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Abstract. We present a methodology framework 
for syntactic disambiguation in natural language 
texts. The method takes advantage of an existing 
manually compiled non-probabilistic and non-
lexicalized grammar, and turns it into a 
probabilistic lexicalized grammar by automatically 
learning a kind of subcategorization frames or 
selectional preferences for all words observed in 
the training corpus. The dictionary of 
subcategorization frames or selectional 
preferences obtained in the training process can 
be subsequently used for syntactic 
disambiguation of new unseen texts. The learning 
process is unsupervised and requires no manual 
markup. The learning algorithm proposed in this 
paper can take advantage of any existing 
disambiguation method, including linguistically 
motivated methods of filtering or weighting 
competing alternative parse trees or syntactic 
relations, thus allowing for integration of linguistic 
knowledge and unsupervised machine learning. 

Keywords. Natural language processing, 
syntactic parsing, syntactic disambiguation, 
unsupervised machine learning. 

Aprendizaje no supervisado 
para la desambiguación sintáctica 

Resumen. Se presenta un marco metodológico 
para la desambiguación sintáctica de textos en 
lenguaje natural. El método se aprovecha de una 
gramática no probabilística y no lexicalizada 
existente compilada manualmente, y la convierte 
en una gramática lexicalizada probabilística a 
través del aprendizaje automático de una especie 
de los marcos de subcategorización o 
preferencias de selección para todas las palabras 

observadas en el corpus de entrenamiento. El 
diccionario de los marcos de subcategorización o 
preferencias de selección, obtenido en el proceso 
de entrenamiento, se puede utilizar 
posteriormente para la desambiguación sintáctica 
de nuevos textos no vistos previamente por el 
algoritmo. El proceso de aprendizaje es no 
supervisado y no requiere de marcaje manual 
alguno. El algoritmo de aprendizaje propuesto en 
este artículo se puede aprovechar de cualquier 
método de desambiguación existente, incluyendo 
métodos lingüísticamente motivados, para la 
filtración o ponderación de los árboles sintácticos 
alternativos o relaciones sintácticas alternativas, 
lo que permite la integración del conocimiento 
lingüístico y el aprendizaje automático no 
supervisado. 

Palabras clave. Procesamiento del lenguaje 
natural, análisis sintáctico, desambiguación 
sintáctica, aprendizaje automático no 
supervisado. 

1 Introduction 

While there exist different definitions of syntactic 
structure, generally speaking, by syntactic 
structure of a natural language sentence it is 
understood a description of which words can be 
grouped together to form meaningful phrases or 
which words add details to other words. For 
example, in a sentence A young boy reads an 
interesting book, the following structure of nested 
phrases can be observed:  

[[A young boy] [reads [an interesting book]], 

where, for example, [A young boy] and [an 
interesting book] are names of an entities and 
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[reads [an interesting book] is a name of an action 
that one of these entities performs. 

Another way of describing relationships 
between words in a sentence is specifying which 
words add more details to other words: 

 
 

A young boy reads an interesting book 

Here we indicate that a and young add more 
details to boy, thus forming for the entity a more 
specific name than just boy. The two ways of 
representing syntactic information are roughly 
equivalent, and in this paper, we will use them 
interchangeably. 

For many sentences, however, linguistic rules 
allow more than one interpretation in terms of 
such syntactic structure. A notable example is 
prepositional phrase attachment: a sentence such 
as John sees a cat with a telescope can be 
interpreted as John sees [a cat with a telescope] 
(John sees a cat that has a telescope) or as John 
sees [a cat] [with a telescope] (John uses a 
telescope to see a cat). 

This phenomenon is called syntactic 
ambiguity. It is one of the most difficult problems 
of natural language processing. In many 
languages syntactic ambiguity is greatly 
increased by ambiguity of attachment of 
prepositional phrases, or, more generally, of 
clauses in specific grammatical cases 
(grammatical cases roughly correspond to English 
prepositions, but can be expressed cumulatively 
within a word by changing its morphological form). 

Due to space limitations, in this paper we 
simplify the discussion by omitting the treatment 
of a number of syntactic constructions such as 
English-specific attributive chains, the passive 
transformations, Spanish impersonal and reflexive 
constructions, and the handling of morphological 
ambiguity. Instead, we mostly concentrate on 
prepositional phrase attachment and similar 
phenomena (grammatical cases in synthetic 
languages that have them, such as Turkish, 
Finnish, or Russian). 

In addition, in frame of our methodology we 
construct a special data set of lexical nature that 
is useful to resolve the ambiguity related to the 

use of prepositions and grammatical cases. The 
same data set, namely a kind of a combinatorial 
dictionary, is also useful for automatic text 
generation and even for foreigners learning the 
language or composing texts in this language.  

For this end, we describe an iterative 
procedure to automatically learn such a data set 
from a large text corpus and simultaneously 
resolve the syntactic ambiguity in the same 
corpus. The data set can later be used for 
disambiguation of other, unseen texts. We have 
also used it as a raw material for manual 
compilation of a human-oriented dictionary of 
subcategorization frames. 

The problem of prepositional phrase 
attachment, mainly in English, has been 
addressed using both rule-based approaches [8] 
and statistical lexical approaches [17]. Correct 
syntactic analysis is crucial in many important 
tasks of natural language processing, such as in 
concept extraction [20–22], which in turn has 
been demonstrated to be very important in such 
tasks as sentiment analysis [23, 24] and 
recognizing textual entailment [18], among others. 

On the other hand, various iterative and re-
estimation methods are actively used in the field 
of machine learning to calculate the probabilities 
used in hidden Markov models, such as Baum-
Welch re-estimation method [3], to fit data 
models, such as the expectation-maximization 
method, or for grammar induction from very large 
corpora [19]. 

While these previous works are based mainly 
on “tagging” approach to parsing, in our paper we 
address the problem from the point of view of 
general task of syntactic disambiguation, i.e., of 
choosing one of the possible syntactic trees for 
the whole sentence.  

We also connect the technical task of 
disambiguation with well-known linguistic notions 
of subcategorization frames and show that the 
data obtained in disambiguation of a large corpus 
can be used in semi-automatic compilation of a 
kind of a combinatory dictionary or selectional 
preferences dictionary. We also discuss the idea 
of taking into account the probabilities of the 
typical errors made by the parser, in addition to 
the probabilities of some natural language 
constructions. 
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The paper is organized as follows. In 
Section 2, we discuss in more detail the main 
problem addressed in this paper: the ambiguity of 
prepositional phrase attachment. In Section 3, we 
explain the data structure central to our 
methodology framework: the subcategorization 
dictionary. In Section 4, we show how the 
problem of syntactic ambiguity can be solved 
using the subcategorization dictionary. In 
Section 5, we explain how such a dictionary can 
be automatically learnt from syntactically parsed 
and disambiguated text.  

Given that Section 4 and 5 seemingly present 
a chicken-and-egg problem pattern (we need the 
dictionary to analyze the training corpus from 
which we extract the same dictionary), in Section 
6 we present an iterative procedure that by 
bootstrapping solves both problems, building the 
dictionary and disambiguating the syntactic 
structure of the corpus’s sentences. 

In Section 7, we briefly discuss experimental 
results. Section 8 outlines some ways to 
generalize our framework and gives some 
directions for future work. Finally, Section 9 
concludes the paper. 

2 Syntactic Ambiguity 

Consider a simple English phrase: They moved 
their office from the town to the capital. Syntactic 
parsers usually use a morphological 
representation of the sentence in question, which 
in this case is:  

NP V NP P NP P NP, 

where NP is a noun phrase (or a pronoun), V is a 
verb, and P is a preposition. Possible syntactic 
interpretations of a sentence with such parts of 
speech of words are as follows (with some 
simplifications): 

1. [They [moved [their office] [from the town] [to 
the capital]]]: they moved it from the town; 
they moved it to the capital. 

2. [They [moved [their office [from the town]] [to 
the capital]]]: there is an office from the town, 
and they moved it to the capital. 

3. [They [moved [their office [from the town] [to 
the capital]]]: there is an “office from the town 
to the capital,” and they moved it. 

4. [They [moved [their office] [from [the town [to 
the capital]]]]]: there is a “town to the capital,” 
and from it, they moved the office. 

5. [They [moved [their office [from [the town [to 
the capital]]]]]]: there is a “town to the capital” 
and an office from this town, and they moved 
this office. 

In Fig. 1, we show these five structures in a 
graphical way using the dependency grammar 
notation introduced in Section 1, which we 
consider more appropriate for our discussion in 
the rest of this paper. 

Of these five alternative interpretations, a 
native speaker would most probably choose the 
structure 1 as the only possible interpretation. 

M O T CT

f r o m

to



 

M O T CT

fr o m

to



 

M O T CT

f r o m

to



 

M O T CT

f r o m

to


 

M O T CT

f r o m to


 

Fig. 1. Possible alternative syntactic structures for the 
sentence They (T) moved (M) their office (O) from the 
town (T) to the capital (C), in a simplified dependency 
representation. 
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Such a decision can be made by means of taking 
into account some additional information. As we 
will show below, this information can be 
represented using lexical or syntactic, but not 
semantic, representation, and a special dictionary 
can help the parser to resolve the syntactic 
ambiguity in this sentence. 

This type of ambiguity is very common in 
syntactic analysis. The number of variants grows 
exponentially with the number of prepositions 
[10], e.g., the phrase They moved their office from 
the town in the North to the capital of the country 
has 42 such variants of syntactic structure, etc. 

Such ambiguity cannot be resolved by general 
grammar rules related to the word order even 
taking into account specific prepositions. Indeed, 
all the five patterns shown in Fig. 1 are possible in 
English with the same prepositions; here are 
legitimate examples corresponding to each one of 
the five variants: 

1. [They [moved [their office] [from the town] [to 
the capital]]]: they moved it from the town; 
they moved it to the capital. 

2. [They [told [the news [from the town]] [to the 
neighbor]]]: there is news from the town, and 
they told it to the neighbor. 

3. [They [prohibited [any movement [from left] [to 
right]]]: there is a “movement from left to 
right,” and they prohibited it. 

4. [They [excluded [this word] [from [the preface 
[to the book]]]]]: there is a “preface to the 
book,” and from it, they excluded this word. 

5. [They [published [an excerpt [from [the 
preface [to the book]]]]]]: there is a “preface to 
the book” and an excerpt from this preface, 
and they published this excerpt. 

Therefore, the problem can only be solved by 
taking into account some lexical properties of the 
words. The example They moved their office to 
the capital from the town shows that these 
properties are not related with word order in the 
sentence: the starting and ending points of the 
movement are still the same, though the word 
order is different. However, these lexical 
properties are not of semantic nature. Indeed, if 
we know that the following seemingly incorrect 
sentences:  

- *They moved their office from the dog to the 
idea  

- *They sold a book to ten dollars for the 
customer  

were written by a literate native speaker, we will 
have to admit that their syntactic interpretation is 
the pattern number 1, and the semantic 
interpretation of the second phrase is that ten 
dollars is the buyer and the customer is the price, 
despite of absurdity of such a meaning (this 
reasonong follows Chomsky’s example Colorless 
green ideas sleep furiously).  

On the other hand, with other prepositions and 
the same main words, the sentence has a 
different structure: They moved the lawyer’s office 
of the town near the capital has a legitimate 
interpretation with the pattern number 5, for 
example, with the meaning of move ‘to stir’. 

As we see, a dictionary that would list the 
usage of specific prepositions with specific words 
is necessary to resolve the cases of ambiguity of 
this kind. Since no semantic information has to be 
included in such a dictionary, it is possible to learn 
such data from a large text corpus using purely 
statistical methods. 

3 Subcategorization Frames 

While there exists a well-established notion of the 
dictionary that presents the kind of information 
discussed here, we will use a simpler structure 
enough for our purposes, which allows for 
automatic learning from a text corpus. 

3.1  Traditional Government Patterns 
Dictionary 

In the Meaning  Text Theory [16, 30], a 
government pattern is defined as a table that 
enumerates the syntactic valences, called 
actants, of the word, all possible ways of their 
expression in sentences, and the limitations on 
compatibility between them. Such dictionaries are 
intended in the first place for text generation. In 
addition, they are very useful for foreigner that 
learn the language or compose texts in this 
language.  
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Fig. 2 shows a greatly simplified example of 
the entry for the word move1 ‘to change position’ 
(here the index 1 refers to a specific sense, other 
senses being move2 ‘to stir’, move3 ‘to excite’, 
etc.). This example follows the structure of the 
dictionary that our group has developed for 
Spanish [6]. In other languages, the 
representation can slightly vary: for example, a 
Russian dictionary, instead of, or together with, 
prepositions, indicates the grammatical cases of 
the words. The ways of expression of the actants 
are mutually exclusive: the same actant can be 
expressed with one of these ways in a specific 
sentence, mostly depending on the author’s 
stylistic choice. However, not all actants and even 
not all specific ways of expression of the actants 
are compatible; such incompatibilities, called 
restrictions, are indicated in the dictionary 
(omitted in our example for simplicity). 

In the dictionary, the actants are supplied with 
explanations of their semantic roles. The 
semantic marks such as location or agent are 
intended to help disambiguation. In addition, they 
can be used in text generation if they are different 
within the same actant. Such a dictionary enables 
a program that does not have any semantic 

information to recognize the structure and the 
semantic roles in the phrases. It is also necessary 
for text generation or composition, both by a 
program or by a person [9]. 

The knowledge on preposition usage or, more 
generally, of the ways of expression of syntactic 
valences (actants), is language-dependent and 
therefore it cannot be automatically inferred by an 
algorithm basing solely on semantic information 
such as sense definitions. For example, for the 
second actant of the word ‘to marry’, English uses 
no preposition at all, Spanish uses the preposition 
con ‘with’, and similarly in Bulgarian, while 
Russian (which is a language very similar to 
Bulgarian) uses the preposition na ‘on’. Therefore, 
such information should be explicitly provided by 
a corresponding language-dependent dictionary. 

A traditional government patterns dictionary 
does not include the ways of expression of 
circumstances of the words, since this is not 
lexical knowledge; instead, these ways are fixed 
for the language in general. For example, in the 
sentence They moved their office from the town to 
the capital at five o’clock on Monday for their 
convenience, the ways of expression of the 

Word: move1 

Agent A transfers object O from starting point S to destination point D by the trajectory T. 

Actant Ways of expression Example 

A = 1: agent 1.1: Noun (agent) a man / the Government moves 

O = 2: object 2.1: Noun (object) move their office 

S = 3: starting point 3.1: from Noun (location) move from the town 

 3.2: out of Noun (location) move out of the town 

D = 4: destination point 4.1: to Noun (location) move to the capital 

 4.2: into Noun (location) move into a new apartment 

 4.3: towards Noun (location) move towards the exit 

T = 5: trajectory 5.1: by Noun (location) move by the shore 

 5.2: through Noun (location) move through the forest 

Restrictions: none (for simplicity here we combine the transitive and intransitive  
senses. For a transitive sense only, the restrictions would mention that the second  
actant is obligatory). 

Fig. 2. Example of a government patterns dictionary entry 
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circumstances do not depend on the main word to 
move. 

While such dictionaries are of great 
importance, few attempts have been made to 
compile such dictionaries or to consistently 
provide the information on the ways of expression 
of valences in the common general-purpose 
dictionaries. The dictionary [4] is the closest to 
this type for English. Manual compilation of such 
a dictionary is a very labor-consuming task. Thus, 
in this paper we present a framework for 
automatically learning a simpler but still useful 
similar data structure from raw unprepared text 
corpora. 

3.2  Subcategorization Frames for Syntactic 
Disambiguation 

A much simpler structure is enough for purposes 
of syntactic disambiguation. Such simpler 
structure can be obtained automatically using the 
methodology described in this paper. Fig. 3 
shows an abridged example of such a structure 
(this is not a real output of the program: since we 
worked with Spanish, we have to use artificial 
English examples in this paper, with figures 

chosen manually and only for illustration 
purposes). 

The meaning of the first two columns is 

discussed in Section 3.3 below. The symbol ‘’ 
denotes the absence of any preposition, i.e., 
direct object; the symbol ‘—’ denotes the absence 
of any arguments at all. In this example, we do 
not consider the first actant, the subject, since it is 
always attached to the verb in a predictable 
manner. 

Fig. 3 shows the data that can be obtained 
automatically from raw texts with the procedure 
discussed in Section 3.4, along with the examples 
that also can be obtained automatically. There are 
significant differences between this data structure 
and the traditional government pattern dictionary 
shown in Fig. 2: 

- Only possible combinations found in the texts 
are shown in the table, and the valences are 
not grouped together into actants. 

- No information on the semantic roles is 
provided. 

- In Fig. 2, no semantic types of the words, 
such as agent or location, are shown. 
However, if the information on the semantic 
types is available, it can be added to the table 

move 

p+ p– Combination Example 

8892 3782 — Jill moved impatiently. 

3478 921 to John moved to the new apartment. 

372 123  + from + to The firm moved its office from the town to the capital. 

135 342  + out of She moved the table out of the room. 

83 58  + into We moved the device into the house. 

76 782 to + for The family moved to the South for sake of the child. 

34 89  + from + through He moved the table from the room through the door. 

30 219 to + at Jack moved to the new apartment at five o’clock. 

25 38 to + through She moved to the South through the forest. 

9 13 towards The group moved towards the mountain. 

1 463 of She moved the table of John’s friend. 

Fig. 3. An entry of the dictionary used for disambiguation (the last line illustrates an error in the  
automatically compiles dictionary). 
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in the same way, e.g., “ (object) + out of 
(location),” though this would make the table 
much larger. 

- Because this dataset is meant to be obtained 
automatically, some erroneous combinations 
may be present in the list, as it is shown in the 
last line of the table. However, the weights 
(see Section 3.3) of these combinations are 
usually very low—lower than the threshold of 
eliminating the combinations from the 
dictionary. Thus, they appear in the final list in 
very few cases. 

On the other hand, the dataset has additional 
information, and in the first place, the statistical 
weights discussed in Section 3.3 below. 

Because of all these differences, and because 
the term “government pattern” has a very specific 
and elaborate meaning in frame of the 

Meaning  Text Theory, we prefer to use less 
specific term for the dataset shown in Fig. 3. 
Namely, we will use the term subcategorization 
frame, which seems to less precisely defined in 
existing literature and used with greater variation. 

3.3  Positive and Negative Statistical Weights 
of the Frames 

Along with each combination, the number of its 
occurrences observed in the text corpus, denoted 
by p+, is included in the table. On the one hand, 
this number shows the reliability of the information 
on this combination. On the other hand, in text 
generation or composition it allows choosing the 
most common way of expression of the actants. 
However, the main use of this number for 
disambiguation is discussed in Section 4 below.  

More precisely, this number is not exactly the 
number of occurrences; instead, it is weighted by 
the probability of each occurrence to be the true 
variant of the syntactic structure given its 
ambiguity, as discussed in Section 2. This is a 
technical trick, the intended meaning of this figure 
being just the number of occurrences in the 
correct structures—however, the weighted 
number is the best we can obtain without knowing 
exactly which of the variants of the syntactic 
structure of the sentences are the correct ones. 

More interesting is the second column, p–. This 
is the number of occurrences of the given 

combination in the incorrect variants of the 
syntactic structure of sentences built by a specific 
parser (we assume here that the parser produces 
all the possible variants of syntactic interpretation 
of the same sentence). More precisely, the figure 
p– is, similarly to p+, weighted by the probability of 
each specific variant to be false. 

For example, suppose the parser builds all the 
five possible variants for the phrase shown in 
Fig. 1, the corpus consists of only one phrase, 
and we know that the first variant is the correct 
one. Then the pattern town to is assigned the 
values p+ = 0 and p– = 2, the former one because 
this combination does not occur in the correct 
variants of parsing, and the latter one from the 
variants 4 and 5 known in this case to be 
incorrect.  

If, on the other hand, we have no information 
on which variant is correct, then we have p+ = p– = 
2/5, i.e., there is no way to extract meaningful 
disambiguation information from only one phrase. 
However, below we will show that such 
information can be automatically extracted from a 
larger text corpus. 

This information—the weights p+ and p–—is 
used for disambiguation: When a specific 
combination is observed in one of the variants 
generated by the parser, is it more probable that 
this combination is found in a real (correct) 
structure or that this variant of the structure 
should be discarded in favor of other variants? 
Does the parser more frequently detect this 
combination in correct or in incorrect variants of 
syntactic structure? The disambiguation 
procedure that answers these questions is 
discussed in Section 4. 

3.4  Computer-aided Compilation of the 
Traditional Dictionary 

While the data structure shown in Fig. 3 is 
intended primarily for automatic syntactic 
disambiguation, it is possible to use these data for 
semi-automatic compilation of a classic human-
oriented dictionary such as the one shown in 
Fig. 2. For this, we used a dialogue procedure. 
The algorithm of partitioning of the set of 
prepositions into actants for one entry performs 
the following steps: 
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1. The prepositions are grouped together, so that 
no group contains two prepositions that belong 
to the same combination. These groups 
correspond to the hypothetical actants of the 
word. 

2. Of all such possible partitions, the ones that 
result in the minimum number of groups are 
chosen. 

3. All the possible orders of the set of the groups 
are considered, with the restriction that the 
group that contains the direct object must be 
the second actant. For each such order, a 
quantitative measure is calculated according to 
the word order in the combinations: Those 
variants for which a greater number of 
combinations agree in the order with the 
ordering of the groups are scored better. 

4. The ordered partitioning with the best score is 
presented to the human annotator. The 
annotator can remove some of the 
prepositions, if he or she considers that they 
are related to circumstances rather than to 
actants, or move a preposition to another 
group. After each action of the annotator, the 
calculations are repeated taking into account 
the restrictions introduced by the annotator, 
and an improved version of partitioning is 
presented to the annotator. 

The process repeats until the annotator 
accepts a presented version or else chooses to 
continue manually if the algorithm fails to 
converge to a satisfactory solution. At each stage, 
the annotator is presented with the examples, 
which are also included in the final dictionary. 

After the actants have been identified, two 
kinds of hypotheses are presented to the 
annotator: 

- First, the hypotheses on the obligatory 
actants. If some actant is present in all the 
available examples, then the program 
suggests to the annotator to mark it as 
obligatory. The verbs with obligatory second 
actant are called transitive, such as to give 
smth. In English, there exist verbs with two 
obligatory actants, such as to tell smth. to 
smb.: both sentences *He told this news, *He 
told to Jack are incomplete. 

- Second, the hypotheses on incompatibility of 
actants or individual variants of their 

expression, e.g., individual prepositions. Only 
pairs of prepositions are currently considered 
by our algorithm. If two prepositions belonging 
to different actants are not found together in 
the available examples, the algorithm 
suggests that they are incompatible. Since 
the number of such hypotheses is often very 
large, special heuristics are used to order 
them according to their plausibility. However, 
we have to admit that this feature was not 
very useful so far. 

While in Fig. 3 only one example is shown, our 
program collects up to 10 examples for the same 
combination. They are chosen from the text 
corpus based on a combined criterion: (1) they 
cover the corpus approximately proportionally and 
(2) the examples are kept with the best scores 
assigned by the procedure described in Section 4. 
The examples are ordered by the latter scores 
and the best one is the first to be presented to the 
annotator. However, the annotator can view all of 
them and choose the best ones, remove some of 
them, search the corpus for other examples, or 
enter new examples manually. 

With this, the algorithm can help the annotator 
to identify syntactic features of words. However, 
semantic interpretation of the word and the 
semantic roles corresponding to the syntactic 
valences are to be added by the annotator 
manually. 

4  Disambiguation with Weighted 
Government Patterns 

We assume that the syntactic parser is based on 
a manually crafted grammar [14], which allows for 
multiple interpretation of the same sentence with 
insufficient or no means for deciding which of 
them is the correct one. This creates syntactic 
ambiguity. 

By disambiguation, we mean assigning to the 
variants the weights according to the probability 
(interpreted as plausibility) for the given variant to 
represent the correct structure of the sentence 
intended by the author or at least the one that 
most of native speakers would choose for this 
sentence.  
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We consider such a notion of disambiguation 
better than just to choosing one of the variants 
and discarding all other variants. In particular, 
these weights can be used for ordering the 
variants. The variant with the highest weight is 
considered first by the subsequent modules of the 
text processing chain; if for some reason (say, 
semantic inappropriateness in the given context) 
it cannot be accepted, the next variant is 
considered—which is impossible with the parsers 
that always generate only one output variant thath 
they consider most likely correct.  

In addition, these weights can be combined 
with other possible estimations of the correctness 
of the variants. Finally, these weights are used 
internally by our procedure as described in 
Section 6. 

Therefore, we suppose that a parser is 
available that builds for each phrase one or more 
(possibly very many) variants of the syntactic 
structure. We assume that the parser always 
builds the correct structure for a sentence, plus 
possibly some additional, incorrect variants. In 
this section, we assume that the 
subcategorization dataset shown in Fig. 2 is given 
(in Sections 5 and 6 we will discuss how it is 
constructed). 

As an underlying statistical model, we consider 
the model of information transmission in the 
presence of noise. The set of the variants 

generated for one sentence is considered an 
observable mixture of variants generated by two 
different sources: the source S + produces only 
the correct variants, and the source S – only 
incorrect ones. Each time we receive such a 
mixture, exactly one variant in it was emitted by 
the source S + and all the others, the noise, by the 
source S –; see Fig. 4. 

There is a set of “features” of the variants; for 
each feature, a variant can have an occurrence of 
such a feature, several occurrences of it, or none. 
In our case, each feature is a specific combination 
of prepositions related with a specific word. The 
variant has this feature if in the given variant of 
the syntactic structure this word is connected by 
dependency relations (Fig. 1) with exactly this set 
of prepositions (though see Section 8 for 
generalizations). 

The receiver can observe the features, and the 
task of disambiguation is to guess which variant 
was issued by the “correct” source S +. In this 
section, the probabilities for each of the sources, 
S + and S –, to assign a given feature to the 
variant that it issues are considered to be known: 
these are the values p+ and p–, correspondingly 
(after normalization so that they sum up to a 
unity).  

We do not describe here the handling of 
morphological ambiguity [13] that involves the 
frequencies of specific words and a slightly 

 Source S + 

(correct information) 

Source S – 

(noise) 

Recei- 

ver 

Features: Observable 

mixture 

Variant 

 

Fig. 4. A model of observable mixture of variants from two sources 
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different handling of the probabilities p+ and p–. In 
fact, morphological ambiguity is rare in the 
variants of parsing, since it is usually resolved by 
the syntactic grammar itself. Thus, we suppose 
that all variants include the same set of words and 
prepositions, though connected differently to each 
other, as in Fig. 1. 

Now it is easy to estimate the probability of the 
hypothesis Hi that the variant number i in the 
observed mixture of variants is the correct one, 
i.e., that it was issued by the source S +, we 
denote this probability by the weight wi of the 
hypothesis Hi. We assume that the features are 
numerous so that for each specific feature, the 
probability not to occur in a specific variant is 
almost 1. A simple reasoning based on the Bayes 
theorem [12] proves that the weight wi is a 
product 

 





j

japr

ii

p

p
pCw  

by all the features j found in the variant number i, 
where apr

i
p is the a priori probability of this 

hypothesis; C is the normalizing constant, since 
the total probability of the hypotheses Hk is to be 
equal to 1. The problem of division by zero never 

occurs due to the additional constant  introduced 
in Section 5. 

When we use the dataset extracted from a 
corpus to disambiguate other texts, some 
combinations are absent in the dictionary. In this 
case the corresponding factor should be set to a 

small value , since we the probability for the 
parser to generate an erroneous variant of a new 
type is greater than the probability to find a new 
correct combination. This value should be non-
zero to allow comparison between variants by 
other factors.  

As we show in Section 5 below, even while 
learning the probabilities from a corpus, the 
process speeds up considerably if the 
combinations with small quotient p+ / p– are 
eliminated from the dictionary.  

This policy agrees with the rule of using small 
values for those combinations that were not found 
in the dataset; the threshold for eliminating the 

combinations should be set approximately to . 
With this, each time when the analyzer observes 

a feature that is not present in the dataset, it can 
safely assume that this feature was present there 
with a very small weight but was eliminated in 
order to save memory and speed up the learning 
process. 

Finally, we can formulate the procedure for 
assigning the weights to the hypotheses of the 
syntactic structure of one phrase. It proceeds as 
follows: 

1. All the variants permitted by the grammar used 
by the parser are built, these are considered 
as the hypotheses Hi. 

2. Any available knowledge and procedures are 
applied to estimate a priori the “quality” apr

i
p of 

each such hypothesis. These procedures can 
take into account, for example, the length of 
the dependency links (shorter links are 
generally scored better), semantic coherence 
of the structure [11], weights of the grammar 
rules used in it [2, section 7.6], etc. If no 
information of such kind is available, then 
equal weights are assigned to all available 
hypotheses. 

3. For each variant of the syntactic tree, the 
features of the given variant are looked up in 
the dictionary. In our case, for each word, the 
combination of prepositions attached to this 
word in the current variant of the syntactic tree 
of the sentence is retrieved from the list. If the 
combination is found, then the weight wi of the 
variant is multiplied by its p+ / p–, otherwise it is 

multiplied by . 

4. The weights wi are normalized so that  wi = 1 
for the variants of the structure of the same 
sentence. 

5. The variants are ordered by the weights wi, 
and the variant with the greatest such weight is 
selected as the result of the analysis if only 
one result is required. 

Some generalizations of the proposed 
framework are discussed in Section 7. However, 
the changes discussed there only concern the 
nature of the features operated upon and do not 
concern the procedure itself. 
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5  Learning the Weighted 
Subcategorization Frames from a 
Corpus 

In the previous section, we assumed that we have 
a dictionary of weighted subcategorization 
frames, and showed how it is used for syntactic 
disambiguation, that is, for estimating the quality 
of the variants of the syntactic structure buit by 
the parser. 

Consider now the opposite task: Assume that 
there is a parser and a disambiguation procedure 
that assigns the plausibility weights to the 
hypotheses (variants), and we need to find the 
frequencies of occurrence of each feature in the 
correct and wrong variants. In our case, a feature 
is a word along with the set of dependency links 
that lead from this word, labeled with their types; 
see Fig. 5. 

If the available disambiguation procedure 
directly choses the correct variant, then the only 
thing to do is to increment the counter p+ for all 
the combinations found in the correct variant, and 
p– for all the combinations found in all incorrect 
ones.  

However, if the disambiguation procedure only 
determines the weights of the variants, then we 
should consider the same model as shown in 
Fig. 1, and again apply the Bayes theorem. For 
each variant, the probability of that it was issued 
by the “correct” source S + is wi, and the 
probability that it was issued by the source of 
incorrect variants S – is 1 – wi; these values are 
accumulated over all variants for all sentences in 
the corpus. 

To calculate the average values, the total 
should be divided by the number of variants 
generated by the sources S + and S –. Let V be 

the number of variants generated by the parser 
and S the number of sentences in the corpus, 
then the total number of the correct variants is S 
and of incorrect is V – S. Thus, the obtained 
formulae are as follows: 

,
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



 

where the summation is performed over all the 
occurrences of the feature j in the variants wk, and 

the meaning of  is described below. 

The formulae work for the ideal case, when the 
corpus is so large that any possible type of 
combination or error occurs many times during its 
analysis. In reality, due to infinite variety of the 
constructions in open texts, all the possible words 
and combinations cannot occur in any corpus, 
even a very large one. What is more, very 
numerous are the cases that occur in the corpus 
very few times, or even one time.  

Such cases introduce instability in the model 
since the quotient p+ / p– for them is either very 
big or very small, this value being almost random, 
since each additional occurrence would greatly 
affect it. (Though in [8] the significance of rare 
cases is especially emphasized, we did not 
observe such an effect, so that smoothing of the 
rare cases gave much better results.) 

There are different methods to suppress such 
rare cases in the statistical results. We have 

chosen to artificially add some number  of 
occurrences of each combination in the false 
variants, thus assuming that anything wrong can 
happen with some small but non-zero probability, 
and has not yet been observed only because of a 

M O T CT

fro m

to

  M ,   T , C

fro m

to


 T ,  O ,



 

Fig. 5. The features of a variant of the syntactic tree: the tree on the left, the 
five extracted features on the right 
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small size of the training corpus; because of the 
Zipf law, no size is large enough.  

Our experiments have shown that this method 

works best. The value of  was also chosen 
experimentally: the best results happened to be 

achieved with  = S. 

With this, our procedure for accumulating the 
statistical weights for the combinations is as 
follows: 

1. All the variants of the structure are built for 
each phrase of the corpus. 

2. The variants for each phrase are evaluated, 
i.e., are given the probability weights wi such 

that  wi = 1 for each phrase, by an external 
procedure—for example, the one described in 
Section 4. 

3. For each combination found in each variant, 
the counters p+ and p– are incremented by the 
values wi and 1 – wi, respectively. The initial 
values are zeroes. 

4. Finally, the value of  = S is added to each p– 

and the values are divided by S and SV  , 

respectively. 

After these values have been determined, the 
combinations with the quotient p+ / p– smaller than 

some threshold value  can be eliminated from 
the dictionary, as described in Section 6. To 
speed up the procedure, after Step 2 the variants 
with the probability wi lower than some threshold 
can be ignored. 

6  Iterative Disambiguation and 
Learning 

In Sections 40 and 5, we have described two 
procedures, which work in the mutually opposite 
directions and apparently represent a case of 
chicken-and-egg problem arrangement: each one 
of them requires the other to have been solved for 
its correct functioning.  

As a solution of this chicken-and-egg problem, 
we use these two procedures iteratively, given 
that we have a large enough training corpus. The 
work starts from, say, an empty dictionary of 
subcategorization frames. The disambiguation 
procedure will then assign equal weights to all the 
variants or will keep their a priori weights.  

At the next step, these (equal) weights of the 
variants are used to train the model, i.e., to 
determine the frequencies p+ and p–. However, 
now the model learns from unequal distribution of 
features by variants: some features are more 
frequent. Of special importance are the cases 
when the sentence has only one or few variants: 
the features that occur in these variants are likely 
indicators of a correct variant. 

Then the process is repeated: the dictionary of 
features constructed at the previous step is used 
to assign new weights to the variants, and these 
weights are in turn used to construct a better 
dictionary. Our experiments show that the 
iterative process converges very quickly. 

In this process, the information does not 
appear from nothing. Throughout the corpus, the 
variants that share the same combinations are 
“interconnected” to each other in the model in the 
sense that re-evaluation of one of them indirectly 
affects the evaluation of other: they either “help” 
each other to win the competition within their sets 
of variants for one sentence, or suppress each 
other when they lose this competition. Thus the 
model optimizes itself to the state when the 
winners in each set have as much as possible in 
common.  

Since the sentences are different, the errors 
are random, and at the same time, the 
grammatical sentences have some combinations 
in common. Thus, these sentences, all together in 
the corpus, tend to win the competition. The key 
difference in this process as compared to other 
machine learning algorithms is that the variants of 
the analysis of the same sentence are normalized 
to 1. Thus, there is a positive feedback between 
variants from different sentences that share the 
same combinations (features), but negative 
feedback (inhibition in the terminology of neural 
network) between variants of analysis of the same 
sentence. 

As to implementation, once the set of the 
variants and the set of combinations found in 
these variants have been built, the data structures 
used in the iterative procedure can be fixed in the 
computer memory, because all the operations in 
our procedures are arithmetical and do not 
produce any new objects. However, depending on 
the implementation, the time of access to the 
dictionary can be significantly reduced at the later 
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iterations by eliminating the combinations with the 
value of p+ / p– lower than a pre-set threshold, or 
by ignoring the variants with the weight lower than 
some another threshold. After the first iteration, 
the dictionary is usually very large, but after two 
or three iterations, nearly only the correct 
combinations are left in the dictionary, which 
greatly reduces its size. 

7 Experimental Results 

We experimented with a Spanish corpus and, 
accordingly, a handcrafted Spanish grammar. In 
our experiments, two values were measured. One 
was the similarity between the dictionary built by 
the program and the manually compiled gold 
standard dictionary, and the other was the 
percentage of correctly parsed sentences. By 
correctly parsed sentences we mean the ones for 
which the variant with the highest weight was the 
true one identified by human annotators. The 
techniques of experiments to measure these two 
values were different. 

To measure the similarity between the 
dictionaries, a real text corpus could not be used 
because the “true” dictionary that the authors of 
the texts had in mind was unknown. Therefore, to 
check our methodology, we modeled the process 
of text generation to obtain a quasi-text corpus 
built with a known dictionary [5]. Only the 
statistical characteristics of the text were 
modeled, such as the length of the phrase and, of 
course, the preposition usage; we paid the main 
attention to the constructions common in Spanish 
texts. In addition, with this method, we could 
measure the percentage of the correctly parsed 
phrases as well. 

In various experiments, we observed all the 
three patterns of convergence mentioned in the 
similar context in [15], depending on the formulae 
and parameters we used, as well as on the size of 
the corpus. In the initial maximum pattern, the 
dictionary obtained after the first iteration, i.e., 
with equal weights of the variants, was the best, 
as well as the percentage of the variants guessed 
correctly with this dictionary. At the subsequent 
iterations, both estimations were getting worse.  

In the early maximum pattern, the best values 
were achieved after several iterations, and then 

they slightly degraded. Finally, with the formulae 

described here and the parameter  of the order 
of S, as described in Section 5, the classical 
pattern was achieved: the values tended to grow 
and quickly stabilize at the relatively high level. 
However, even in this case we observed slight 
elements of the early maximum pattern: after 
reaching the maximum, the percentage of 
correctly guessed variants fell insignificantly, 
usually within 1%, and stabilized at that value. 

As a measure of similarity between the two 
dictionaries, the one found by our method and the 
true one know a priori, we used several 
measures: the percentage of incorrect 
combinations, the coverage, and the difference of 
the probabilities of usage p+ for the correct 
combinations. After a few iterations these values 
stabilized at the level around 5% of incorrect 
combinations and 80% of similarity of the 
probabilities. The coverage was rather low in our 
experiments (about 30%) since due to the 
technical limitations of our program so far we 
used relatively small corpus. 

A typical sequence of the percentages of the 
correctly guessed variants at consecutive iteration 
was 37%, 85%, 89%, 90%, 90%, etc., or, taking 
into account only the phrases for which the parser 
generated more than one variant, 16%, 80%, 
86%, 87%, 87%, etc. As one can observe, the 
results quickly stabilized. The first figures in both 
sequences were obtained with the equal weights, 
by picking an arbitrary variant for each phrase. 
The last figures of in the sequences show the 
accuracy reached with the method that is 
presented here. 

Our second set of experiments was carried 
with real Spanish and Russian text corpora. As a 
Spanish corpus we used mainly the texts kindly 
provided to us by the publisher of Gazeta UNAM, 
the newspaper of UNAM University, Mexico City; 
the corpus contained approximately 8 million 
words. We used a very simple context-free parser 
to build the initial set of the variants; the grammar 
contained only 41 rule in a language similar to a 
context-free grammar (with phrase heads marked 
in each rule).  

Then we performed a selective check of the 
results. This check showed good convergence of 
the method with the best value reached so far 
being 78% of correctly parsed phrases; on 
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unseen data analyzed with the dictionary built at 
the training stage, this figure so far was 69%. 
Note that all the figures reflect not the number of 
correctly attached prepositions, but instead the 
number of correctly parsed entire sentences: if 
any part of the sentence was not parsed correctly, 
then the whole sentence was considered parsed 
incorrectly. In the future, with a more elaborated 
grammar we expect to achieve better results. 

In our experiments, we did not observe any 
advantage of using some nontrivial initial values 
for the weights of the hypotheses or for the 
dictionary—for example, using an initial dictionary 
close to the true one, or assigning the variants 
initial weights close to the gold standard. The best 
results were obtained with equal weights, i.e., with 
initially empty dictionary. However, the a priori 
information can be used at each iteration, as it 
was described in Section 6. 

8 Generalizations and Future Work 

Our methodology method has many possible 
variants. For example, different kinds of 
information can be taken into account in the list of 
combinations. If there is any lexical information 
available from the parser, such as: 

- part of speech (in Spanish prepositions can 
precede verbs),  

- animacy (in Russian this is a morphological 
characteristic),  

- semantic class (such as person, agent, living 
being, organization, object, action),  

etc., then they can be added to the 
subcategorization frames, provided that the 
corpus is large enough to avoid the data 
sparseness problem. In this case, some method 
of merging the subcategorization frames with 
similar structure but with different characteristics 
of the governed word should be applied. For 
example, if two patterns have comparable weights 
and differ only in animacy of one of the valences, 
they should be merged in a common entry without 
the animacy mark. 

Conversely, counting each preposition 
separately will very significantly reduce the data 
sparseness problem. For example, instead of one 
frame such as move + from +  to +  through, three 

independent frames can be considered: move + 
from, move + to, move + through, though this may 
reduce the accuracy when the model is trained on 
a large enough corpus. 

Other generalizations concern the very nature 
of the objects for which the statistics is gathered, 
this is why throughout the paper we preferred to 
refer to them as to abstract “features.” First, by 
such features the grammar rules used in the 
parsing process can be considered. This will turn 
the grammar used by the parser into a 
probabilistic grammar [2]. Second, we expect that 
with a very large corpus, a similar approach can 
be applied to word combinations, for both 
syntactic disambiguation and composition of the 
dictionary useful for human readers [7]. In 
particular, all kinds of recently introduced 
syntactic n-grams [25–29] can be used as 
features in our method, instead of a specific kind 
of (incomplete) syntactic n-gram presented in 
Fig. 5. 

All the three methods, namely, the one based 
on the weights of the subcategorization frames, 
grammar rules, and word combinations can be 
used simultaneously as described in Section 4. 

Finally, the method can be translated into the 
language of neural networks. Indeed, the variants 
of the parsing can be viewed as neurons, a 
features common to two variants can be viewed 
as a mutually exciting link, while any two variants 
belonging to the same phrase can be viewed as 
mutually inhibiting; disambiguation is viewed as 
excitement of exactly one neuron in each set of 
the mutually inhibiting ones. We plan to 
investigate whether the neural network 
techniques can increase the performance of the 
method. 

9 Conclusions 

We have presented a methodological framework 
for syntactic disambiguation based on the use of 
a data structure similar to subcategorization 
frames with statistical weights. The 
subcategorization frames and their weights are 
automatically learned from a text corpus. The 
dictionary of obtained frames can be used for 
disambiguation of new unseen texts. The method 
has the following advantages: 
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- The learning is unsupervised: no manual 
preparation is required to train the model, 
apart from writing a small grammar. However, 
a morphological analyzer or tagger and a 
syntactic grammar are required, since the 
method aims to disambiguate the results of 
an existing parser. 

- The method is compatible with other methods 
of disambiguation, especially with methods 
that produce an estimation of probability for 
each variant. This provides an opportunity for 
incorporating linguistic knowledge and 
linguistically motivated procedures into a 
purely statistical unsupervised learning 
method. 

- The results of the application of the method 
are tuned to a specific parser, taking into 
account the balance between the correct and 
wrong assignments of prepositions to words. 
Note that training the dictionary for any other 
parser comes at no cost because the method 
relies on unsupervised learning. 

- The data built by the algorithm is lexicalized, 
so that the amount of processed data does 
not increase with the growth of the number of 
rules in the grammar. 

- The data set learned from the corpus is useful 
for semi-automatic compilation of a traditional 
government patterns dictionary, which is used 
both for semantic analysis in natural language 
processing and as learning and authoring aid 
by the foreigners that compose texts in the 
given language. 

- The subcategorization frames used by the 
method correspond to some linguistic 
reality—unlike, say, the probabilities used by 
the Hidden Markov Model or neural network 
methods.  

We believe that the latter means that the 
native speakers are aware of such a reality and, 
according to Grice’s Cooperative Principle, in text 
composition intentionally try to avoid 
constructions that would be misleading with 
respect to subcategorization frames of the words, 
cf.: ?They laughed at this place vs. They laughed 
here, ?He spoke with the director of the new plan 
vs. He spoke of the new plan with the director. 
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