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ABSTRACT

Statistical Machine Translation (SMT) can be viewed as a gene-
rate-and-select process, where the selection of the best transla-
tion is based on multiple numerical features assessing the quality
of a translation hypothesis. Training a SMT system consists in
finding the right balance between these features, so as to pro-
duce the best possible output, and is usually achieved through
Minimum Error Rate Training (MERT). Despite several improve-
ments, training remains one of the most time consuming step in
the development of SMT systems and is a major bottleneck for
experimentations. Building on recent advances in stochastic opti-
mization and online machine learning, this paper studies a possi-
ble alternative to MERT, based on standard and well-understood
algorithms. This approach is shown to deliver competitive solu-
tions, at a much faster pace than the standard training machinery.

1 INTRODUCTION

A statistical machine translation (SMT) system consists of a ruleset and
a scoring function. The ruleset, represented either in the phrase table of
a phrase-based system or in the rewrite rules of a hierarchical system,
generates a set of translation hypotheses for each source sentence. These
candidates are then ranked according to a scoring function so designed
that the top ranking translation is also the best according to some external
quality measure.

In the vast majority of existing SMT systems, the score of a hypoth-
esis is computed as a linear combination of various numerical features.
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The vector of coefficients, one for each feature, is learned using a training
set made of source sentences and their accompanying translation refer-
ence(s), by maximizing some empirical gain over the training set, where
the gain, for instance the BLEU score, evaluates the quality of the trans-
lation hypotheses obtained for a given weight vector.

Training of a SMT system is made difficult by the form of the in-
ference rule used to compute hypotheses, the typical gains used in MT
evaluation that are neither convex nor differentiable and the size of the
search space that makes direct optimization intractable. Various heuristic
optimization strategies have therefore been put forward, the most suc-
cessful to date being MERT [1]. In this approach, optimal weights are
derived through a complex iterative procedure which repeatedly: i) given
the weights, decodes the training set to compute an approximation of the
search space and ii) given this approximated search space, computes an
optimal value for the weights.

If MERT has proven to be a practical and effective training procedure,
it has been criticized on various grounds, notably for its inability to find
good and stable solutions, especially when the feature vector exceeds a
dozen dimensions. The computational cost of MERT, due to the need to
repeatedly translate the training set, is also viewed as a serious issue:
typical runs of MERT can take hours, sometimes days to complete.

Replacing MERT therefore remains a matter of active research. For
instance, [2] reports experiments with several variants of MERT, aimed
at making its results more stable. Another line of research has been to
improve the approximation of the search space, using lists of randomly
generated hypotheses [3], word lattices or derivation forests [4]. Inspired
by recent advances in structured learning [5], the proposals of [6] and [7]
are more radical and replace the gain with training criteria that are easier
to optimize. Finally, the recent work of [8] recasts training as a learning-
to-rank problem. The main motivation of all these studies was to increase
the number of features used during learning, speed being a less important
goal.

By contrast, the approach advocated in this work primarily aims at re-
ducing the total training time, which is currently a significant bottleneck
for experimentations. Like in [6], an important component of this pro-
posal is the use of a large-margin learning criterion. We depart from ex-
isting large margin approaches to SMT by the use of lattices, from which
promising pseudo-references (oracles) are efficiently extracted, and the
recourse to fast stochastic optimization techniques. The main contribu-
tion of this work is to demonstrate, by putting all these ingredients to-
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gether, that a large scale SMT system can be trained in only a few min-
utes, the number of decoding passes over the training set being reduced
by a factor of almost ten. As discussed below, other advantages of our im-
plementation are its simplicity, especially when compared to [7], and its
theoretical guarantees which derive from convex optimization results. As
a consequence, our approach does not suffer from stability issues, even
for large feature sets.

The rest of the paper is organized as follows. We introduce the large-
margin criterion in Section 2 and show how the resulting optimization
problem can be easily solved using a subgradient method in Section 3.
The optimization procedure is detailed in Section 4. Section 5 presents
several MT experiments that show how fast our method is. Related works
are summarized in Section 6 and we conclude in Section 7.

2 LARGE MARGIN LEARNING FOR SMT

2.1 Notations

The basic resource for training a SMT system is a training set D =
{(si,7i)}1<;< > made of N source sentences s;, each accompanied with
areference translation r;. The set of possible translations for a sentence s;
will be denoted M, = (h; ;), . ;,, - The search space of the decoder is
often approximated by an explicit list of n-best hypotheses or by a lattice,
which encodes compactly a larger number of potential translations.

Abusing notations, we will denote by h; ; both a hypothesis (a se-
quence of words) and its feature representation. Given the search space
‘Hs, and a weight vector w, translating a sentence s; thus amounts to
solving:

h! = f(s;; w) = argmax (h|w) (1)
he,,

where h is the predicted translation and (-|-) is the dot product in RY.
Using these notations, training a SMT system is the task of finding a
weight vector w such that the predicted translations are as good as possi-
ble. Formally, training thus aims to solve the following problem:

w* = argmax G(D; H) 2)

where the gain function G, for instance the BLEU score, evaluates the
quality of the hypotheses H = {h, s; € D} obtained for a given w.
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2.2 Learning Criterion

Regularized empirical risk minimization is a popular learning criterion
that has proven effective in many applications. Applying it to learn the
scoring function of a SMT system amounts to solving:

N
A 2, 1 smt
argmin = ||w||* + M (f(si5w),14) 3
i S+ 3 (Sl

where £5™(h, r) is any sentence level loss that evaluates the quality of a
hypothesis h with respect to a reference r, (s;,r;) is the i-th example,
f(s;; w) is the prediction of the system. The first term of the objective is
a regularizer that prevents overfitting and the second is the empirical risk
(error on the train set). The hyper-parameter A controls the strength of the
regularization.

Direct optimization of (3) is generally not possible as usual SMT
metrics are piecewise constant and therefore not differentiable. How-
ever, structure learning offers several ways to reformulate this problem
in terms of convex programming by deriving upper bounds of arbitrary
loss functions thanks to techniques such as margin-rescaling [9] or slack-
rescaling [10]. While these upper bounds are not consistent, they have
achieved optimal prediction accuracy in several tasks. In the following,
we will describe the margin-rescaling technique as it can be implemented
more easily than slack-rescaling. As detailed in Section 6, the resulting
learning criterion is similar to the one optimized by MIRA.

2.3 Margin Rescaling

Consider the following generalization of the Hinge loss for the ¢-th ex-
ample [9]:

éz(W) = max (Esmt (h@j, hi,l) — <W|hi71 — hl7J>) (4)

2<g

This loss is convex (as a maximum over a family of linear functions)
but is not differentiable everywhere; it is also obviously an upper-bound
of £5™ (h;, -y 1). It results from the following reformulation of the gen-
eral large-margin classification problem: learning aims at finding a func-
tion that scores the correct output h; ; higher than all other possible out-
puts h; ; by a given margin. The worse the prediction of h; ; compared
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to h; 1, the larger the margin has to be, which is reflected by scaling the
margin by #™(h; 1, h; ;) as follows:

(ha|w) + & > (hyjlw) + £ (h; j,h 1) Vi >2

where &; is a slack variable. There are as many constraints as there are
possible translations of the source. It is however possible to combine all
these linear constraints in a single non-linear constraint:

(i 1[w) + & > max ((hijlw) + ™ (hy ;. ]y 1))

Moving the constraints of all examples to the objective of the large mar-
gin problem as described in [10] is a simple way to create a convex ob-
jective in w and recover the loss introduced in Equation (4). It must be
stressed that, while margin-rescaling (as well as slack-rescaling) offers a
generic way to derive a convex upper bound of an arbitrary loss function
£, the quality of this bound (how close it is to the “original” loss function)
highly depends on the task and the loss function considered.

3  OPTIMIZATION PROCEDURE

Using the convex upper bound of the evaluation criterion £°™ derived in
the previous section, large-margin learning for SMT amounts to optimiz-
ing:

m1n7\|w||2 Ze ©)

where ¢;(w) is defined in Equation (4).

Several methods have been proposed to solve this optimization prob-
lem [9, 10]. Following [11] we propose to solve it using a straight-forward
subgradient descent method which can be easily implemented. Subgra-
dient is a generalization of gradient to convex functions that are non-
differentiable [12] and can be used in the same way as a gradient to opti-
mize a function.

3.1 Subgradient Optimization

One subgradient of the objective (5) is given by:

1 n
=Aw+-> h; - —h, 6
g w nE J 1 ©)

=1
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where:

hi,j* = arg r_nax <h7;7j |W> + gsmt (hi,jv hi,l) (7)

J

The expression of g results from the following properties of a subgradi-
ent: i) a subgradient is linear; ii) if f is differentiable, its only subgra-
dient is the gradient vector itself; iii) a subgradient of max, f(z,y) is
Vo f(z,y*) for any y* € argmax, f(z,y) if f is differentiable with
respect to x.

Computing the subgradient related to the ¢-th example requires solv-
ing the so-called loss-augmented problem described by Equation (7) and
to find the best (oracle) hypothesis h; ; according the evaluation met-
ric ™, These two problems are well-defined and, as described in Sec-
tion 4.2, they can be solved efficiently. As a consequence, implementing
this training strategy does not depend on any heuristic design decision,
contrary to most existing large margin approaches to SMT.

Subgradient descent can be applied either in a batch setting in which
parameter updates are performed on the basis of the (sub)gradient infor-
mation accumulated over the entire training set or in a online or stochastic
setting, in which parameters are updated on the basis of a single exam-
ple chosen randomly at each iteration. In this case, the expression of g is
simplified as the sum in Equation (6) vanishes.

Even though batch subgradient descent is known to be a slow op-
timization technique, using it in an online setting leads to fast conver-
gence [13]. That is why, we only considered the online method. How-
ever, for stochastic descent, usual methods to find the optimal value of
the learning rate, like line search, can not be applied and the learning
rate sequence has to be chosen in advance. The optimization procedure is
summarized in Algorithm 1.

3.2 Averaged Stochastic Descent

While online algorithms can converge to the neighborhood of the opti-
mum very quickly, there are no guarantees that the objective function
decreases after each update. Indeed updates are based only on a (noisy)
estimate of the true gradient evaluated from a single example and might
sometimes point to a wrong direction. This problem is of more impor-
tance in subgradient descent as a subgradient is not always a descent di-
rection. That is why, in the learning curves representing the evolution of
the objective function with respect to the number of iterations, the value
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Algorithm 1: Optimization procedure

input : a number of iterations 7" and a sequence of learning rate 7
w= NullVector()
fort € [1,7] do

pick an example (s, r) randomly

compute h; 1 = argmaxy,c,, £™(h,r)

compute h; ;- according to Equation (7)

update = X - w + h; j» —hy )

W =W - ¢ X update

end

of the objective function is often observed to wobble around the optimum
[14].

One practical way to reduce the fluctuations of the objective function
is to average the weights over time. Several recent works [15, 16] have
shown that averaged stochastic gradient descent leads to very fast conver-
gence when the learning rate is set according to their guidelines: in some
of their experiments, the optimum is reached after only a single pass over
the train set even for large-scale problems.

4 IMPLEMENTING SUBGRADIENT DESCENT

Implementing the optimization procedure described in the previous sec-
tion requires us to define a suitable loss function £*™ and to efficiently
solve both the loss-augmented and the oracle decoding problems. These
choices are described below.

4.1 Loss Function

Large-margin learning for SMT relies on a loss function ™ to evalu-
ate the quality of a hypothesis with respect to a given reference at the
sentence-level. Most of the metrics usually used for MT evaluation, such
as BLEU or METEOR are computed at the corpus level. Moreover, con-
trary to these metrics, learning theory assumes that the smaller the loss
is, the better the solution, the loss being 0 when the correct answer is
predicted.

Several sentence-level approximation of the wide-spread BLEU met-
ric have already been proposed [7], but we used a simpler approximation
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that enforces the properties of a loss. Our approximation is based on a
linear combination of the i-gram precision:

score(h,r) = Z Zi-ci(h,r) = Zp - chon(h, 1) ®)
i=1

where ¢;(h, r) is the number of common i-gram in the hypothesis h and
in the reference r, c,o, is the number of words of the hypothesis that do
not appear in the reference and the = are positive constants chosen to
maximize the correlation between the BLEU score and its approxima-
tion.

The score defined by Equation (8) is a compromise between the num-
ber of words that the hypothesis and the reference have in common (ac-
counting for the recall) and the number of words of the hypothesis that
do not appear in the reference (accounting for the precision). It can be
transformed into a loss: ™ (h, r) = a—score(h, r) where « is the score
of the best hypothesis. Computing « is needed since our approximation
of BLEU is not normalized.

4.2 Solving the Oracle Decoding and Loss-Augmented Problems

For a given source sentence, the search space of a SMT system has the
form of a directed acyclic graph (a lattice) in which each edge is associ-
ated with a phrase and a vector of features describing the cost of emitting
this phrase. For simplicity, we assume that there is a single initial state
and a single final state. Each path from the initial to the final state in this
lattice corresponds to a translation hypothesis ; its feature representation
can be worked out by summing the features on the edges and its “output
string” by concatenating the phrases of the edges.

Many SMT problems, including the one appearing in Algorithm 1,
can be formulated as shortest path problems in a lattice. For instance,
the decoding task, described in Equation (1), is the shortest path problem
in which the cost of an edge is defined by the opposite of the dot prod-
uct between the feature representation of edge and the weight vector w.
As lattices are acyclic graphs, shortest path problems can be efficiently
solved in a time linear in the number of edges and vertices.

Oracle decoding, the task of finding the best hypothesis according to
the loss function, can also be performed using a shortest path algorithm,
as long as the evaluation metric factorizes in terms of individual edges
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[17]. Considering the BLEU-1 approximation introduced in Section 4.1,
finding h; ; amounts to solving:

n
arg min — E Or,
i=1

well

where 7 is a path made of m edges (m;);~, in the lattice, IT is the set
of all paths and 0., is the cost of the edge ;. It is defined by 0,, =
=1 X c1(w,r) — Eg X Cpon(w,r) where w is the phrase generated by
the edge ;. This approach can be generalized to find oracle hypotheses
for higher-order approximation of BLEU score by first transforming the
lattice so that each edge generates a n-gram instead of a word. However,
for simplicity, we have only considered BLEU-1 approximation in our
experiments.

Finally, solving the “loss-augmented” problem of Equation (7) can be
done by defining the cost of an edge as the sum of the cost considered by
the decoder and the cost considered by the oracle decoder.

In practice, to keep our implementation simple, we chose to rely on an
external decoder to produce the lattices: before optimization, the whole
training set is decoded using the same initialization as MERT and all the
lattices are saved. Preliminary experiments show that this initialization
has limited impact as long as the initial values of the weights are not un-
balanced (i.e. no weight is set to 0 or a to a large value). Optimization is
then performed, as described in Algorithm 1. As for MERT, the lattices
can be regenerated occasionally, to make sure that they still represent
an accurate approximation of the search space. However, experiments
summarized in the next section show that it is sufficient for lattices to be
regenerated only once.

An advantage of this implementation is that it can be used with any
SMT system. Another way to proceed would be to decode and generate
the lattice for sample s; on an as-needed basis, i.e. upon updating the
parameter value based on this particular sentence. While this solution
might hasten convergence, it would require a tighter integration with the
decoder and also more engineering work to avoid launching the decoder
for each example.

5 EXPERIMENTS

We now describe the experiments made to validate our approach. Recall
that our main motivation is to provide a much faster in-place replace-
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ment of MERT: we are mainly interested in learning time and have only
considered small and standard feature sets.

5.1 Experimental Setup

Two data sets were considered: the TED-talk English to French data set
provided by the IWSLT’11 evaluation campaign and the French to En-
glish Europarl data set provided by the WMT’ 11 campaign. In all our
experiments, we used the Moses decoder.

The TED-talk data set is a small data set made of a monolingual cor-
pus (111,431 sentences) used to train the language model and a bilingual
corpus (107, 268 sentences) used to extract the phrase table. The Europarl
system is trained using the parallel EPPS and News Commentary cor-
pora (1,940, 639 sentences). The target side of these two corpora were
used to estimate a 4-gram language model with KN-smoothing.

For the TED-talk task, we used dev—-2010 dataset for training and
test—-2010 for evaluation; the Europarl system was tuned on the dataset
test-2009 and evaluated on test-2010. Training for TED-talk task
took 11 decodings of the training set (a wall time of almost 4 hours') of
the training set and achieved a BLEU score of 26.12 on the training set an
of 23.28 on the test set; for Europarl, training took 10 decodings (more
than 6 hours) and achieved a BLEU score of 21.47 on the training set and
of 21.10 on the test set.

All reported BLEU scores were computed using the multi-bleu
tool provided by Moses.As explained above, lattices are regenerated only
once, after 300 iterations. Results fall down by about 2 BLEU points
when the lattice are not regenerated, but regenerating the lattices more
often did not yield any improvement.

5.2 Learning Speed

We first analyze the performance of the optimization procedure intro-
duced in Section 3 by studying the evolution of the structured loss during
optimization. Recall that the structured loss is a convex upper bound of
(an approximation of) the BLEU score which defines the objective func-
tion optimized during training.

! All experiments are run on a single core of a server with 64G of RAM and
2 Xeon CPUs with 4 cores at 2.3 GHz. All reported times are wall time and
include data loading.
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Fig. 1. Convergence of the (sub)gradient descent: evolution of the loss on TED-
talk training set

Figure 1 represents the structured loss on the train set of the TED-
talk task for two optimization strategies: plain stochastic gradient descent
(SGD) and averaged stochastic gradient descent (ASGD). In both case,
the learning rate has been set, according to the recommendations of [15].
It clearly appears that the neighborhood of the optimum is reached very
quickly: for ASGD, Algorithm 1 converges after having seen only a few
hundred examples. However, after reaching the optimum neighborhood,
the weight vector is still changing and the objective function continues
to decrease, albeit very slowly: the difference between two successive
values after 1,000 iterations is still in the order of 10~3, which is much
larger than the stopping criteria that are usually used. A difference in the
order of 1075 is only reached after 6, 000 iterations. Similar observations
were made on the Europarl data.

To understand why convergence is fast, we have represented in Fig-
ure 2 the cosine similarity between the gradients of two examples of the
training set after the first iteration of Algorithm 1. It appears that most
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Fig. 2. Cosine similarity between the gradient of the examples in the TED-talk
training set (most pairs show high similarity; lighter areas correspond to values
in the middle of the scale)

gradients are very similar. This implies that the update in the online set-
ting (based on a single example) is close to the update in the batch setting
(after all examples have been seen), and that an online update, which re-
quires N times less computation than a classical gradient update, will
give (almost) the same results.

5.3 Evolution of the BLEU Score

As shown in the previous section, our optimization method is able to find
the optimum of the learning criterion very quickly. However, this criterion
is only an approximation of the BLEU score used to evaluate translation
quality. In this section we study the quality of this approximation.
Figure 3 represents the evolution of the BLEU score on our two cor-
pora. For SGD, the BLEU score on both the training set and the test set
keeps changing during optimization: on the TED-talk training set, after
1,000 iterations, the amplitude of the variations is still of several BLEU
points even though the structured loss is almost stabilized. For ASGD,
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Fig. 3. BLEU scores on TED-talk and Europarl corpora. The dashed horizontal

lines correspond to the score on the test set achieved by MERT and the vertical
lines indicate iterations proportional to train set sizes.
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Table 1. Comparison of MERT and of our approach (using binarized models).

# decodings of training time
method BLEU training set (+ time to generate lattices)
MERT  23.28 11 3h39
TED-talk line  23.98 13 3mn (+ 5mn25)
Euronarl MERT  21.10 10 5h25
UIopArt o hline  21.04 1.3 6mn34 (+ 7mn30)

the regularization of the weight vector that results from its averaging over
time reduces significantly the fluctuations of the BLEU scores. Neverthe-
less, for the two tasks, the trend is the same: at the beginning, perfor-
mance quickly improves during the first few hundred iterations and then
decreases slowly. Also note that i) the lattices have been regenerated only
once during the optimization and that ii) the optimum BLEU value is
reached, depending on the task, after 1,000 or 2, 000 iterations. The cor-
responding total learning time is less than a few minutes with our simple
and non-optimized implementation in Python. Table 1 summarizes the
performances achieved by our approach and traditional MERT training.

In both cases, the observed variations of BLEU indicate that the up-
per bound used during optimization is not tight, which results from one
of the following reasons: i) the way the optimization problem is convex-
ified, ii) our sentence-level approximation of BLEU or iii) the additional
approximations made when solving the loss-augmented or oracle decod-
ing problems. To find out the source of the observed discrepancy, we have
represented, in Figure 4, the evolution of both the BLEU-4 score used to
evaluate translation quality and the average over the whole training set
of the sentence-level BLEU-1 used during optimization. While these two
scores are initially correlated (both of them are steadily increasing), this
correlation seems to weaken with the number of iterations and, at the end,
the BLEU-4 score is decreasing even if the BLEU-1 approximation con-
tinues to grow. Further experiments are still required to understand if this
problem is the only responsible for the evolution of the BLEU-4 score
during optimization.

5.4 Stopping Criterion

As shown in Figure 3, upon converging, our learning method is slightly
outperformed by traditional MERT training. However, some of the weight
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Fig. 4. BLEU-4 and BLEU-1 approximation during optimization on TED-talk for
ASGD.

vectors found during optimization achieved better performance. Our ap-
proach is, therefore, only useful if we can find a criteria for stopping the
optimization when a “good” weight vector is found. Fortunately, in all
our experiments, we found that the BLEU scores on the training and on
the test sets are highly correlated: their Pearson correlation coefficient is
more than 0.92. The point that achieves an optimal BLEU score on the
test set can therefore be easily identified by computing BLEU scores on
the training set, which is done efficiently using a shortest path algorithm
in the lattices without decoding the data again.

For the TED-talk task, the best point found by this method and the
ASGD strategy slightly outperforms MERT by 0.7 points, while on the
Europarl task MERT is better by 0.06 points. Using the SGD strategy
leads to larger improvements at the expense of a higher variability in the
score on the test set.
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6 RELATED WORK

This paper is inspired by recent works on using structure learning tech-
niques for SMT. This trend was pioneered by [18], who proposed to use a
structured perceptron to train a PBSMT system. Like [6, 7], our approach
augments the simple perceptron loss with a margin term. We however
depart from these implementations in several ways. A first important dif-
ference is the use of an alternative optimization strategy, which, contrarily
to the existing implementations of MIRA for MT, is really online and up-
dates parameters after processing each instance. This is motivated by the
observations of Section 5.2 and significantly speeds up learning. Another
important difference is the use of lattices..

There are a number of additional small differences from MIRA, such
as the approximation of the BLEU score, and the specific choice of the
pseudo-reference: while the policy advocated in [7] selects a hypothesis
that has both a high BLEU score and a good model score, our approach
simply looks at BLEU scores. Incidentally, this difference makes our
loss function slightly different from the one used in [7], as our pseudo-
references are less dependent on the current value of the parameters. Al-
together, it seems fair to state that our approach is conceptually much
simpler to understand, to implement and to reproduce than approaches
inspired by MIRA, which rely on the setting of many parameters such as
the size of the n-best list, the slack parameter, the selection strategy for
oracle hypotheses and their number, etc.

7 CONCLUSION

Building on recent advances in stochastic optimization and online ma-
chine learning, we have presented in this work an optimization method
for the training of SMT systems. Our method achieved results that are
at least as good as traditional MERT training, while being much faster.
Another advantage of this technique is that it is based on the optimization
of a convex objective function, implying that the resulting optimum will
be less subject to variations, even in the presence of large feature sets.

While the performance obtained with a simple and straightforward
implementation are already good, several questions remain open. We are,
in particular, interested in understanding the impact of lattice sizes and
of considering more features. Our future work will include a truly online
implementation of this learning method within an open source decoder as
well as a head to head comparison with MIRA.
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