they moved it from the town;
they moved it to the capital.

2. [They [told [the news [from the town]] [to the
neighbor]]]: there is news from the town, and
they told it to the neighbor.

3. [They [prohibited [any movement [from left] [to
right]]]: there is a “movement from left to
right,” and they prohibited it.

4. [They [excluded [this word] [from [the preface
[to the book]]]]]: there is a “preface to the
book,” and from it, they excluded this word.

5. [They [published [an excerpt [from [the
preface [to the book]]]]]]: there is a “preface to
the book” and an excerpt from this preface,
and they published this excerpt.

Therefore, the problem can only be solved by
taking into account some lexical properties of the
words. The example They moved their office to
the capital from the town shows that these
properties are not related with word order in the
sentence: the starting and ending points of the
movement are still the same, though the word
order is different. However, these lexical
properties are not of semantic nature. Indeed, if
we know that the following seemingly incorrect
sentences:

- *They moved their office from the dog to the
idea

- *They sold a book to ten dollars for the
customer

were written by a literate native speaker, we will
have to admit that their syntactic interpretation is
the pattern number 1, and the semantic
interpretation of the second phrase is that ten
dollars is the buyer and the customer is the price,
despite of absurdity of such a meaning (this
reasonong follows Chomsky’s example Colorless
green ideas sleep furiously).

On the other hand, with other prepositions and
the same main words, the sentence has a
different structure: They moved the lawyer’s office
of the town near the capital has a legitimate
interpretation with the pattern number 5, for
example, with the meaning of move ‘to stir’.

As we see, a dictionary that would list the
usage of specific prepositions with specific words
is necessary to resolve the cases of ambiguity of
this kind. Since no semantic information has to be
included in such a dictionary, it is possible to learn
such data from a large text corpus using purely
statistical methods.

3 Subcategorization Frames

While there exists a well-established notion of the
dictionary that presents the kind of information
discussed here, we will use a simpler structure
enough for our purposes, which allows for
automatic learning from a text corpus.

3.1 Traditional Government Patterns
Dictionary

In the Meaning  Text Theory [16, 30], a
government pattern is defined as a table that
enumerates the syntactic valences, called
actants, of the word, all possible ways of their
expression in sentences, and the limitations on
compatibility between them. Such dictionaries are
intended in the first place for text generation. In
addition, they are very useful for foreigner that
learn the language or compose texts in this
language.

Unsupervised Learning for Syntactic Disambiguation 333

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 329-344
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-2-2014-035

Fig. 2 shows a greatly simplified example of
the entry for the word move1 ‘to change position’
(here the index 1 refers to a specific sense, other
senses being move2 ‘to stir’, move3 ‘to excite’,
etc.). This example follows the structure of the
dictionary that our group has developed for
Spanish [6]. In other languages, the
representation can slightly vary: for example, a
Russian dictionary, instead of, or together with,
prepositions, indicates the grammatical cases of
the words. The ways of expression of the actants
are mutually exclusive: the same actant can be
expressed with one of these ways in a specific
sentence, mostly depending on the author’s
stylistic choice. However, not all actants and even
not all specific ways of expression of the actants
are compatible; such incompatibilities, called
restrictions, are indicated in the dictionary
(omitted in our example for simplicity).

In the dictionary, the actants are supplied with
explanations of their semantic roles. The
semantic marks such as location or agent are
intended to help disambiguation. In addition, they
can be used in text generation if they are different
within the same actant. Such a dictionary enables
a program that does not have any semantic

information to recognize the structure and the
semantic roles in the phrases. It is also necessary
for text generation or composition, both by a
program or by a person [9].

The knowledge on preposition usage or, more
generally, of the ways of expression of syntactic
valences (actants), is language-dependent and
therefore it cannot be automatically inferred by an
algorithm basing solely on semantic information
such as sense definitions. For example, for the
second actant of the word ‘to marry’, English uses
no preposition at all, Spanish uses the preposition
con ‘with’, and similarly in Bulgarian, while
Russian (which is a language very similar to
Bulgarian) uses the preposition na ‘on’. Therefore,
such information should be explicitly provided by
a corresponding language-dependent dictionary.

A traditional government patterns dictionary
does not include the ways of expression of
circumstances of the words, since this is not
lexical knowledge; instead, these ways are fixed
for the language in general. For example, in the
sentence They moved their office from the town to
the capital at five o’clock on Monday for their
convenience, the ways of expression of the

Word: move1

Agent A transfers object O from starting point S to destination point D by the trajectory T.

Actant Ways of expression Example

A = 1: agent 1.1: Noun (agent) a man / the Government moves

O = 2: object 2.1: Noun (object) move their office

S = 3: starting point 3.1: from Noun (location) move from the town

 3.2: out of Noun (location) move out of the town

D = 4: destination point 4.1: to Noun (location) move to the capital

 4.2: into Noun (location) move into a new apartment

 4.3: towards Noun (location) move towards the exit

T = 5: trajectory 5.1: by Noun (location) move by the shore

 5.2: through Noun (location) move through the forest

Restrictions: none (for simplicity here we combine the transitive and intransitive
senses. For a transitive sense only, the restrictions would mention that the second
actant is obligatory).

Fig. 2. Example of a government patterns dictionary entry

334 Alexander Gelbukh

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 329-344
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-2-2014-035

circumstances do not depend on the main word to
move.

While such dictionaries are of great
importance, few attempts have been made to
compile such dictionaries or to consistently
provide the information on the ways of expression
of valences in the common general-purpose
dictionaries. The dictionary [4] is the closest to
this type for English. Manual compilation of such
a dictionary is a very labor-consuming task. Thus,
in this paper we present a framework for
automatically learning a simpler but still useful
similar data structure from raw unprepared text
corpora.

3.2 Subcategorization Frames for Syntactic
Disambiguation

A much simpler structure is enough for purposes
of syntactic disambiguation. Such simpler
structure can be obtained automatically using the
methodology described in this paper. Fig. 3
shows an abridged example of such a structure
(this is not a real output of the program: since we
worked with Spanish, we have to use artificial
English examples in this paper, with figures

chosen manually and only for illustration
purposes).

The meaning of the first two columns is

discussed in Section 3.3 below. The symbol ‘’
denotes the absence of any preposition, i.e.,
direct object; the symbol ‘—’ denotes the absence
of any arguments at all. In this example, we do
not consider the first actant, the subject, since it is
always attached to the verb in a predictable
manner.

Fig. 3 shows the data that can be obtained
automatically from raw texts with the procedure
discussed in Section 3.4, along with the examples
that also can be obtained automatically. There are
significant differences between this data structure
and the traditional government pattern dictionary
shown in Fig. 2:

- Only possible combinations found in the texts
are shown in the table, and the valences are
not grouped together into actants.

- No information on the semantic roles is
provided.

- In Fig. 2, no semantic types of the words,
such as agent or location, are shown.
However, if the information on the semantic
types is available, it can be added to the table

move

p+ p– Combination Example

8892 3782 — Jill moved impatiently.

3478 921 to John moved to the new apartment.

372 123  + from + to The firm moved its office from the town to the capital.

135 342  + out of She moved the table out of the room.

83 58  + into We moved the device into the house.

76 782 to + for The family moved to the South for sake of the child.

34 89  + from + through He moved the table from the room through the door.

30 219 to + at Jack moved to the new apartment at five o’clock.

25 38 to + through She moved to the South through the forest.

9 13 towards The group moved towards the mountain.

1 463 of She moved the table of John’s friend.

Fig. 3. An entry of the dictionary used for disambiguation (the last line illustrates an error in the
automatically compiles dictionary).

Unsupervised Learning for Syntactic Disambiguation 335

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 329-344
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-2-2014-035

in the same way, e.g., “ (object) + out of
(location),” though this would make the table
much larger.

- Because this dataset is meant to be obtained
automatically, some erroneous combinations
may be present in the list, as it is shown in the
last line of the table. However, the weights
(see Section 3.3) of these combinations are
usually very low—lower than the threshold of
eliminating the combinations from the
dictionary. Thus, they appear in the final list in
very few cases.

On the other hand, the dataset has additional
information, and in the first place, the statistical
weights discussed in Section 3.3 below.

Because of all these differences, and because
the term “government pattern” has a very specific
and elaborate meaning in frame of the

Meaning  Text Theory, we prefer to use less
specific term for the dataset shown in Fig. 3.
Namely, we will use the term subcategorization
frame, which seems to less precisely defined in
existing literature and used with greater variation.

3.3 Positive and Negative Statistical Weights
of the Frames

Along with each combination, the number of its
occurrences observed in the text corpus, denoted
by p+, is included in the table. On the one hand,
this number shows the reliability of the information
on this combination. On the other hand, in text
generation or composition it allows choosing the
most common way of expression of the actants.
However, the main use of this number for
disambiguation is discussed in Section 4 below.

More precisely, this number is not exactly the
number of occurrences; instead, it is weighted by
the probability of each occurrence to be the true
variant of the syntactic structure given its
ambiguity, as discussed in Section 2. This is a
technical trick, the intended meaning of this figure
being just the number of occurrences in the
correct structures—however, the weighted
number is the best we can obtain without knowing
exactly which of the variants of the syntactic
structure of the sentences are the correct ones.

More interesting is the second column, p–. This
is the number of occurrences of the given

combination in the incorrect variants of the
syntactic structure of sentences built by a specific
parser (we assume here that the parser produces
all the possible variants of syntactic interpretation
of the same sentence). More precisely, the figure
p– is, similarly to p+, weighted by the probability of
each specific variant to be false.

For example, suppose the parser builds all the
five possible variants for the phrase shown in
Fig. 1, the corpus consists of only one phrase,
and we know that the first variant is the correct
one. Then the pattern town to is assigned the
values p+ = 0 and p– = 2, the former one because
this combination does not occur in the correct
variants of parsing, and the latter one from the
variants 4 and 5 known in this case to be
incorrect.

If, on the other hand, we have no information
on which variant is correct, then we have p+ = p– =
2/5, i.e., there is no way to extract meaningful
disambiguation information from only one phrase.
However, below we will show that such
information can be automatically extracted from a
larger text corpus.

This information—the weights p+ and p–—is
used for disambiguation: When a specific
combination is observed in one of the variants
generated by the parser, is it more probable that
this combination is found in a real (correct)
structure or that this variant of the structure
should be discarded in favor of other variants?
Does the parser more frequently detect this
combination in correct or in incorrect variants of
syntactic structure? The disambiguation
procedure that answers these questions is
discussed in Section 4.

3.4 Computer-aided Compilation of the
Traditional Dictionary

While the data structure shown in Fig. 3 is
intended primarily for automatic syntactic
disambiguation, it is possible to use these data for
semi-automatic compilation of a classic human-
oriented dictionary such as the one shown in
Fig. 2. For this, we used a dialogue procedure.
The algorithm of partitioning of the set of
prepositions into actants for one entry performs
the following steps:

336 Alexander Gelbukh

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 329-344
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-2-2014-035

1. The prepositions are grouped together, so that
no group contains two prepositions that belong
to the same combination. These groups
correspond to the hypothetical actants of the
word.

2. Of all such possible partitions, the ones that
result in the minimum number of groups are
chosen.

3. All the possible orders of the set of the groups
are considered, with the restriction that the
group that contains the direct object must be
the second actant. For each such order, a
quantitative measure is calculated according to
the word order in the combinations: Those
variants for which a greater number of
combinations agree in the order with the
ordering of the groups are scored better.

4. The ordered partitioning with the best score is
presented to the human annotator. The
annotator can remove some of the
prepositions, if he or she considers that they
are related to circumstances rather than to
actants, or move a preposition to another
group. After each action of the annotator, the
calculations are repeated taking into account
the restrictions introduced by the annotator,
and an improved version of partitioning is
presented to the annotator.

The process repeats until the annotator
accepts a presented version or else chooses to
continue manually if the algorithm fails to
converge to a satisfactory solution. At each stage,
the annotator is presented with the examples,
which are also included in the final dictionary.

After the actants have been identified, two
kinds of hypotheses are presented to the
annotator:

- First, the hypotheses on the obligatory
actants. If some actant is present in all the
available examples, then the program
suggests to the annotator to mark it as
obligatory. The verbs with obligatory second
actant are called transitive, such as to give
smth. In English, there exist verbs with two
obligatory actants, such as to tell smth. to
smb.: both sentences *He told this news, *He
told to Jack are incomplete.

- Second, the hypotheses on incompatibility of
actants or individual variants of their

expression, e.g., individual prepositions. Only
pairs of prepositions are currently considered
by our algorithm. If two prepositions belonging
to different actants are not found together in
the available examples, the algorithm
suggests that they are incompatible. Since
the number of such hypotheses is often very
large, special heuristics are used to order
them according to their plausibility. However,
we have to admit that this feature was not
very useful so far.

While in Fig. 3 only one example is shown, our
program collects up to 10 examples for the same
combination. They are chosen from the text
corpus based on a combined criterion: (1) they
cover the corpus approximately proportionally and
(2) the examples are kept with the best scores
assigned by the procedure described in Section 4.
The examples are ordered by the latter scores
and the best one is the first to be presented to the
annotator. However, the annotator can view all of
them and choose the best ones, remove some of
them, search the corpus for other examples, or
enter new examples manually.

With this, the algorithm can help the annotator
to identify syntactic features of words. However,
semantic interpretation of the word and the
semantic roles corresponding to the syntactic
valences are to be added by the annotator
manually.

4 Disambiguation with Weighted
Government Patterns

We assume that the syntactic parser is based on
a manually crafted grammar [14], which allows for
multiple interpretation of the same sentence with
insufficient or no means for deciding which of
them is the correct one. This creates syntactic
ambiguity.

By disambiguation, we mean assigning to the
variants the weights according to the probability
(interpreted as plausibility) for the given variant to
represent the correct structure of the sentence
intended by the author or at least the one that
most of native speakers would choose for this
sentence.

Unsupervised Learning for Syntactic Disambiguation 337

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 329-344
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-2-2014-035

We consider such a notion of disambiguation
better than just to choosing one of the variants
and discarding all other variants. In particular,
these weights can be used for ordering the
variants. The variant with the highest weight is
considered first by the subsequent modules of the
text processing chain; if for some reason (say,
semantic inappropriateness in the given context)
it cannot be accepted, the next variant is
considered—which is impossible with the parsers
that always generate only one output variant thath
they consider most likely correct.

In addition, these weights can be combined
with other possible estimations of the correctness
of the variants. Finally, these weights are used
internally by our procedure as described in
Section 6.

Therefore, we suppose that a parser is
available that builds for each phrase one or more
(possibly very many) variants of the syntactic
structure. We assume that the parser always
builds the correct structure for a sentence, plus
possibly some additional, incorrect variants. In
this section, we assume that the
subcategorization dataset shown in Fig. 2 is given
(in Sections 5 and 6 we will discuss how it is
constructed).

As an underlying statistical model, we consider
the model of information transmission in the
presence of noise. The set of the variants

generated for one sentence is considered an
observable mixture of variants generated by two
different sources: the source S + produces only
the correct variants, and the source S – only
incorrect ones. Each time we receive such a
mixture, exactly one variant in it was emitted by
the source S + and all the others, the noise, by the
source S –; see Fig. 4.

There is a set of “features” of the variants; for
each feature, a variant can have an occurrence of
such a feature, several occurrences of it, or none.
In our case, each feature is a specific combination
of prepositions related with a specific word. The
variant has this feature if in the given variant of
the syntactic structure this word is connected by
dependency relations (Fig. 1) with exactly this set
of prepositions (though see Section 8 for
generalizations).

The receiver can observe the features, and the
task of disambiguation is to guess which variant
was issued by the “correct” source S +. In this
section, the probabilities for each of the sources,
S + and S –, to assign a given feature to the
variant that it issues are considered to be known:
these are the values p+ and p–, correspondingly
(after normalization so that they sum up to a
unity).

We do not describe here the handling of
morphological ambiguity [13] that involves the
frequencies of specific words and a slightly

 Source S +

(correct information)

Source S –

(noise)

Recei-

ver

Features: Observable

mixture

Variant

Fig. 4. A model of observable mixture of variants from two sources

338 Alexander Gelbukh

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 329-344
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-2-2014-035

different handling of the probabilities p+ and p–. In
fact, morphological ambiguity is rare in the
variants of parsing, since it is usually resolved by
the syntactic grammar itself. Thus, we suppose
that all variants include the same set of words and
prepositions, though connected differently to each
other, as in Fig. 1.

Now it is easy to estimate the probability of the
hypothesis Hi that the variant number i in the
observed mixture of variants is the correct one,
i.e., that it was issued by the source S +, we
denote this probability by the weight wi of the
hypothesis Hi. We assume that the features are
numerous so that for each specific feature, the
probability not to occur in a specific variant is
almost 1. A simple reasoning based on the Bayes
theorem [12] proves that the weight wi is a
product

 





j

japr

ii

p

p
pCw

by all the features j found in the variant number i,
where apr

i
p is the a priori probability of this

hypothesis; C is the normalizing constant, since
the total probability of the hypotheses Hk is to be
equal to 1. The problem of division by zero never

occurs due to the additional constant  introduced
in Section 5.

When we use the dataset extracted from a
corpus to disambiguate other texts, some
combinations are absent in the dictionary. In this
case the corresponding factor should be set to a

small value , since we the probability for the
parser to generate an erroneous variant of a new
type is greater than the probability to find a new
correct combination. This value should be non-
zero to allow comparison between variants by
other factors.

As we show in Section 5 below, even while
learning the probabilities from a corpus, the
process speeds up considerably if the
combinations with small quotient p+ / p– are
eliminated from the dictionary.

This policy agrees with the rule of using small
values for those combinations that were not found
in the dataset; the threshold for eliminating the

combinations should be set approximately to .
With this, each time when the analyzer observes

a feature that is not present in the dataset, it can
safely assume that this feature was present there
with a very small weight but was eliminated in
order to save memory and speed up the learning
process.

Finally, we can formulate the procedure for
assigning the weights to the hypotheses of the
syntactic structure of one phrase. It proceeds as
follows:

1. All the variants permitted by the grammar used
by the parser are built, these are considered
as the hypotheses Hi.

2. Any available knowledge and procedures are
applied to estimate a priori the “quality” apr

i
p of

each such hypothesis. These procedures can
take into account, for example, the length of
the dependency links (shorter links are
generally scored better), semantic coherence
of the structure [11], weights of the grammar
rules used in it [2, section 7.6], etc. If no
information of such kind is available, then
equal weights are assigned to all available
hypotheses.

3. For each variant of the syntactic tree, the
features of the given variant are looked up in
the dictionary. In our case, for each word, the
combination of prepositions attached to this
word in the current variant of the syntactic tree
of the sentence is retrieved from the list. If the
combination is found, then the weight wi of the
variant is multiplied by its p+ / p–, otherwise it is

multiplied by .

4. The weights wi are normalized so that  wi = 1
for the variants of the structure of the same
sentence.

5. The variants are ordered by the weights wi,
and the variant with the greatest such weight is
selected as the result of the analysis if only
one result is required.

Some generalizations of the proposed
framework are discussed in Section 7. However,
the changes discussed there only concern the
nature of the features operated upon and do not
concern the procedure itself.

Unsupervised Learning for Syntactic Disambiguation 339

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 329-344
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-2-2014-035

5 Learning the Weighted
Subcategorization Frames from a
Corpus

In the previous section, we assumed that we have
a dictionary of weighted subcategorization
frames, and showed how it is used for syntactic
disambiguation, that is, for estimating the quality
of the variants of the syntactic structure buit by
the parser.

Consider now the opposite task: Assume that
there is a parser and a disambiguation procedure
that assigns the plausibility weights to the
hypotheses (variants), and we need to find the
frequencies of occurrence of each feature in the
correct and wrong variants. In our case, a feature
is a word along with the set of dependency links
that lead from this word, labeled with their types;
see Fig. 5.

If the available disambiguation procedure
directly choses the correct variant, then the only
thing to do is to increment the counter p+ for all
the combinations found in the correct variant, and
p– for all the combinations found in all incorrect
ones.

However, if the disambiguation procedure only
determines the weights of the variants, then we
should consider the same model as shown in
Fig. 1, and again apply the Bayes theorem. For
each variant, the probability of that it was issued
by the “correct” source S + is wi, and the
probability that it was issued by the source of
incorrect variants S – is 1 – wi; these values are
accumulated over all variants for all sentences in
the corpus.

To calculate the average values, the total
should be divided by the number of variants
generated by the sources S + and S –. Let V be

the number of variants generated by the parser
and S the number of sentences in the corpus,
then the total number of the correct variants is S
and of incorrect is V – S. Thus, the obtained
formulae are as follows:

,
λ)1(

,

SV

w
p

S

w
p

k

j

k

j
















where the summation is performed over all the
occurrences of the feature j in the variants wk, and

the meaning of  is described below.

The formulae work for the ideal case, when the
corpus is so large that any possible type of
combination or error occurs many times during its
analysis. In reality, due to infinite variety of the
constructions in open texts, all the possible words
and combinations cannot occur in any corpus,
even a very large one. What is more, very
numerous are the cases that occur in the corpus
very few times, or even one time.

Such cases introduce instability in the model
since the quotient p+ / p– for them is either very
big or very small, this value being almost random,
since each additional occurrence would greatly
affect it. (Though in [8] the significance of rare
cases is especially emphasized, we did not
observe such an effect, so that smoothing of the
rare cases gave much better results.)

There are different methods to suppress such
rare cases in the statistical results. We have

chosen to artificially add some number  of
occurrences of each combination in the false
variants, thus assuming that anything wrong can
happen with some small but non-zero probability,
and has not yet been observed only because of a

M O T CT

fro m

to

 M , T , C

fro m

to


 T , O ,



Fig. 5. The features of a variant of the syntactic tree: the tree on the left, the
five extracted features on the right

340 Alexander Gelbukh

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 329-344
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-2-2014-035

small size of the training corpus; because of the
Zipf law, no size is large enough.

Our experiments have shown that this method

works best. The value of  was also chosen
experimentally: the best results happened to be

achieved with  = S.

With this, our procedure for accumulating the
statistical weights for the combinations is as
follows:

1. All the variants of the structure are built for
each phrase of the corpus.

2. The variants for each phrase are evaluated,
i.e., are given the probability weights wi such

that  wi = 1 for each phrase, by an external
procedure—for example, the one described in
Section 4.

3. For each combination found in each variant,
the counters p+ and p– are incremented by the
values wi and 1 – wi, respectively. The initial
values are zeroes.

4. Finally, the value of  = S is added to each p–

and the values are divided by S and SV  ,

respectively.

After these values have been determined, the
combinations with the quotient p+ / p– smaller than

some threshold value  can be eliminated from
the dictionary, as described in Section 6. To
speed up the procedure, after Step 2 the variants
with the probability wi lower than some threshold
can be ignored.

6 Iterative Disambiguation and
Learning

In Sections 40 and 5, we have described two
procedures, which work in the mutually opposite
directions and apparently represent a case of
chicken-and-egg problem arrangement: each one
of them requires the other to have been solved for
its correct functioning.

As a solution of this chicken-and-egg problem,
we use these two procedures iteratively, given
that we have a large enough training corpus. The
work starts from, say, an empty dictionary of
subcategorization frames. The disambiguation
procedure will then assign equal weights to all the
variants or will keep their a priori weights.

At the next step, these (equal) weights of the
variants are used to train the model, i.e., to
determine the frequencies p+ and p–. However,
now the model learns from unequal distribution of
features by variants: some features are more
frequent. Of special importance are the cases
when the sentence has only one or few variants:
the features that occur in these variants are likely
indicators of a correct variant.

Then the process is repeated: the dictionary of
features constructed at the previous step is used
to assign new weights to the variants, and these
weights are in turn used to construct a better
dictionary. Our experiments show that the
iterative process converges very quickly.

In this process, the information does not
appear from nothing. Throughout the corpus, the
variants that share the same combinations are
“interconnected” to each other in the model in the
sense that re-evaluation of one of them indirectly
affects the evaluation of other: they either “help”
each other to win the competition within their sets
of variants for one sentence, or suppress each
other when they lose this competition. Thus the
model optimizes itself to the state when the
winners in each set have as much as possible in
common.

Since the sentences are different, the errors
are random, and at the same time, the
grammatical sentences have some combinations
in common. Thus, these sentences, all together in
the corpus, tend to win the competition. The key
difference in this process as compared to other
machine learning algorithms is that the variants of
the analysis of the same sentence are normalized
to 1. Thus, there is a positive feedback between
variants from different sentences that share the
same combinations (features), but negative
feedback (inhibition in the terminology of neural
network) between variants of analysis of the same
sentence.

As to implementation, once the set of the
variants and the set of combinations found in
these variants have been built, the data structures
used in the iterative procedure can be fixed in the
computer memory, because all the operations in
our procedures are arithmetical and do not
produce any new objects. However, depending on
the implementation, the time of access to the
dictionary can be significantly reduced at the later

Unsupervised Learning for Syntactic Disambiguation 341

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 329-344
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-2-2014-035

iterations by eliminating the combinations with the
value of p+ / p– lower than a pre-set threshold, or
by ignoring the variants with the weight lower than
some another threshold. After the first iteration,
the dictionary is usually very large, but after two
or three iterations, nearly only the correct
combinations are left in the dictionary, which
greatly reduces its size.

7 Experimental Results

We experimented with a Spanish corpus and,
accordingly, a handcrafted Spanish grammar. In
our experiments, two values were measured. One
was the similarity between the dictionary built by
the program and the manually compiled gold
standard dictionary, and the other was the
percentage of correctly parsed sentences. By
correctly parsed sentences we mean the ones for
which the variant with the highest weight was the
true one identified by human annotators. The
techniques of experiments to measure these two
values were different.

To measure the similarity between the
dictionaries, a real text corpus could not be used
because the “true” dictionary that the authors of
the texts had in mind was unknown. Therefore, to
check our methodology, we modeled the process
of text generation to obtain a quasi-text corpus
built with a known dictionary [5]. Only the
statistical characteristics of the text were
modeled, such as the length of the phrase and, of
course, the preposition usage; we paid the main
attention to the constructions common in Spanish
texts. In addition, with this method, we could
measure the percentage of the correctly parsed
phrases as well.

In various experiments, we observed all the
three patterns of convergence mentioned in the
similar context in [15], depending on the formulae
and parameters we used, as well as on the size of
the corpus. In the initial maximum pattern, the
dictionary obtained after the first iteration, i.e.,
with equal weights of the variants, was the best,
as well as the percentage of the variants guessed
correctly with this dictionary. At the subsequent
iterations, both estimations were getting worse.

In the early maximum pattern, the best values
were achieved after several iterations, and then

they slightly degraded. Finally, with the formulae

described here and the parameter  of the order
of S, as described in Section 5, the classical
pattern was achieved: the values tended to grow
and quickly stabilize at the relatively high level.
However, even in this case we observed slight
elements of the early maximum pattern: after
reaching the maximum, the percentage of
correctly guessed variants fell insignificantly,
usually within 1%, and stabilized at that value.

As a measure of similarity between the two
dictionaries, the one found by our method and the
true one know a priori, we used several
measures: the percentage of incorrect
combinations, the coverage, and the difference of
the probabilities of usage p+ for the correct
combinations. After a few iterations these values
stabilized at the level around 5% of incorrect
combinations and 80% of similarity of the
probabilities. The coverage was rather low in our
experiments (about 30%) since due to the
technical limitations of our program so far we
used relatively small corpus.

A typical sequence of the percentages of the
correctly guessed variants at consecutive iteration
was 37%, 85%, 89%, 90%, 90%, etc., or, taking
into account only the phrases for which the parser
generated more than one variant, 16%, 80%,
86%, 87%, 87%, etc. As one can observe, the
results quickly stabilized. The first figures in both
sequences were obtained with the equal weights,
by picking an arbitrary variant for each phrase.
The last figures of in the sequences show the
accuracy reached with the method that is
presented here.

Our second set of experiments was carried
with real Spanish and Russian text corpora. As a
Spanish corpus we used mainly the texts kindly
provided to us by the publisher of Gazeta UNAM,
the newspaper of UNAM University, Mexico City;
the corpus contained approximately 8 million
words. We used a very simple context-free parser
to build the initial set of the variants; the grammar
contained only 41 rule in a language similar to a
context-free grammar (with phrase heads marked
in each rule).

Then we performed a selective check of the
results. This check showed good convergence of
the method with the best value reached so far
being 78% of correctly parsed phrases; on

342 Alexander Gelbukh

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 329-344
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-2-2014-035

unseen data analyzed with the dictionary built at
the training stage, this figure so far was 69%.
Note that all the figures reflect not the number of
correctly attached prepositions, but instead the
number of correctly parsed entire sentences: if
any part of the sentence was not parsed correctly,
then the whole sentence was considered parsed
incorrectly. In the future, with a more elaborated
grammar we expect to achieve better results.

In our experiments, we did not observe any
advantage of using some nontrivial initial values
for the weights of the hypotheses or for the
dictionary—for example, using an initial dictionary
close to the true one, or assigning the variants
initial weights close to the gold standard. The best
results were obtained with equal weights, i.e., with
initially empty dictionary. However, the a priori
information can be used at each iteration, as it
was described in Section 6.

8 Generalizations and Future Work

Our methodology method has many possible
variants. For example, different kinds of
information can be taken into account in the list of
combinations. If there is any lexical information
available from the parser, such as:

- part of speech (in Spanish prepositions can
precede verbs),

- animacy (in Russian this is a morphological
characteristic),

- semantic class (such as person, agent, living
being, organization, object, action),

etc., then they can be added to the
subcategorization frames, provided that the
corpus is large enough to avoid the data
sparseness problem. In this case, some method
of merging the subcategorization frames with
similar structure but with different characteristics
of the governed word should be applied. For
example, if two patterns have comparable weights
and differ only in animacy of one of the valences,
they should be merged in a common entry without
the animacy mark.

Conversely, counting each preposition
separately will very significantly reduce the data
sparseness problem. For example, instead of one
frame such as move + from + to + through, three

independent frames can be considered: move +
from, move + to, move + through, though this may
reduce the accuracy when the model is trained on
a large enough corpus.

Other generalizations concern the very nature
of the objects for which the statistics is gathered,
this is why throughout the paper we preferred to
refer to them as to abstract “features.” First, by
such features the grammar rules used in the
parsing process can be considered. This will turn
the grammar used by the parser into a
probabilistic grammar [2]. Second, we expect that
with a very large corpus, a similar approach can
be applied to word combinations, for both
syntactic disambiguation and composition of the
dictionary useful for human readers [7]. In
particular, all kinds of recently introduced
syntactic n-grams [25–29] can be used as
features in our method, instead of a specific kind
of (incomplete) syntactic n-gram presented in
Fig. 5.

All the three methods, namely, the one based
on the weights of the subcategorization frames,
grammar rules, and word combinations can be
used simultaneously as described in Section 4.

Finally, the method can be translated into the
language of neural networks. Indeed, the variants
of the parsing can be viewed as neurons, a
features common to two variants can be viewed
as a mutually exciting link, while any two variants
belonging to the same phrase can be viewed as
mutually inhibiting; disambiguation is viewed as
excitement of exactly one neuron in each set of
the mutually inhibiting ones. We plan to
investigate whether the neural network
techniques can increase the performance of the
method.

9 Conclusions

We have presented a methodological framework
for syntactic disambiguation based on the use of
a data structure similar to subcategorization
frames with statistical weights. The
subcategorization frames and their weights are
automatically learned from a text corpus. The
dictionary of obtained frames can be used for
disambiguation of new unseen texts. The method
has the following advantages:

Unsupervised Learning for Syntactic Disambiguation 343

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 329-344
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-2-2014-035

- The learning is unsupervised: no manual
preparation is required to train the model,
apart from writing a small grammar. However,
a morphological analyzer or tagger and a
syntactic grammar are required, since the
method aims to disambiguate the results of
an existing parser.

- The method is compatible with other methods
of disambiguation, especially with methods
that produce an estimation of probability for
each variant. This provides an opportunity for
incorporating linguistic knowledge and
linguistically motivated procedures into a
purely statistical unsupervised learning
method.

- The results of the application of the method
are tuned to a specific parser, taking into
account the balance between the correct and
wrong assignments of prepositions to words.
Note that training the dictionary for any other
parser comes at no cost because the method
relies on unsupervised learning.

- The data built by the algorithm is lexicalized,
so that the amount of processed data does
not increase with the growth of the number of
rules in the grammar.

- The data set learned from the corpus is useful
for semi-automatic compilation of a traditional
government patterns dictionary, which is used
both for semantic analysis in natural language
processing and as learning and authoring aid
by the foreigners that compose texts in the
given language.

- The subcategorization frames used by the
method correspond to some linguistic
reality—unlike, say, the probabilities used by
the Hidden Markov Model or neural network
methods.

We believe that the latter means that the
native speakers are aware of such a reality and,
according to Grice’s Cooperative Principle, in text
composition intentionally try to avoid
constructions that would be misleading with
respect to subcategorization frames of the words,
cf.: ?They laughed at this place vs. They laughed
here, ?He spoke with the director of the new plan
vs. He spoke of the new plan with the director.

Acknowledgements

This work was partially supported by the
Government of Mexico via the Instituto Politécnico
Nacional grant SIP 20144534 and SNI, and the
European Union via the European Commission
project 269180 FP7-PEOPLE-2010-IRSES: Web
Information Quality–Evaluation Initiative (WIQ-EI).

References

1. Alfared, R. & Béchet, D. (2012). POS taggers and
dependency parsing. International Journal of
Computational Linguistics and Applications, 3(2),
107–122.

2. Allen, J. (1995). Natural language understanding.

The Benjamin/Cummings Publishing Company,
Inc.

3. Baum, L.E. (1972). An inequality and associated

maximization technique in statistical estimation for
probabilistic functions of a Markov process.
Inequalities, 3, 1–8.

4. Benson, M., Benson, E., & Ilson, R. (1986). The
BBI Combinatory dictionary of English. John
Benjamins Publishing Co.

5. Bolshakov I.A., Gelbukh, A., & Galicia-Haro, S.
(1998). Simulation in linguistics: assessing and

tuning text analysis methods with quasi-text
generators. International workshop on
computational linguistics and its applications,
Dialogue-98, Khazan, Russia.

6. Bolshakov, I.A., Gelbukh, A., Galicia Haro, S., &
Orozco Guzmán, M. (1998). Government patterns
of 670 Spanish verbs. Technical report, Serie Roja,
N 35. CIC, IPN, 1998, 65 pp.

7. Bolshakov I.A., Cassidy, P.J., & Gelbukh, A.
(1995). CrossLexica: a dictionary of word

combinations and a thesaurus of Russian (in
Russian). International workshop on computational
linguistics and its applications, Dialogue-95,
Khazan, Russia.

8. Brill, E., & Resnik, P. (1994). A rule-based

approach to prepositional phrase attachment
disambiguation. ACL, Kyoto, Japan.

9. Castro-Sánchez, N.A., & Sidorov, G. (2010).

Analysis of definitions of verbs in an explanatory
dictionary for automatic extraction of actants based
on detection of patterns. Lecture Notes in
Computer Science, 6177, 233–239.

10. Church, K., & Patil, R. (1982). Coping with

syntactic ambiguity, or how to put the block in the

344 Alexander Gelbukh

Computación y Sistemas Vol. 18 No. 2, 2014 pp. 329-344
ISSN 1405-5546

http://dx.doi.org/10.13053/CyS-18-2-2014-035

box on the table. American Journal of
Computational Linguistics, 8(3–4), 139–149.

11. Gelbukh, A. (2012). Ontology-based semantic

relatedness measures: Applications and
calculation. Research in Computing Science, 47,
117–138.

12. Gelbukh, A., Bolshakov, I.A., & Galicia-Haro, S.
(1998). Statistics of parsing errors can help
syntactic disambiguation. CIC-98, Simposium
Internacional de Computación, Mexico, 405–515.

13. Gelbukh, A., Sidorov, G., & Velásquez, F.
(2003). Análisis morfológico automático del
español a través de generación. Escritos, 28, 9–
26.

14. Gelbukh, A., Sidorov, G., Galicia Haro, S., &
Bolshakov, I.A. (2002). Environment for

development of a natural language syntactic
analyzer. Acta Academia, 206–213.

15. Elworthy, D. (1994). Does Baum-Welsh re-
estimation help taggers? Fourth Conference on
Applied Natural Language Processing, Germany.

16. Mel’čuk, I.A. (1974). An experience of the theory

of Meaning  Text models (in Russian). Nauka,
Moscow.

17. Merlo, P., Crocker, M., & Berthouzoz, C. (1997).

Attaching multiple prepositional phrases:
Generalized backed-off estimation. EMNLP-2,
Brown University Providence, Rhode Island, USA.

18. Pakray, P., Poria, S., Gelbukh, A., &
Bandyopadhyay, S. (2011). Semantic textual

entailment recognition using UNL. Polibits, 43, 23–
27.

19. Pereira, F., & Schabes, Y. (1992). Inside-outside
reestimation from partially bracketed corpora. ACL,
University of Delaware, Newark, Delaware, USA.

20. Poria, S., Agarwal, B., Gelbukh, A., Hussain, A.,
& Howard, N. (2014). Dependency-based

semantic parsing for concept-level text analysis.
15th International Conference on Intelligent Text
Processing and Computational Linguistics,
CICLing 2014. Lecture Notes in Computer
Science, 8403, 113–127.

21. Poria, S., Cambria, E., Winterstein, G., & Huang,
G.-B. (2014). Sentic patterns: Dependency-based

rules for concept-level sentiment analysis.
Knowledge-Based Systems, in press.

22. Poria, S., Gelbukh, A., Agarwal, B., Cambria, E.,
& Howard, N. (2014). Sentic Demo: A hybrid

concept-level aspect-based sentiment analysis
toolkit. ESWC 2014, Crete, Greece.

23. Poria, S., Gelbukh, A., Cambria, E., Hussain, A.,
& Huang, G.-B. (2014). EmoSenticSpace: A novel

framework for affective common-sense reasoning.
Knowledge-Based Systems, in press.

24. Poria, S., Gelbukh, A., Hussain, A., Das, D., &
Bandopadhyay, S. (2013). Enhanced SenticNet

with affective labels for concept-based opinion
mining. IEEE Intelligent Systems, 28(2), 31–38.

25. Sidorov, G. (2013). Non-continuous syntactic n-
grams. Polibits, 48, 67–75.

26. Sidorov, G. (2013). Syntactic Dependency Based

N-grams in rule based automatic English as
second language grammar correction. International
Journal of Computational Linguistics and
Applications, 4(2), 169–188.

27. Sidorov, G. (2013). Non-linear construction of n-
grams in computational linguistics: syntactic,
filtered, and generalized n-grams, 166 p.

28. Sidorov, G., Velasquez, F., Stamatatos, E.,
Gelbukh, A., & Chanona-Hernández, L. (2012).

Syntactic Dependency-based n-grams as
classification features. Lecture Notes in Artificial
Intelligence, 7630, 1–11.

29. Sidorov, G., Velasquez, F., Stamatatos, E.,
Gelbukh, A., & Chanona-Hernández, L. (2012).

Syntactic n-grams as machine learning features for
natural language processing. Expert Systems with
Applications, 41(3), 853–860.

30. Steel, J. (ed.). (1990). Meaning – Text Theory.
Linguistics, lexicography, and implications.
University of Ottawa press.

Alexander Gelbukh received
MSc in mathematics from the
Lomonosov Moscow State
University, Russia, and PhD
in computer science from
VINITI, Russia. He is currently
a Research Professor and
Head of the Natural Language
Processing Laboratory of the
Centro de Investigación in

Computación (CIC) of the Instituto Politécnico
Nacional (IPN), Mexico, and the President of the
Mexican Society of Artificial Intelligence (SMIA).
He is a Member of the Mexican Academy of
Sciences and National Researcher of Mexico
(SNI) at Excellence level 2. He is author, co-
author, or editor of more than 500 research
publications in natural language processing and
artificial intelligence.

Article received on 12/03/2014, accepted on 02/06/2014.

http://www.cic.ipn.mx/~sidorov/Polibits_48_2013_Sidorov.pdf
http://www.cic.ipn.mx/~sidorov/Polibits_48_2013_Sidorov.pdf
http://www.cic.ipn.mx/~sidorov/IJCLA_SN_GRAMS_2013.pdf
http://www.cic.ipn.mx/~sidorov/IJCLA_SN_GRAMS_2013.pdf
http://www.cic.ipn.mx/~sidorov/IJCLA_SN_GRAMS_2013.pdf
http://www.cic.ipn.mx/~sidorov/sn_grams_MICAI2012.pdf
http://www.cic.ipn.mx/~sidorov/sn_grams_MICAI2012.pdf
http://www.cic.ipn.mx/~sidorov/Synt_n_grams_ESWA_FINAL.pdf
http://www.cic.ipn.mx/~sidorov/Synt_n_grams_ESWA_FINAL.pdf

	1 Introduction
	2 Syntactic Ambiguity
	3 Subcategorization Frames
	3.1 Traditional Government Patterns Dictionary
	3.2 Subcategorization Frames for Syntactic Disambiguation
	3.3 Positive and Negative Statistical Weights of the Frames
	3.4 Computer-aided Compilation of the Traditional Dictionary

	4 Disambiguation with Weighted Government Patterns
	5 Learning the Weighted Subcategorization Frames from a Corpus
	6 Iterative Disambiguation and Learning
	7 Experimental Results
	8 Generalizations and Future Work
	9 Conclusions
	Acknowledgements
	References

