A test for non-compactness of the foliation of a Morse form

I. A. Mel'nikova

In this paper we study foliations determined by a closed 1-form with Morse singularities on smooth compact manifolds. The problem of the topological structure of the level surfaces of such forms was posed by Novikov in [1], and has been studied in [2]–[5]. In the present article we investigate the problem of the existence of a non-compact leaf, verify a test for non-compactness of a foliation in terms of the degree of irrationality of the form ω , and show that the non-compactness of a foliation is a case of general position.

We consider a compact manifold M and a closed 1-form ω with Morse singularities defined on it. The closed form ω determines a foliation of codimension 1 on the set M-Sing ω . Correspondingly, a foliation \mathcal{F}_{ω} with singularities is obtained on M by adjoining the singular points to M-Sing ω . We say that a leaf $\gamma \in \mathcal{F}_{\omega}$ is compact if it is a non-singular compact leaf or can be compactified by adding singular points. The foliation \mathcal{F}_{ω} is said to be compact if all its leaves are compact.

Definition 1. Let γ be a non-singular compact leaf of \mathcal{F}_{ω} , and consider the map $\gamma \rightarrow [\gamma] \in H_{n-1}(M)$. Then the image of the set of compact leaves under this map generates a subgroup of $H_{n-1}(M)$. Denote it by H_{ω} .

The foliation \mathcal{F}_{ω} is characterized by the condition that $\gamma \cap \gamma' = \emptyset$ for $\gamma, \gamma' \in \mathcal{F}_{\omega}$. We consider the group $H_{n-1}(M)$ and the intersection operation for homology classes,

$$H_{n-1}(M) \times H_{n-1}(M) \to H_{n-2}(M).$$

If γ and γ' are non-singular compact leaves of \mathcal{F}_{ω} , then $[\gamma] \circ [\gamma'] = 0$.

Definition 2. Let $H \subset H_{n-1}(M)$ be a subgroup such that $x \circ y = 0$ for all $x, y \in H$. We say that H is an isotropic subgroup with resepct to the intersection operation for cycles. An isotropic subgroup H is said to be *maximal* if for all $x \notin H$ there is a $y \in H$ such that $x \circ y \neq 0$. The rank of a maximal isotropic subgroup is denoted by $h_0(M)$.

The subgroup H_{ω} of compact leaves is clearly an isotropic subgroup of $H_{n-1}(M)$. It can be shown that $h_0(M)$ is not uniquely determined. Let $h_0^{\max}(M)$ denote the maximal value of $h_0(M)$.

Definition 3 [1]. The degree of irrationality of the form ω is defined to be

dirr
$$\omega = \operatorname{rk}_{\mathbb{Q}}\left\{\int_{z_1} \omega, \ldots, \int_{z_m} \omega\right\} - 1,$$

where z_1, \ldots, z_m is a basis in $H_1(M)$.

It was proved in [1] that if dirr $\omega = 0$, then the foliation \mathcal{F}_{ω} is compact. The following test for non-compactness of a foliation on M_g^2 was proved in [6].

Theorem 2 [6]. If dirr $\omega \geq g$ on M_q^2 , then the foliation \mathfrak{F}_{ω} has a non-compact leaf.

We prove a generalization of this theorem to a manifold of arbitrary dimension.

Theorem. If the foliation \mathcal{F}_{ω} on a manifold M is determined by a Morse form ω and dirr $\omega \geq h_0^{\max}(M)$, then \mathcal{F}_{ω} has a non-compact leaf.

Proof. Suppose that the foliation \mathcal{F}_{ω} is compact, and consider a non-singular leaf $\gamma \in \mathcal{F}_{\omega}$. Since $\omega|_{\gamma} = 0$, the form is exact in some neighbourhood of $\gamma : \omega = df$ and the leaves of \mathcal{F}_{ω} are the levels of the function f. In a neighbourhood where grad $f \neq 0$ (that is, the form ω is non-singular) all the leaves are diffeomorphic. Thus, each non-singular leaf γ has a neighbourhood consisting of leaves diffeomorphic to it.

Let $\mathcal{O}(\gamma)$ denote a maximal such neighbourhood. This neighbourhood is the cylinder with generator $\gamma : \mathcal{O}(\gamma) = \gamma \times \mathbb{R}$. We consider its closure $V = \overline{\mathcal{O}(\gamma)}$. The boundary of V contains at least one critical point of the form ω . Let γ' be another non-singular compact leaf of \mathcal{F}_{ω} . Obviously, the cylinders $\mathcal{O}(\gamma)$ and $\mathcal{O}(\gamma')$ either are disjoint or coincide, and $V \cap V' \subset \partial V \cup \partial V'$.

Since ω is a Morse form and M a compact manifold, there are finitely many singular points. Consequently, the number of different cylinders $\mathcal{O}(\gamma)$ is also finite. Thus, the manifold M on which the compact foliation is given can be represented in the form

$$M = \bigcup_{i=1}^{N} \mathcal{O}(\gamma_i) \bigcup_{k=1}^{K} \gamma_k^{\mathbf{0}} \bigcup_{j=1}^{I} p_j,$$

where the p_j are the singular points of ω , and the γ_k^0 are the singular leaves of \mathcal{F}_{ω} .

Let $V_i = \overline{\mathcal{O}(\gamma_i)}$ and let $T = \bigcup_{i=1}^N \partial V_i$. Obviously, $p_j \in T$ and $\gamma_k^0 \in T$. Then $M = \bigcup_{i=1}^N V_i$, and $V_i \cap V_j \subset T$.

We investigate the connection between the homology $H_1(M)$ and the representation $M = \bigcup_{k=1}^{N} V_i$. Using the exact Mayer-Vietoris sequence, we can show that $H_1(M) = \langle i_{k*} H_1(V_k), D[\gamma_k], k = 1, \ldots, N \rangle$, where $i_k : V_k \to M$. Since $V_k = \overline{\mathcal{O}}(\gamma_k), \ \partial V_k \cap \operatorname{Sing} \omega \neq \emptyset$, and the form ω is locally exact, by considering Morse surgery at a singular point we deduce that $H_1(M) = \langle j_{k*} H_1(\gamma_k), D[\gamma_k], k = 1, \ldots, N \rangle$, where $j_k : \gamma_k \to M$ is an embedding.

Let us compute the periods of the form ω . It suffices to consider a $z \in H_1(\gamma_i)$ with $z = D[\gamma_i]$. Obviously, $\int_z \omega = 0$ for all $z \in H_1(\gamma_i)$, because $\gamma_i \in \mathcal{F}_\omega$. Consequently, on M only integrals over cycles transversal to γ_i can be non-zero: $z_i = D[\gamma_i]$, $i = 1, \ldots, N$. Furthermore, the number of integrals $\int_{z_i} \omega$ independent over \mathbb{Q} obviously does not exceed the number of independent classes $[\gamma_i]$, that is, rk H_ω . Thus, on the manifold M

dirr
$$\omega = \operatorname{rk}_{\mathbb{Q}}\left\{\int_{z_1} \omega, \ldots, \int_{z_k} \omega\right\} - 1,$$

where $k = \operatorname{rk} H_{\omega}$. Consequently, dirr $\omega \leq \operatorname{rk} H_{\omega} - 1 \leq h_0^{\max}(M) - 1$. The theorem is proved.

It is not hard to show that $h_0(M_g^2) = g$, and then Theorem 2 in [6] follows immediately from the theorem proved.

We consider Morse forms in general position.

Corollary. If on a manifold M the intersection of the (n-1)-dimensional homology classes is not identically zero, then the foliation of a form in general position has a non-compact leaf.

Proof. Since the intersection of the homology classes is not identically zero, it follows that $h_0(M) < \beta_1(M)$. A form in general position has maximal degree of irrationality dirr $\omega = \beta_1(M) - 1$. Consequently, dirr $\omega \ge h_0(M)$, and the foliation \mathcal{F}_{ω} has a non-compact leaf by the theorem. The corollary is proved.

Bibliography

- S. P. Novikov, Uspekhi Mat. Nauk 37:5 (1982), 3-49; English transl. in Russian Math. Surveys 37:5 (1982).
- [2] S. P. Novikov, Trudy Mat. Inst. Steklov. 166 (1984), 201–209; English transl. in Proc. Steklov Inst. Math. 1986, no. 1.
- [3] A. V. Zorich, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 1322–1344; English transl. in Math. USSR-Izv. 31 (1988).
- [4] Le Ty Kuok Tkhang, Mat. Zametki 44 (1988), 124–133; English transl. in Math. Notes 44 (1988).
- [5] L. A. Alaniya, Uspekhi Mat. Nauk 46:3 (1991), 179-180; English transl. in Russian Math. Surveys 46:3 (1991).
- [6] I. A. Mel'nikova, Mat. Zametki 53:3 (1993), 158-160; English transl. in Math. Notes 53:3 (1993).

Moscow State University

Received 8/DEC/94