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ABSTRACT

Active learning succeeds in reducing the size of labeled corpus
while maintaining the high accuracy. However, active learning
requires several iterations of the tagger training, which will not
be practical when the training of an iteration takes long time.
In this paper, we propose to simplify the all-entity labeling task
by splitting the task into a set of single-entity labeling subtasks.
After all entity types are labeled, we merge the data sets into an
all-entity corpus and train the final tagger using the mergedset.
The proposed method achieved the competitiveF1 to the multi-
entity learning but required much less computational time on the
CoNLL chunking and named entity recognition data sets.

1 INTRODUCTION

Part-of-speech tagging, text chunking, named entity recognition, and a
number of tasks in natural language processing are formulated as a se-
quence labeling task. Sequence labeling is a kind of classification tasks
that predicts an output label for each of the corresponding input token in
the sequence. Sequence labeling is also a structured labeling task which
has a special property that an output label does not depend only on the
input sequence, but also on the other output labels. These dependencies
among output labels slow the training of the classifier, and are trouble-
some for an annotator. Although the labeling of a structuredoutput cor-
pus consumes much of human time and effort, a considerably large size
of corpus is still necessary in order to train a precise classifier for a task.
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Active learning is proposed to reduce the labeling cost in numerous
tasks including sequence labeling [6, 11]. The intuition behind it is that
only the informative samples are sufficient for the trainingin order to
achieve high accuracy. Hence, it can reduce the annotation cost from the
whole corpus to a set of informative samples in the corpus. The intuition
of active learning can also be applied to a substructure level, i.e. only
some substructures in the whole structure are informative.Tomanek and
Hahn proposed to manually label only the informative subsequences, and
automatically label the uninformative parts in the sequence [11]. Wan-
varie et al. also proposed similar idea to [11], but they re-estimate the
labels of uninformative parts in the training without explicitly labeling
them [16]. In this paper, we adopt the method in [16] since it can achieve
the similarF1 to the supervised learning while the method in [11] cannot.

In an active learning framework, the informative set of samples are
iteratively extracted from the corpus using the tagger trained on the pre-
viously labeled data. Therefore, an annotator has to wait for the training
to complete before he/she can start labeling for the next iteration. If the
training of the tagger takes long time, the framework will beless prac-
tical. One of the factors which causes the long training timeis the num-
ber of the possible output labels. Although the conditionalrandom fields
(CRFs) can take the output labels into account in the training, the num-
ber of class labels increases and requires long training time. Cohn et al.
proposed a CRFs training technique which simplifies the multi-class clas-
sification to a set of binary classifications [1]. Their method succeeded in
reducing the training time of CRFs, but still required a fully labeled cor-
pus. Here, we adopt their idea to simplify the labeling task into a set of
entity labeling tasks in order to reduce the training time. For example, the
labeling of a corpus consisting of 4 entity types will be split into 4 label-
ing subtasks. Each subtask takes only a single entity type into account.

The rest of this paper starts from the description of conditional ran-
dom fields in Section 3. We summarize the active learning framework
adopted in this paper and the proposed split labeling in Section 4. Sec-
tion 5 contains the comparison between the proposed split labeling and
the conventional all-entity labeling. Finally, we summarize the contribu-
tion of this paper and discuss the future work in Section 6.

2 RELATED WORK

Obtaining partially labeled data is easy in many situations. For example,
we can exploit the keyword link in Wikipedia text for word boundary in-
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formation without any human labeling effort. In the domain adaptation
task, Tsuboi et al. showed that the training using partiallylabeled cor-
pus, augmented with the fully labeled source domain, achieved higher
accuracy than the training with the source domain [13]. Culotta and Mc-
Callum proposed an annotation framework for an informationextraction
task in [2], which allows the partial annotation of the document.

Tomanek and Hahn proposed a semi-supervised active learning frame-
work for sequence labeling which requires only informativetokens to be
manually labeled [11]. Wanvarie et al. also proposed a similar system in
[16, 17], but their system does not require any explicit annotation on unin-
formative tokens. However, all of the systems in [11, 16, 17]employ the
multi-entity CRFs training which we will show later in the experiment
section that the multi-entity CRFs requires long training time.

Standard L-BFGS optimizer [4] for CRFs is slow due to the fullgra-
dient computation, making the active learning impracticalif an annota-
tor has a long waiting time between the labeling iterations.In order to
accelerate the training of CRFs, several optimization techniques were
proposed such as stochastic gradient descent [15]. Apart from the en-
gineering of the optimization itself, Cohn et el. proposed to simplify the
multi-class learning task into a set of binary classification subtasks us-
ing error-correcting codes [1]. Their proposed method can reduce both
of the training time and memory, with a slight decrease in theaccuracy.
Tsuruoka et al. proposed a sentence selection technique forsparse corpus
annotation using active learning [14]. They also succeededin extracting
almost all of the sequences that contain the target entity within a small
amount of CPU time. However, they did not employ the partial anno-
tation. Therefore, they have to label the whole corpus in an all-entity
labeling task.

3 CONDITIONAL RANDOM FIELDS (CRFS)

Given that there are an input sequencex = (x1, ..., xT ) ∈ X composed
of T tokens and the corresponding output sequencey = (y1, ..., yT ) ∈
Y, the conventional CRFs proposed by [3] model the probability of y

using the following probability:

Pθ(y|x) =
eθ·Φ(x,y)

Zθ,x,Y

. (1)
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Z is the normalizing factor:

Zθ,x,Y =
∑

y∈Y

eθ·Φ(x,y) , (2)

which can be computed efficiently using dynamic programming. The fea-
ture functionΦ is a mapping fromx andy to a real value. Supposing that
we haveN training sequences andd features (Φ = (Φ1, ..., Φd)), we will
learn the model parametersθ = (θ1, ..., θd), by maximizing the log like-
lihood of the output sequences given the input sequences in the training
data:

maxLL(θ) = max

N∑

n=1

ln(Pθ(y
(n)|x(n))) . (3)

We employ L-BFGS[4] with parallelized gradient computation to opti-
mizeθ in (3).

Since the sequence probability in (1) of the objective function in (3)
requires a sequence to be fully labeled, we re-define the objective func-
tion for partially labeled sequences following [13] to:

maxLL(θ) = max

N∑

n=1

lnPθ(YL(n) |x(n)) . (4)

YL is a set of ally consistent with the partially labeled sequencex. The
probability ofYL is modified from (1) to

Pθ(YL|x) =
∑

y∈YL

Pθ(y|x) . (5)

4 ACTIVE LEARNING FRAMEWORK

The outline of our labeling framework is shown in Fig.1. The active
learning is mostly similar to the framework in [16] augmented with the
split labeling. In an iteration of each subtask, the system tries to find a set
of informative tokens and ask an annotator to label them. Thelabeling
will stop when the stopping criterion are satisfied. After the annotation
of all subtasks has been finished, the partially labeled corpora from all
subtasks are merged into a single multi-entity corpus for the training of
the final tagger.
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Ss,t : {(x,yL)} is a set of all training sequences with current annota-
tion at iterationt of subtasks
Ssel is a set of informative tokens
x is an input token
for eachs do

curmodel← train(Ss,1) {Initial training}
repeat

Ssel ← Qtok(curmodel, Ss,t) {Selectingq tokens (at most)}
for x ∈ Ssel do

Ss,t+1 ← update(Ss,t, x, label(x)) {Annotation}
end for
curmodel← train(Ss,t+1) {Training}

until (|Ssel| < q) and(κ(Ss,t, Ss,t+1) > stop) {Stopping crite-
rion}
Ss,final ← Ss,t+1

end for
Sfinal ← merge(Ss,final) {Merge training sets}
finalmodel← train(Sfinal)

Fig. 1: Active labeling framework

4.1 Query and Labeling Strategy

The success key of active learning in reducing the annotation cost relies
on the ability to select a small set of highlyinformativelabeling candi-
dates. There are various definitions ofinformativecandidates such as the
prediction confidence or the information gain[6]. In this paper, we define
the informativeness of a candidate by its prediction confidence owing to
its simplicity. There are also several definitions of the prediction confi-
dence itself. We follow [11, 16, 17] to define the prediction confidence
using the marginal probability:

Pθ(yj = y′|x) =
αj(y

′|x) · βj(y
′|x)

Zθ(x,Y)

α andβ are the prefix and the suffix probabilities. When the marginal
probability of a token is lower than the preset threshold, weregard the
token asinformativeand ask an annotator to label the token.

After a token is labeled, the marginal probability of its neighboring
tokens will change and may exceeds the threshold. Thus, these tokens
will require no labeling effort. The idea is called correction propagation
in [2], and probability re-estimation in [16, 17]. We also employ this idea
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following [16] by labeling only one token per sequence per iteration, and
provide at mostq sequences to an annotator in each iteration.

From the objective function in (4), we cannot benefit from theentirely
unlabeled sequences. On the contrary, adding unlabeled sequences will
slow the optimization process. Therefore, we will train thetagger in a
pass using only the fully labeled, and partially labeled sequences.

4.2 Stopping criterion

The stopping criterion is also an important key of active learning to re-
duce the annotation cost by stopping the learning when it converges.
Since the labeling is done in token unit, the learning can simply stop
after there is no informative token left in the corpus. However, Wanvarie
et al. showed in [17] that adding a few new informative tokensdoes not
help improving theF1 but just wastes the training time.

We employ the stopping criterion in [16], which is describedas fol-
lows. Firstly, we predict the output of all training sequences, both labeled,
partially labeled, and unlabeled using the model in each iteration. Note
that the output of a labeled token is exact, and always correct. Then, we
measure the similarity between the prediction of the modelsfrom two
consecutive iterations using Kappa statistic. The learning can be stopped
if there are few differences between the prediction. We found that the
usualκ = 0.99 is not sufficient to achieve high accuracy.κ is empirically
tuned in the experiments. When the Kappa statistic exceeds the threshold,
κ = 0.9999, the learning will stop.

4.3 Split Labeling

The original corpus contains various types of entity tokens. We split the
labeling task into a set of single-entity labeling tasks. The labeling in
each subtask is also partial labeling. The partially labeled corpora from
all subtasks are merged to build the final corpus, which is still partially
labeled. The final tagger is trained on the all-entity corpususing CRFs
described in section 3.

We assume that there is no ambiguity from human labeling. There-
fore, a token which is labeled as an entity type in a subtask will be labeled
as a non-entity type in the other subtasks. In contrast, a token labeled as
a non-entity type in a subtask may be a real non-entity, or an entity of the
other types. A token is regarded as a non-entity token if and only if it is
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labeled as a non-entity type in all subtasks. Otherwise, thetoken is left
unlabeled in the merged corpus.

However, a few non-entity tokens are labeled in all subtasks. There-
fore, the merged corpus will contain mostly entity tokens, lacking of non-
entity tokens, and is not appropriate for the training. We propose to label
all of the unlabeled tokens by the model prediction of all subtasks in order
to retrieve the non-entity tokens. However, there may be conflicts among
the model predictions. In such cases, we leave the tokens unlabeled.

5 EXPERIMENTS AND DISCUSSION

5.1 Experimental Settings

Table 1: Data statistics

Data set #Sequences #Tokens #Entity types #Entity tokens
CoNLL2000
training 8936 211727 11 183825
test 2012 47377 10 41197
CoNLL2003
training 14987 204567 4 34043
test 3684 46666 4 8112

We evaluated the proposed method on CoNLL data sets; the chunking
task from [9] and the named entity recognition task from [10]. A sentence
is represented as a sequence, while a word is represented as atoken. The
output label for chunking is in IOB2 format [5], while the output label for
named entity recognition is in IOB format [8]. Example of each labeling
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format is shown in Figure 2. The statistics of each data set issummarized
in Table 1. We used the same features described in [16, 17], which are
summarized as follows.

The variableswi andlwi are the word and its lowercase ati distance
from the current word in a sentence.pi is the part-of-speech (POS) ofwi,
which is provided in the data set.ci is a chunk type which is provided in
CoNLL2003 data set, e.g. NP chunk.wtpi is a set of orthographic fea-
tures of a word such as containing punctuations.pw[c]i andsw[c]i are
c-character prefix and suffix of wordwi, e.g. 3-character prefix of the
word Americanis Ame. yi is an output label ofwi. Each feature tem-
plate is shown in a bracket. All templates are augmented withyi. The
subscript and superscript indicate the running index of theword position.
For example,[wi]

i=1
i=−1 refers to three templates,wi−1, wi, andwi+1.

– CoNLL2000:
• [wi]

i=2
i=−2, [wi, wi+1]

i=0
i=−1, [pi]

i=2
i=−2, [pi, pi+1]

i=1
i=−2,

[pi, pi+1, pi+2]
i=0
i=−2, [yi−1]

– CoNLL2003:
• [wi]

i=1
i=−1, [wi−4, wi−3, wi−2, wi−1], [wi+1, wi+2, wi+3, wi+4]

• [pi]
i=2
i=−2, [pi, pi+1]

i=1
i=−2, [pi−1, pi, pi+1], [lwi]

i=2
i=−2,

[lwi, lwi+1]
i+1
i=−2, [wtpi]

i=1
i=−1

• [ci]
i=2
i=−2, [ci, ci+1]

i=1
i=−2, [ci−1, ci, ci+1]

• [pw2i]
i=1
i=−1, [pw3i]

i=1
i=−1, [sw2i]

i=1
i=−1, [sw3i]

i=1
i=−1, [yi−1]

There are two evaluation criteria; the accuracy which is measured by
F1 using CoNLL evaluation [9], and the annotation cost. The annotation
cost is also evaluated in two aspects; the number of manuallylabeled
tokens, and the computational time in seconds.1 We did not measure the
actual annotation time by human annotators but only simulated the human
annotation using the gold standard corpus.

The initial training set contains the 47 longest sequences from the
training corpus. All tokens in the initial set are manually labeled. The
system will provide at most new 500 informative tokens per iteration to
an annotator. Although large query size requires more labeled tokens and
more annotation time, a few new tokens cannot contribute much to the
accuracy improvement but just wastes the computational time. Our ob-
jective is to achieve the comparableF1 to the supervised learning, while

1 We conducted all experiments on a Xeon 3.0GHz machine. Our CRFs imple-
mentation is in C. The optimization of CRFs is parallelized gradient computa-
tion of L-BFGS using 4 cpus.
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requiring less number of labeled tokens with reasonable training time.
Therefore, we should also balance the actual labeling time and the tagger
training time. If the tagger training time is approximately10-15 minutes,
the suitable labeling time might be 1-2 hours. If the actual annotation time
per token is few seconds [7, 12], the actual labeling time of 500 tokens
will be approximately an hour and a half.

5.2 Baseline Systems

The baselines are all-entity labeling approaches. The firstbaseline is a su-
pervised active learning system (SupAL). In each iteration, an annotator
will label all tokens from a set of 500 sequences with the lowest sequence
probabilities. In the following experiments, we give a biasto SupALre-
sult by reporting the annotation cost when itsF1 reaches the supervised
F1 level. Note that in the real labeling situation, we do not know the real
achievement ofF1 in advance. The other two baselines are partial annota-
tion systems using all-entity training (All), with the confidence threshold
at 0.90, and at 0.99.

5.3 Result and Discussion

The CPU time per iteration, which is the time an annotator hasto wait
before start labeling the next iteration, is shown in Figure(3a) and Figure
(4a). The CPU time of all settings continued increasing whennew labeled
tokens were added to the training set. The CPU time in an iteration con-
sists of the time for tagger training, token selection, and evaluating the
stopping criterion. Most of the CPU time devotes to the tagger training.

In late iterations ofSupALandAll, an annotator had to wait for more
than 10 minutes in CoNLL2000 labeling, and more than 40 minutes in
CoNLL2003 labeling. In contrast, the proposedSplit approach reduced
a half of the waiting time in both tasks. There were a few earlyitera-
tions which require more than an hour in the training of CoNLL2003
experiments, when using the partially labeled training sequences. Note
that most of the iterations require less than 40 minutes in the training.
We also found similar phenomena in the split labeling but with much
smaller amount of training time. We argue that the tagger wasuncertain
and might incorrectly estimate the output of unlabeled tokens, which pro-
duced strange label distribution, resulting in the long training time.

Figure (3b) and Figure (4b) show the cumulative training time of each
system. While the split labeling required more training iterations than the
all-entity labeling, the cumulative training time was muchless.



114 D. WANVARIE, H. TAKAMURA, M. OKUMURA

SupAL

All-0.90

All-0.99

Split-0.90

Split-0.99

 0  100  200  300  400  500  600  700  800  900  1000  1100

Time (sec)

CoNLL2000: Training time in one iteration

(a) Computational time of single iteration

 5
00

0

 6
00

0

 7
00

0

 8
00

0

 9
00

0

 1
00

00

32
00

0

33
00

0

34
00

0

35
00

0

Time (sec)

CoNLL2000: Cumulative Training time

80
66

S
up

A
L

32
71

2
A

ll-
0.

90

73
63

S
pl

it-
0.

90

33
22

1
A

ll-
0.

99

95
59

S
pl

it-
0.

99

(b) Cumulative computational time

 1
00

00

 2
00

00

 3
00

00

 4
00

00

20
00

00

21
00

00

Labeling tokens

CoNLL2000: Number of labeling tokens

20
22

83
S

up
A

L

12
43

5
A

ll-
0.

90

16
24

6
S

pl
it-

0.
90

 (
un

iq
ue

)

24
89

8
S

pl
it-

0.
90

15
01

1
A

ll-
0.

99

24
72

1
S

pl
it-

0.
99

 (
un

iq
ue

)

38
56

3
S

pl
it-

0.
99

(c) Number of labeling tokens

Fig. 3: CoNLL2000



ACCELERATING THE SEQUENCE ANNOTATION 115

SupAL

All-0.90

All-0.99

Split-0.90

Split-0.99

 0  1000  2000  3000  4000 11000 17000

Time (sec)

CoNLL2003: Training time in one iteration

(a) Computational time of single iteration

 40000  45000  50000  55000  60000  65000  70000  75000  80000

Time (sec)

CoNLL2003: Cumulative Training time

42
05

6
S

up
A

L

78
11

8
A

ll-
0.

90

47
24

4
S

pl
it-

0.
90

59
76

2
A

ll-
0.

99
58

81
7

S
pl

it-
0.

99

(b) Cumulative computational time

 1
00

00

 2
00

00

 3
00

00

18
00

00

19
00

00

Labeling tokens

CoNLL2003: Number of labeling tokens

18
10

82
S

up
A

L

14
79

6
A

ll-
0.

90
12

98
8

S
pl

it-
0.

90
 (

un
iq

ue
)

25
14

9
S

pl
it-

0.
90

19
00

6
A

ll-
0.

99

14
74

9
S

pl
it-

0.
99

 (
un

iq
ue

)

31
65

2
S

pl
it-

0.
99

(c) Number of labeling tokens

Fig. 4: CoNLL2003



116 D. WANVARIE, H. TAKAMURA, M. OKUMURA

Figure (3c) and Figure (4c) show the number of labeled tokensin
each data set. We reported the number of unique actions in split label-
ing usingSplit, and the number of uniquely labeled tokens usingSplit
(unique). With split labeling, a token may be labeled in several subtasks,
which results in a number of labeling actions. However, we argue that la-
beling a single entity type is easy since the number of possible outputs in
the candidate list is much less than the number in the all-entity labeling.
Moreover, we can parallelize the labeling task by asking a group of anno-
tators to label all subtasks at the same time, which can further accelerate
the labeling. Another possible labeling setting is to ask the annotator to
find the correct label, but strictly train the model in binaryways.

Table 2:F1 of each system

Systems CoNLL2000 CoNLL2003
SupAL 93.42 81.49
All-0.90 93.41 81.21
All-0.99 93.46 81.33
Split-0.90 92.98 80.46
Split-0.99 93.14 81.11

Finally, we comparedF1 of the proposed method with the baselines
in Table 2. The proposed method achieved the competitiveF1 to the full
labeling settings. The slight reduction ofF1 from the all-entity labeling
may due to the lack of inter-entity information since the framework does
not distinguish the non-entity and non-target-entity fromeach other in the
sampling of the split subtasks. Another reason is the rare entity samples
since the tagger failed to extract sufficient number of such tokens for
training.

6 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a sequence annotation framework which
achieved the competitive accuracy to the supervised systemwhile re-
quired much less labeled tokens. The proposed framework also required
reasonable training time compared to the exhaustive time ofthe all-entity
labeling framework in the previous work since it could efficiently select
the informative tokens in less computational time.



ACCELERATING THE SEQUENCE ANNOTATION 117

We may be able to further reduce the training time using faster CRFs
optimization techniques such as stochastic gradient descent [15], multi-
class training [1]. Other learning algorithms such as perceptron, support
vector machines are also applicable to our framework. However, we need
to re-define the confidence measurement and the optimizationfor par-
tially labeled sequences.
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