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Abstract— This work is a preliminary exploration of modula-
tory interaction of motor control signal and visual processing for
embodied agents. The first results show that complex dynamics
of evolved controllers can help to understand the interaction
between motor and visual signals and maybe can shed some
light about top-down attentional modulation in neuro-controllers
for visually guided tasks.

I. INTRODUCTION

Visual systems in nature are embodied. The fact that animals
are able to interact with the environment while performing
visually guided tasks suggests that vision is not only an
isolated information processing system [1], [2], [3]. Given that
visual systems in nature deal with a great amount of complex
visual information, additional mechanisms like foveation and
attention are also exploited. However, the design of artificial
visual systems has not explored this characteristic exhaustively
[4], [5]. Experiments have been reported where agents with
simple visual systems can perform behavioural discrimination
and other object recognition tasks employing complex visual
information [6], [7].

The study of conditions where simple controllers can be
helped to perform visually guided tasks by the exploitation
of embodiness and active vision mechanisms can help to
understand the role of attention and modulation of motor and
visual processes in visually guided agents.

In this work, a preliminary study of the dynamics of evolved
controllers employing an active vision approach is presented.
The agent has a simple visual system (described in detail
in [8]) to perform visually guided tasks. The visual system
employed emulates the early areas in the visual cortex V1 but
also top-down mechanisms such as attentional and foveation
processes are considered. A brief analysis of the evolved
neural controllers is followed by a future plan of my research
following these ideas.

II. METHODS

The experiments were carried out in InQubator, a simu-
lator that renders 3D graphics (using OpenGL) and provides
libraries for neural networks and genetic algorithms (GA) (see
figure 1).

The visual field of the agent consisted of a rectangular
region defined by 80 × 60 pixels with grey values between 0
and 255.

Fig. 1. InQubator

The visual system employed for this work was based on
the RBF model (see a detailed description in [8]). This model
consists of the application of low-pass filters with different
orientations and sizes over the incoming visual information,
emulating the primary visual cortex, V1 [9].

The filters employed were derivatives of Gaussians with four
orientations, 0, 45, 90 and 135 degrees at scale sizes of 7×7,
15×15 and 29×29 pixels. The output of this model is a vector
with all the outputs of the different filters applied over the input
image. This vector is classified in different known categories
according to the response of a Radial Basis Function Network
(RBF). Each view tuned unit (VTU) of the RBF network is
centered in one of the 8 views of the two known objects (see
figure 2).

An attentional mechanism was employed based on blob
detection. The criteria for blob detection was the intensity of
grey for blobs bigger than 30 pixels in area. The blobs detected
were scaled to the standard size of the pictures stored in the
training phase of the visual system (80 × 60).

A. Controller

The controller is a fully connected Continuous Time Re-
current Neural Network (CTRNN) with five neurons. Three
of these were sensor neurons measuring the activity of the



Fig. 2. VTU: each view vector ci is the centre of a Gaussian function. The
more similar a vector x is to a centre, the stronger the response of the unit.
The output of the VTU, y =

∑
i
WiG(ci, x)

visual system and two were output neurons connected to the
motors of the agent (see figure 3). The state y of neuron i

changes in time according to the differential equation:

τiẏi = −yi

∑

j

wijφ(yj + βj) + g · I

That is, the state is the integration of the weighted sum of
the all incoming conections plus an a gained input I for
input neurons. The time constant φ is the sigmoid activation
function, τ ∈ [0.2, 2.0] and the bias β ∈ [−10, 10] and all the
weights wij ∈ [−5, 5] are shaped by the GA.

The inputs of the network corresponded to the RBF units
RBFi ∈ [0, 1] and to the centroid of the object detected c ∈

[0, 1] where 0 corresponded to the furthest left pixel in the
visual field and 1 to furthest right pixel.

Fig. 3. Neural controller: fully connected CTRNN with 5 neurons. Neurons
0 and 1 are the input neurons with the activation of the RBF units, neuron
4 is the input neuron with the centroid of the object detected and neurons 2
and 3 are the output neurons connected to the motors of the agent.

The outputs of the network were defined by the output of
two neurons of the network, connected directly (in the range
of [0, 1]) to the motors of the agent.

B. Genetic Algorithm

A distributed GA was employed to evolve the neural con-
trollers. A population of 49 individuals was evolved with mu-
tation probability of 80% and an amount of 15% of mutation
for each component. Also, there was an elitism probability of
80%.

The genome of each individual was given by a real vector
of 35 elements, 5 for the time constants of each neuron, 5 for
the bias of each neuron and 25 for the weights. Each element

was coded as a real number in [0, 1] and scaled according to
the parameters described previously.

III. EXPERIMENTS

The experiments carried out are a preliminary study of the
visual system and evolvability of controllers for simple tasks.
These tasks were selected based on works like [10].

Two objects, a kettle and a torus were placed in fixed
positions in an arena of unlimited extension (see figure 1).
The objects employed were positioned at the same distance
from the agent. The kettle was at the coordinates (-1, 2), the
torus was at (1, 2) and the agent was at (0, -2) at the beginning
of each trial. The task consisted of approaching the kettle and
avoiding the torus.

The fitness function for this task was defined as:

F =
1

d1

−
1

d2

where di is the distance from the agent to the object i. Object
1 is the kettle and object 2 is the torus.

Each agent had three trials, always starting from the same
position and with 0 degrees of orientation (i.e. facing the
direction where the objects were). At the beginning of each
trial the centroid information was reset to the centre of the
visual field. As well, the RBF units activation was set to zero
after every step. The state of the rest of the neurons was left
with the activation of the previous trail.

A. Results

As this is only a preliminary study, I present the first and
most interesting results of the experiments for the scenario
described.
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Fig. 4. Fitness function of evolved agents: the best, average and worst agents
during 100 generations.

The performance of evolved controllers (described previ-
ously above) is presented in figure 4 for 100 generations.
Evolved controllers under the scenarios described above were
tested for 55 time steps and by randomising the initial orienta-
tion of the agent (within an arbitrary range) with the position
of the objects remaining the same.

The evolved controllers show interesting dynamics. For
instance, when the agent is able to centre the kettle in the
visual field, the difference in the response of the RBF units is
bigger than when it is not able to centre the object at the end of
the trial (see figure 5). Also, the motor neurons show a smooth
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Fig. 5. Neural activity: inputs and outputs

modulation that represents the approaching behaviour and the
activity of the neurons 0 and 1 (corresponding to RBF modules
for object 1 and 2 in the visual system) show a discriminating
behaviour around the time step 40 (see figure 5).

IV. CONCLUSION

More experiments are being considered to extend this work.
To study the complex dynamics of evolved controllers using
extended time of simulation (longer than in evolutionary
phase), more experiments are going to be carried out. So far,
the results suggest that an “evolutionary scaffolding” (incre-
mental) approach could be useful to evolve controllers. First,
starting with controllers that are able to fixate objects in the
visual field and then, randomising the initial orientation and
position of the objects. Also, a study of a possible interaction
of attention mechanisms and tuning of the filters in the visual
system and the motor system could be an interesting place to
look at to try to understand the reliable and robust capabilities
of animal vision.

V. FUTURE WORK

In the following months, my research work is going to
focus mainly on the exploration of neural controllers and
the analysis of the interaction and modulation between the
visual information and motor system by top-down mechanisms
like attention and bottom-up processes like filter tuning and
foveation.

An incremental evolutionary approach is going to be applied
to explore more complex tasks to study and analyse the
evolved controllers.

As the final part of my project, downloading the evolved
controllers into a real robot to test how the visual system
tackles problems in the real world is still an interesting
possibility.
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