
On the Automated Correction of Faulty Security
Protocols

Juan Carlos Lopez Pimentel and Raul Monroy
Computer Science Department

Tecnoĺogico de Monterrey, Campus Estado de México
Carretera al lago de Guadalupe, Km 3.5, Atizapán, 52926, Mexico

{juan.pimentel,raulm }@itesm.mx

Dieter Hutter
DFKI, Saarbr̈ucken University

Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
hutter@dfki.de

I. I NTRODUCTION

Computer security is a major concern for IT. Users are
reluctant to deliver confidential information over an insecure,
hostile network. Computer crimes have already yielded count-
less losses. To ensure security, users use security protocols.
A security protocolis a set of rules and conventions whereby
one or more agents agree about each others’ identity, usually
ending up in the possession of one or more secrets [6]. Security
protocols consist of only a few messages but amazingly they
are very hard to get right. E.g., the detection of a flaw in the
3-message Needham-Schroeder public key (NSPK) protocol
took roughly 17 years [5].

The verification of security protocols has attracted a lot of
interest in the formal methods community, yielding two main
verification approaches: i)state exploration, e.g. FDR [5] and
OFMC [2]; and ii) theorem proving, e.g. the Isabelle inductive
method [6] and CORAL [7]. Model checking tools are capable
of determining whether or not a (finite abstraction of a)
protocol is valid. The verification process usually takes a few
seconds and, in the case of unsatisfiability, a counterexample
(a protocol attack) is output. Theorem proving may be slower,
but has a wider range of application, as demonstrated by [7].

Complementing formal methods, Abadi and Needham’s
principles aim to guide the design of security protocols in order
to make them simple and, hopefully, correct [1]. Abadi and
Needham arrived at their principles by noticing some common
features hard to analyse among protocols. If these features are
avoided, protocols tend to become more correct.

We are interested in a problem related to verification but
far less explored: the correction of faulty security protocols.
A flawed protocol is a mal-formulation. Mal-formulation is
central to theory refinement. They often become evident by
the appearance of a failed proof attempt, possibly yielding a
counterexample. The analysis of this evidence often holds the
key to the completion of proofs and for the correction of a
faulty model [3].

This research rests upon the following hypothesis:

Using Abadi and Needham’s principles in the anal-
ysis of both the description of a faulty protocol
and of one of its counterexample holds the key for
pinpointing the root of the fault in the protocol and

for suggesting a way of patching it.

In particular we are interested in the following objectives:

1) to provide a taxonomy of faults based on both the
meaning of a step within a security protocol and Abadi
and Needham’s security protocol design principles;

2) to provide a method capable of pinpointing the root of
malfunction in a faulty security protocol;

3) to provide a method capable of suggesting a means for
patching a faulty security protocol; and

4) to provide general knowledge for the design of sound
security protocols.

II. A G ENERAL PATCHING FRAMEWORK

The correction of faulty security protocols consists of a
collection of patch methods capable of dealing with a general
class of faults. Each of which aims to locate and then fix a
protocol design error. Our patching framework encompasses
three steps:

1) It analyses the protocol description in order to identify
key components like protocol participants, protocol mes-
sages, message components and their rôle;

2) It analyses the protocol counterexample in order to
identify non-trivial message parts shared in the runs of
the attack;

3) It then uses the observations gathered from steps 1
and 2 in order to identify whether one or more patch
methods can be applied. If none, our patching framework
terminates with failure. Otherwise, one patch method
is applied and then our patching framework terminates
with success.

If our patching framework terminates with success, then the
protocol must be formally analysed using either a model
checker or a theorem prover. This process may indicate
that the protocol is correct and then formal development is
complete. Otherwise, the protocol is still faulty and so this
verification/correction cycle is repeated again, as many times
as desired.

A. Patch Method Development Methodology

Firstly, we will collect faulty protocols and then group them
according to some taxonomy, either known or of ours.



Secondly, for each group, we will distinguish two sets of
protocols:

1) Development: this class consists of a few representa-
tive protocol examples used for designing the patching
method;

2) Testing: this class contains example protocols that will
be used for testing the robustness of the method.

Thirdly, we will attempt to keep the development protocol
examples as dissimilar as possible.

Fourthly, we will gather examples from different sources,
e.g., books, research reports, etc., and from the Clark-Jacob
library.

III. PATCHING A FAULTY SECURITY PROTOCOL

To give the reader a flavour as to the kinds of reasoning
involved in a method, we shall consider the NSPK Protocol,
which may be informally specified as follows:

1. A → B : {Na,A}K+
B

2. B → A : {Na,Nb}K+
A

3. A → B : {Nb}K+
B

where A → B : {M}K+
P

means agentA sends message
{M}K+

P
to agentB, which B receives;{M}K+

P
means the

messageM encrypted under public key of principalP .
Roughly speaking,A initiates a session withB by sending

him a nonce,1 Na, indicating the start of a new session. After
it decrypts message 1,B sendsA back both the nonceNa
that apparentlyA has sent, and a new nonceB has generated,
Nb. Upon decryption of message 2,A checks that nonceNa
corresponds to the nonce she generated to identify this run
and then sendsB back his nonceNb, message 3.

The NSPK protocol seems right at first glance:A seems
to know that he is running the protocol apparently withB,
because onlyB could have decrypyted message 1 and sent
nonceNa encrypted underA’s key.2 However, this protocol
is faulty. Lowe found that an intruder could impersonate one
agent holding concurrently a session with another agent [5].

Lowe’s attack is shown in Figure 1.3 There, the two in-
stances of message 2, each of which belongs to a different
session, have been enclosed within boxes, pinpointing the
root of the problem. Message 2,{Na,Nb}K+

A
, is being used

in two independent runs, meaning that whileB knows that
A has recently participated in a run of the protocol, he
cannot tell whetherA is running it apparently with him. The
NSPK protocol therefore violates Abadi and Needham’s third
principle, namely:

Principle 3 If the identity of a principal is essential to the
meaning of a message, it is prudent to mention the principal’s
name explicitly in the message.

1A nonceis a random number that has not been used in any previous run.
2Notice that, however,B does not know who encrypted and then sent the

instance of message 1 he received.
3Spy(A) means the Spy impersonatingA. A message incoming toSpy(A)

denotes interception, while an outgoing one denotes forgery.S :N means the
N th message associated with sessionS.

A Spy Spy(A) B
1:1 {Na, A}

K+
Spy - 2:1 {Na, A}

K+
B -

2:2 {Na, Nb}
K+

A
�1:2 {Na, Nb}

K+
A

�

1:3 {Nb}
K+

Spy - 2:3 {Nb}
K+

B -

Fig. 1. Lowe’s attack involves two parallel runs of the protocol

Patching the protocol by adding the name of the agent
sending message 2,B in this case, as suggested by the third
principle, we arrive at the fixing Lowe has found [5]:

1. A → B : {Na,A}K+
B

2. B → A : {B,Na, Nb}K+
A

3. A → B : {Nb}K+
B

IV. CONCLUSIONS ANDFURTHER WORK

We have already developed a patch method for dealing with
interleaving replay attacks [4].4 Our interleaving-replay attack
method is usually able to patch faulty protocol that violates
Abadi and Needham’s principle 3.

We plan on further validating our method with other faulty
protocols. In addition, we will analyse other faulty protocols
in order to propose new patching methods.

REFERENCES

[1] M. Abadi and R. Needham. Prudent engineering practice for crypto-
graphic protocols.IEEE Transactions on Software Engineering, 22(1):6–
15, 1996.

[2] A. D. Basin, S. M̈odersheim, and L. Vigaǹo. An on-the-fly model-
checker for security protocol analysis. In D. Gollmann and E. Snekkenes,
editors,ESORICS’03: 8th European Symposium on Research in Computer
Security, number 2808 in Lecture Notes in Computer Science, pages 253–
270, Gjøvik, Norway, 2003. Springer-Verlag.

[3] I. Lakatos. Proofs and refutations: The logic of Mathematical discovery.
Cambridge University Press, 1976.

[4] J. C. López-Pimentel, R. Monroy, and D. Hutter. A method for patching
interleaving-replay attacks in faulty security protocols.Electronic Notes
in Theoretical Computer Science, To appear:1–18, 2006. In Proceedings
of the 2006 FLoC Verification and Debugging Workshop.

[5] Gavin Lowe. Breaking and fixing the needham-schroeder public-key
protocol using FDR. InTACAs ’96: Proceedings of the Second Interna-
tional Workshop on Tools and Algorithms for Construction and Analysis
of Systems, pages 147–166, London, UK, 1996. Springer-Verlag.

[6] Lawrence C. Paulson. The inductive approach to verifying cryptographic
protocols.Journal in Computer Security, 6(1-2):85–128, 1998.

[7] G. Steel, A. Bundy, and M. Maidl. Attacking the asokan-ginzboorg
protocol for key distribution in an ad-hoc bluetooth network using coral.
In H. König, M. Heiner, and A. Wolisz, editors,IFIP TC6 /WG 6.1:
Proceedings of 23rd IFIP International Conference on Formal Techniques
for Networked and Distributed Systems, volume 2767, pages 1–10, Berlin,
Germany, 2003. FORTE 2003 (work in progress papers).

4An interleaving-replay attackis a network attack in which a valid data
transmission is maliciously repeated or delayed from outside the current run
of a protocol requiring that, at least, two runs overlap in execution.


