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ABSTRACT

Active learning succeeds in reducing the size of labeleguor
while maintaining the high accuracy. However, active léagn
requires several iterations of the tagger training, whichl wot
be practical when the training of an iteration takes long éim
In this paper, we propose to simplify the all-entity labglirask
by splitting the task into a set of single-entity labelindptssks.
After all entity types are labeled, we merge the data setsant
all-entity corpus and train the final tagger using the merged
The proposed method achieved the competifivéo the multi-
entity learning but required much less computational timetce
CoNLL chunking and named entity recognition data sets.

1 INTRODUCTION

Part-of-speech tagging, text chunking, named entity reitiog, and a
number of tasks in natural language processing are foredikas a se-
quence labeling task. Sequence labeling is a kind of claatifin tasks
that predicts an output label for each of the correspondipgtitoken in
the sequence. Sequence labeling is also a structuredrigliatik which
has a special property that an output label does not depdgnrihe
input sequence, but also on the other output labels. Thgsendencies
among output labels slow the training of the classifier, amdteuble-
some for an annotator. Although the labeling of a structunaighut cor-
pus consumes much of human time and effort, a consideralgg Eze
of corpus is still necessary in order to train a precise dias$or a task.
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Active learning is proposed to reduce the labeling cost imerous
tasks including sequence labeling [6, 11]. The intuitiohibd it is that
only the informative samples are sufficient for the trainingorder to
achieve high accuracy. Hence, it can reduce the annotattrfrom the
whole corpus to a set of informative samples in the corpus.ifituition
of active learning can also be applied to a substructurd,leee only
some substructures in the whole structure are informafweanek and
Hahn proposed to manually label only the informative subseges, and
automatically label the uninformative parts in the seqeeild]. Wan-
varie et al. also proposed similar idea to [11], but they stneate the
labels of uninformative parts in the training without exjly labeling
them [16]. In this paper, we adopt the method in [16] sincait achieve
the similarF; to the supervised learning while the method in [11] cannot.

In an active learning framework, the informative set of skram@re
iteratively extracted from the corpus using the taggentdion the pre-
viously labeled data. Therefore, an annotator has to wathf®training
to complete before he/she can start labeling for the nepdtitn. If the
training of the tagger takes long time, the framework willless prac-
tical. One of the factors which causes the long training tisnthe num-
ber of the possible output labels. Although the conditiorablom fields
(CRFs) can take the output labels into account in the trgirtime num-
ber of class labels increases and requires long training. tbohn et al.
proposed a CRFs training technique which simplifies theirsldss clas-
sification to a set of binary classifications [1]. Their meatlsoicceeded in
reducing the training time of CRFs, but still required ayu#dbeled cor-
pus. Here, we adopt their idea to simplify the labeling tagk & set of
entity labeling tasks in order to reduce the training tima. €&ample, the
labeling of a corpus consisting of 4 entity types will be sjplto 4 label-
ing subtasks. Each subtask takes only a single entity tytpeaitcount.

The rest of this paper starts from the description of coaddl ran-
dom fields in Section 3. We summarize the active learning énaank
adopted in this paper and the proposed split labeling ini@edt Sec-
tion 5 contains the comparison between the proposed spétitegy and
the conventional all-entity labeling. Finally, we sumnzarthe contribu-
tion of this paper and discuss the future work in Section 6.

2 RELATED WORK

Obtaining partially labeled data is easy in many situatiéis example,
we can exploit the keyword link in Wikipedia text for word budary in-
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formation without any human labeling effort. In the domadtaptation
task, Tsuboi et al. showed that the training using partiheled cor-
pus, augmented with the fully labeled source domain, aelidvugher
accuracy than the training with the source domain [13]. Galand Mc-
Callum proposed an annotation framework for an informagixtmaction
task in [2], which allows the partial annotation of the do@nn

Tomanek and Hahn proposed a semi-supervised active lgdrame-
work for sequence labeling which requires only informatieens to be
manually labeled [11]. Wanvarie et al. also proposed a ainsystem in
[16, 17], but their system does not require any explicit dation on unin-
formative tokens. However, all of the systems in [11, 16,dMploy the
multi-entity CRFs training which we will show later in the priment
section that the multi-entity CRFs requires long trainiinget

Standard L-BFGS optimizer [4] for CRFs is slow due to the fu#-
dient computation, making the active learning impractitah annota-
tor has a long waiting time between the labeling iteratidnsorder to
accelerate the training of CRFs, several optimization nigpkes were
proposed such as stochastic gradient descent [15]. Apart fhe en-
gineering of the optimization itself, Cohn et el. proposedimplify the
multi-class learning task into a set of binary classificatiubtasks us-
ing error-correcting codes [1]. Their proposed method @atuce both
of the training time and memory, with a slight decrease inabeuracy.
Tsuruoka et al. proposed a sentence selection technigspdose corpus
annotation using active learning [14]. They also succeéuedtracting
almost all of the sequences that contain the target entityinva small
amount of CPU time. However, they did not employ the partiaia
tation. Therefore, they have to label the whole corpus in laeraity
labeling task.

3 CONDITIONAL RANDOM FIELDS (CRFS)

Given that there are an input sequerce: (z1, ..., z7) € X composed
of T tokens and the corresponding output sequenee (y1, ..., yr) €
Y, the conventional CRFs proposed by [3] model the probghility
using the following probability:

e@-‘I’(x,y)

Po(ylx) = Ty (2)
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7 is the normalizing factor:

ZoxY = Z fBeoy) (2
yYeY

which can be computed efficiently using dynamic programmiiing fea-
ture functiond is a mapping fronx andy to a real value. Supposing that
we haveN training sequences ardeatures® = (&4, ..., 4)), we will
learn the model parametets= (64, ..., 04), by maximizing the log like-
lihood of the output sequences given the input sequencéitraining
data:

N
max LL(0) = max Z In(Py(y™[x™)) . (3)

n=1

We employ L-BFGSJ[4] with parallelized gradient computatio opti-
mized in (3).

Since the sequence probability in (1) of the objective fiarcin (3)
requires a sequence to be fully labeled, we re-define thetmgefunc-
tion for partially labeled sequences following [13] to:

N
max LL(f) = max Z In Py (Ypom|x™) . 4

n=1

Y71, is a set of ally consistent with the partially labeled sequesc&he
probability of Yy, is modified from (1) to

Pp(YLlx) = Z Py(ylx) . (5)

YEYL

4 ACTIVE LEARNING FRAMEWORK

The outline of our labeling framework is shown in Fig.1. Tt
learning is mostly similar to the framework in [16] augmehteith the
split labeling. In an iteration of each subtask, the systées to find a set
of informative tokens and ask an annotator to label them. [@heling
will stop when the stopping criterion are satisfied. Aftee #mnotation
of all subtasks has been finished, the partially labeledararfrom all
subtasks are merged into a single multi-entity corpus fertthining of
the final tagger.
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Sst : {(x,yL)} is a set of all training sequences with current annota-
tion at iterationt of subtasks
S.er is a set of informative tokens
x is an input token
for eachs do
curmodel «— train(Ss,1) {Initial training}
repeat
Sset — Quok(curmodel, Ss,) {Selectingg tokens (at mos})
for z € S do
Ss,t+1 < update(Ss i, z, label(x)) {Annotation}
end for
curmodel «— train(Ss,+1) {Training}
until (]Sser| < ¢) and (k(Ss,t, Ss,e41) > stop) {Stopping crite-
rion}
Ss,final — Ss,t+1
end for
Stinal — merge(Ss, rinar) {Merge training sefs
finalmodel — train(Sfinal)

Fig. 1: Active labeling framework

4.1 Query and Labeling Strategy

The success key of active learning in reducing the annatatist relies
on the ability to select a small set of highifformativelabeling candi-
dates. There are various definitiongmfbrmativecandidates such as the
prediction confidence or the information gain[6]. In thippg we define
the informativeness of a candidate by its prediction comfi@deowing to
its simplicity. There are also several definitions of thedcton confi-
dence itself. We follow [11, 16, 17] to define the predictiamnfidence
using the marginal probability:

a; (y'[x) - B;(y'1%)
Zg(x, Y)

Po(y; =y'|x) =

« and g are the prefix and the suffix probabilities. When the marginal
probability of a token is lower than the preset threshold,regard the
token asnformativeand ask an annotator to label the token.

After a token is labeled, the marginal probability of its gi@doring
tokens will change and may exceeds the threshold. Thus tiogens
will require no labeling effort. The idea is called correctipropagation
in [2], and probability re-estimation in [16, 17]. We also gloy this idea
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following [16] by labeling only one token per sequence peration, and
provide at most; sequences to an annotator in each iteration.

From the objective functionin (4), we cannot benefit fromehérely
unlabeled sequences. On the contrary, adding unlabelessegs will
slow the optimization process. Therefore, we will train thgger in a
pass using only the fully labeled, and partially labeledseges.

4.2 Stopping criterion

The stopping criterion is also an important key of activerézg to re-
duce the annotation cost by stopping the learning when ivexges.
Since the labeling is done in token unit, the learning carpbinstop
after there is no informative token left in the corpus. HoareWanvarie
et al. showed in [17] that adding a few new informative tokdoss not
help improving thel; but just wastes the training time.

We employ the stopping criterion in [16], which is descritzedfol-
lows. Firstly, we predict the output of all training sequesdoth labeled,
partially labeled, and unlabeled using the model in eacdfatiten. Note
that the output of a labeled token is exact, and always cbiféen, we
measure the similarity between the prediction of the moftelm two
consecutive iterations using Kappa statistic. The legrnan be stopped
if there are few differences between the prediction. We ébtirat the
usuals = 0.99 is not sufficient to achieve high accuragyis empirically
tuned in the experiments. When the Kappa statistic exchedhteshold,
r = 0.9999, the learning will stop.

4.3 Split Labeling

The original corpus contains various types of entity tokékes split the
labeling task into a set of single-entity labeling taskse Tabeling in
each subtask is also partial labeling. The partially ladbelerpora from
all subtasks are merged to build the final corpus, which ispsirtially
labeled. The final tagger is trained on the all-entity corpsieig CRFs
described in section 3.

We assume that there is no ambiguity from human labelingrérhe
fore, a token which is labeled as an entity type in a subtalkwiabeled
as a non-entity type in the other subtasks. In contrast, enttdbeled as
a non-entity type in a subtask may be a real non-entity, onéityef the
other types. A token is regarded as a non-entity token if arigibit is
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labeled as a non-entity type in all subtasks. Otherwisetdken is left
unlabeled in the merged corpus.

However, a few non-entity tokens are labeled in all subtashksre-
fore, the merged corpus will contain mostly entity tokeasking of non-
entity tokens, and is not appropriate for the training. Wapse to label
all of the unlabeled tokens by the model prediction of alltasks in order
to retrieve the non-entity tokens. However, there may bdlictamong
the model predictions. In such cases, we leave the tokeabeled.

5 EXPERIMENTS AND DISCUSSION

5.1 Experimental Settings

Table 1: Data statistics

Data set #Sequences #Tokens #Entity types #Entity tokens

CoNLL2000

training 8936 211727 11 183825
test 2012 47377 10 41197
CoNLL2003

training 14987 204567 4 34043
test 3684 46666 4 8112

We evaluated the proposed method on CoNLL data sets; theéirtgun
task from [9] and the named entity recognition task from [20$entence
is represented as a sequence, while a word is representddia@aThe
output label for chunking is in IOB2 format [5], while the quit label for
named entity recognition is in IOB format [8]. Example of bdabeling

S CICACEONONTAOATRO,
S ACACIONORCRORS)

X! Porsche s registrations fell to from 643 ’

Fig. 2: Labeling example
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format is shown in Figure 2. The statistics of each data satrismarized
in Table 1. We used the same features described in [16, 11¢thvere
summarized as follows.

The variablesv; andiw; are the word and its lowercase:atistance
from the current word in a sentengs.is the part-of-speech (POS) af,
which is provided in the data set. is a chunk type which is provided in
CoNLL2003 data set, e.g. NP chunkip; is a set of orthographic fea-
tures of a word such as containing punctuatignsic|; and sw|c]; are
c-character prefix and suffix of word;, e.g. 3-character prefix of the
word Americanis Ame y; is an output label ofv;. Each feature tem-
plate is shown in a bracket. All templates are augmented witfThe
subscript and superscript indicate the running index ofitbid position.
For example|w;]i=! | refers to three templates; 1, w;, andw; ;1.

— CoNLL2000:

b [w1]17272' [wlvwﬂrl]zf(il* [ 1]1_32* [p17p1+1]z_£2|
[p17p1+17p1+2]1—0_2’ [yz 1]
— CoNLL2003:
o [wiliZLy, [wima, wimg, Wiz, Wi, [Wit1, Wita, Wiss, Wiya]
® [ 1]1——2’ [pl_7p1+1]z——21 [pz lapzapz+1]y [lwi]éf_g,
[lwu lwerl]zi—z* [wtp1]1—1—1
[C ]z——2’ [Clv Cl+1]z—1—2' [CZ 1, Ci, Cz+1] .
[pw ]z——l' [pw3; ]z——l' [sw2; ]z:—l’ [sw3i]§§1_1, [Yi-1]

There are two evaluation criteria; the accuracy which issuesd by
F} using CoNLL evaluation [9], and the annotation cost. Thecdation
cost is also evaluated in two aspects; the number of manledied
tokens, and the computational time in secohtiée did not measure the
actual annotation time by human annotators but only siradltite human
annotation using the gold standard corpus.

The initial training set contains the 47 longest sequenaoa® the
training corpus. All tokens in the initial set are manuakypéled. The
system will provide at most new 500 informative tokens peraition to
an annotator. Although large query size requires more éahtelkens and
more annotation time, a few new tokens cannot contributehntoiche
accuracy improvement but just wastes the computationa.tiur ob-
jective is to achieve the comparaldlg to the supervised learning, while

1 We conducted all experiments on a Xeon 3.0GHz machine. OsGRple-
mentation is in C. The optimization of CRFs is parallelizeddient computa-
tion of L-BFGS using 4 cpus.
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requiring less number of labeled tokens with reasonablaitig time.
Therefore, we should also balance the actual labeling timletze tagger
training time. If the tagger training time is approximat23-15 minutes,
the suitable labeling time might be 1-2 hours. If the actnal@ation time
per token is few seconds [7,12], the actual labeling timeQff tokens
will be approximately an hour and a half.

5.2 Baseline Systems

The baselines are all-entity labeling approaches. Thes@stline is a su-
pervised active learning syster8ypAL. In each iteration, an annotator
will label all tokens from a set of 500 sequences with the ktveequence
probabilities. In the following experiments, we give a biasSupALre-

sult by reporting the annotation cost when itsreaches the supervised
F level. Note that in the real labeling situation, we do notwribe real
achievement of’; in advance. The other two baselines are partial annota-
tion systems using all-entity training\), with the confidence threshold

at 0.90, and at 0.99.

5.3 Result and Discussion

The CPU time per iteration, which is the time an annotatortbasait
before start labeling the next iteration, is shown in Figi@@) and Figure
(4a). The CPU time of all settings continued increasing wiem labeled
tokens were added to the training set. The CPU time in artiiberaon-
sists of the time for tagger training, token selection, avaleating the
stopping criterion. Most of the CPU time devotes to the taggeéning.

In late iterations oSupALandAll, an annotator had to wait for more
than 10 minutes in CoNLL2000 labeling, and more than 40 neisiith
CoNLL2003 labeling. In contrast, the propossglit approach reduced
a half of the waiting time in both tasks. There were a few eédya-
tions which require more than an hour in the training of Col2003
experiments, when using the partially labeled traininguseges. Note
that most of the iterations require less than 40 minutes éntthining.
We also found similar phenomena in the split labeling butwituch
smaller amount of training time. We argue that the taggeruvertain
and might incorrectly estimate the output of unlabeledmskevhich pro-
duced strange label distribution, resulting in the longnirey time.

Figure (3b) and Figure (4b) show the cumulative trainingetmheach
system. While the split labeling required more trainingatens than the
all-entity labeling, the cumulative training time was mueks.



114 D. WANVARIE, H. TAKAMURA, M. OKUMURA

CoNLL2000: Training time in one iteration
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CoNLL2003: Training time in one iteration
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Figure (3c) and Figure (4c) show the number of labeled tolens
each data set. We reported the number of unique actions itnadpl-
ing usingSplit, and the number of uniquely labeled tokens usspiit
(unique) With split labeling, a token may be labeled in several sskaa
which results in a number of labeling actions. However, vggiarthat la-
beling a single entity type is easy since the number of peseilitputs in
the candidate list is much less than the number in the allydabeling.
Moreover, we can parallelize the labeling task by askingoagiof anno-
tators to label all subtasks at the same time, which candugbcelerate
the labeling. Another possible labeling setting is to askdhnotator to
find the correct label, but strictly train the model in binargys.

Table 2:F; of each system

Systems CoNLL2000 CoNLL2003

SupAL 93.42 81.49
AlI-0.90  93.41 81.21
All-0.99  93.46 81.33
Split-0.90  92.98 80.46
Split-0.99  93.14 81.11

Finally, we compared" of the proposed method with the baselines
in Table 2. The proposed method achieved the compefitjvi@ the full
labeling settings. The slight reduction 6f from the all-entity labeling
may due to the lack of inter-entity information since thenieavork does
not distinguish the non-entity and non-target-entity fremch other in the
sampling of the split subtasks. Another reason is the raiityesamples
since the tagger failed to extract sufficient number of sudtens for
training.

6 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a sequence annotation frataedich
achieved the competitive accuracy to the supervised sysikite re-
quired much less labeled tokens. The proposed framewaorketglired
reasonable training time compared to the exhaustive tintieedll-entity
labeling framework in the previous work since it could effialy select
the informative tokens in less computational time.
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We may be able to further reduce the training time using fasiFs
optimization techniques such as stochastic gradient de§ts], multi-
class training [1]. Other learning algorithms such as pa&roa, support
vector machines are also applicable to our framework. Heweve need
to re-define the confidence measurement and the optimizétiopar-
tially labeled sequences.
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