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ABSTRACT.  

Semantic analysis of texts is a key issue for the natural 
language processing community. However, this analysis is 
generally based on a deeply-intertwined syntactic and semantic 
process, which makes it not easily adaptable and reusable from 
a practical point of view. This represents an obstacle to the 
wide development, use and update of semantic analyzers. This 
paper presents a modular semantic analysis pipeline that aims 
at extracting logical representations from free text based on 
dependency grammars and assigning semantic roles to the 
logical representation elements using an upper-level ontology. 
An evaluation is conducted, where a comparison of our system 
with a baseline system shows preliminary results. 
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1 INTRODUCTION 

Semantic Analysis is the process of assigning a given sense to the 
different constituents of a sentence or a text. In the NLP community, 
most of the approaches, such as HPSG [14] and categorical grammars 
[10, 15], require the use of a semantic lexicon, i.e. is a dictionary that 
links words to semantic classes and roles and involves sub-
categorization. In fact, this lexicon is the most important component of 
these grammars, since it is encoded as a set of lexical entries with 
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syntactic and semantic information (feature structures or type-logical 
lambda-expressions). In the text mining community, template filling, 
which also involves knowledge about semantic arguments, is mainly 
used as a way to assign or extract meaning. Some problems arise from 
this kind of approach. Firstly, it is generally domain-dependent, 
especially in the Text Mining Community. This involves repeating the 
process for each new domain since the identified roles must suit the 
application domain in order to be accurate. Secondly, the construction 
of the lexicon implies a huge effort. It is generally language dependent. 
Thirdly, semantic analysis (involving sub-categorization) can be 
considered as an intertwined process of syntactic and semantic 
processing, which make it not easily modularised and updatable. 

Based on these issues, we believe that there is a need of a looser 
coupling between the syntactic and semantic information. This paper 
presents a reflection on what should be a semantic analysis with the 
current technologies and formalisms available. It presents a pipeline 
that separates the process of extracting logical representations (the 
logical analysis) from the process of assigning semantic roles to the 
logical representation elements (the semantic annotation). These roles 
are defined in an upper-level ontology, SUMO [12]. The interest of the 
pipeline as proposed here is first the modular nature of the syntactic, 
logical and semantic analyzers, which enables easier updates and 
focused experimentations that identify the weaknesses of each 
component of the pipeline, and second, the definition of semantic roles 
in an ontology, which make the approach more easily interoperable. In 
fact, one of the major problems of SRL systems is the diversity of 
semantic roles and their various terminologies and formalisms [8], 
which hinder their comprehension from one SRL system to another.  

The paper is organized as follows. Section 2 presents briefly the state 
of the art in computational semantics. Section 3 describes the system, 
including the knowledge model, the steps involved, as well as the 
required knowledge structures (SUMO and SUMO-WordNet). It also 
lists the syntactic patterns used in the logical analyzer and presents 
some of the WSD methods used to assign SUMO senses to the logical 
elements. Section 4 presents an experiment, shows the results in terms 
of precision and recall and compares our approach with baseline 
systems. Finally, section 5 summarizes the paper and outlines 
implications for NLP research. 
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2 RELATED WORK 

These last years have shown interesting progress in the computational 
semantics research. While the majority of recent text-based extraction 
works relies on statistical-based shallow techniques [1], there is still a 
non negligible amount of research devoted to the implementation of 
hand-built grammars such as categorical grammars [15], HPSG [14], 
MRS [4] or TRIPS grammar [1]. These grammars are usually sets of 
syntactic rules coupled with semantic components, which indicate the 
role of the rule’s arguments in terms of semantics. One drawback of this 
approach is that the lexicon is not easily obtainable and requires a lot of 
manual work from computational linguists. This makes the approach 
not easily scalable and not easily adaptable to new semantic analysis 
and new models. Moreover, rich grammars such as categorical 
grammars are not so easily obtainable or reusable.  
Other works such as [13] have addressed the extraction of logical forms 
for semantic analysis as we do but they did not tackle, to our 
knowledge, the assignment of semantic roles to the logical forms. 
Finally, very recent works [3] show a growing interest in producing 
deep semantic representations by taking as input the result of a syntactic 
parser. This paper is in the same line of research. However our work 
aims at a looser coupling of the syntactic and semantic features and 
leaves the deep semantic aspects to a subsequent step of WSD. 

3 A  MODULAR PIPELINE FOR SEMANTIC ANALYSIS 

The semantic analysis adopted in this paper is a modular pipeline that 
involves three steps (Fig.1):  
1. Syntactic parsing of texts; 
2. Logical analysis using a dependency-based grammar; 
3. Semantic annotation based on the upper-level ontology SUMO 

involving word-sense disambiguation.  
This modular process is a solution to the above mentioned issues 

related to current semantic analysis including creating a modular design 
clearly separating syntactic, logical and semantic annotation or 
extraction steps, providing a dependency-based grammar that could be 
comprehensible and reusable by the text mining and NLP community, 
making this grammar domain-independent and lexicon-independent, 
and finally using an ontology as a way to formally define semantic roles 
and make them understandable from a SRL system to another. 
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Fig. 1. The Semantic Analysis Pipeline 

The following sections explain these steps as well as the linguistic 
resources needed at each step. 

3.1 The Syntactic Analysis 

The syntactic analysis is aimed at facilitating the subsequent steps of 
logical representation and semantic annotation. We believe that this 
analysis should be based on deep linguistic analysis and should not be 
limited to simple tagging or surface syntactic parsing. Our goal is to 
propose a method “easily” reproducible, reusable and able to extract 
domain-dependent and domain-independent patterns. This should be 
perfectly handled by dependency parsing. 

Dependency parsing outputs grammatical relationships between each 
pair of words in a sentence. This formalism has proved its efficiency in 
text mining and we believe that it has the required characteristics of a 
good grammatical formalism, as it is intuitive, easily understandable, 
and it enables transparent encoding of predicate-argument structure. 
Moreover, current state-of-the-art dependency analyzers seem to be 
sufficiently robust to be considered as reliable tools for knowledge 
extraction and this is particularly true for the Stanford parser, according 
to current surveys [16]. 

Our system uses the basic dependencies format option in the 
Stanford Natural Language Processing Parser and its dependency 
component [6] and transforms the output grammatical relations into a 
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tree, represented as a Prolog term. It also enriches the typed 
dependencies with the word grammatical categories (such as verb (v), 
noun (n), …), which are obtained using the Stanford’s parts-of-speech 
output. This operation is important because it enables distinguishing 
some patterns using their parts-of-speech. For instance, the parser 
output for the sentence Banners flap in the wind outside the walls of the 
city is presented below. This sentence will be used as an example 
throughout the whole process of semantic analysis. 
nsubj(flap-2, Banners-1);prep(flap-2, in-3);det(wind-5, the-4);pobj(in-
3, wind-5);prep(flap-2, outside-6);det(walls-8, the-7);pobj(outside-6, 
walls-8);prep(walls-8, of-9);det(city-11, the-10);pobj(of-9, city-11) 
Banners/NNS flap/VBD in/IN the/DT wind/NN outside/IN the/DT 
walls/NNS of/IN the/DT city/NN./. 

This  is  transformed  into  a  tree, which  is  given  as  input  to  the 
logical analyzer:   
root/tree(token(flap,2)/v,  

[nsubj/tree(token(banners,1)/n,[]), 
 prep/tree(token(in,3)/prep,  

[pobj/tree(token(wind,5)/n,      
   [det/tree(token(the,4)/d,[])])]), 

  prep/tree(token(outside,6)/prep,  
     [pobj/tree(token(walls,8)/n, 
        [det/tree(token(the,7)/d,[]), 

           prep/tree(token(of,9)/prep,  
 [pobj/tree(token(city,11)/n, 
    [det/tree(token(the,10)/d, 

[])])])])])]). 

3.2 The Logical Analysis 

The logical analyzer presented in this paper is based on the dependency 
syntactic tree produced in the syntactic analysis step and is strongly 
related to the approach presented in [17].  In fact, both systems rely on 
dependency syntactic patterns to extract logical representations. While 
these representations were used in [18] to generate domain ontologies 
using measures from graph theory, they are exploited here as an 
intermediate step towards an efficient modular semantic analysis. 
Moreover, one of the new central points of our approach is the use of an 
upper level ontology as the semantic lexicon for semantic analysis and 
the use of WSD algorithms in order to assign roles. The key points that 
should be outlined here is that, first, the logical analysis does not 
depend on a particular lexicon, a particular vocabulary or a particular 

SEMANTIC ANALYSIS USING DEPENDENCY-BASED GRAMMARS... 89



domain. Second, this analysis is based on the compositionality 
principle, which states that a sentence semantic representation can be 
obtained by the semantic representation of its parts. Here we consider 
that a sentence logical representation requires the logical representation 
of its parts. To our knowledge, there is no previous proposal to create a 
compositional logical analyzer based on dependency grammars as we 
propose here. 

3.2.1  The Knowledge Model 
Although the logical analysis does not require the use of a semantic 
lexicon, it still needs a conceptual structure made up of a minimal set of 
categories. In this project, the categories include entities, named 
entities, events, statements, circumstances, time, number, purpose, 
measure and attributes. With these categories, chosen to be as general 
as possible, it is easy to express various information contexts and to 
remain independent from a particular domain. Although it would be 
possible to create logical representations using only lexical items, we 
believe that using these categories can help the semantic analysis. 

There is a straightforward map between our knowledge model 
categories and grammatical relationships. The following table 
summarizes the mapping involved between the syntactic categories and 
the knowledge model. Sometimes, the knowledge model element is 
detected through a part-of-speech (POS) (e.g. verb, noun), but it may 
also be detected through a number of grammatical relationships 
(syntactic patterns) necessary to find the relevant element. In the 
example column, the words in bold indicate the syntactic category 
related to the knowledge model element. This knowledge model is 
subject to further enhancements in the future. 

Table 1. Mapping knowledge model elements with syntactic categories 

Knowledge 
Model Element 

Syntactic Category Example 

Entity Noun (n) The cat eats. 
Event Verb (v) The cat eats. 

Statement Any pattern involving a 
clausal complement with 
external subject (xcomp) 

I like {to eat in the 
garden}xcomp 

Circumstance Adverbial clause (advcl) The accident happened {as 
the night was falling } advcl 

Time Temporal modifier (tmod) He swam in the pool {last 
night} tmod 

Number Numeric Modifier (num) 200 people came to the 

90 AMAL ZOUAQ, MICHEL GAGNON, BENOÎT OZELL



party 
Attributes 1. Nominal subj. and 

copula 
2. Adjectival complement 
3. Adjectival modifier 

1. The cat is big 
2. He looks tired  
3. He is a happy man 

Measure Measure The director is 55 years 
old 

 
Note that these mappings are not performed in isolation. In fact, 

relating a knowledge model element to a syntactic category occurs only 
in the context of detecting specific syntactic patterns. This prevents the 
system from incorrectly assigning a knowledge model element to a 
given lexical item.  For example, many nominalizations should refer to 
events instead of entities. Assigning them in the context of a pattern 
enables us to avoid this confusion. These patterns are explained in the 
next section. 

3.2.2   The dependency-based Grammar: a Pattern Knowledge Base 
Besides the link between syntactic categories and knowledge model 
elements, the dependency-based grammar is composed of a set of 
patterns coupled with transformational rules. These rules exploit the 
dependency representation and create logical representations using the 
general categories introduced in the knowledge model. The grammar is 
divided into core and modifiers patterns and is composed, up to now, 
of 61 rules. Core syntactic patterns, such as the well-known subject-
direct object pattern, represent main grammatical structures that are 
necessary for parsing the texts. Modifiers patterns represent modifiers 
such as prepositions, participial, purpose-clause, temporal modifiers 
and so on. The patterns are organized into a hierarchy where richer 
patterns containing the maximum number of relationships are at the top 
level. In our Prolog implementation, the hierarchy is simply organized 
as a set of rules where “richer” rules are fired first. It is worth noting 
that many patterns can be instantiated in a same sentence, including 
core patterns and modifiers patterns. Also, some patterns extract 
implicit knowledge. For instance, in the phrase “the rabbit’s head”, the 
logical analyzer will produce a predicated term has-attr (rabbit, head) 
from the grammatical relationship poss (possessive). At the subsequent 
step of WSD, the “real” meaning of the relation (part-of, possess, etc.) 
will be assigned. 

The following tables show some of these patterns and provide 
examples, some of them taken from the Stanford dependencies manual 
[5]. A grammatical relationship between brackets indicates that it is a 
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child of the preceding relationship. For example, in nsubj-xcomp[-
dobj], a dobj relationship is a child of the xcomp relationship. In the 
examples column, the words in bold and italics represent the heads 
(root nodes) of the patterns. Head’s syntactic category is indicated in 
italics in the beginning of each pattern. The reader is referred to [6] to 
understand the grammatical hierarchy and the corresponding 
grammatical links.  

Table 2. Main syntactic patterns 

Patterns Examples 
Verb-nsubj-dobj-iobj {Mary}nsubj gave {Bill} iobj a {raise}dobj 
Verb-nsubj-dobj-
xcomp 

{The peasant}nsubj carries {the rabbit}dobj, 
{holding} xcomp it by its ears 

Verb-nsubj-dobj {The cat}nsubj eats {a mouse}dobj 
Verb-nsubj-xcomp[-
dobj] 

{Michel} nsubj likes to {eat}comp {fish} dobj 

Adjective-nsubj-xcomp {Benoit}nsubj is ready to {leave}xcomp 
Verb-csubj-dobj What Amal {said}csubj makes {sense}dobj 
Verb-nsubj-expl {There}expl is a small {bush}nsubj 
Adjective-nsubj-cop  {Benoit}nsubj {is} cop happy 
Noun-nsubj-cop  {Michel}nsubj {is} cop a man 
Verb-nsubj-acomp {Amal}nsubj looks {tired} acomp 
Verb-xcomp-ccomp Michel says that Benoit {likes}ccomp to {swim}xcomp 
Verb-nsubj {The cat}nsubj eats 
Verb-dobj Benoit talked to Michel in order to secure {the 

account}dobj 
Verb-nsubjpass-prep 
by 

{The man}nsubjpass has been killed {by} prep the police 

Verb-csubjpass-prep 
by 

That he {lied}csubjpass was suspected {by} prep 
everyone 

Verb-nsubjpass {Bills}nsubjpass were submitted 

Table 3. Modifiers patterns 

Modifiers Patterns 
(Modifiers) 

Examples 

Partmod[prep] There is garden surrounded by houses. 
Prep[pcomp] They heard about Mia missing classes. 
Prep (after a noun) Vincent discovered the man with  a telescope. 
Prep (after a verb) Bills were submitted to the man. 
Amod The white cat eats 
Tmod Vincent swam in the pool last night 
Advcl The accident happened as the night was falling . 
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Ccomp Michel says that Benoit likes to swim. 
Purpcl Benoit talked to Michel in order to secure the 

account. 
Infmod The following points are to establish. 
Measure The director is 55 years old. 
Num The director is 55 years old. 
Poss The peasant taps the rabbit ’s head with his fingers. 
Quantmod About 200 people came to the party. 
Advmod Genetically modified food is dangerous. 
Rcmod Michel loves a cat which Benoit adores. 

 
 At present, the grammar does not handle anaphora resolution 

automatically and conjunctions are computed based on a distributive 
interpretation only, which may not lead to a correct interpretation in 
some cases.  Future work should tackle these issues. 

3.2.3   The Transformational Approach 
Each pattern is a Prolog rule that builds a logical representation 
according to the fired pattern. Since we use a compositional approach, 
each fired rule builds a part of the sentence analysis. The resulting 
representation is a predicative flat formula composed of predicates (the 
knowledge model elements) applied to lexical elements, as well as 
predicates resulting from prepositional relations and predicates 
indicating if an entity has already been encountered in the discourse or 
if it is a new entity. Relationships between predicates are represented 
through their arguments and referential variables are assigned to the 
instantiated knowledge model elements.  

Following our example sentence, the resulting logical representation 
is: outside(e1, id3), of(id3, id4), entity(id4, city), 
resolve_e(id4), entity(id3, walls), resolve_e(id3), 
in(e1, id2), entity(id2, wind), resolve_e(id2), 
event(e1, flap, id1), entity(id1, banners), 
new_e(id1). 

This formula states that there are a number of entities (city, wind, 
etc.), an event (flap) involving the entity banner and two relationships 
“outside” and “of”. “ Outside” involves the event of flapping e1 and the 
entity walls. The predicates new_e and resolve_e are used to indicate if 
the entity has already been encountered in previous sentences 
(resolve_e) or not (new_e). This will help us in anaphora resolution. 

An example of a Prolog rule for the nsubj-dobj pattern is shown 
below. The rule involves the discovery of the two relationships of 
interest (nsubj and dobj) and calls the semparse procedure. This 
procedure creates a logical representation for the nsubj and the dobj 
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sub-trees and finally produces an instance of an event object that 
combines these two outputs. 

semparseMainPattern(tree(Node/v,Children),tree(Node
/v,Rest), 
Id,SemIn,[event(Id,Node,IdAgent,IdObject)|SemOut]):
-   
select(nsubj/tree(N1/_,C1),Children, R1),   
select(dobj/tree(N2/_,C2),R1, Rest),  
semparse(tree(N1/n,C1),_,IdAgent,SemIn,Sem1),  
semparse(tree(N2/n,C2),_,IdObject,Sem1,SemOut),   
gensym(e,Id). 

3.3 The Semantic Annotator 

The obtained logical representation elements should then be assigned a 
sense. One of the tasks of a SRL system is to adequately segment 
predicates and their arguments before their classification into a specific 
set of roles. Due to the logical analysis, argument and predicate 
segmentation is already done and the semantic annotator should then 
focus on assigning an appropriate role to these representations. Here, 
we mainly focus on entities and events in the logical representations but 
further work should explore the whole structure. 

3.3.1   The SUMO Upper-Level Ontology 
One of the difficulties in semantic role labelling is that most of the 
approaches use very specific subsets of semantic roles and do not agree 
on the roles to be used. Using an upper-level ontology enables a high-
level and formal definition of these roles. Moreover, the interest of 
using an ontology instead of a flat set of roles is the ability to use its 
hierarchical and conceptual structure in order to help the WSD process, 
ascertain the correctness of the identified roles, or reason about the 
annotated roles. In the context of the Semantic Web, this last point is 
very important, as the annotated texts will be meaningful to multiple 
SRL systems which should foster reusability and interoperability.  

The Suggested Upper Merged Ontology (SUMO) [11] is an ontology 
composed of about 1000 terms and 4000 definitional statements. It has 
been extended with a Mid-Level Ontology (MILO), and a number of 
domain ontologies, which enable coverage of various application 
domains. SUMO has also gone through various developments stages 
and experimentations, which make it stable. 
One interesting feature of SUMO is that its various sub-ontologies 
(base, structural, MILO, and domain ontologies) are independent and 
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can be used alone or in combination. Here, we only exploit the upper 
level, meaning that we take into account only the SUMO ontology itself 
(merge.kif). Another point is its mapping from lexical items (terms) to 
general high-level concepts. In fact, SUMO [11] is mapped to the 
widely used WordNet computational lexicon [7]. The SUMO-WordNet 
mapping links each synset in WordNet to its SUMO sense through three 
types of relationships: equivalent links, instance links and subsumption 
links. Despite the fact that this mapping can be error-prone, we believe 
that it represents an excellent demonstration of how various state-of-
the-art resources can be used in a modular pipeline. The other point is 
that choosing this upper-level ontology is not a limitation and can be 
extended by a domain ontology if this is required.  

3.3.2   Word Sense Disambiguation 
Choosing the appropriate role involves the use of WSD algorithms. At 
this point of our work, we have implemented a number of standard 
knowledge-based unsupervised WSD methods. The choice of 
unsupervised methods is guided by the same motivation as for the 
whole pipeline: avoiding costly and hard-to-build language resources.  

The interest of the pipeline at the level of WSD is that the predicates 
and arguments to be disambiguated are already clearly identified in the 
logical representations. One step further would be to use the whole 
logical representation itself as a way to direct the disambiguation 
process. We are currently working on this. 

Among the WSD methods, we used a number of Lesk-derived 
algorithms namely the Simplified and Original Lesk. We also 
implemented a version of the [2] algorithm which is based on a 
semantic network extracted from WordNet to build a context feature 
vector for the term to be disambiguated.  We relied also on a baseline 
widely used in SRL evaluations: the most frequent sense.  Finally, we 
used an algorithm that relies on co-occurrences frequencies extracted 
from SEMCOR to determine the number of overlapping terms between 
these co-occurring terms and the context of the term to disambiguate. 

In all these implementations, if the algorithm fails to identify a 
particular sense, it then backs off to the most frequent sense. Below are 
the annotated entities and events in our example sentence. Here we only 
show the SUMO-based annotations but we also keep the WordNet-
based annotations in the knowledge base. 

This results into the following SUMO-based semantic representation 
of the example sentence: outside(e1, id3), of(id3, id4), 
entity(id4, SUMO:City), resolve_e(id4), entity(id3, 
SUMO: StationaryArtifact), resolve_e(id3), in(e1, 
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id2), entity(id2, SUMO: Breathing), resolve_e(id2), 
event(e1, SUMO: Motion, id1), entity(id1, SUMO: 
Fabric), new_e(id1). 

Of course, the system can also produce the WordNet-based semantic 
representation: outside(e1, id3), of(id3, id4), 
entity(id4, WN: city%1:15:00::), resolve_e(id4), 
entity(id3, WN: wall%1:06:01::), resolve_e(id3), 
in(e1, id2), entity(id2, WN: wind%1:04:01::), 
resolve_e(id2), event(e1, WN: flap%2:38:00::, id1), 
entity(id1, WN: banner%1:06:00::), new_e(id1). 

4 EVALUATION  

Evaluating such a rich pipeline is a challenge in itself. In fact, it 
involves evaluating the syntactic, logical and semantic annotation. 
Based on current reviews of the Stanford parser which describe a good 
performance [16], we decided to focus on the logical and semantic 
annotation evaluations. Two types of experiments were conducted using 
the well-known precision and recall metrics:  
• A first experiment involving a small corpus of three descriptive texts 

(185 sentences) manually annotated using SUMO senses in order to 
build a SUMO gold standard. This corpus helped us in performing 
the logical form evaluation as well as the semantic annotation; 

• A second experiment on the Senseval 3 dataset for the English 
lexical sample task [9] which enables to test the chosen WSD 
algorithms on a standard dataset and to compare the results with 
similar systems. This second experiment does not rely on the 
previous logical form extraction. 
For comparison purposes, we used the most frequent sense baseline 

in both experiments. Precision and recall are calculated as follows: 
Precision = items the system got correct / total number of items the 

system generated 
Recall = items the system got correct / total number of relevant items 

(which the system should have produced) 

4.1 Logical Analyzer Results 

This section tests the logical analyzer and the accuracy of the resulting 
logical formula by measuring the precision and recall of the extracted 
entities and events in the first corpus using our patterns. These results 
are summarized in Table 4.  
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Table 4. The logical analysis results in terms of entities and events 

 Precision % Recall % 
Entities 94.98 80.45 
Events 94.87 85.5 

 
From these experiments, it is clear that our semantic analyzer yields 

promising results. Most of the time, the incorrect entities and events are 
due to a wrong syntactic parsing from the Stanford Parser. There are 
also some patterns that are not yet identified which make the recall 
lower. These results should be later completed with an evaluation on a 
bigger corpus, they should be detailed in terms of correctness of 
predicates, arguments and whole logical formulas [13] and finally, they 
should include the whole logical representation and not be limited to 
entities and events.  

4.2 Semantic Annotator Results 

Semantic annotation (as an isolated module) was tested over the first 
corpus as well as the Senseval data (English lexical sample task). 
Various algorithms were tested mainly using knowledge-based 
methods, including: 
• The Simplified and Original Lesk algorithms as well as derivatives 

such as [2]. 
• An algorithm computing the most frequent sense based on the 

WordNet frequencies (extracted from SEMCOR) for the first 
corpus, and based on term frequencies in the training data for the 
Senseval dataset.  

• An algorithm, dubbed frequency of co-occurrence, computing the 
overlap between the context of the term to be disambiguated and a 
vector of frequently co-occurring terms for each sense of the term 
together with their frequency. In the case of the first corpus, these 
co-occurrences frequencies are extracted from the SEMCOR 
corpus whereas they are extracted from the Senseval training data 
in the second corpus. 

Many context sizes were tested for all these algorithms including all 
previous sentences and various words and sentence windows (from 0 to 
4) as well as the logical graph structure obtained in the logical analysis. 

Due to a lack of space and to the fact that WSD in itself does not 
represent our contribution in this paper, we simply present the results of 
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the best performing algorithm together with the most frequent sense 
baseline without entering into the details of each implemented 
algorithm (the reader is referred to references and state-of-the-art 
literature). We did not obtain the best performance using only one 
algorithm on the three texts (first corpus) but Banerjee and Pedersen 
algorithm [2] was always among the top-ranking algorithms for entity 
annotation. Events were best disambiguated using frequency of co-
occurrence (text 1), most frequent sense (text 2) and Simplified Lesk 
(text 3). The following table shows the mean of the precision and recall 
obtained for the three texts. As can be shown, the algorithm 
outperforms slightly the most frequent sense baseline. We are seeking 
better results and future work will explore graph-based WSD 
disambiguation based on the logical analysis form. Further experiment 
should also explore the impact of the corpus characteristics on the 
performance and the choice of WSD algorithms. 

Table 5. A comparison of the precision/recall results for the two algorithms 
(WSD and most frequent sense) 

 Best 
Algorithm 
(Precision) 

Best 
Algorithm 
(Recall) 

Most 
Frequent 

(Precision) 

Most 
Frequent 
(recall)  

SUMO 
entities 

87.08 73.76 84.67 71.65 

SUMO 
events 

75.69 68.16 71.54 64.29 

 
Regarding the Senseval corpus, we were able to obtain a 

precision/recall of 64.1 % (Fine-grained) and 69% (coarse-grained).  
Based on the overall results of the competition [9], we were able to 
exceed the most frequent sense performance which was listed as 55.2% 
(fine-grained) and 64.5% (coarse-grained) using a variant of [2] 
coupled with frequencies of co-occurrences. We used a two-sentence 
window around the word to be disambiguated and a cosine similarity. 
Our results rank us second among the unsupervised algorithms of the 
competition (although we consider the approach as minimally 
supervised). 
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5 CONCLUSION 

Current semantic analysis techniques are generally in need of lot of 
training data, depend on resources such lexicons for their semantic 
interpretation and lack a uniform way to define roles or labels that 
should be assigned to sentences constituents. This paper presented a 
modular pipeline for semantic analysis that relies on state-of-the-art 
dependency parsing, logical analysis using a dependency-based 
grammar and finally semantic annotation. This annotation is performed 
using the upper-level ontology SUMO and the WordNet lexicon, which 
could be considered as standard resources. Choosing a dependency 
grammar instead of other formalisms is guided by a practical point of 
view: it is argued that state-of-the-art analyzers have reached a certain 
maturity, which makes them a good starting point for a semantic 
analysis. Moreover, dependency grammars provide an intuitive solution 
to the identification of logical forms from text as outlined by [13].  The 
proposed solution does not require costly training or data resources, 
except some standard resources well-known in the NLP community.  
The modular nature of the pipeline makes it more easily adaptable and 
updatable from a software engineering point of view. Finally, the 
system presented here is intended as a demonstration of what could be a 
semantic analysis with current methods and tools. Future work includes 
the enrichment of the dependency-based grammar with new patterns, a 
better handling of the meaning of conjunctions and other specific 
constructions (such as idioms), the processing of ambiguous structures 
and eventive nominalizations as well as the use of a bigger corpus for 
the evaluation of the logical analysis results. We are currently working 
on WSD algorithms that could benefit from the logical form not only 
for argument selection as proposed here, but also for argument 
annotation. 
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