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Resumen

L a desambiguacion de sentidos es una tarea util para el procesamiento del Lenguaje
Natural. Exsten muchos métodos para la desambiguaciéon de sentidos, pero a la fecha
no se ha encontrado una solucion perfecta. En este trabajo proponemos tres mejoras al
proceso de desambiguacion que son aplicados a varios métodos del estado del arte con
buenos resudidos.

Las mejoras consisten en lo siguiente:

1. Filtrar algunas palabras del contexto.Las palabras que se toman del contexto deben
ser: Unicas, diferentes a la palabra objetivo y Utiles para la desambiguacion

2. Usar caocurrencias extraidas automaticamente Agregamosa las definiciones de las
acepciones las palabras que coocurren en los textos con las palabras de las definiciones
originales.

3. Identificar las palabras que se resolveran exitosamentéas palabras que tienen un
sentido por discurso se resuelverit@asamente por muchos métodos. Estas palabras
representan la mitad del total a resolver.

Usted encontrara en cada capitulo de esta tesis una explicacion detallada sobre el por
qué y el cémo del funcionamiento de nuestras mejoras. También encontrandexjosr

que confirman que estas mejoras son combinables entre si y que llevan a algunos

algoritmos a alcanzar una precision cercana a la de las personas.
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Abstract

he Simplified Lesk Algorithm is frequently employed for word sense disambiguation.
Tlt disambiguates through the intersection of a set of dictionary definitions (senses)
and a set of words extracted of the current context (window). However, the Simplified Lesk
Algorithm has a low performance. Thirk showssome improvements for increag this
(and some other knowledgea s ed met hodsdé6 perf ormance) .

We propose the following changes:

1. Changing the window selection procedureWindow selection must: (1) searchthe
whole document instead of the words ambtime target word, (2) excludkiplcates and
the target word fnm the window, and, (3) includeords that lead to an overlap with
any sense of the target word.

2. Extending sense definitions with cepccurring words. We add to the sense
definitions words that coccur with those words that earin the original sense
definitions.

3. Dsiambiguating only domain words.We exclude nowlomain (mostly functional or
too general) words from consideration, boosting precision at the expense of somewhat
lower reall.

Our work presents experiments for each pegal modification working separately,
and, finally, a demonstration that confirms that all these modifications can work together
for further performance improvement. Then, we test the integration of our modifications
with some othedictionarybased methad All experiments were carried out on Senséval
and Senseved EnglishAll -Words test sets.
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Glossary

Bag of words

Coverage

Dictionary

Gold standard

Lemma
Lemmatizer

POS tag

Semantic data

Set of lemmas representing a text.

Measure indicating the amount of words a system disambiguates (100%
coverage means that all words were disambiguated). However, coverage

does not measure the quality of the answers.
Database linking a lemma to definitions, samples and semantic data.

Set of sample sentences including a list with the correct senses for some

words.
A word as written in the dictionary.
A program that transform wordisto lemmas.

Tag that tells you the word class. E.G N for Noun, V for Verb and R for
Adverb

Data defining relations of a given word. Common semantic data includes

synonyms, antonyms and related terms.

Sense An entryin the dictionaryfor a given wordEach sense has a definitjon
examplesand semantic data.
Word sense disambiguation (WSD) Task consisting of choosing the meaning of a

given word.
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Chapter 1. Introduction

Words can have various meanings depending on their contexts asfiil am an
excellentbassp| ayer 0 lassgoin d&wWay from my basshdsi ng r od
two different meanings. Such meanings are usually located as different senses of the words
in dictionaries. Word sense disambiguatigvSD) is the task of abosing automatically an
appropriate sense for a given word (called target word) in a text (document) out of a set of

senses listed in a dictionary (called sense inventory).

This chapteanswers the followinguestions:
1 What is WSD about?
1 What is the scapof our work?
1 What were our contributions?
1 Why are they important?
1

How did we reach these contributions?

-13-



Introduction
1.1 Word SenseDisambiguation (WSD)

WSD is a complex task that is not useful by itself. WSD is important bedassa

key task toother natural langage processing tools such as:

! Machine Translation.Tr ansl ate fApensiono from English
Asmal | hotel 0 or a Aretirement benefito
1 Information retrieval. Fi nd al | the web pages about ACA

Aani mal 07?

1 Location finding. Find the city of Valencia: Venezuela or Spain?

Question AnsweringWh at i s Paul Simonds position on

politician or the singer?

1 Knowledge Acquisition. The ball is mad®f leather.A spherical object oa dancing
event?
1 Corpus tagging.

Those toolsare often used for assisting people in fully automatic or -seimervised
ways. The quality and coverage of WSD depends on the goals of the end sistem.
example, if you want to create a system that assist you in transtatiiogument for a
language that you already knotwhe user would be happy with system that perfectly
translatea few whole sentences and leaves to ythe onesthat it does not properly
translate. In the other hand, suppose that you do not know thelartigeiage at all. It is
preferable to have a systegiving you completetranslation with asomehowacceptable
quality.

Discussion about quality is important because one of our findings transforms some

WSD systems into high qualitpediumcoverage systems.

1.2 Scope

Word sense disambiguation methods usually work by extracting information from
differentknowledgeresourcesnd scoring the senses with these resources through different

14



Introduction

means. WSD methods can differtire way they score a sensiseway they seledts target
words, and the way they load the knowledgsources. Generally speakirigjou improve
one of these areas you usually improve several WSD methods sharing the original
procedureFor example, if you have a definition such as:
Drink: A a s servigg of a beveragé;asked for a hot drinklikes a drink before
dinher o
This definition is rather short for WSD algorithms. We believe it is also a little short
for people learning English. So, if we extend that definition somehow to obtain advetter
such as
Dr i n RBrinks, for beverages, are liquids specifically prepared for human
consumption. In addition to basic needs, beverages form part of the culture of
human society. Despite the fact that most beverages, including juice, soft
drinks, and cdronated drinks, have some form of water in them; water itself
is often not classified as a beverage, and the word beverage has been
recurrently defined as not referring to watkr.fia singl e ser vi ng
beveragel asked for a hot drinkikes adrinkbé or e di nner o
This new definition is a lot clearer and more useful for WSD algorithms.
This research describéisreenovel improvements that are usable with several WSD
methods. These improvements addome changes to the target word selection and

knowledgeresources loading procedures.

1.3 Main Contributions

We havecontributedto WSD and additionally some contributions are usable into
global numeric optimization. Thezientificcontributions can be summarized as follows:
1 A novel window selection method

1 A procedure for extending definitions with-czcurring words.

I from WordNet
2 from Wikipedia

-15



Introduction

1 A procedure for identifying domain wordas we later confirm they are easier for
WSD).

We also confirmred that our improvements are fully compatible with several-diag
word methods including macterlearning. Testing confirms that they bring a considerable
performance boost.

We noted that Lesk algorithm take too much time and resources to complete its task.
Therefore we developed a novel optimization technique that obtains the same results
requiring half of the timeWe also tested this novel optimization technique in numerical
optimization with good results.

We have donghe following software products:

71 Java WordNet connector
1 Java API for WSD
1 Gannya library for ®me NLP task
They are all avdable in our websitéttp://fviveros.gelbukh.conas free software for

using as specified in the GNU license

1.4 Methodology

Ourresearch was accomplishedgmsrformingthe following tasks
1. Implementation of pe-processingsoftware. This software bkathe following
capabilities
a. Loading dictionary data from WordNet.
b. Loading gold standard data in SemCor format.
c. Filtering out non opewlass words.
2. Implementation of benchmarking softwar€his software has the following
capabilities:
a. Measuring performance through precision, recall, coverage and F
measure.

b. Generating data sheets containing detailed data for behavior analysis.

-16-
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Introduction

Comparing with other dictionafigased methods. This SW contains

implementations of several dictiaiyabased methods.

3. Implementation.

a.

b
C.
d

Implementing the proposed window selection.

. Implementing the proposed word filter.

Implementing the proposed method for extendingdfagords.

. Testing all the aforementioned ideas within the Lesk algorithm.

i. Implementing lhe proposed optimization heuristic.

4. Analysis of theexperimentatesults.

1.5 Organization of the document

This thesis is organized as following.

Chapter 2 contains basic knowledge for understanding WSD and the current methods that

are being used.

Chapter 3 contains the description of methods and practices used for constructing our
implementation. Also, it contains the description of the WSD methods used

being improved by our proposed methods.

Chapters 4 td contain the description and testing of the thregppsed modifications.

However, due to the somehow independent nature of each modification, each

chapter contains each own state ofahte description and analyssitsectiors.

In this way, the reader does not need to scroll through the document for

undestandingsomespecific contribution.

Chapter 4 containsthe description of our window selection method that consists on

looking for words producing overlaps and avoiding the target word and

duplicates.

Chapter 5 shows the description of our filter foelecting easy words. You will confirm

that words having one sense per discourse are easier for WSD methods. Hence,

our filter leads to solve half of the words with good quality (i.e. a precision
above 70%).

-17-



Introduction

Chapter 6 depicts the use of enccurring worddor WSD. You will discover that using
these words for extending the original definitions leads to a good precision
boost (around 10%).

Chapter 7 shows an improvement to Lesk algorithm. We developed a new optimization
heuristic that reduces the exhaustivee needed by the Lesk algorithm. This
heuristic is also useful for global optimization purposes.

Chapter 8 concludes this thesis.

Appendix gives some details about our API.

-18



Chapter 2. State of the Art

Word sense disambiguation is an open problem.erasx many approaches that try to

accomplish it. Approaches range from simple heuristics such as choosing the most frequent

sense to machine learning.

This chapter answers the following questions

1

il
il
il
T

Why is WSD an open problem?

How to measure WSD?

What ae supervised WSD methods and how do they work?
What are dictionarpased WSD methods and how do they work?

What is a bacloff strategy and how much influendees it have

-19-



State of the art

2.1 Difficulties of WSD

Researchers have identified the following difficulties for\t8D task:
1 Discreteness of the senses
1 Differences betweedictionaies
1 Amount of sampleandsemantic knowledge available.

The amount of samples and semantic knowledge available can be solved by manually
increasing them. However doing it is usually cpstind undesirable. So, doing these
automatically or using fewer resources is the normal way of proceeding.

Discreteness of the senses deals with the level of distinction that a sense should have
for considering it a different sense of a word. The conceéptood sense is controversial,
causing disagreements among lexicographers around what should be considered a different
word sense and what not. Researchers define two levels of discreteness of the senses:
coarsegrained and fingyrained.

The coarsgyrainedlevel deals with homographs. A homograph is a word ghates
the same written form adnother word with different meaning. Examples of homographs
are: bass (music instrument/fish), pen (writing instrument/enclosure) and pension
(boardinghouse/salary imetirement). Most of the homographs are easily distinguished by
humans. WSD accuracy at the coagsained level in English is currently around 90%.

In the other hand, the firgrained level is difficult even for humans. For example, the
noun paper has sen senses in WordNet 3.1 (Miller 1995), eight senses in Merriam
Webster online and five senses in the Cambridge dictionary. Lexicographers often disagree
in the number of meanings of words (Kilgarriff 1997). In Sens@ydluman annotators
only agreed in85% of word occurrences (Edmonds 2000). WSD accuracy at the fine
grained level in English is currently around 65%.

Letds confirm t h-graindd ldvél with arl exaynpleo Taldleshoves f i n e
the senses for the nopaperextracted from WordNet B. The lexicographers define seven
different senses. However, in our opinion, only the first three senses are necessary. How

many senses do you believe necessary?

-20-



State of the art

Table 1 Senses of the noun paper extracted from WordNet

Sense Definition

paper (a material made of cellulose pulp derived mainly from wood

rags or certain grasses)

composition, paper, report, theme (an essay (especially one written
assignment)) "he got an A on his composition”

newspaper, paper (a dady weekly publication on folded sheets;
3 contains news and articles and advertisements) "he read his newsp
breakfast"

paper (a medium for written communication) "the notion of an office

4
running without paper is absurd"

c paper (a scholarly artie describing the results of observations or staf
hypotheses) "he has written many scientific papers"

5 newspaper, paper, newspaper publisher (a business firm that publig
newspapers) "Murdoch owns many newspapers"

; newspaper, paper (the physichjext that is the product of a newspap,

publisher) "when it began to rain he covered his head with a newsp

As we stated previously, different dictionaries and thesauruses will provide different
divisions of words into senses. WSD accuracy is tyghtdupled to the used dictionary.
Most of the researches choose a particular dictionary disregarding the fact that the selected
dictionary is not perfect. Research results using cagnaeed dictionaries have been much

better than those using faggained ones (Navigli et al. 2007, Pradhan et al. 2007).

Most of the WSD research use WordNet as a reference sense inventory for English.
Other sense inventories used are Roget's Thesaurus (Yarowski 1992) and Wikipedia
(Mihalcea 2007).

-21-



State of the art
2.2 Measuring Performance ofWSD

The most used metrics for evaluating the performance in WSD are (Navigli 2009):
precision P), recall R), coverage €) and Fimeasure K1) (harmonic combination of

precision and recall). The corresponding equations are the following:

L GET ARG ORI EL'QQQQ (1)
V' 5 omad ORI E D QQQQ

WE T 1CEGOL I E L QQQQ 2)
O € oXEA VAN QRO QQ
0 € OCEEN 0 I E 0 QQQQ (3)
0 € OXEN VAN Qo QQ
. qu Y (4)
@ 0 'Y

The most used test sets for English are: Sengey@btton et al. 2001), Sense\al
(Mihalcea and Edmonds 2004), Seme2@07 (Navigli et al. 2007, Pradhan et al. 2007)
and Semeva2010 (Agirre et al. 2010).

All tests were carried out using Senseal(Cotton et al. 200Bnd Senseved
(Mihalcea and Edmonds 20@d3t sets. We used WordNet 3.0 as sense teppsstanford
POS taggerToutanovaand Manning2000 was employed for tagging WordNet glosses.

2.2.1 WordNet

WordNet is an English lexical database freely and publicly available for download
Openclass words are grouped into sets of synonyms called synsets. Synsets represent
different concepts. WordNet is also a semantic network with semantic and |exatane|
between synset&ach synsehave a short definition calleglossand some samples of its

use. Figure Ishows a sample semantic network for the first sense of the noun game.

3http://wordnet.princeton.edu/wordnet/download/
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State of the art

[Acontestwi t h r] [ Youneedfourpeopl]

(omons )

[ activityn: ]

Figure 1 Sample sematic network for the first sense of the noun game

WordNet is the most commonly used lexical resource for the WSD task. Also, it has

connectors available in several programming languages for its use.

2.3 Machine Learning for WSD

Stateof-the-art approaches areommonly classified ito two classes: supervised
(machine learningand dictionarybased. Supervised approaches usually see the WSD task
as a classification problertlassification is the problem @&felecting a category for a new
observation. Classificatioproblem has the following elements:

1. Categories Categories arthe possible classes in which an observation should
be assigned. For example, when classifyimgadls you will have the spam and
goad categaes. Categories are poefined before defining evything else.

2. Features Features are the valuesed for determining is an observation
belongs to a class or another. For example, when classifyingile you can
use the presence of certain words or phrases like you have won for deciding if a
new obseration belongs to a class or not. Features can have any type of value
even categorical values.

3. Training data. The training corpus is a set of examples used for the algorithm

for learning how to classify new instances.

-23



State of the art

In WSD, the tasses are the senses agted from thedictionary; thefeatures are
words in the context; and, the training data is a manually tagged corpus such as SemCor.
Dictionary-based approaches mainly rely on knowledge drawn from sense repository and/or

raw or tagged corpora.

2.3.1 Dictionary-BasedApproaches

Dictionary based approaches are heuristics that use dictionary definitions and/or
different resources for WSD. Common samples of other resources are the following:
Samples
Semantic networks
Thesaurus classification systems

Raw corpus

= =2 4 A -

Tagged corpus
i Web search engine counts

The simplestapproaches only use dictionary definitions making them essentially fast.
Take for example the first sense heuristic. This heuristic works by selecting the first sense
in the dictionary. It has a performanceavound 60% for all words, but in some domains
and dictionaries achieves a performance of around 80%. What can be simpler and fast than
selecting the first sense in the dictionary? Nothing!

All of these approaches use data from the source dictionary dahese approaches
can be tweaked for using other resources improving their performance. They are often seen
as baseline methods or cheap solutions in practical applications.

2.4 Influence of the backoff strategy

A backoff strategy provides an answer ¢ases when the algorithm cannot make a
decision.In practice, WSD systems are complemented by a-bHcktrategy. Usually,
simple heuristics are used as badkstrategies like the following:

i Most Frequent Sens®ES). Selects the most frequent sensa torpus
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State of the art

T First Sense. Chooses the first sense in the list of senses of the sense
repository

1 Random Sense. Selects the answer randomly

Note that in case cfome algorithms likéhe Simplified Lesk Algathm using a back
of f st rimporeag pecaudhéyhave low recdl, as shown in Table.2n thistable
(and further in this thesisP stands for precisioR for recall, F1 for FAmeasure.Althese

values aralwayspresented as percentages.

Table 2 Performance of the Simplfied Lesk Algorithm with and without a back-off strategy.

Tests were made with a window size of 4.

Back-off Senseval2 Senseval3
strategy P R F1 P R F1
None 50.4 7.5 13.1 39.1 13.2 19.7

Most frequent
62.8 62.8 62.8 57.2 57.2 57.2
sense

Table 2showsthat the Simplified Lesk Algorithm has rather low precision and very
low recall working by itself. Low recall values give us a hint for encouraging this research:
there are few overlaps between the words near the target word and the target word's
dictionay definitions (WordNet glosses and samples in our case).

The usage of a baakff algorithm is important for practical applications, but it does
not allowobservingthe real behavior of a WSD algorithm. For this reason, we perform the
comparison of algattims with and without bae&ff strategy, because otherwise it remains
unclear when the decision is made by the algorithm itself and when by theofback

algorithm.
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Chapter 3. Framework

There are many methods for word sense disambiguation. However, digtiassd
methods are easier to understand and have a much simpler implementation. They can be
tweaked for using other resources such as corpusaangu will find in furthersections,

they can obtain a performance that rivals the performance of maehiminly approaches.

In this chapter you will find
1 A description of a WSD system.

1 A description of some selected WSD algorithms
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3.1 Components of a Bagpf-Words WSD System

The bagof-words BoW) model isfrequentlyused in natural language processitig
defines a text as an unordered set of woFds.theBoW mode] grammar and word order
are irrelevant. Forexample he t ext Al sasnd pc oawlidn gf arhne tbhae f c
of words & @ & RED &) & & X ."This thesisis focusedjust in BoW model
approaches.

BoW model approaches usually involve two proceskssmatization and part-of-
speechtagging Lemmati zation is fAthe process of grc
forms of a word so they can be analyzed as a singtedtd herefore a lemmatizer is an
algorithmic tool that returns the lemma (dictionary form) of a target word-oRageech
tagging is the process of adding the part of speech label to words. A part of speech or word
class is a linguistic category of v commonly defined by its syntactic behavior. There
exist two types of word classes: open and closed. Open word classes acquire new members
frequently with the past of the tim&here are four open classes English language
nouns, verbsadjectivesand adverbs. Closed word classes do not acquire new members.

Most of the BoW modekystems are based on the process depint&igure 2 The
first stage consists in ppgocessinghe target text. It conssin transforming a raw text
Il i ke Al a mhe p lbaayisng wi t h my f sat et ds O i nt

'O K M axd D o dii Mo AAQi @Q¢ . This set contains
lemmatizedwords with parof-speech tagdPOS tags)

Loadng the dictionary/corpus data the second stag&his stage consists mtrieving
all the corresponding definitionsamplesand semantic data for each target wddme
researchers suggest reading samglesn sources likewordNet and SemCor corpus
Samples and definitiomarelemmatized and POS tagged too.

Finally, the last stageonsists onassigning senses to all open class words in the
document. Usally, Bow model approaches usentext data and knowledge dataor
weighting which sense should béesxed.

4Collins English Dictionary, entry fol"e mmat i ze o
Shttp://www.cse.unt.edu/~rada/downloads.html#semcor
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Text preparation

Read the target text POS tagging of the text Lemmatization of the text

Sense Inventory preparation

Read the sense POS tagging of the sense Lemmatization of
inventory/samples definitions/samples definitions/samples

h 4

Disambiguate all open class words I

Retrieve BoW of the target

Retrieve context words word senses

Disambiguate the target word

Figure 2 BoW model WSD process

3.2 Selected WSD Algorithms

We have selected some WSD algorithms for
easy implementation and flexibility. The selected algorithms were the following:
1 Lesk algorithm
1 Simplified Lesk algorithm
1 Graph In Degree
1 First Sense
We also performed testsith some other algorithms (includingpnceptual density,
lexical chains andnachine learning) when available the following subsections you will

found a detailedescription of each one of the selected algorithms.

3.2.1 Lesk Algorithm

The original Lesk algorithm (Lesk 1986) is a dictionbgsed approach that
disambiguates by calculating the overlaps betweetha@lpossiblesenses oévery word in
a sentence. It choosea set of sensedaving the greatest mutual overlafpne per
word).Lesk algorithm sees WSD ascamplex combinatorial optimization problem. A

-29



Framework

major poblem of this algorithm is the amount of resources and time needed. Its complexity
is exponential by theumber of words pesentence (Gelbukh et al. 2005). There are many
improvements of e original Lesk algorithm rangindgrom simply using different
optimization heuristics to involving additional resources (Vasilescu et al. 2004, Gelbulkh et
al. 2005, Bangee and Pedersen 2002), but the problem of its prohibitively high complexity
remains unsolved.
Let wus di sambiguate Apine coneo with the f
Pine:
1) Kinds of evergreen tree with needleaped leaves
2) Waste awayhrough sorrow or iliness
Cone:
1) Solid body which narrows to a point
2) Something of this shape whether solid or hollow
3) Fruit of certain evergreen trees
The resulting intersections of open class words are:
Pine#1Z Cone#1 =0
Pine#1Z Cone#2 =0
Pine#1Z Cone#3 =2
Pine#2Z Cone#1 =0
Pine#2Z Cone#2 =0
Pine#2Z Cone#3 =0

Lesk algorithm will select Pine#dnd Cone#3 as its answers.

3.2.2 Simplified Lesk Algorithm

The Simplified Lesk Algorithm (Kilgarriff and Rosenzweig 2000) has lineal
complexity, while redining performance comparable with the original Lesk algorithm. It is
widely used for research and practical purposes because of its high speed, simplicity, and
relatively acceptable performance (Vasilescu et al. 2004, Mihalcea 2006). This algorithm

disamhguates each word in the document independently. Given a word, the algorithm
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chooses the sendwmving the greatest overlap between its dictionary definition and its
context (Mihalcea 2006); see Algorithm 1.

Algorithm 1 Simplified Lesk Algorithm

1 For each wordV of thedocument

2 Fill the windowWinwith N words aroundV

3 For each sensgof W

4 Computell 0 Qi & [dré

5 Select the sensrgmax) 0 Qi & dREfor Wand se
themost fregient sense criterion in case @& ti

3.2.3 Graph-Based Approaches

Graph based approaches work by modeling word sense dependencies in text as graphs
and using graph centrality algorithms for disambiguation. The algorithm can be explained

as following: dven a squence of wordg x fx FBEx ,each wordx will have a

e

corresponding admissible labe{senses) I A res .The label graph G =

(V,E) will have avertex (having a centrality score)N V for every possible labeind an

edge (having a similarity score) for connecting them to vertices of other Wedse, the

graph will depict relations and degree of relationship that each sense has. The sense
(vertex) having the greatest centralitypse will be selected as the answieigure 3shows

an examplef a graphical structurfor asequence of four words. Note that the graph does
not haveto be fully connected, as not all label pairs can be relatedd@pendency.

For instancefor the graphdrawn in Figure 3theword wa will be assigned with label
a , since the score associatetith this label (1.39) is the maximum among theores
assigned to all admissible labels associated withatbrsl.

Graph basedalgorithmstake into accouninformaion drawn from the entire graph.
They depictrelaionshipsanong all the words in a sequenddis makesthem superior to
other approaches that rely only on locdibrmation individually derived for each word.

Semantic similarity measures are used for weighting the edges. quaeyify the
degree to whth two words are semanticallglated using information drawn from semantic

networksi see e.g. (Budanitsky and Hirst 20G&y an overview.There are sixmeasures
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found to work well on the WordNet hierarcHyeacock & Chodorow, Lesk, Wu almer,
Resnik, Lin, and Jiang & Conrath (Leacock and Chodorow 1998; Wu and Palmer 1994;
Resnik 1995Lin 1998 Jiang and Conrath 19R7All these measures assume as input a pair
of concepts, and retumn value indicating their semantic relatedness séheasurefave

goad performancein other bhnguage processing applications andregatively high

computational efficiency.

P T
D I, Qm_qa]
7
ﬁﬁ:l __\' 7--'"—'-’ ~ ] l.3 l“._._l @m 58]
P J—
2 0.9 —

Jig ®|113| ws S |1_5s3] L4 bmm

Figure 3 Sample graph built on the set of possible labels (shaded nodes) for a sequesfdeur
words (white nodes).Label d@endencies are indicated as edgeeights. Scores computed by
the graph-basedalgorithm are shown in brackets, nextto each label.

Centrality measures give us a hint of the importance of a vertex in a graph. So, they
will tell the algorithm how influentiala sense is. There are four centrality measures:
indegree, closeness, betweenness and PageRank.

In (Sinha and Mihalcea 2007) there are tests with diffesmmhantic similarity
measures for weighting edgaad with severatentrality algorithmdor scoring \ertices.

We decided to use the best performing measures: indegree centrality algorithm and Lesk
(intersection) as a similarity measufiée Lesk similarity of two concepts is defined as a
function of the overlap between the corresponding definitions.app&cation of the Lesk

similarity measure isat limited to semantic networkand it can be used in conjunction
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with any dictionary that provides word definitioriBhe Indegreemeasureis defined as
follows:

‘08 QQW QQ & f ©)
AW

3.2.4 Lexical Chains

A lexical chain is a sequence of related words in writing, spanning short (adjacent
words or sentences) or long distances (entire text). A chain is independent of the
granmatical structure of the text: it & list of words Chains try tacapturea portion of the
cohesive structure of the text. A lexical chain can provide a context for the resolution of an
ambiguous term and enable identification of the concept that timerégresentsin later
sections, we used Jaccard score between the glosses of words in the text as proposed in
(Vasilescu et al. 2004
i QR i O8I 6)

Oi QBfi QB HerTag;

Examples of lexical chains are the following:
Rome Y capital Y city Y inhabitant
Wi ki pedia Y resource Y web

3.2.5 Conceptual Density

Conceptual density is bas@n the conceptual distance concept. Coneatpmtistance
tries b provide a basis for measuring closeness in meaning among words, taking as
reference a structured hierarchical net, such as WordNet. Conceptual distance between two
concepts is defined in @Rla et al. 1989) as the length of the shortest path that connects the
concepts in a hierarchical semantic network.

Conceptual densityses the following:
1 The length of the shortest path that connects the concepts invehater paths mean

that the conepts are closely related
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1 The depth in the hierarchy: concepts in a deeper part of the hierarchy should be ranked
closer.

1 The density of concepts in the hierarchy: concepts in a dense part of the hierarchy are
relatively closer than those in a sparserongi
Given a concept c, at the top of abshierarchy, andgiven a mean number of

hyponyms per nodénhyp), the Conceptual Density for ¢ when its sub hierammbiptains a

number m iharks) of senses of the wortts disambiguate is given by therinula below:

B &am ° (6)

° O gnr soi ot o

Conceptual density disambiguation consists in looking for the maximum sense tree
extracted from the senses of nouns of the target text.



Chapter 4. Our Window Selection

Procedure

This section describes the modifications for the proposed window selection that
improves the Simplified Lesk Algorithm's performance. Each subsection describes one
proposed modification. We introduce each modification separatelyafarore clear

degription.



Our Window Selection Procedure

4.1 State of theArt in Common Window Selection Procedures

Window selection is the process of selecting words from the text containing the target
word. These words are used for weighting the possible senses along with the knowledge
data extractedrom the dictionary and other resources. The most common practice is to
select all the words in the sentence containing the target word. However, you will find out
that this is not the best practice for selecting a context window. This section contains an
analysis of the effects of changing the window size (number of words in the window), using

duplicatesand including the target word.

4.1.1 Effects of the Window Size

It is usually assumethat the adequate window size is the sentedogever what is
the reasno for this? Smaller window sizes usually lead to higher precision, while bigger
window sizes lead to higher coverage at the cost of some predisiaddition a higher
precision/low coverage system is desirable when using-tfiahains as frequently ad
in real life.

Now, let us analyze the effects of the window size on the Simplified Lesk algorithm
for illustrating this behavior.Using a wider window allows thelgorithm to try

disambiguatingnore wordstherefore its recall increases as shown indab

Table 3 Performance obtained by the Simplified Lesk Algorithmwith different window sizes
(N) and no backoff strategy. A wider window increases F1 measure by increasing recall.

) . Senseval? Senseval3
Window size

(N) P R F1 P R F1
4 50.4 7.5 13.1 39.1 13.2 19.7
16 45.8 18.9 26.7 36.3 24.6 29.3
64 45.0 323 37.6 33.8 28.8 31.1
256 44.6 40.4 42 .4 335 30.7 32.0
Wholedocument 43.6 41.7 42.6 32.4 30.9 31.7
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We performed some testing for observing the changes linked &asing the window
size. Table4 showssomesample overlapping words between the window and the ¢orrec
sense when using different window siz2é& observd that usinghe whole document as a
window increases the overlaps with the correct sdPlease obsee that the new words
producing overlaps can be considered domain words (E.G. syndag, worship,

followy ,service).

Table 4 Sampleoverlapping words between the window and the correcsense extracted from

Senseval? testset with four words and the whole document as a window.

Target word 4 words window Whole document window
Arty () (‘arty, worky)
Bell; (sound,) ( sound, ringingy, make )
Service () ( sunday, ruley, worship, followy ,service)
Teach @) ( knowledge, french)
Child; () (‘human, childy, college, kidn)

We can conclude thatawds nededfor WSD existsin the document, but are not
visible when using asmall window. A greaer window leads tobetter recall, though
precision is decreased slightSo,how can we retain the precision while increasing the
coverage?

Now, let us take a look at Figure 4. We can observe that overlap counts become bigger
with greater window sizes while the number of words does not grow that much. Increasing
the windowsize increases thafluence of common word&xcluding common words such
asbe door notis not the proper solution. These words often mislead WSD algorithms into
choosing wrong senses, but they are still are necessary for disambiguating some words.
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18 - 50 -
16 - 45 -
14 - 40 A
12 35 -
£ 10 - 4 307
S & 25 -
8 -}
= 2 50
6 15 -
4 b 10 .
2 A ' _- _- 5 -
O I I 1 T 1 D T T T 1
4 16 64 256 Al 4 16 64 256 Al
Window size Window size
Average number of words used for l Average overlap count

decision making

Figure 4 Overlap count observed with diferent window sizes in Sensevdt (left) and

Senseval3 (right) test sets.

Evidence in Figure 4 does not confirm that words producing such big overlap counts
are common words (although ibunds like the most logical explanation). We need to
measure othe commonnes®f a word.We seleced thedictionarybased version of IDF
measurelDFp) (Kilgarriff and Rosenzweig 2000). IDHs calculated using the following

equation:

0w v ae %—Qp i @)

0

whereG is the total number of glosses in the dictionary g N " is the nunber of
glosses where the lemmaappears. Words that appear too often in the dictionary such as
be, haveor not have lowIDFp values.For example we observed tt these three words
have anDFp<3.5 while the average value iIBFp=10.7.

Table 5 shows us the words producing more overlaps. We can confirnthéhat
Simplified Lesk Algorithm often usewords like be haveand not for making decisions.

Also, you can observe that the wdrelhave a huge influence in its disambiguation process.
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Table 5 Top 10 words used for making decisions. Tests were made with the Simplified Lesk

Algorithm using 4 words and whde document windows.

4 words window

. Senseval2 - Senseval3
IDFp Decisions made IDFp Decisions made
notz 3.2 35 bey 15 379
otheg 4.4 12 have/ 2.4 25
geng 7.0 10 mar 5.0 13
belly 7.3 10 dov 4.3 12
celly 55 7 timen 4.5 11
childy 4.8 7 takey 4.7 11
studw 5.6 7 make, 3.3 10
new 5.0 6 get, 54
make, 3.3 6 policyn 6.5
yeag 5.2 6 houseg 5.6 6
Whole documentwindow
Word Senseval2 Word Senseval3
IDFp Decisions made IDFp Decisions made
notr 3.2 546 be, 15 1481
bey 15 298 have, 24 322
make; 3.3 206 makey 3.3 223
new 5.0 164 dov 4.3 169
use 3.0 147 house 4.5 123
otheg 4.4 126 people 4.7 121
childy 4.8 115 man 5.0 100
take, 3.3 110 timen 4.5 85
persor 3.8 101 statey 4.4 74
yeak 5.2 100 money 5.2 73

Finally, let usconfirm that smaller window sizes lead to a beitéegration withthe
first sense backff strategy.Bigger window sizes decreagerformancewhen using a

backoff strategy as shown in Table Berformance ahe firstsenseheuristicis betterthan
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the performance of Simplified Lesk algorithm.hé&refore, a major participation of the
Simplified Lesk Algorithm will provokea minor participation of the backff strategy

hence, a lower performandelease remember that the first sense heuristiteady in the

top of its performance and it returns an answer (good or bad) for all words, so, it is best to

use it as bachff strategy orstandalonalgorithm.

Table 6 F1 measure obtained by using Simplified Lesk Algorithm withdifferent window sizes
and most frequent sense backff. A wider window decreases integration with the most

frequent sense bacloff strategy.

Window size Senseval? Senseval3
4 62.5 56.9
16 59.5 48.9
64 52.9 40.6
256 47.7 35.5
Whole documen 43.4 339

4.1.2 Effects of Duplicates in the Context Window

In the previous subsection, it was stated that some wmaducemore than one
overlap. This means that some worspearseveral times in the text, i.eheir term
frequency TF) is greater than IHowever what will happen if we reduce this effect by
removing dplicates in the context window?able 7 shows the performance of the
Simplified Lesk Algorithm, with and without taking into account TF of woRlemoving

duplicates from the windowimproves precisbn.

4.1.3 Effectsof Including the Target Word in the Context Window

The Simplified Lesk Algorithm sometimes includes the target word in the window.
This will happen when using big window sizes like the whole docuniéet.target word
will surely influence WSD bcause: (1definitions often contain the word that they are

describing, ad, (2) documents often include some repeated words
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Table 7 Performance of the Simplified Lesk Algorithm with and without duplicates in the

window. Tesswere made by using the whole document as window.

_ Senseval2 Senseval3
Duplicates
P R F1 P R F1
Yes 43.6 41.7 42.6 32.4 30.9 31.7
No 46.5 42.6 44.5 36.4 33.7 35.0

For example,Table 8 contains he first five definitions of the wordellv. We can
obsenre that senses & and 5 include the worbelln. bellv appears 22 times in the first
document of Sensewvaltest set, hence, it will add a 22 overlap count to senses contiaining
when using the wholdocument as window. It will add asverlap counbf oneto senses
including it even after removing duplicates from the winddvwe inclusion of the target
word negativelyaffects performancas seen iable9. Therefore context window shald

not include the target word.

Table 8 First five definitions of the word bell.

Sense Definition

Bell: | A hollow device made of metal that makes a ringing sound when struck
Bell; | A push button at an outer door that gives a ringing or buzzing signal when pushed
Bell; | The sound of a bell being stki

Bells | (nautical) each of the eight hdibur units of nautical time signaled by strokes of a st
bell; eight bells signals 4:00, 8:00, or 12:00 o'clock,

Bells | The shape of a bell

Table 9 Performance of the Simplified Lesk Algorithm with and without the target word in

the window. Test were made by usig the whole document as window.

Senseval? Senseval3
Target word
P R F1 P R F1
Yes 43.6 41.7 42.6 32.4 30.9 31.7
No 48.5 46.1 47.3 34.9 33.1 34.0
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4.2 Our Window SelectionProcedure

We propose selecting a context window having useful words while avoiding the target
word and repetitions. In the previous subsection, we stated that removing duplicates and
avoiding the target word leads to a performance boost. We also waid # third filter
and combine all three modifications together. We believe that the whole document is not
needed for WSD. We confirmed in the next sections that algorithms only need few words
from different places of the documents.

For example, e Simplfied Lesk Algorithm does not really use all words from the
document, as it washown in Figure 4In fact,it usedan average of fouvordswhen using
the wholedocument as the context windowencewe pr opose using only =
words as the contéxwindow instead of using all words, i.e., instead of the whole
document. Inthis manner, we filter outvords not havingoverlags with any sense of the
targetword. Algorithm 2shows the pposed method for extractirtheseuseful words.

Words will beselected from the closest possible context of the target wordthieyt could
be extracted from any place of the documernt:. €dntext window will contain fewer words

sometimes this will happen when having small definitions or small documents
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Algorithm 2 Window construction algorithm that selects only $N$ words that have overlaps.

1 Seti=1

3 Look for a wordW, ati positions toteright of the target wordV
4 If W, exists in any sense &V

5 Add W, to Win

6 Look for a wod W, ati positions to tieleft of the target wordV
7 If(W, exists in some sense \0fandsizeOf(Win)<N

8 Add W, to Win

9 Seti=i+1

4.3 Performance Analysis of Our Window Selection Procedure

Let us look the effect of only using useful words as contentiew. In Table 10, we
mack a comparison betweehree different context windowshe closest fouwords, the
whole documenand the closest 4 useful words. Using the first fmeerlapping words as

the window gives better results than the otherwialow selection strategies.

Table 10 Performance of the Simplified Lesk Algorithm using three strategies of the context

window selection.

Window Senseval? Sensevai3
selection p R F1 P R F1
4 words| 50.4 7.5 13.1 39.1 13.2 19.7
Whole documen{ 43.6 41.7 42.6 32.4 30.9 31.7
4 overlapping  48.0 45.9 46.9 39.1 37.4 38.2

The performance igurther improved if we filter out duplicates and the target word as
shown in Tablel1l. We detected the following behaviors:
1 The proposed window ketion procedure allows the algorithm to discriminate

more wrong senses as shown in Figure 5
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1 The proposed window selection procedure allows the algorithm to address the
proper sense with a precision competitive to stéthe-art systems. However,
wrong senses had better scores that the correct sense many times.

This means that the algorithm can be used for tellargdiscarding half of the senses

(wrong sensesyith a good precisian

Table 11 Comparisons of the proposed moditations and their combination.

Window Senseval? Senseval3
selection P R F1 P R F1
4 words
) 50.4 7.5 13.1 39.1 13.2 19.7
(baseline)
Whole
43.6 41.7 42.6 32.4 30.9 31.7
document
Removing
N 46.5 42.6 44.5 36.4 33.7 35.0
repetitions
Excluding the
48.5 46.1 47.3 34.9 33.1 34.0
target vord
4 overlapping
48.0 45.9 46.9 39.1 37.4 38.2
words
All proposed
50.2 47.9 49.0 39.4 37.5 38.4

modifications

4.3.1 Integration with other Dictionary -Based Methods

First, let us confirm that our window selection makes Simplfied Lesk Algorithm
competitive againstther dictionarnbased methodthat are better than the Simplified Lesk
Algorithm. The selected dictionatyased methods were
1 Conceptual densitfAgirre and Rigau 1996)

1 Graph indegree (Sinha and Mihalcea 2007).
1 The Simplified Lesk Algorithm with a lexical chain window (Vasilescu et al. 2004).

This modified version of the Simplified Lesk Algorithm considers only words that
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form a lexical chain with the target word in the window. It outperforms the original

version ofthe Simplified Lesk Algorithm.

\.‘i: =—4—Senseval 2

—B-Senseval 3

Average senses with overlap

O B N W ke U Oy 0o

Whole No No 4 All
document duplicates target overlaping variations
words

Figure 5 Average number of sases with anoverlap>0for each attempted word in Senseal-2

and SensevaB test sets
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S0
@
2 80
E 70 \\
g \\ - =—4—Senseval 2
[ 60 —l-Senseval 3

55

0 T Whote " No | No 4 ' Al

document duplicates target overlaping variations
words

Figure 6 Probability of having the correct sense amog the answers.
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The improved Simplified Lesk Algorithm outperforms otldéstionarybasedmethods like
conceptual density and graph indegaseshown in Table 12t also outperforms the lexical

chain window

Table 12 Comparison ofthe improved Simplified Lesk Algorithm with other dictionary-based

algorithms.
Senseval2 Senseval3
WSD method

P R F1 P R F1

Simplified Lesk
Algorithm 50.4 7.5 13.1 39.1 13.2 19.7

(baseline)
Concepwaf g 4 4.2 7.2 25.6 5.8 9.5

density

SLA with
Lexical chain 48.6 25.6 33.4 52.6 27.8 36.4

window
Graphindegre¢ 45.4 37.2 40.1 35.1 30.4 32.6

Improved
Simplified Lesk 50.2 47.9 49.0 39.4 37.5 38.4

Algorithm

Now, let us checkif the proposed modifications can be appliedtle selected
dictionarybasedmethods. Figurg shows Fimeasure of thaforementioned dictionary
based methods alone and combined with the proposetbw selection strategielt. can
be seen that the proposed strategies work well with the conceptual density and the graph
indegree aproaches. However, they cannot be used for the lexical chain window

algorithm.
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Senseval 2 Senseval 3
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chaln algorithm chain algorithm

B 4 words window W All strategies

Figure 7 Fl-measure of dictionarybased methods alone and combined with the window

selection procedures.
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Chapter 5. Using One Sense per Discourse

for Disambiguating Domain Words

We discovered that words known to have one sense per discourse (OSD words) can be
disambiguated easily. Coincidently, OSD words have its sense being défndae
documentdomain rather than the senten¥®u will find in this chapteithat most of the
current methosl have a precision of around%5n the domain words and a low precision

in local words (a maximum of 50).
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5.1 State ofthe Art in the Use ofOne Sense per Discourse

Heuristic

The one sense per discoucsmdition OSD) tells us thagll instances of a word will
have a singleneaning through the whole document (Gale et al. 19Bis rule has a
probability of above 90% in homographs and a maximum of 70% in other wordsrzarti
and Agirre 2000)For examplethe wordwolf has more than 120 senses in Wikipediee
http://en.wikipedia.org/wiki/Wolf_(disambiguation) However, these senses can be
clustered into the following nine categories: animalssdirses), people (1 sense), sports
teams (43 senses), places (14 ss)svehicles (8enses), music (24 senses), radio and
television stations (11 senses), titles (13 senses) and otheras@s). Supposing we are
disambiguating the following sentence:

ANow the wolves have taken a three |

It is fairly easy to @cern thatvolvesis referring to a sports team, but it is really hard
to tell whichondeven for most of us who doesndét know

OSD assumption has been used for WSD. WSD systems will do the following when
forcing the OSD assumptio

1 Contextwindow will be filled with words extracted from all the sentences
containing the target word instead of just using the current sentence.
1 The selected sense will be assigned to all instances of the target word.

Forcing OSD assumption often ineses recall of WSD systems. Th&®SD
assumption is implicitly used when using the whole textoamgext window

In addition OSD was used for disambiguating some selected noumgthnsome
success (Yarowsky 1995j is relevant to note that the words welisambiguated by using

domain information, so, that give us a hint of what to do.
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5.2 Our Intended Use of One Sense per Discours¢euristic

We give OSD rule a differenble than unifying answers and using extended context
windows We have discovered that theelected dictionarpased methods have trouble
solving words known for not having OSD. We propose that methods should avoid
disambiguating these words. eVusedthe SemCor corpus (Miller et al. 1994) for
calculating OSDA word is considered to have OSD waiin

1 It appears in the corpus with a maximum of one sense assigned per document.

1 It does not exist in the corpus.

Words of all classes iWbe filtered out (& seen in Table }3n the selected test sets
The amount of wrds filtered out range from 14% %8%. Most of the OSD words can be

considered domain words, E.Sientist, cell, cancer, strategydtreatment

Table 13 Average words discarded of each class.

Noun | Verb | Adjective | Adverb
Senseval 4 39% | 74% 43% 50%
Senseval § 47% | 81% 38% 0%

On the other hand, avdsnot havingOSDhave some of these traits:
1 Their senses are described wdifinitions that ar@oo similar between thern
some of these definitions are too close that even people can discern between
them.
1 Their sense are described wittlefinitionsthat are too short. Such definitions
includeless tharthree opertlass words
1 Their meaning is linked to their current syntactic relations rather than the
document domainverbs meaning is often defined by its complemeather
than document domain.
SeeTable 14 for some sample definitions that are too similar or too short for WSD

systems.
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Table 14 Definitions that are too similar or too short for WSD systems

Sense Definition

World, | People in gneral; especially a distinctive group of people with some shared in

Worlds | People in general considered as a whole

Medicak | Relating to the study or practice of medicine
Medicab | Requiring or amenable to treatment by medicine as opposed toysurger

Here | In or at this place; where the speaker or writer is

Here: | To this place (especially toward the speaker)

Bells | The shape of a bell

Timey | a suitable moment

Recent | New

Verbs were the words discarded more often. Common verbshgikéaveand do)
have more than ten definitions in WordNet and are used widely across aindoilease
remember thawerbs' meanings more likely to be defined by its complemenEor
example in the following text:

Al started drinking some soda. Later, | decidedlrink a cold beet

Now let us disambiguate using the following definitioggracted from WordNet
[drink:take in liquids] anddrink?consume alcohol]. In this example, both definitions are
clear for people but they are rathghort for WSD algorithim You can easily select the
sense of the verb drink by looking at the direct object in both chkest. of dictionary
based methods do not disambiguate both instances of the verb coifaetlyerb drink
does not have OSDso it is recommended that damarybased methods do not
disambiguate this word

Avoiding such Adifficulto words wild.l al |l ov
coverage, closing in to a 100% precision solution. Such solution should be used first for
solving easy problems and iddgiing hard problems. We believe that by putting effort in
such solution will allow us to be one step closer to a 100% accuracy WSD system.
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5.3 Performance Analysis

Test results displayed on Tabl#S, 16 and 1%onfirm that disambiguating just the
words with GBD increases precision at the cost of cover&ggure 8 provides you a
graphical alternative for you to observe these performance chaifigesan conclude the
following from these tables and figures:

1 The precision boost ranged from 3% to 25% (an averb#)6%).

1 The coverage loss ranged from 11% to 57% (an average of 34%).

1 The improved first sense heuristic wdse best approach in the tests:
obtained a precision of at lea§%

Additionally, we observed thatofcing the OSD assumption does not ldada
consistent increase in precision (although, it often leads to a coverage hdestave
added Table 18 for further reference. Table 1&®ntairs the best results observed in
Senseval 2 and Senal 3 (see Table )8Please note thabur improved first sense

heuristic overcome the precision of the best systems in these competitions.

Table 15 Test results corresponding to Conceptual Density and Naive Bayes algorithms

observed in Senseval 2 and Senseval 3 competitions.

Senseval2 Senseval3
P R F1 P R F1
OSD Conceptual Densitf 57.1| 5.8 | 10.5| 64.7| 13.4| 22.2
Conceptual density 25.1| 4.2 | 7.2 | 25.6| 58 | 9.5
OSD Naive Bayeqy 73.7| 36.0| 48.3| 74.5| 30.6| 43.4
Naive Bayeg 58.4| 57.0| 57.7| 54.9| 54.2| 54.6

WSD method

Table 16 Test results corresponding to GETALP systenat Semeval 2013 competition

Semeval 2013
WSD method
P R F1
OSD GETALP 65.7 379 48.1
GETALP (Schwab et al 2014 51.6 51.6 51.6
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Table 17 Performance comparison of some bag ofords algorithms. All methods exhibit a
precision boost and coverage lost whesplving just OSD words. FGmeans forcing one sense

per discourse and OSD means solvin@SD wordsexclusively.

Senseval2 Sensevai3

P R F1 P R F1
OSD Simplified Lesk Algorithm| 61.0 121 | 20.2 52.7 10.4 17.4
FG Simplified Lesk Algorithm| 45.5 31.0| 36.8 30.9 23.3 26.6
Simplified Lesk Algorithm| 50.4 7.5 13.1 39.1 13.2 19.7
OSD Graph indegre| 78.1 39.9 | 529 70.1 29.5 41.5

FG Graph indegre( 57.5 574 | 57.4 51.1 50.9 510
Graph indegreq¢ 45.4 37.2 | 40.1 35.1 30.4 32.6
OSD Lesk| 67.6 319 | 433 64.3 37.8 35.2
FG Lesk| 49.4 49.4 | 49.4 49.4 49.4 49.4
Lesk| 48.1 46.0 | 47.0 38.4 36.7 37.8
OSD First Sens{  78.8 40.0 | 53.1 79.3 33.1 46.5
First Sensg 62.8 62.8 | 62.8 57.2 57.2 57.2

WSD method

Table 18 Systems having the highest precision in Senseval 2 and Senseval 3 competitions.

Senseval2

P R F1
OSD First Sens¢ 78.8 40.0 | 53.1
IRST (Magnini et al. 2001) 74.8 35.7 | 483
SMUaw (Mihalcea & Moldovan 2001] 69.0 69.0 | 69.0
CNTSAntwerp(Hoste et al. 2001 63.6 63.6 | 63.6
Senseval3
OSD First Sens¢  79.3 33.1| 465
IRST-DDD-09-U (Strapparava et &004 72.9 441 | 54.9
IRST-DDD-LSA-U 66.1 496 | 56.6
GamblAW-S (Decadt et al. 2004, 65.1 65.1 | 65.1

WSD method
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Figure 8 Precision/coverage graph for the Simplified Lesk, Graph Indegree and Lesk
algorithms observed on Senseval 2 test set. We used different window sizes (ranging from 1 to
the whole text). Algorithms disambiguating just the OSD words(squares) overcome the

baselines (dotted lines) and its original performance (triangles).






Chapter 6. Using Co-Occurring Words for
Improving WSD

Extending glosses improves the quality of WSD by adding useful words to thef-bag
words. The most common prai is to use related terms existing in the dictionary and
specified by the lexicographeWe propose adding eoccurring words for extending
glosses.Co-occurring words are the ones that appear together through the corpus in
different documents-or exampe, the wordsart, popularity, folkloreand cultural can be
seen as coccurring words.Co-occurring words are automatically extracted from a corpus.
We have discovered that this practice gives a consistent performance boost to dictionary

based methods amén be used along with other gloss extending practices.
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6.1 State-of-the-Art Practices for Extending Glosses

Extending glosses is a common practice for improving WSD. The most common ones

are:
Using synonyms: consist of adding the synonyms of the cureeses
Using related terms: consist of adding senwantlated terms such as
hyperonyns, antonyms, and so on.
1 Using glosses of related terms: consist of adding thept=ie glosses of
related terms.
1 Using corpus samples: consist of adding sentences wher¢atfget sense
appears.
Tabl e 19 shows t hat al | t hese met hods [

performance. The best method is using corpus samples. Currently, there is no study of gloss
extending practices and its interactions between them.

Table 19 Performance comparison of the Simplified Lesk when using different gloss extending

methods

Senseval2 Sensevai3
P R F1 P R F1
Regular glosse] 43.6 41.7 | 42.6 32.4 30.9 31.7
Adding synonymg  48.6 48.2 | 48.4 36.6 36.1 36.4
Adding related termy  49.8 494 | 49.6 48.0 47.1 47.6
Adding related glosse  59.6 59.5 | 59.6 53.3 53.1 53.2
Corpus sample{ 66.3 66.0 | 66.1 67.0 66.7 66.9

WSD method

6.2 Using Cooccurring Words for Extending Glosses

Co-occurring words are commonly used for aiding ottessks of natural language

processing such as information retrieval and keyword extraction. They can be extracted
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from a corpus using statistical methods. We propose to usectwring words in WSD as
a mean to extend glosses.

There are many ways of eatting ceoccurring words. The standard way of doing is
using a statistical measure of word relatedness. These measures ideotifyicong words
with regular quality. Please note that such measures need to take into accoustehateth
many common wals that appear in most of the documents bikedo and haveso. Here
they are some commaneasures

1 Conditional probability

1 Point wise mutual informatiofChurch & Hanks 1990)

1 Semantic gnilarity measures (Agirre & Edmonds 2006)

We have selectecbnditional probability because it has greater precision than the other
measuregas shown irCimiano et al. 2006 Conditional probability is calculated with the
following equation:
or, "

B

We usel the same equation for all test sets. Wsed SemQocorpusas our base

0!g

corpus The algorithm look for co-occurring words for each sense of the target word as
following:
1. Look for all the corpus documents containing the target sense.
2. Calculate the conditional probability of all the words in the documerddiee
target sense.
3. The target will beA and the possible word will k&
4. Select the words having BR(A|B)>03 (this threshold was determined by
testing with values in the rangefof0 . 0, 0 ).1, €, 1. 0]
5. Remove duplicated words if any.
Let us look at some exgpte caoccurring words extracted by our algorithm:
1 [rookie_N, pitching_N, monday_N, indianapolis_N, husky Jhbeider N
1 [wizard_N, violin_N, recital_N, thursday N, 20th_J, slashing_J, demon
ridden_J, cadenza [N

1 [angry_J, turmoil_N, briefing_N, insult, Yiulk_N

-59-



Using Ceoccuring Words for Disambiguating Domain Words

However, our method still selects sont®emmon or unuseful words such as

thursday_Nand20th_J Future work will be aimed to solve this issue.

6.3 Performance Analysis

Using ceoccurring words gives the Simplified Lesk Algorithm a performance rivaling
the use of corpus samples as shown in Tables 19 and 20. Table 21 showsttai itog

words can be combined with other methods with some success.

Table 20 Using cceoccurring words for extending the gloss is an effective way aficreasing

performance.

Senseval? Sensevai3
P R F1 P R F1

WSD method

Simplified Lesk Algorithm with ce
_ 68.5 61.8 | 65.0 65.4 61.4 63.4
occurring words

Simplified Lesk Algorithm with
66.3 66.0 | 66.1 67.0 66.7 66.9
Corpus sample!

Simplified Lesk Algoribm | 50.4 7.5 13.1 39.1 13.2 19.7

Table 21 Combining all the gloss extending methods with eoccurring words.

Senseval? Sensevai3
WSD method
P R F1 P R F1
Adding synonyms with coccurring| gg.5 663 | 66.4 599 597 59.8

words

Adding related terms with ed
occurring words

Adding related glosses with €(
occurring words

Corpus samples with emccurring

65.9 65.7 | 65.8 60.9 60.6 60.8

67.1 67.1| 67.1 61.5 61.5 61.5

66.9 66.6 | 66.8 67.4 67.0 67.2
words
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Table 22 Comparison of our proposed modifications.

Senseval2 Senseval3
P R F1 P R F1
All of our modifications| 82.4 40.4 | 54.2 81.0 32.7 46.6
Useful words window,  50.2 479 | 49.0 394 37.5 384
OSD| 61.0 12.1 | 20.2 52.7 10.4 17.4
Co-occurring wordg 685 61.8 | 65.0 65.4 61.4 63.4
Simplified Lesk Algorithm| 50.4 7.5 13.1 39.1 13.2 19.7

WSD method

6.4 Integrating All of Our Modifications

We tested all of our modifications together. Test results can be seen in Table 22. Tests
confirm that:

1 Using our modificationgombinel leads the Simplified Lesk Algorithm intgood
precisionlevel (greater than 80%).

1 Our system has almost the same precision than a human when solving domain
words(inter annotator agreement for both test sets85%s.

1 Our system has better precision rthéhe best performing systems observed in
Senseval 2 and 3 contests.
The greater recall was obtained when usingaturring words.

All of our modifications greatly overcome the original Simplified Lesk Algorithm.
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Chapter 7. Integration with the
Original Lesk Algorithm

We also wanted to find out if our modifications can be used with the original Lesk
algorithm. It is believed (but not confirmed) that the original Lesk algorithm can be better
than its simplified counterpart. However, one of the major drawbadks t hi s al gor i t
the great amount of computational resources it needs. For that reason, we developed a
heuristic that can return good results in short time lapses called Simple Adaptive Climbing
(SAC). First, we tested our heuristic as a global ojm in weltknown benchmark
problems. Then, we tested it within the Lesk algorithm. We have noted that our heuristic
need very little time for obtaining comparable results to other heuristics. So, we have
successfully reduced the Lesk algorithm limitation

After that, we tested our modifications into the Lesk algorithm with great success.
They obtained good precision. We also confirmed that the simplified version is better for

solving domain words.
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7.1 State of theArt: Hill -Climbing Like Algorithms

7.1.1 Global optimization problem

In the mostgeneral case, globaptimization isthe task of finding the poink{) with
the smallest (minimization case) or bigger (maxirtiara case) function valuef(k*)).
There are a wide number of solutions for the global optitzgoroblem, but it is still
considered an open problem. The first stdtéhe-art solution consisted in improving a
solution until reaching the time limit. These solutions were calledclmiibers. Hilt
climbers were quickly left out because they angeglimited for solving complex problems.
Currently, evolutionary lgorithms have been widely utikzl to find optimal solutions.
They are called evolutionary because they somehow mimic the natural evolution process.
Its main features are: relatively gopdrformance, low resource needs and parallelization
capabilities. They are able to find a good answer quite fast. However, they often are
incapable of finding the best answ&he most commonly used Evolutionary Algorithms
are the following: Differential Evolution, Genetic Algoritm and Partice Swarm
Optimization.

Global optimization currently need:

1 Optimizers capable of finding the best answer for solving problems without a
time limit.
1 Optimizer capable of finding a good answer for solving problems iichwh
time is more important that quality.

In this work we improved a hitlimber algorithm with some evolutionary algorithm

for creating an optimizer capable of finding a good answer faster than most of thef-state

the-art algorithms.

7.1.2 Brief Review of Hill-Climbing Like Algorithms

Let us imagine that you are a maéain climber trying to reach a mountgieakwhile
having really thick fog. Imagine that you havforgotten some important gadgets like a
compass and aap, but at least you have a lot of foole tperfect climbing suit and

equipment, and a machine that tells your current altitude. Hidlwou find the mountain
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peak?Hill -climbing like algorithms are heistics for getting you to the highest point
surounding you.

Hill -climbing algorithms are sgie point optimizers with adjustable search radius.
Algorithm 3 depicts a generalization of hilimbing algorithms. As we can observe in
Algorithm 3, these algorithms are greedy strategies that try to move only to a highest next
point. The main differerebetween hilclimbers lies in the specific implementation of the
following functions:

1 mutate(Xbest,steps,parameteis)nctionfor searching a newoint.

1 adjustStepswhenSuccess(steps,parametdtgipction for adjustingthe search
control values commonlythe searctradius when finding a better location than
the current one.

1 adjustStepswhenFailure(steps,parametefsinction that adjust theearch control

valueswhen finding a worst location than the current one.

Algorithm 3 Generic algorithm for hill climbers (minimization case)

1 SetX as a random initial solution

2 Initialize the searchadius vectorgtep$ usingparameters
3 While(terminationCriterion()

4  SetXnew=mutate(Xbest,steps,parameters)

5 If f{(Xnew)<f(Xbest)
6 Setsteps=adjustStepswhenSuccess(steps,parameters)
7 SetXbest=Xnew
Else
8 Setsteps=adjustStepswhenFailure(steps,parameters)
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a) Foothill problem: the searching process is stuck in a local optimum
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C) Ridge problem: the searching area (dark gray) does not allow improving.

Figure 9 Most common problems found in HillClimbing algorithms (maximization case).
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Hill climbing algorithms are known for being fast on tgeg to the top of the current
hill (local optimum value). However, most of these strategies fail when the mountain have
multiple hills (s many real mountains do). The main readwetsnd this behavior arthe
following (Winston 1992)

1 The foothill problem: the optimizer gets stuck in a local optimuwalue

(frequently, thehill where the climber started)

1 The plateau problem:the optimizer gets stuck in flat surfaces with some sharp

peaks.

1 The ridge problem: the optimizer gets stuck because the directiaih® ascent is

not within the set of possible search directions.

You can find a graphical description of these problems in Figure 9

7.2 Our Algorithm

SAC is a simple singhpoint optimizer. Its implementation is smaller than most of the
evolutionary algorthms, while maintaining competitive performance. Algorithmsthows
thealgorithm for SAC fminimizationcasg. The general ideashind the algorithm are the
following:

1. Increase the search radius when improvimgrromotes a better exploration of
the sarch space.

2. Reduce the search radius when failing allows a faster exploration of the
current hill.

3. Restart when failing too mucht prevents getting stuck in local optimum
values

Figure 10shows a graphicaxample of SAC main behaviors.

SAC requirs configuration of two user parameteffiese parameters allow adjusting
the kind of search behavior. The two user parameters are the following

1 Base step sizesB{[0.0,0.5]). B is the initial and also the maximum possible

search radius. It represents a proportion of thele/search space. SoBx0.5
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value is equivalent to half the search space, in which case the algorithm has the
possibility of going to any poinh the searclspace. A value gréar than0.5 will
encourage exploration for a longer time and could transform SAC into a random
searchHence, greater values of B encourage more exploration of the search space
and slower convergence while lower valuesccemage a hitclimbing like
behavior.

1 Maximum consecutive errorf¢0). R indicates the maximum consecutive errors
necessary to restart the searching process. Very sma#ésvalfR could avoid
convergence in a preciseaseh situation. Long values & could provoke SAC
gets stuck for a long time in a local optimum valAezero value will turn SAC
into a hilkclimbing like algorithm.

SAC searche by performing explorations in random dimension sub4gkis feature

allows SAC to overcome the aforemengdmidge problem SAC uses adaptive step sizes

for each dimension of the problery,(j=1,€ , D). Theseb step sizes are the key of SAC
exploration process. SAC adjusts them accordingly to the current success/failure state of
the search:

1 b values become gater when improving the current solution, encouraging
exploration of the seeh space (see line 17 on Algorithm 4

1 b values became smaller when failing, encouraging expboraif nearby areas
(see line 24n Algorithm 4).

In SAC, the search space is cented at the begning andthe end of all problem
dimensions. Hence, if SAC tries to explore outside the upper limit, it will explore a valid
region near the lower limit, and vice versa. SAC keeps track of the caomsecut
unsuccessful explorationgegtart on Algorithm 4) to avoid premature convergence
(foothill problem) and optimizing in almost flat daces (plateau problem). Wheestart
reaches the usatefined limit R), the stepsizes and the current position are resthrias

seen in line 2@&n Algorithm 4.
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Algorithm 4 Algorithm for SAC (minimization case).

1 SetXasarandom initial pointXbest=Xas the bestnown solution andestart=0;
2 Setbh=B, | =dstheé initial stepsizes
3 For(@=1To MaxFe3

5 Setd h

6 If(flipjPs) , j 91, é, D

7 O=X;+rndreal(-bj,B)*x (up-low);

8 If(O;<low;)

9 SetOi=low; + (O;-up);

10 If(O;>up))

11 SetO=up; - (low-0O);

13 Else

14 O=X;;

15 If f(O)<f(X)

16 Setrestart=0,

17 Setb=rndreal(ly;,B) for all j dimensions wher&®; X;;
18 SetX=0

19 If(f(O)<f(Xbest)

20 SetXbest=Q

21 Else

22 Setrestart=restart+1,

23 If(restart<R)

24 Set® for all j dimensions wher®; i ;X
25 Else

26 Setrestat=0, X=0 andb=B;, j D1, é
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a) SAC could search in any dimension subset with a maximum radiys of b

b) When failing (white dot) SAC decreases the search space

¢) Restart occurs aftd consecutive failure$lease note that search space is consideratected

at theextremes

d) SAC increases the search space when improving

Figure 10 SAC main behaviors (minimization case).
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