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On compact leaves of a Morse form foliation

By IRINA GELBUKH (Mexico)

Abstract. On a compact oriented manifold without boundary, we consider a

closed 1-form with singularities of Morse type, called Morse form. We give criteria

for the foliation defined by this form to have a compact leaf, to have k homologically

independent compact leaves, and to have no minimal components.

1. Introduction and the results

Consider a compact oriented connected smooth n-dimensional manifold M

without boundary. On M , consider a smooth differential 1-form ω that is closed,

i.e., dω = 0. By the Poincaré lemma, it is locally the differential of a function:

ω = df .

In this paper, we assume f to be a Morse function; then ω is called a Morse

form. By Morse functions we mean smooth functions with non-degenerate singu-

larities. They are generic (typical) smooth functions: their set is open and dense

in the space of smooth functions [7]. Likewise, Morse forms are generic (typical)

closed 1-forms: their set is open and dense in the space of all closed 1-forms on M .

Let ω be a Morse form on M . The set of its singularities Sing ω = {x ∈ M |
ωx = 0} is finite. On M \ Singω the form ω defines a foliation Fω constructed as

follows: For any x ∈ M \ Singω, the equation {ωx(ξ) = 0} defines a distribution

of the tangent bundle TxM . Since ω is closed, this distribution is integrable; its

integral surfaces are leaves of Fω.

A foliation is a way of slicing the manifold into disjoint submanifolds (called

leaves) of lower dimension, in our case the dimension n− 1. This notion is widely
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used in physics. For example, the phase space of a mechanical system is foliated

by its energy levels. Foliations of space-time into three-dimensional space-like

hypersurfaces have been found to completely characterize the topology of space-

time, the singularities describing the topological structure of the gravitational

singularities [10].

A foliation Fω has three types of leaves: compact, non-compact compacti-

fiable and non-compact non-compactifiable. If a leaf γ is compactified by Sing ω,

i.e., γ ∪ Sing ω is compact, then it is called compactifiable, otherwise it is called

non-compactifiable. In particular, compact leaves are compactifiable. A foliation

is called compactifiable if it has only compactifiable leaves, i.e., if it has no minimal

components (areas covered by non-compactifiable leaves).

Existence of compact leaves and existence of non-compactifiable leaves in a

given foliation are classical problems of the foliation theory. We consider both

these problems for a Morse form foliation.

Denote by Hω ⊆ Hn−1(M) a group generated by all compact leaves of Fω,

and by H ⊆ Hω a subgroup of all z ∈ Hω such that z · ker[ω] = 0, where · is
the cycle intersection and [ω] : H1(M) → R the integration map. We denote

rkω ≡ rkQ im[ω].

Melnikova [9] has shown that on a two-dimensional manifold, a foliation

Fω is compactifiable iff rkH ≥ rkω − 1. We generalize this fact to arbitrary

dimension and give a stronger formulation: Fω is compactifiable iff rkH = rkω

(Theorem 8). In Theorem 8 we also show that rkH ≤ rkω, but rkH 6= rkω − 1.

Farber et al. [2], [3] gave a necessary condition for existence of a compact

leaf in the foliation defined by a so-called transitive Morse form. We show that

this condition is not a criterion. Then we generalize it to arbitrary (not necessarily

transitive) Morse forms and improve it to a criterion.

For this, we introduce the notion of collinearity of forms: we call a (not

necessarily Morse) smooth closed 1-form α collinear with ω if α∧ω = 0; foliations

of collinear forms share entire leaves (Proposition 14). We give a criterion for

existence of compact leaves: Fω has a compact leaf iff there exists a form α 6≡ 0

collinear with ω such that [α] ∈ H1(M,Z) (Theorem 16); what is more, Fω

has k homologically independent compact leaves iff there exist k cohomologically

independent such forms (Theorem 18).

Finally, we give a condition for compactifiability of Fω in terms of existence

of a sufficient number of cohomologically independent forms collinear with ω

(Theorem 18).

The paper is organized as follows. In Section 2, we introduce necessary defi-

nitions and facts about Morse form foliations. In Section 3, we prove a criterion
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for a Morse form foliation to be compactifiable. Finally, in Section 4 we introduce

a notion of collinearity of 1-forms and use it to give criteria for a foliation to have

a compact leaf or k homologically independent compact leaves.

2. Definitions and useful facts

Recall that M is a compact oriented connected smooth n-dimensional mani-

fold without boundary.

2.1. Poincaré duality map. We call an injection D : Hn−1(M) →֒ H1(M) a

Poincaré duality map if there exists a basis zi ∈ Hn−1(M) such that

zi ·Dzj = δij , (1)

where · is the intersection form. For any basis zi ∈ Hn−1(M), there exists a

Poincaré duality map satisfying (1). Obviously, if a subgroup G ⊆ Hn−1(M) is a

direct summand in Hn−1(M), i.e. Hn−1(M) = G⊕G′ for some G′, then for any

basis zi ∈ G there exists a Poincaré duality map satisfying (1).

Note that for any subgroupG ⊆ Hn−1(M) we have an isomorphismDG ∼= G;

in particular, rkDG = rkG.

2.2. A Morse form foliation. Recall that for a Morse form ω, the set Sing ω

is finite since the singularities are isolated and M is compact; on M \ Singω the

form defines a foliation Fω. The number of its non-compact compactifiable leaves

is finite, since each singularity can compactify no more than four leaves. The

union of all non-compactifiable leaves is open and has a finite number m(ω) of

connected components [1] called minimal components; we call compactifiable a

foliation that has no minimal components.

For a compact leaf γ there exists an open neighborhood consisting solely of

compact leaves: indeed, integrating ω gives near γ a function f with df = ω.

Hence, the union of all compact leaves is open. Denote by Hω ⊆ Hn−1(M) a

group generated by all compact leaves of Fω. A Morse form foliation defines the

following decomposition [4]:

H1(M) = DHω ⊕ i∗H1(∆), (2)

where ∆ is the union of all non-compact leaves and singularities, i : ∆ →֒ M , and

D : Hn−1(M) → H1(M) is a Poincaré duality map.
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The value c(ω) = rkHω is the number of homologically independent com-

pact leaves, i.e. Hω has a basis of homology classes of compact leaves, Hω =

〈[γ1], . . . , [γc(ω)]〉 [4]. For a compactifiable foliation, (2) gives

c(ω) ≥ rkω, (3)

where rkω = rk im[ω], with [ω] : H1(M) → R being the integration map. Obvio-

usly,

rkω + rkker[ω] = b1(M), (4)

the first Betti number.

2.3. Non-commutative Betti number. Arnoux and Levitt [1] denoted by

b′1(M) the non-commutative Betti number — the maximal rank (number of free

generators) of a free quotient group of π1(M); note that b′1(M) ≤ b1(M) [8].

Example 1. For an n-dimensional torus we have b′1(T
n) = 1; for the connected

sum ♯ of direct products S1 × Sn, n > 1, we have b′1
(

♯pi=1(S
1 × Sn)

)

= p; for a

genus g two-dimensional surface we have b′1(M
2
g ) = g [5].

The topology of the foliation is connected with b′1(M) [5]:

c(ω) +m(ω) ≤ b′1(M), (5)

where c(ω) is the number of homologically independent compact leaves and m(ω)

the number of minimal components.

Denote by h(M) the maximum number of cohomologically independent cocyc-

les ui ∈ H1(M,Z) such that the cup-product ui ⌣ uj = 0 [4]. Then c(ω) ≤
h(M) [6, Theorem 3.2] and for some Morse form ω on M [5, Theorem 8] it holds

c(ω) = b′1(M), (6)

which gives

b′1(M) ≤ h(M). (7)

3. Conditions for compactifiability

Denote by H ⊆ Hω a subgroup of all z ∈ Hω such that z · ker[ω] = 0, where

Hω ⊂ Hn−1(M) is the subgroup generated by all compact leaves of Fω and · is
the cycle intersection.

Lemma 2. It holds:
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(i) Hω is a direct summand in Hn−1(M);

(ii) H is a direct summand in Hω;

(iii) H is a direct summand in Hn−1(M).

Proof. It is easy to show that a subgroup of a finitely-generated free abelian

group is a direct summand iff its quotient is torsion-free.

(i) Let us show that the quotient Hn−1(M)/Hω is torsion-free. It has been

shown in [4] that there exist compact leaves γ1, . . . , γc(ω) ∈ Fω and closed curves

α1, . . . , αc(ω) ⊂ M such that [γi] form a basis of Hω and [γi] · [αj ] = δij . Suppose

there exists 0 6= z = z0+Hω ∈ Hn−1(M)/Hω such that kz = 0 for some 0 6= k ∈ Z,

i.e., z0 /∈ Hω but kz0 ∈ Hω. Then kz0 =
∑

ni[γi] and kz0 · [αj ] = nj . Consider

z1 =
∑

ni

k
[γi] ∈ Hω, then kz1 = kz0. Since Hω ⊆ Hn−1(M) is torsion-free, we

obtain z0 = z1 ∈ Hω ; a contradiction.

(ii) Let us show now that the quotient Hω/H is torsion-free. Similarly, sup-

pose z /∈ H, i.e., z · ker[ω] 6= 0, then kz · ker[ω] 6= 0 and thus kz /∈ H.

(iii) follows from (i) and (ii). �

Recall that D : Hn−1(M) → H1(M) is a Poincaré duality map defined by

the cycle intersection. By Lemma 2, for a basis zi ∈ H there exists a Poincaré

duality map that satisfies (1).

Lemma 3. Let zi be a basis of H ⊂ Hn−1(M) and D a corresponding

Poincaré duality map. Then the integrals
∫

Dzi
ω are independent over Q.

Indeed, suppose
∑

ni

∫

Dzi
ω = 0, i.e., z =

∑

niDzi ∈ ker[ω]; then ni =

z · zi = 0.

Proposition 4. If rkH ≥ rkω − 1 then Fω is compactifiable.

In fact we will show below that rkH 6= rkω − 1, so the above inequality is

equivalent to rkH = rkω.

Proof. Consider a basis zi ∈ H and a corresponding Poincaré duality map D.

Denote LH = 〈
∫

Dzi
ω〉, a linear space over Q; by Lemma 3, dimLH = rkH.

Suppose that there exists a minimal component U . Then rkω|U ≥ 2, i.e.,

there exist two cycles s, u ∈ i∗H1(U), where i : U →֒ M , with independent

periods [8]. Denote LU = 〈
∫

s
ω,

∫

u
ω〉, a linear space over Q; dimLU = 2.

Let us show that LH∩LU = 0. Consider z = nss+nuu such that
∫

z
ω ∈ LH,

i.e.
∫

z
ω =

∑

ni

∫

Dzi
ω. Thus z−∑

i niDzi ∈ ker[ω]. By definition, H·ker[ω] = 0,

so zj · (z − ∑

i niDzi) = 0. Since zj are generated by compact leaves while

z ∈ i∗H1(U); we have zj · z = 0. This gives all nj = 0 and thus
∫

z
ω = 0.

We have rkω ≥ dim〈LH ∪ LU 〉 = rkH+ 2; a contradiction. �
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The following condition in terms of compact leaves is geometrically more

visual than Proposition 4:

Corollary 5. Let Fω have rkω−1 homologically independent compact leaves

γi such that [γi] · ker[ω] = 0. Then Fω is compactifiable, and there exists another

compact leaf γ homologically independent from all γi.

Proof. By Proposition 4, the foliation is compactifiable. Then (3) gives

c(ω) ≥ rkω, so there exists a compact leaf γ such that [γ] /∈ 〈[γi]〉. �

Corollary 5 is not a criterion:

Counterexample 6. On a two-dimensional genus 4 surface M2
4 represented

as a connected sum of four tori T 2, consider a compactifiable foliation such that
∫

z1
ω =

∫

z2
ω = 1 and

∫

z3
ω =

∫

z4
ω =

√
2, so that rkω = 2 and c(ω) = 4; see

Figure 1. Then (z1 − z2), (z3 − z4) ∈ ker[ω], but for any homologically non-trivial

compact leaf γ ∈ Fω we have either [γ] · (z1−z2) 6= 0 or [γ] · (z3−z4) 6= 0, so there

are no rkω − 1 = 1 homologically independent leaves such that [γ] · kerω = 0.

Note that still rkH = 2, cf. Proposition 4.

 
 
 
 

z3 

z1 
z2 

z4 

2  

1 

2  

1 

Figure 1. A foliation on a connected sum M2
4 = ♯4i=1 T

2.

However, with an additional condition the converse to Corollary 5 is true:

Proposition 7. If Fω is compactifiable and rkω = c(ω), then there exist

rkω homologically independent compact leaves γi ∈ Fω such that [γi] ·ker[ω] = 0.
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Proof. Consider a basis [γi] ∈ Hω. For a compactifiable foliation, ∆ ment-

ioned in (2) is the union of a finite number of compactifiable leaves and singula-

rities, so i∗H1(∆) ⊆ ker[ω] and rkω is determined by D[γi]. Since rk〈D[γi]〉 =

rkHω = c(ω) = rkω, all corresponding integrals are rationally independent, so

ker[ω] = i∗H1(∆). Then [γi] · ker[ω] = 0 since γi ∩∆ = ∅. �

In the rest of this section we will study rkH. By (5), rkH ≤ b′1(M). The

following properties of rkH are connected with rkω:

Theorem 8. It holds:

(i) rkH ≤ rkω.

(ii) rkH 6= rkω − 1.

(iii) Fω is compactifiable iff rkH = rkω.

Proof. (i) follows from Lemma 3.

(ii) follows from Proposition 4 and (iii).

(iii) If rkH = rkω then Fω is compactifiable by Proposition 4.

Let now Fω be compactifiable. By Lemma 2 there exists a Poincaré duality

map D that satisfies (1) for a basis [γi] of Hω. Consider ϕ : Hω → R, ϕ(z) =
∫

Dz
ω. Since ∆ in (2) consists of a finite number of compactifiable leaves and

singularities, we have i∗H1(∆) ⊆ ker[ω]; in particular, rkω = rk imϕ.

Recall that H = {z ∈ Hω | z · ker[ω] = 0}. Let u = u1 + u2 ∈ H1(M),

u1 ∈ DHω, u2 ∈ i∗H1(∆) according to (2). Since Hω · i∗H1(∆) = 0, we have

z · u = z · u1. For a compactifiable foliation, u2 ∈ ker[ω], so u ∈ ker[ω] iff u1 ∈
ker[ω]. Thus the above definition can be rewritten asH = {z ∈ Hω | z ·DH0 = 0},
where H0 = kerϕ; in other words, H is the set of all z =

∑

ni[γi] such that for all

zk =
∑

mkj [γj ] that generate H0 ⊆ Hω it holds z ·Dzk = 0, i.e.,
∑

nimki = 0.

The latter linear system implies rkH = rkHω − rkH0. Since rkHω = c(ω)

and rkH0 = rkkerϕ = rkHω − rk imϕ = c(ω)− rkω, we obtain rkH = rkω. �

Let us consider some special cases.

Corollary 9. Let ker[ω] = 0. Then Fω is compactifiable iff c(ω) = b1(M),

the first Betti number. In this case the cup-product ⌣ : H1(M,Z)×H1(M,Z) →
H2(M,Z) is trivial.

Proof. Since ker[ω] = 0, we have rkω = b1(M) and H = Hω. Then the

condition rkH = rkω from Theorem 8 (iii) is equivalent to c(ω) = b1(M) and

thus Hω = Hn−1(M). Then H1(M,Z) = 〈zi〉, where zi are cocycles dual to [γi],

a basis of Hω, and γi ∩ γj = ∅ implies zi⌣zj = 0. �
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So if ker[ω] = 0 and ⌣ 6≡ 0, then Fω has a minimal component. If, however,

⌣ ≡ 0, then both cases are possible. Indeed, on the one hand, in any cohomology

class [ω], rkω > 1, there exists a Morse form with minimal foliation [1]. On the

other hand, the foliation can be compactifiable:

Example 10. Consider a connected sum M = ♯pi=1(S
1 × Sn)i, n > 1; see

Figure 2. Then b1(M) = b′1(M) = p (Example 1), which by (7) gives ⌣ ≡ 0.

Consider ω given on each (S1 × Sn)i by ωi = αidt, where t is a coordinate on

S1 and all αi ∈ R are independent over Q so that rkω = p. Obviously, Fω is

compactifiable (its compact leaves are spheres Sn).
 
 
 
 
 

S1 S1 

Sn Sn 

Figure 2. A foliation on a connected sum (S1
× Sn) ♯ (S1

× Sn).

Corollary 11. For a two-dimensional genus g surface M2
g it holds

rkH ≤ rkω ≤ 2g − c(ω) ≤ 2g − rkH. (8)

If rkH = g, then Fω is compactifiable.

Proof. The lower bound is by Theorem 8 (i). Since leaves are one-dimen-

sional,H ⊆ Hω ⊆ ker[ω] and rk ker[ω] = 2g−rkω gives the upper bound. If rkH =

g then (8) implies rkω = g and Fω is compactifiable by Theorem 8 (iii). �

4. Criterion for the presence of compact leaves

Farber et al. proved a necessary condition of existence of a compact leaf γ

in terms of zero cup-product:

Proposition 12 ([2, Proposition 9.14],[3, Proposition 3]). For so-called tran-

sitive Morse forms, if Fω has a compact leaf with [γ] 6= 0 then there exists a

smooth closed 1-form α, 0 6= [α] ∈ H1(M,Z), such that [α] ⌣ [ω] = 0.
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The converse is, however, not true; see Counterexample 17 below. Moreover,

no sufficient conditions for existing of a compact leaf can be given in cohomo-

logical terms: any cohomology class [ω], rkω > 1, contains a form with minimal

foliation [1].

We call 1-forms α and β collinear if α∧β = 0. Using the notion of collinearity

instead of zero cup-product, we will generalize Proposition 12 to an arbitrary (not

necessarily transitive) Morse form and refine it to a criterion. For closed 1-forms

the equation α ∧ β = 0 implies [α] ⌣ [β] = 0 but not vice versa, so collinearity is

a stronger condition.

Denote Suppα = M \ Singα. If α is closed, on Suppα the integrable distri-

bution {α = 0} defines a foliation Fα.

Lemma 13. For closed collinear 1-forms α, β, on Suppβ it holds α = f(x)β,

where f(x) is constant on leaves of Fβ. In particular, on Suppα∩Supp β it holds

Fα = Fβ.

Proof. On Suppβ there exists a smooth vector field ξx such that β(ξx) 6= 0.

Consider f(x) = α(ξx)
β(ξx)

, which is well-defined: for any vector fields ξx, ηx we

have α(ξx)β(ηx) − α(ηx)β(ξx) = (α ∧ β)(ξx, ηx) = 0. Thus on Suppβ we have

α = f(x)β.

Since α and β are closed, df ∧ β = dα − fdβ = 0. Consider a vector field

ξ tangent to the leaves of Fβ and η normal to the leaves. Then df ∧ β(ξ, η) = 0

implies (df)(ξ) = 0, i.e. f is constant on leaves. �

Proposition 14. Let α be a smooth closed 1-form collinear with a Morse

form ω; α 6≡ 0 and [α] ∈ H1(M,Z). Then Suppα is the union of a non-empty

subset of compact leaves of Fω and a subset of compactifiable leaves of Fω. These

leaves of Fω are leaves of Fα.

Proof. All leaves of Fα are closed. Indeed, since [α] ∈ H1(M,Z), it defines

a smooth map F[α] : M → S1,

F[α](x) = e
2πi

∫ x

x0

α
.

Obviously, F[α] is constant on leaves of Fα and the critical set of F[α] coincides

with Singα. So on Suppα the map is regular and by the implicit function theorem

each leaf of Fα (which is a connected component of a level F−1
[α] (y), y ∈ S1) is a

closed codimension-one submanifold of Suppα (not necessarily closed in M).

Next, if for a leaf γ ∈ Fω it holds γ ∩ Suppα 6= ∅ then γ ⊆ Suppα. Indeed,

suppose there exists x0 ∈ γ∩Singα. By Lemma 13, on Suppω it holds α = f(x)ω,
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where the function f(x) is constant on leaves. Since x0 ∈ Suppω, we have

f(x0) = 0 and so f |γ = 0, which gives γ ∩ Suppα = ∅; a contradiction.

Similarly, if for a leaf γ ∈ Fα it holds γ ∩ Singω 6= ∅ then γ ⊆ Singω.

However, since Singω consists of isolated points, such a leaf γ would be a point.

This gives Suppα ∩ Sing ω = ∅ and thus Suppα ⊆ Suppω.

Now Lemma 13 implies that all leaves of Fα are leaves of Fω. Since all leaves

of Fα are closed in Suppα, the latter cannot contain any non-compactifiable leaves

of Fω. It cannot consist solely of non-compact compactifiable leaves of Fω since

their number is finite while Suppα is open. Thus it must contain compact leaves

of Fω. �

Lemma 15. In the conditions of Proposition 14, if [α] 6= 0 then Fα has a

compact leaf with [γ] 6= 0.

Proof. Following the reasoning of [4] it is easy to show that (2) holds for

α even though it is not a Morse form. Since its ∆ consists of Singα and a finite

number of compactifiable leaves, rkα is determined by DHα. However, if [γ] = 0

for any compact γ ∈ Fα then Hα = 0 and thus rkα = 0, i.e., [α] = 0. �

Now we are ready to proof the main result of this section: a criterion for

existence of a compact leaf.

Theorem 16. The following conditions are equivalent:

(i) Fω has a compact leaf γ;

(ii) There exists a smooth function f(x) 6≡ const such that df is collinear with ω;

(iii) There exists a smooth closed 1-form α 6≡ 0, [α] ∈ H1(M,Z), collinear with ω.

Moreover, γ can be chosen with [γ] 6= 0 iff α can be chosen with [α] 6= 0.

Note that f and α are not required to be of Morse type.

Proof. (i) ⇒ (ii), (iii): Let γ be a compact leaf. Consider a cylindrical

neighborhood O(γ) = γ × I consisting of diffeomorphic leaves. Let (x1, . . . , xn)

be local coordinates in O(γ) such that (x1, . . . , xn−1) are coordinates in γ and xn

in I. Consider a smooth function f(x) = f(xn) 6≡ const in O(γ) and f(x) = 0

on M \ O(γ). Let x ∈ O(γ); consider the leaf γ′ ∋ x. Let η1, η2 ∈ TxM ;

then ηi = ξi + ain, where ξi ∈ Txγ
′, ai ∈ R, and n ∈ TxM \ Txγ

′. We obtain

df(ηi) = aidf(n) and ω(ηi) = aiω(n). Thus df ∧ ω(η1, η2) = 0, which proves (ii).

Consider now α = f(x)ω; obviously, α is closed and collinear with ω. In

addition, we can choose f such that [α] ∈ H1(M,Z), which proves (iii). Finally,

if [γ] 6= 0 then there exists a cycle z ∈ H1(M) such that z · [γ] = 1; choosing f

non-negative we obtain
∫

z
α 6= 0, thus [α] 6= 0.
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(ii), (iii) ⇒ (i): This has been shown as Proposition 14 and Lemma 15. �

Now Proposition 12 follows from Theorem 16. What is more, the same

theorem shows that Proposition 12 is not a criterion:

Counterexample 17. The converse to Proposition 12 is not true for manifolds

with b′1(M) > 1; see Section 2.3. Indeed, by (6) there exists a Morse form ω on

M such that c(ω) = b′1(M). By Theorem 16 there exists a form α, 0 6= [α] ∈
H1(M,Z), such that α ∧ ω = 0 and thus [α] ⌣ [ω] = 0. The same foliation Fω

can be defined by a form of rank b′1(M) [6, Theorem 4.1], so we can assume that

rkω = b′1(M) > 1. Then there exists a form ω′ with a minimal foliation and

[ω′] = [ω] [1]; in particular, [α] ⌣ [ω′] = 0.

Recall that c(ω) = rkHω is the total number of homologically independent

compact leaves of Fω. Theorem 16 states that c(ω) 6= 0 iff there is a suitable

[α] 6= 0. This can be easily generalized to an arbitrary number k: c(ω) ≥ k iff

there are k independent α’s, which gives a criterion for existence of k homologically

independent compact leaves:

Theorem 18. The following conditions are equivalent:

(i) Fω has k homologically independent compact leaves γi;

(ii) There exist k cohomologically independent smooth closed 1-forms αi, [αi] ∈
H1(M,Z), collinear with ω.

If the above conditions hold for k = b′1(M) then Fω is compactifiable.

Proof. (i) ⇒ (ii): For each γi construct a form αi, [αi] 6= 0, as in The-

orem 16. Consider a Poincaré duality map D that satisfies (1) for γi. Since
∫

Dγi

αj = δij , all [αi] are independent.

(ii) ⇒ (i): As has been noted in Lemma 15, rkαi is determined by DHαi
.

By Proposition 14 we have Hαi
⊆ Hω and thus the rank of the whole system

〈[α1], . . . , [αk]〉 is determined by Hω, which implies c(ω) = rkHω ≥ k.

Finally, by (5), c(ω) ≥ k = b′1(M) implies m(ω) = 0, i.e. Fω is compacti-

fiable. �
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