

INSTITUTO POLITÉCNICO NACIONAL

CENTRO DE INVESTIGACIÓN EN COMPUTACIÓN
LABORATORIO DE LENGUAJE NATURAL Y

PROCESAMIENTO DE TEXTO

Word sense disambiguation

through associative dictionaries

TESIS QUE PRESENTA

M. en C. Francisco Viveros Jiménez

PARA OBTENER EL GRADO DE

DOCTOR EN CIENCIAS DE LA COMPUTACIÓN

DIRECTORES:

Dr. Alexander Gelbukh

Dr. Grigori Sidorov

México, D. F., Junio 2014

-ii -

-iii -

-iv-

Resumen .

a desambiguación de sentidos es una tarea útil para el procesamiento del Lenguaje

Natural. Existen muchos métodos para la desambiguación de sentidos, pero a la fecha

no se ha encontrado una solución perfecta. En este trabajo proponemos tres mejoras al

proceso de desambiguación que son aplicados a varios métodos del estado del arte con

buenos resultados.

Las mejoras consisten en lo siguiente:

1. Filtrar algunas palabras del contexto. Las palabras que se toman del contexto deben

ser: únicas, diferentes a la palabra objetivo y útiles para la desambiguación

2. Usar coocurrencias extraídas automáticamente. Agregamos a las definiciones de las

acepciones las palabras que coocurren en los textos con las palabras de las definiciones

originales.

3. Identificar las palabras que se resolverán exitosamente. Las palabras que tienen un

sentido por discurso se resuelven exitosamente por muchos métodos. Estás palabras

representan la mitad del total a resolver.

Usted encontrará en cada capítulo de esta tesis una explicación detallada sobre el por

qué y el cómo del funcionamiento de nuestras mejoras. También encontrará experimentos

que confirman que estas mejoras son combinables entre sí y que llevan a algunos

algoritmos a alcanzar una precisión cercana a la de las personas.

L

-v-

Abstract .

he Simplified Lesk Algorithm is frequently employed for word sense disambiguation.

It disambiguates through the intersection of a set of dictionary definitions (senses)

and a set of words extracted of the current context (window). However, the Simplified Lesk

Algorithm has a low performance. This work shows some improvements for increasing this

(and some other knowledge-based methodsô performance).

We propose the following changes:

1. Changing the window selection procedure. Window selection must: (1) search in the

whole document instead of the words around the target word, (2) exclude duplicates and

the target word from the window, and, (3) include words that lead to an overlap with

any sense of the target word.

2. Extending sense definitions with co-occurring words. We add to the sense

definitions words that co-occur with those words that are in the original sense

definitions.

3. Dsiambiguating only domain words. We exclude non-domain (mostly functional or

too general) words from consideration, boosting precision at the expense of somewhat

lower reall.

Our work presents experiments for each proposed modification working separately,

and, finally, a demonstration that confirms that all these modifications can work together

for further performance improvement. Then, we test the integration of our modifications

with some other dictionary-based methods. All experiments were carried out on Senseval-2

and Senseval-3 English-All -Words test sets.

T

-vi-

TABLE OF CONTENTS

Resumen . iv

Abstract . v

Glossary . xi

Chapter 1. Introduction 13

1.1 Word Sense Disambiguation (WSD) 14

1.2 Scope 14

1.3 Main Contributions 15

1.4 Methodology 16

1.5 Organization of the document 17

Chapter 2. State of the Art 19

2.1 Difficulties of WSD 20

2.2 Measuring Performance of WSD 22

2.3 Machine Learning for WSD 23

2.4 Influence of the back-off strategy 24

Chapter 3. Framework 27

3.1 Components of a Bag-of-Words WSD System 28

3.2 Selected WSD Algorithms 29

Chapter 4. Our Window Selection Procedure 35

4.1 State of the Art in Common Window Selection Procedures 36

4.2 Our Window Selection Procedure 42

4.3 Performance Analysis of Our Window Selection Procedure 43

Chapter 5. Using One Sense per Discourse for Disambiguating Domain Words 49

-vii -

5.1 State of the Art in the Use of One Sense per Discourse Heuristic 50

5.2 Our Intended Use of One Sense per Discourse Heuristic 51

5.3 Performance Analysis 53

Chapter 6. Using Co-Occurring Words for Improving WSD 57

6.1 State-of-the-Art Practices for Extending Glosses 58

6.2 Using Co-occurring Words for Extending Glosses 58

6.3 Performance Analysis 60

6.4 Integrating All of Our Modifications 61

Chapter 7. Integration with the Original Lesk Algorithm 63

7.1 State of the Art: Hill-Climbing Like Algorithms 64

7.2 Our Algorithm 67

7.3 Analysis of Test Results 71

Chapter 8. Conclusions 75

References . 77

Appendix . 83

1 Usage of the API 83

2 Structure of the API 85

-viii -

LIST OF FIGURES

Figure 1 Sample semantic network for the first sense of the noun game 23

Figure 2 BoW model WSD process .. 29

Figure 3 Sample graph built on the set of possible labels (shaded nodes) for a

sequence of four words (white nodes).Label dependencies are

indicated as edge weights. Scores computed by the graph-based

algorithm are shown in brackets, next to each label. ... 32

Figure 4 Overlap count observed with different window sizes in Senseval-2 (left)

and Senseval-3 (right) test sets. ... 38

Figure 5 Average number of senses with an overlap>0 for each attempted word

in Senseval-2 and Senseval-3 test sets ... 45

Figure 6 Probability of having the correct sense among the answers. 45

Figure 7 F1-measure of dictionary-based methods alone and combined with the

window selection procedures. ... 47

Figure 8 Precision/coverage graph for the Simplified Lesk, Graph Indegree and

Lesk algorithms observed on Senseval 2 test set. We used different

window sizes (ranging from 1 to the whole text). Algorithms

disambiguating just the OSD words (squares) overcome the baselines

(dotted lines) and its original performance (triangles). 55

Figure 9 Most common problems found in Hill-Climbing algorithms

(maximization case). .. 66

Figure 10 SAC main behaviors (minimization case). ... 70

-ix-

LIST OF T ABLE S

Table 1 Senses of the noun paper extracted from WordNet .. 21

Table 2 Performance of the Simplified Lesk Algorithm with and without a back-

off strategy. Tests were made with a window size of 4. 25

Table 3 Performance obtained by the Simplified Lesk Algorithm with different

window sizes (N) and no back-off strategy. A wider window increases

F1 measure by increasing recall. ... 36

Table 4 Sample overlapping words between the window and the correct sense

extracted from Senseval-2 test set with four words and the whole

document as a window. ... 37

Table 5 Top 10 words used for making decisions. Tests were made with the

Simplified Lesk Algorithm using 4 words and whole document

windows. .. 39

Table 6 F1 measure obtained by using Simplified Lesk Algorithm with different

window sizes and most frequent sense back-off. A wider window

decreases integration with the most frequent sense back-off strategy. 40

Table 7 Performance of the Simplified Lesk Algorithm with and without

duplicates in the window. Tests were made by using the whole

document as window. .. 41

Table 8 First five definitions of the word bellN. .. 41

Table 9 Performance of the Simplified Lesk Algorithm with and without the

target word in the window. Test were made by using the whole

document as window. .. 41

Table 10 Performance of the Simplified Lesk Algorithm using three strategies of

the context window selection. ... 43

Table 11 Comparisons of the proposed modifications and their combination. 44

Table 12 Comparison of the improved Simplified Lesk Algorithm with other

dictionary-based algorithms. ... 46

Table 13 Average words discarded of each class. ... 51

-x-

Table 14 Definitions that are too similar or too short for WSD systems. 52

Table 15 Test results corresponding to Conceptual Density and Naive Bayes

algorithms observed in Senseval 2 and Senseval 3 competitions. 53

Table 16 Test results corresponding to GETALP system at Semeval 2013

competition. ... 53

Table 17 Performance comparison of some bag of words algorithms. All

methods exhibit a precision boost and coverage lost when solving just

OSD words. FG means forcing one sense per discourse and OSD

means solving OSD words exclusively. .. 54

Table 18 Systems having the highest precision in Senseval 2 and Senseval 3

competitions. ... 54

Table 19 Performance comparison of the Simplified Lesk when using different

gloss extending methods. ... 58

Table 20 Using co-occurring words for extending the gloss is an effective way of

increasing performance.. 60

Table 21 Combining all the gloss extending methods with co-occurring words. 60

Table 22 Comparison of our proposed modifications. .. 61

Table 23 Test functions (Mezura et al. 2006). ... 72

Table 24 Summary of test results for functions with a $D=30$. Average

measures were calculated by function type: unimodal (7 functions),

multimodal (8 functions) and global (15 functions). SAC's global

results have its ranking as a prefix... 73

Table 25 Comparison of the time needed by the Lesk Algorithm when using

different optimizers.. 74

Table 26 Lesk Algorithm with our modifications. .. 74

Table 27 Sample configuration file corresponding to the comparison of graph

indegree, conceptual density, Simplified Lesk and our proposed

modification of Simplified Lesk over Senseval-2 test set. Results will

be stored in results.xls file. .. 84

-xi-

Glossary .

Bag of words Set of lemmas representing a text.

Coverage Measure indicating the amount of words a system disambiguates (100%

coverage means that all words were disambiguated). However, coverage

does not measure the quality of the answers.

Dictionary Database linking a lemma to definitions, samples and semantic data.

Gold standard Set of sample sentences including a list with the correct senses for some

words.

Lemma A word as written in the dictionary.

Lemmatizer A program that transform words into lemmas.

POS tag Tag that tells you the word class. E.G N for Noun, V for Verb and R for

Adverb

Semantic data Data defining relations of a given word. Common semantic data includes

synonyms, antonyms and related terms.

Sense An entry in the dictionary for a given word. Each sense has a definition,

examples, and semantic data.

Word sense disambiguation (WSD) Task consisting of choosing the meaning of a

given word.

-xii -

-13-

Chapter 1. Introduction

Words can have various meanings depending on their contexts, as in ñI am an

excellent bass playerò or in ñThe bass got away from my fishing rodò, the word bass has

two different meanings. Such meanings are usually located as different senses of the words

in dictionaries. Word sense disambiguation (WSD) is the task of choosing automatically an

appropriate sense for a given word (called target word) in a text (document) out of a set of

senses listed in a dictionary (called sense inventory).

This chapter answers the following questions:

¶ What is WSD about?

¶ What is the scope of our work?

¶ What were our contributions?

¶ Why are they important?

¶ How did we reach these contributions?

Introduction

-14-

1.1 Word Sense Disambiguation (WSD)

WSD is a complex task that is not useful by itself. WSD is important because it is a

key task to other natural language processing tools such as:

¶ Machine Translation. Translate ñpensionò from English to any other language. Is it an

ñsmall hotelò or a ñretirement benefitò

¶ Information retrieval. Find all the web pages about ñCATò, is it a ñcompanyò or an

ñanimalò?

¶ Location finding. Find the city of Valencia: Venezuela or Spain?

¶ Question Answering. What is Paul Simonôs position on global water shortages? The

politician or the singer?

¶ Knowledge Acquisition. The ball is made of leather. A spherical object or a dancing

event?

¶ Corpus tagging.

Those tools are often used for assisting people in fully automatic or semi-supervised

ways. The quality and coverage of WSD depends on the goals of the end system. For

example, if you want to create a system that assist you in translating a document for a

language that you already know, the user would be happy with a system that perfectly

translate a few whole sentences and leaves to you the ones that it does not properly

translate. In the other hand, suppose that you do not know the other language at all. It is

preferable to have a system giving you complete translation with a somehow acceptable

quality.

Discussion about quality is important because one of our findings transforms some

WSD systems into high quality/medium coverage systems.

1.2 Scope

Word sense disambiguation methods usually work by extracting information from

different knowledge resources and scoring the senses with these resources through different

Introduction

-15-

means. WSD methods can differ in the way they score a sense, the way they select its target

words, and the way they load the knowledge resources. Generally speaking, if you improve

one of these areas you usually improve several WSD methods sharing the original

procedure. For example, if you have a definition such as:

Drink: ña single serving of a beverage; I asked for a hot drink; likes a drink before

dinnerò1

This definition is rather short for WSD algorithms. We believe it is also a little short

for people learning English. So, if we extend that definition somehow to obtain a better one

such as:

Drink: ñDrinks, or beverages, are liquids specifically prepared for human

consumption. In addition to basic needs, beverages form part of the culture of

human society. Despite the fact that most beverages, including juice, soft

drinks, and carbonated drinks, have some form of water in them; water itself

is often not classified as a beverage, and the word beverage has been

recurrently defined as not referring to water.ò2; ña single serving of a

beverage; I asked for a hot drink; likes a drink before dinnerò;

This new definition is a lot clearer and more useful for WSD algorithms.

This research describes three novel improvements that are usable with several WSD

methods. These improvements add some changes to the target word selection and

knowledge resources loading procedures.

1.3 Main Contributions

We have contributed to WSD and additionally some contributions are usable into

global numeric optimization. The scientific contributions can be summarized as follows:

¶ A novel window selection method.

¶ A procedure for extending definitions with co-occurring words.

1 from WordNet

2 from Wikipedia

Introduction

-16-

¶ A procedure for identifying domain words (as we later confirm they are easier for

WSD).

We also confirmed that our improvements are fully compatible with several bag-of-

word methods including machine learning. Testing confirms that they bring a considerable

performance boost.

We noted that Lesk algorithm take too much time and resources to complete its task.

Therefore, we developed a novel optimization technique that obtains the same results

requiring half of the time. We also tested this novel optimization technique in numerical

optimization with good results.

We have done the following software products:

¶ Java WordNet connector.

¶ Java API for WSD.

¶ Gannu, a library for some NLP tasks.

They are all available in our website http://fviveros.gelbukh.com as free software for

using as specified in the GNU license.

1.4 Methodology

Our research was accomplished by performing the following tasks:

1. Implementation of pre-processing software. This software has the following

capabilities:

a. Loading dictionary data from WordNet.

b. Loading gold standard data in SemCor format.

c. Filtering out non open-class words.

2. Implementation of benchmarking software. This software has the following

capabilities:

a. Measuring performance through precision, recall, coverage and F-

measure.

b. Generating data sheets containing detailed data for behavior analysis.

http://fviveros.gelbukh.com/

Introduction

-17-

c. Comparing with other dictionary-based methods. This SW contains

implementations of several dictionary-based methods.

3. Implementation.

a. Implementing the proposed window selection.

b. Implementing the proposed word filter.

c. Implementing the proposed method for extending bag-of-words.

d. Testing all the aforementioned ideas within the Lesk algorithm.

i. Implementing the proposed optimization heuristic.

4. Analysis of the experimental results.

1.5 Organization of the document

This thesis is organized as following.

Chapter 2 contains basic knowledge for understanding WSD and the current methods that

are being used.

Chapter 3 contains the description of methods and practices used for constructing our

implementation. Also, it contains the description of the WSD methods used

being improved by our proposed methods.

Chapters 4 to 6 contain the description and testing of the three proposed modifications.

However, due to the somehow independent nature of each modification, each

chapter contains each own state of the art, description and analysis subsections.

In this way, the reader does not need to scroll through the document for

understanding some specific contribution.

Chapter 4 contains the description of our window selection method that consists on

looking for words producing overlaps and avoiding the target word and

duplicates.

Chapter 5 shows the description of our filter for selecting easy words. You will confirm

that words having one sense per discourse are easier for WSD methods. Hence,

our filter leads to solve half of the words with good quality (i.e. a precision

above 70%).

Introduction

-18-

Chapter 6 depicts the use of co-occurring words for WSD. You will discover that using

these words for extending the original definitions leads to a good precision

boost (around 10%).

Chapter 7 shows an improvement to Lesk algorithm. We developed a new optimization

heuristic that reduces the exhaustive time needed by the Lesk algorithm. This

heuristic is also useful for global optimization purposes.

Chapter 8 concludes this thesis.

Appendix gives some details about our API.

-19-

Chapter 2. State of the Art

Word sense disambiguation is an open problem. There are many approaches that try to

accomplish it. Approaches range from simple heuristics such as choosing the most frequent

sense to machine learning.

This chapter answers the following questions:

¶ Why is WSD an open problem?

¶ How to measure WSD?

¶ What are supervised WSD methods and how do they work?

¶ What are dictionary-based WSD methods and how do they work?

¶ What is a back-off strategy and how much influence does it have?

State of the art

-20-

2.1 Difficulties of WSD

Researchers have identified the following difficulties for the WSD task:

¶ Discreteness of the senses.

¶ Differences between dictionaries.

¶ Amount of samples and semantic knowledge available.

The amount of samples and semantic knowledge available can be solved by manually

increasing them. However doing it is usually costly and undesirable. So, doing these

automatically or using fewer resources is the normal way of proceeding.

Discreteness of the senses deals with the level of distinction that a sense should have

for considering it a different sense of a word. The concept of word sense is controversial,

causing disagreements among lexicographers around what should be considered a different

word sense and what not. Researchers define two levels of discreteness of the senses:

coarse-grained and fine-grained.

The coarse-grained level deals with homographs. A homograph is a word that shares

the same written form of another word with different meaning. Examples of homographs

are: bass (music instrument/fish), pen (writing instrument/enclosure) and pension

(boarding-house/salary in retirement). Most of the homographs are easily distinguished by

humans. WSD accuracy at the coarse-grained level in English is currently around 90%.

In the other hand, the fine-grained level is difficult even for humans. For example, the

noun paper has seven senses in WordNet 3.1 (Miller 1995), eight senses in Merriam

Webster online and five senses in the Cambridge dictionary. Lexicographers often disagree

in the number of meanings of words (Kilgarriff 1997). In Senseval-2, human annotators

only agreed in 85% of word occurrences (Edmonds 2000). WSD accuracy at the fine-

grained level in English is currently around 65%.

Letôs confirm the difficulty of the fine-grained level with an example. Table 1 shows

the senses for the noun paper extracted from WordNet 3.1. The lexicographers define seven

different senses. However, in our opinion, only the first three senses are necessary. How

many senses do you believe necessary?

State of the art

-21-

Table 1 Senses of the noun paper extracted from WordNet

Sense Definition

1
paper (a material made of cellulose pulp derived mainly from wood or

rags or certain grasses)

2
composition, paper, report, theme (an essay (especially one written as an

assignment)) "he got an A on his composition"

3

newspaper, paper (a daily or weekly publication on folded sheets;

contains news and articles and advertisements) "he read his newspaper at

breakfast"

4
paper (a medium for written communication) "the notion of an office

running without paper is absurd"

5
paper (a scholarly article describing the results of observations or stating

hypotheses) "he has written many scientific papers"

6
newspaper, paper, newspaper publisher (a business firm that publishes

newspapers) "Murdoch owns many newspapers"

7
newspaper, paper (the physical object that is the product of a newspaper

publisher) "when it began to rain he covered his head with a newspaper"

As we stated previously, different dictionaries and thesauruses will provide different

divisions of words into senses. WSD accuracy is tightly coupled to the used dictionary.

Most of the researches choose a particular dictionary disregarding the fact that the selected

dictionary is not perfect. Research results using coarse-grained dictionaries have been much

better than those using fine-grained ones (Navigli et al. 2007, Pradhan et al. 2007).

Most of the WSD research use WordNet as a reference sense inventory for English.

Other sense inventories used are Roget's Thesaurus (Yarowski 1992) and Wikipedia

(Mihalcea 2007).

State of the art

-22-

2.2 Measuring Performance of WSD

The most used metrics for evaluating the performance in WSD are (Navigli 2009):

precision (P), recall (R), coverage (C) and F1-measure (F1) (harmonic combination of

precision and recall). The corresponding equations are the following:

ὖ
ὧέὶὶὩὧὸ ὥὲίύὩὶί ὴὶέὺὭὨὩὨ

ὸέὸὥὰ ὥὲίύὩὶί ὴὶέὺὭὨὩὨ

(1)

Ὑ
ὧέὶὶὩὧὸ ὥὲίύὩὶί ὴὶέὺὭὨὩὨ

ὸέὸὥὰ ὥὲίύὩὶ ὩὼὴὩὧὸὩὨ

(2)

ὅ
ὸέὸὥὰ ὥὲίύὩὶί ὴὶέὺὭὨὩὨ

ὸέὸὥὰ ὥὲίύὩὶ ὩὼὴὩὧὸὩὨ

(3)

Ὂρ
ςὖὙ

ὖ Ὑ

(4)

The most used test sets for English are: Senseval-2 (Cotton et al. 2001), Senseval-3

(Mihalcea and Edmonds 2004), Semeval-2007 (Navigli et al. 2007, Pradhan et al. 2007)

and Semeval-2010 (Agirre et al. 2010).

All tests were carried out using Senseval-2 (Cotton et al. 2001)and Senseval-3

(Mihalcea and Edmonds 2004)test sets. We used WordNet 3.0 as sense repository. Stanford

POS tagger (Toutanova and Manning 2000) was employed for tagging WordNet glosses.

2.2.1 WordNet

WordNet is an English lexical database freely and publicly available for download3.

Open-class words are grouped into sets of synonyms called synsets. Synsets represent

different concepts. WordNet is also a semantic network with semantic and lexical relations

between synsets. Each synset have a short definition called gloss and some samples of its

use. Figure 1 shows a sample semantic network for the first sense of the noun game.

3http://wordnet.princeton.edu/wordnet/download/

State of the art

-23-

Figure 1 Sample semantic network for the first sense of the noun game

WordNet is the most commonly used lexical resource for the WSD task. Also, it has

connectors available in several programming languages for its use.

2.3 Machine Learning for WSD

State-of-the-art approaches are commonly classified into two classes: supervised

(machine learning) and dictionary-based. Supervised approaches usually see the WSD task

as a classification problem. Classification is the problem of selecting a category for a new

observation. Classification problem has the following elements:

1. Categories. Categories are the possible classes in which an observation should

be assigned. For example, when classifying e-mails you will have the spam and

good categories. Categories are pre-defined before defining everything else.

2. Features. Features are the values used for determining is an observation

belongs to a class or another. For example, when classifying e-mails you can

use the presence of certain words or phrases like you have won for deciding if a

new observation belongs to a class or not. Features can have any type of value

even categorical values.

3. Training data . The training corpus is a set of examples used for the algorithm

for learning how to classify new instances.

game

N1

A contest with rulesé. You need four peopleé.

curlingN1

bowlingN1

é

defendingA1

é

play_outV1

activityN1

Samples

hyponyms Domain

term

Gloss

hypernym

State of the art

-24-

In WSD, the classes are the senses extracted from the dictionary; the features are

words in the context; and, the training data is a manually tagged corpus such as SemCor.

Dictionary-based approaches mainly rely on knowledge drawn from sense repository and/or

raw or tagged corpora.

2.3.1 Dictionary-Based Approaches

Dictionary based approaches are heuristics that use dictionary definitions and/or

different resources for WSD. Common samples of other resources are the following:

¶ Samples

¶ Semantic networks

¶ Thesaurus classification systems

¶ Raw corpus

¶ Tagged corpus

¶ Web search engine counts

The simplest approaches only use dictionary definitions making them essentially fast.

Take for example the first sense heuristic. This heuristic works by selecting the first sense

in the dictionary. It has a performance of around 60% for all words, but in some domains

and dictionaries achieves a performance of around 80%. What can be simpler and fast than

selecting the first sense in the dictionary? Nothing!

All of these approaches use data from the source dictionary. Many of these approaches

can be tweaked for using other resources improving their performance. They are often seen

as baseline methods or cheap solutions in practical applications.

2.4 Influence of the back-off strategy

A back-off strategy provides an answer in cases when the algorithm cannot make a

decision. In practice, WSD systems are complemented by a back-off strategy. Usually,

simple heuristics are used as back-off strategies like the following:

¶ Most Frequent Sense (MFS). Selects the most frequent sense in a corpus

State of the art

-25-

¶ First Sense. Chooses the first sense in the list of senses of the sense

repository

¶ Random Sense. Selects the answer randomly

Note that in case of some algorithms like the Simplified Lesk Algorithm using a back-

off strategy itôs important because they have low recall , as shown in Table 2. In this table

(and further in this thesis), P stands for precision, R for recall, F1 for F1-measure.All these

values are always presented as percentages.

Table 2 Performance of the Simplified Lesk Algorithm with and without a back-off strategy.

Tests were made with a window size of 4.

Back-off

strategy

Senseval-2 Senseval-3

P R F1 P R F1

None 50.4 7.5 13.1 39.1 13.2 19.7

Most frequent

sense
62.8 62.8 62.8 57.2 57.2 57.2

Table 2 shows that the Simplified Lesk Algorithm has rather low precision and very

low recall working by itself. Low recall values give us a hint for encouraging this research:

there are few overlaps between the words near the target word and the target word's

dictionary definitions (WordNet glosses and samples in our case).

The usage of a back-off algorithm is important for practical applications, but it does

not allow observing the real behavior of a WSD algorithm. For this reason, we perform the

comparison of algorithms with and without back-off strategy, because otherwise it remains

unclear when the decision is made by the algorithm itself and when by the back-off

algorithm.

-27-

Chapter 3. Framework

There are many methods for word sense disambiguation. However, dictionary-based

methods are easier to understand and have a much simpler implementation. They can be

tweaked for using other resources such as corpus, and, as you will find in further sections,

they can obtain a performance that rivals the performance of machine learning approaches.

In this chapter you will find

¶ A description of a WSD system.

¶ A description of some selected WSD algorithms

Framework

-28-

3.1 Components of a Bag-of-Words WSD System

The bag-of-words (BoW) model is frequently used in natural language processing. It

defines a text as an unordered set of words. For the BoW model, grammar and word order

are irrelevant. For example, the text ñI am playing the bassò could form the following bag

of words: ὸ ὦὥίίȟὍȟὥάȟὴὰὥώὭὲὫȟὸὬὩ. This thesis is focused just in BoW model

approaches.

BoW model approaches usually involve two processes: lemmatization and part -of-

speech tagging. Lemmatization is ñthe process of grouping together the different inflected

forms of a word so they can be analyzed as a single item.ò4 Therefore, a lemmatizer is an

algorithmic tool that returns the lemma (dictionary form) of a target word. Part-of-speech

tagging is the process of adding the part of speech label to words. A part of speech or word

class is a linguistic category of words commonly defined by its syntactic behavior. There

exist two types of word classes: open and closed. Open word classes acquire new members

frequently with the past of the time. There are four open classes in English language:

nouns, verbs, adjectives, and adverbs. Closed word classes do not acquire new members.

Most of the BoW model systems are based on the process depicted in Figure 2. The

first stage consists in pre-processing the target text. It consists in transforming a raw text

like ñI am playing the bass with my friendsò into the set: ὸ

Ὅ ȟὦὩ ȟὴὰὥώ ȟὸὬὩ ȟὦὥίί ȟύὭὸὬ ȟάώ ΑȟὪὶὭὩὲὨ . This set contains

lemmatized words with part-of-speech tags (POS tags).

Loading the dictionary/corpus data is the second stage. This stage consists in retrieving

all the corresponding definitions, samples, and semantic data for each target word. Some

researchers suggest reading samples from sources like WordNet and SemCor corpus5.

Samples and definitions are lemmatized and POS tagged too.

Finally, the last stage consists on assigning senses to all open class words in the

document. Usually, BoW model approaches use context data and knowledge data for

weighting which sense should be selected.

4Collins English Dictionary, entry for "lemmatizeò
5http://www.cse.unt.edu/~rada/downloads.html#semcor

Framework

-29-

Figure 2 BoW model WSD process

3.2 Selected WSD Algorithms

We have selected some WSD algorithms for testing. They were selected because itôs

easy implementation and flexibility. The selected algorithms were the following:

¶ Lesk algorithm

¶ Simplified Lesk algorithm

¶ Graph In Degree

¶ First Sense

We also performed tests with some other algorithms (including conceptual density,

lexical chains and machine learning) when available. In the following subsections you will

found a detailed description of each one of the selected algorithms.

3.2.1 Lesk Algorithm

The original Lesk algorithm (Lesk 1986) is a dictionary-based approach that

disambiguates by calculating the overlaps between all the possible senses of every word in

a sentence. It chooses a set of senses having the greatest mutual overlap (one per

word).Lesk algorithm sees WSD as a complex combinatorial optimization problem. A

Disambiguate all open class words

Retrieve context words
Retrieve BoW of the target

word senses
Disambiguate the target word

Sense Inventory preparation

Read the sense
inventory/samples

POS tagging of the sense
definitions/samples

Lemmatization of
definitions/samples

Text preparation

Read the target text POS tagging of the text Lemmatization of the text

Framework

-30-

major problem of this algorithm is the amount of resources and time needed. Its complexity

is exponential by the number of words per sentence (Gelbukh et al. 2005). There are many

improvements of the original Lesk algorithm ranging from simply using different

optimization heuristics to involving additional resources (Vasilescu et al. 2004, Gelbulkh et

al. 2005, Banerjee and Pedersen 2002), but the problem of its prohibitively high complexity

remains unsolved.

Let us disambiguate ñpine coneò with the following dictionary definitions (Lesk 1986):

Pine:

1) Kinds of evergreen tree with needle-shaped leaves

2) Waste away through sorrow or illness

Cone:

1) Solid body which narrows to a point

2) Something of this shape whether solid or hollow

3) Fruit of certain evergreen trees

The resulting intersections of open class words are:

Pine#1 Ẕ Cone#1 = 0

Pine#1 Ẕ Cone#2 = 0

Pine#1 Ẕ Cone#3 = 2

Pine#2 Ẕ Cone#1 = 0

Pine#2 Ẕ Cone#2 = 0

Pine#2 Ẕ Cone#3 = 0

Lesk algorithm will select Pine#1 and Cone#3 as its answers.

3.2.2 Simplified Lesk Algorithm

The Simplified Lesk Algorithm (Kilgarriff and Rosenzweig 2000) has lineal

complexity, while retaining performance comparable with the original Lesk algorithm. It is

widely used for research and practical purposes because of its high speed, simplicity, and

relatively acceptable performance (Vasilescu et al. 2004, Mihalcea 2006). This algorithm

disambiguates each word in the document independently. Given a word, the algorithm

Framework

-31-

chooses the sense having the greatest overlap between its dictionary definition and its

context (Mihalcea 2006); see Algorithm 1.

Algorithm 1 Simplifi ed Lesk Algorithm

1 For each word W of the document

2 Fill the window Win with N words around W

3 For each sense si of W

4 Compute ὕὺὩὶὰὥὴίȟὡὭὲ
5 Select the sense argmaxiὕὺὩὶὰὥὴίȟὡὭὲ for W and use

 the most frequent sense criterion in case of tie

3.2.3 Graph-Based Approaches

Graph based approaches work by modeling word sense dependencies in text as graphs

and using graph centrality algorithms for disambiguation. The algorithm can be explained

as following: given a sequence of words 7 ×ȟ×ȟȢȢȢȟ× ,each word ×will have a

corresponding admissible labels (senses) , ÌȟÌȟȢȢȢȟÌ .The label graph G =

(V,E) will have a vertex (having a centrality score) v ɴV for every possible label and an

edge (having a similarity score) for connecting them to vertices of other words. Hence, the

graph will depict relations and degree of relationship that each sense has. The sense

(vertex) having the greatest centrality score will be selected as the answer. Figure 3 shows

an example of a graphical structure for a sequence of four words. Note that the graph does

not have to be fully connected, as not all label pairs can be related by a dependency.

For instance, for the graph drawn in Figure 3, the word w1 will be assigned with label

ὰ , since the score associated with this label (1.39) is the maximum among the scores

assigned to all admissible labels associated with this word.

Graph based algorithms take into account information drawn from the entire graph.

They depict relationships among all the words in a sequence. This makes them superior to

other approaches that rely only on local information individually derived for each word.

Semantic similarity measures are used for weighting the edges. They quantify the

degree to which two words are semantically related using information drawn from semantic

networks ïsee e.g. (Budanitsky and Hirst 2001) for an overview. There are six measures

Framework

-32-

found to work well on the WordNet hierarchy: Leacock & Chodorow, Lesk, Wu & Palmer,

Resnik, Lin, and Jiang & Conrath (Leacock and Chodorow 1998; Wu and Palmer 1994;

Resnik 1995; Lin 1998; Jiang and Conrath 1997). All these measures assume as input a pair

of concepts, and return a value indicating their semantic relatedness. These measures have

good performance in other language processing applications and a relatively high

computational efficiency.

Figure 3 Sample graph built on the set of possible labels (shaded nodes) for a sequence of four

words (white nodes).Label dependencies are indicated as edge weights. Scores computed by

the graph-based algorithm are shown in brackets, next to each label.

Centrality measures give us a hint of the importance of a vertex in a graph. So, they

will tell the algorithm how influential a sense is. There are four centrality measures:

indegree, closeness, betweenness and PageRank.

In (Sinha and Mihalcea 2007) there are tests with different semantic similarity

measures for weighting edges and with several centrality algorithms for scoring vertices.

We decided to use the best performing measures: indegree centrality algorithm and Lesk

(intersection) as a similarity measure. The Lesk similarity of two concepts is defined as a

function of the overlap between the corresponding definitions. The application of the Lesk

similarity measure is not limited to semantic networks and it can be used in conjunction

Framework

-33-

with any dictionary that provides word definitions. The Indegree measure is defined as

follows:

ὍὲὨὩὫὶὩὩὠ ὡ ȟ

ȟ ᶰ

(5)

3.2.4 Lexical Chains

A lexical chain is a sequence of related words in writing, spanning short (adjacent

words or sentences) or long distances (entire text). A chain is independent of the

grammatical structure of the text: it is a list of words. Chains try to capture a portion of the

cohesive structure of the text. A lexical chain can provide a context for the resolution of an

ambiguous term and enable identification of the concept that the term represents. In later

sections, we used Jaccard score between the glosses of words in the text as proposed in

(Vasilescu et al. 2004).

ὐίὩὲίὩȟίὩὲίὩ
ίὩὲίὩ᷊ίὩὲίὩ

ίὩὲίὩ᷾ίὩὲίὩ

(6)

Examples of lexical chains are the following:

Rome Ÿ capital Ÿ city Ÿ inhabitant

Wikipedia Ÿ resource Ÿ web

3.2.5 Conceptual Density

Conceptual density is based on the conceptual distance concept. Conceptual distance

tries to provide a basis for measuring closeness in meaning among words, taking as

reference a structured hierarchical net, such as WordNet. Conceptual distance between two

concepts is defined in (Rada et al. 1989) as the length of the shortest path that connects the

concepts in a hierarchical semantic network.

Conceptual density uses the following:

¶ The length of the shortest path that connects the concepts involved: shorter paths mean

that the concepts are closely related.

Framework

-34-

¶ The depth in the hierarchy: concepts in a deeper part of the hierarchy should be ranked

closer.

¶ The density of concepts in the hierarchy: concepts in a dense part of the hierarchy are

relatively closer than those in a sparser region.

Given a concept c, at the top of a sub hierarchy, and given a mean number of

hyponyms per node (nhyp), the Conceptual Density for c when its sub hierarchy contains a

number m (marks) of senses of the words to disambiguate is given by the formula below:

ὅὈὧȟά
В ὲὬώὴ

Ȣ

ὨὩίὧὩὲὨὥὲὸί

(6)

Conceptual density disambiguation consists in looking for the maximum sense tree

extracted from the senses of nouns of the target text.

-35-

Chapter 4. Our Window Selection

Procedure

This section describes the modifications for the proposed window selection that

improves the Simplified Lesk Algorithm's performance. Each subsection describes one

proposed modification. We introduce each modification separately for a more clear

description.

Our Window Selection Procedure

-36-

4.1 State of the Art in Common Window Selection Procedures

Window selection is the process of selecting words from the text containing the target

word. These words are used for weighting the possible senses along with the knowledge

data extracted from the dictionary and other resources. The most common practice is to

select all the words in the sentence containing the target word. However, you will find out

that this is not the best practice for selecting a context window. This section contains an

analysis of the effects of changing the window size (number of words in the window), using

duplicates, and including the target word.

4.1.1 Effects of the Window Size

It is usually assumed that the adequate window size is the sentence. However, what is

the reason for this? Smaller window sizes usually lead to higher precision, while bigger

window sizes lead to higher coverage at the cost of some precision. In addition, a higher

precision/low coverage system is desirable when using back-off chains as frequently used

in real life.

Now, let us analyze the effects of the window size on the Simplified Lesk algorithm

for illustrating this behavior. Using a wider window allows the algorithm to try

disambiguating more words, therefore its recall increases as shown in Table 3.

Table 3 Performance obtained by the Simplified Lesk Algorithm with different window sizes

(N) and no back-off strategy. A wider window increases F1 measure by increasing recall.

Window size

(N)

Senseval-2 Senseval-3

P R F1 P R F1

4 50.4 7.5 13.1 39.1 13.2 19.7

16 45.8 18.9 26.7 36.3 24.6 29.3

64 45.0 32.3 37.6 33.8 28.8 31.1

256 44.6 40.4 42.4 33.5 30.7 32.0

Whole document 43.6 41.7 42.6 32.4 30.9 31.7

Our Window Selection Procedure

-37-

We performed some testing for observing the changes linked to increasing the window

size. Table 4 shows some sample overlapping words between the window and the correct

sense when using different window sizes. We observed that using the whole document as a

window increases the overlaps with the correct sense. Please observe that the new words

producing overlaps can be considered domain words (E.G. sundayN, ruleN, worshipN,

followV ,serviceN).

Table 4 Sample overlapping words between the window and the correct sense extracted from

Senseval-2 test set with four words and the whole document as a window.

Target word 4 words window Whole document window

Art1 () (artN, workN)

Bell1 (soundN) (soundN, ringingN, makeV)

Service3 () (sundayN, ruleN, worshipN, followV ,serviceN)

Teach1 () (knowledgeN, frenchJ)

Child2 () (humanJ, childN, collegeN, kidN)

We can conclude that words needed for WSD exists in the document, but are not

visible when using a small window. A greater window leads to better recall, though

precision is decreased slightly. So, how can we retain the precision while increasing the

coverage?

Now, let us take a look at Figure 4. We can observe that overlap counts become bigger

with greater window sizes while the number of words does not grow that much. Increasing

the window size increases the influence of common words. Excluding common words such

as be, do or not is not the proper solution. These words often mislead WSD algorithms into

choosing wrong senses, but they are still are necessary for disambiguating some words.

Our Window Selection Procedure

-38-

Figure 4 Overlap count observed with different window sizes in Senseval-2 (left) and

Senseval-3 (right) test sets.

 Evidence in Figure 4 does not confirm that words producing such big overlap counts

are common words (although it sounds like the most logical explanation). We need to

measure of the commonness of a word. We selected the dictionary-based version of IDF

measure (IDFD) (Kilgarriff and Rosenzweig 2000). IDFD is calculated using the following

equation:

ὍὈὊ ύ ὰέὫ
ȿὫȡύᶰὫȿ

Ὃ

(7)

where G is the total number of glosses in the dictionary and ȿὫȡύᶰὫȿ is the number of

glosses where the lemma w appears. Words that appear too often in the dictionary such as

be, have or not have low IDFD values. For example, we observed that these three words

have an IDFD<3.5 while the average value is IDFD=10.7.

Table 5 shows us the words producing more overlaps. We can confirm that the

Simplified Lesk Algorithm often uses words like be, have and not for making decisions.

Also, you can observe that the word be have a huge influence in its disambiguation process.

Our Window Selection Procedure

-39-

Table 5 Top 10 words used for making decisions. Tests were made with the Simplified Lesk

Algorithm using 4 words and whole document windows.

4 words window

Word
Senseval-2

Word
Senseval-3

IDF D Decisions made IDF D Decisions made

notR 3.2 35 beV 1.5 379

otherJ 4.4 12 haveV 2.4 25

geneN 7.0 10 manN 5.0 13

bellN 7.3 10 doV 4.3 12

cellN 5.5 7 timeN 4.5 11

childN 4.8 7 takeV 4.7 11

studyN 5.6 7 makeV 3.3 10

newJ 5.0 6 getV 5.4 8

makeV 3.3 6 policyN 6.5 6

yearN 5.2 6 houseN 5.6 6

Whole document window

Word
Senseval-2

Word
Senseval-3

IDF D Decisions made IDF D Decisions made

notR 3.2 546 beV 1.5 1481

beV 1.5 298 haveV 2.4 322

makeV 3.3 206 makeV 3.3 223

newJ 5.0 164 doV 4.3 169

useV 3.0 147 houseN 4.5 123

otherJ 4.4 126 peopleN 4.7 121

childN 4.8 115 manN 5.0 100

takeV 3.3 110 timeN 4.5 85

personN 3.8 101 stateN 4.4 74

yearN 5.2 100 moneyN 5.2 73

Finally, let us confirm that smaller window sizes lead to a better integration with the

first sense back-off strategy. Bigger window sizes decrease performance when using a

back-off strategy as shown in Table 6. Performance of the first sense heuristic is better than

Our Window Selection Procedure

-40-

the performance of Simplified Lesk algorithm. Therefore, a major participation of the

Simplified Lesk Algorithm will provoke a minor participation of the back-off strategy,

hence, a lower performance. Please remember that the first sense heuristic is already in the

top of its performance and it returns an answer (good or bad) for all words, so, it is best to

use it as back-off strategy or standalone algorithm.

Table 6 F1 measure obtained by using Simplified Lesk Algorithm with different window sizes

and most frequent sense back-off. A wider window decreases integration with the most

frequent sense back-off strategy.

Window size Senseval-2 Senseval-3

4 62.5 56.9

16 59.5 48.9

64 52.9 40.6

256 47.7 35.5

Whole document 43.4 33.9

4.1.2 Effects of Duplicates in the Context Window

In the previous subsection, it was stated that some words produce more than one

overlap. This means that some words appear several times in the text, i.e. their term

frequency (TF) is greater than 1. However, what will happen if we reduce this effect by

removing duplicates in the context window? Table 7 shows the performance of the

Simplified Lesk Algorithm, with and without taking into account TF of words. Removing

duplicates from the window improves precision.

4.1.3 Effects of Including the Target Word in the Context Window

The Simplified Lesk Algorithm sometimes includes the target word in the window.

This will happen when using big window sizes like the whole document. The target word

will surely influence WSD because: (1) definitions often contain the word that they are

describing, and, (2) documents often include some repeated words.

Our Window Selection Procedure

-41-

Table 7 Performance of the Simplified Lesk Algorithm with and without duplicates in the

window. Tests were made by using the whole document as window.

Duplicates
Senseval-2 Senseval-3

P R F1 P R F1

Yes 43.6 41.7 42.6 32.4 30.9 31.7

No 46.5 42.6 44.5 36.4 33.7 35.0

For example, Table 8 contains the first five definitions of the word bellN. We can

observe that senses 3, 4 and 5 include the word bellN. bellN appears 22 times in the first

document of Senseval-2 test set, hence, it will add a 22 overlap count to senses containing it

when using the whole document as window. It will add an overlap count of one to senses

including it even after removing duplicates from the window. The inclusion of the target

word negatively affects performance as seen in Table 9. Therefore, context window should

not include the target word.

Table 8 First five definitions of the word bellN.

Sense Definition

Bell1 A hollow device made of metal that makes a ringing sound when struck

Bell2 A push button at an outer door that gives a ringing or buzzing signal when pushed

Bell3 The sound of a bell being struck

Bell4 (nautical) each of the eight half-hour units of nautical time signaled by strokes of a ship's

bell; eight bells signals 4:00, 8:00, or 12:00 o'clock, ...

Bell5 The shape of a bell

Table 9 Performance of the Simplified Lesk Algorithm with and without the target word in

the window. Test were made by using the whole document as window.

Target word
Senseval-2 Senseval-3

P R F1 P R F1

Yes 43.6 41.7 42.6 32.4 30.9 31.7

No 48.5 46.1 47.3 34.9 33.1 34.0

Our Window Selection Procedure

-42-

4.2 Our Window Selection Procedure

We propose selecting a context window having useful words while avoiding the target

word and repetitions. In the previous subsection, we stated that removing duplicates and

avoiding the target word leads to a performance boost. We also want to add a third filter

and combine all three modifications together. We believe that the whole document is not

needed for WSD. We confirmed in the next sections that algorithms only need few words

from different places of the documents.

For example, the Simplified Lesk Algorithm does not really use all words from the

document, as it was shown in Figure 4. In fact, it used an average of four words when using

the whole document as the context window. Hence, we propose using only these ñusefulò

words as the context window instead of using all words, i.e., instead of the whole

document. In this manner, we filter out words not having overlaps with any sense of the

target word. Algorithm 2 shows the proposed method for extracting these useful words.

Words will be selected from the closest possible context of the target word, but they could

be extracted from any place of the document. Our context window will contain fewer words

sometimes ï this will happen when having small definitions or small documents.

Our Window Selection Procedure

-43-

Algorithm 2 Window construction algorithm that selects only N words that have overlaps.

1 Set i=1

3 Look for a word Wp at i positions to the right of the target word W

4 If Wp exists in any sense of W

5 Add Wp to Win

6 Look for a word Wp at i positions to the left of the target word W

7 If(Wp exists in some sense of W and sizeOf(Win)<N)

8 Add Wp to Win

9 Set i=i+1

4.3 Performance Analysis of Our Window Selection Procedure

Let us look the effect of only using useful words as context window. In Table 10, we

made a comparison between three different context windows: the closest four words, the

whole document and the closest 4 useful words. Using the first four overlapping words as

the window gives better results than the other two window selection strategies.

Table 10 Performance of the Simplified Lesk Algorithm using three strategies of the context

window selection.

Window

selection

Senseval-2 Senseval-3

P R F1 P R F1

4 words 50.4 7.5 13.1 39.1 13.2 19.7

Whole document 43.6 41.7 42.6 32.4 30.9 31.7

4 overlapping 48.0 45.9 46.9 39.1 37.4 38.2

The performance is further improved if we filter out duplicates and the target word as

shown in Table 11. We detected the following behaviors:

¶ The proposed window selection procedure allows the algorithm to discriminate

more wrong senses as shown in Figure 5.

Our Window Selection Procedure

-44-

¶ The proposed window selection procedure allows the algorithm to address the

proper sense with a precision competitive to state-of-the-art systems. However,

wrong senses had better scores that the correct sense many times.

This means that the algorithm can be used for telling for discarding half of the senses

(wrong senses) with a good precision.

Table 11 Comparisons of the proposed modifications and their combination.

Window

selection

Senseval-2 Senseval-3

P R F1 P R F1

4 words

(baseline)
50.4 7.5 13.1 39.1 13.2 19.7

Whole

document
43.6 41.7 42.6 32.4 30.9 31.7

Removing

repetitions
46.5 42.6 44.5 36.4 33.7 35.0

Excluding the

target word
48.5 46.1 47.3 34.9 33.1 34.0

4 overlapping

words
48.0 45.9 46.9 39.1 37.4 38.2

All proposed

modifications
50.2 47.9 49.0 39.4 37.5 38.4

4.3.1 Integration with other Dictionary -Based Methods

First, let us confirm that our window selection makes the Simplified Lesk Algorithm

competitive against other dictionary-based methods that are better than the Simplified Lesk

Algorithm. The selected dictionary-based methods were:

¶ Conceptual density (Agirre and Rigau 1996).

¶ Graph indegree (Sinha and Mihalcea 2007).

¶ The Simplified Lesk Algorithm with a lexical chain window (Vasilescu et al. 2004).

This modified version of the Simplified Lesk Algorithm considers only words that

Our Window Selection Procedure

-45-

form a lexical chain with the target word in the window. It outperforms the original

version of the Simplified Lesk Algorithm.

Figure 5 Average number of senses with an overlap>0 for each attempted word in Senseval-2

and Senseval-3 test sets

Figure 6 Probability of having the correct sense among the answers.

Our Window Selection Procedure

-46-

The improved Simplified Lesk Algorithm outperforms other dictionary-based methods like

conceptual density and graph indegree as shown in Table 12. It also outperforms the lexical

chain window.

Table 12 Comparison of the improved Simplified Lesk Algorithm with other dictionary-based

algorithms.

WSD method
Senseval-2 Senseval-3

P R F1 P R F1

Simplified Lesk

Algorithm

(baseline)
50.4 7.5 13.1 39.1 13.2 19.7

Conceptual

density
25.1 4.2 7.2 25.6 5.8 9.5

SLA with

Lexical chain

window

48.6 25.6 33.4 52.6 27.8 36.4

Graph indegree 45.4 37.2 40.1 35.1 30.4 32.6

Improved

Simplified Lesk

Algorithm

50.2 47.9 49.0 39.4 37.5 38.4

Now, let us check if the proposed modifications can be applied in the selected

dictionary-based methods. Figure 7 shows F1-measure of the afore-mentioned dictionary-

based methods alone and combined with the proposed window selection strategies. It can

be seen that the proposed strategies work well with the conceptual density and the graph

indegree approaches. However, they cannot be used for the lexical chain window

algorithm.

Our Window Selection Procedure

-47-

Figure 7 F1-measure of dictionary-based methods alone and combined with the window

selection procedures.

-49-

Chapter 5. Using One Sense per Discourse

for Disambiguating Domain Words

We discovered that words known to have one sense per discourse (OSD words) can be

disambiguated easily. Coincidently, OSD words have its sense being defined by the

document domain rather than the sentence. You will find in this chapter that most of the

current methods have a precision of around 75% in the domain words and a low precision

in local words (a maximum of 50%).

Using OSD for Disambiguating Domain Words

-50-

5.1 State of the Art in the Use of One Sense per Discourse

Heuristic

The one sense per discourse condition (OSD) tells us that all instances of a word will

have a single meaning through the whole document (Gale et al. 1991). This rule has a

probability of above 90% in homographs and a maximum of 70% in other words (Martínez

and Agirre 2000). For example, the word wolf has more than 120 senses in Wikipedia, see

http://en.wikipedia.org/wiki/Wolf_(disambiguation). However, these senses can be

clustered into the following nine categories: animals (17 senses), people (1 sense), sports

teams (43 senses), places (14 senses), vehicles (9 senses), music (24 senses), radio and

television stations (11 senses), titles (13 senses) and others (4 senses). Supposing we are

disambiguating the following sentence:

ñNow the wolves have taken a three point lead.ò

It is fairly easy to discern that wolves is referring to a sports team, but it is really hard

to tell which one ïeven for most of us who doesnôt know about a particular sport.

OSD assumption has been used for WSD. WSD systems will do the following when

forcing the OSD assumption:

¶ Context window will be filled with words extracted from all the sentences

containing the target word instead of just using the current sentence.

¶ The selected sense will be assigned to all instances of the target word.

Forcing OSD assumption often increases recall of WSD systems. The OSD

assumption is implicitly used when using the whole text as context window.

In addition, OSD was used for disambiguating some selected nouns in with some

success (Yarowsky 1995). It is relevant to note that the words were disambiguated by using

domain information, so, that give us a hint of what to do.

Using OSD for Disambiguating Domain Words

-51-

5.2 Our Intended Use of One Sense per Discourse Heuristic

We give OSD rule a different role than unifying answers and using extended context

windows. We have discovered that the selected dictionary-based methods have trouble

solving words known for not having OSD. We propose that methods should avoid

disambiguating these words. We used the SemCor corpus (Miller et al. 1994) for

calculating OSD. A word is considered to have OSD when:

¶ It appears in the corpus with a maximum of one sense assigned per document.

¶ It does not exist in the corpus.

Words of all classes will be filtered out (as seen in Table 13) on the selected test sets.

The amount of words filtered out range from 14% to 58%. Most of the OSD words can be

considered domain words, E.G. scientist, cell, cancer, strategy and treatment.

Table 13 Average words discarded of each class.

 Noun Verb Adjective Adverb

Senseval 2 39% 74% 43% 50%

Senseval 3 47% 81% 38% 0%

On the other hand, words not having OSD have some of these traits:

¶ Their senses are described with definitions that are too similar between them ï

some of these definitions are too close that even people can discern between

them.

¶ Their senses are described with definitions that are too short. Such definitions

include less than three open-class words.

¶ Their meaning is linked to their current syntactic relations rather than the

document domain. Verbs meaning is often defined by its complements rather

than document domain.

See Table 14 for some sample definitions that are too similar or too short for WSD

systems.

Using OSD for Disambiguating Domain Words

-52-

Table 14 Definitions that are too similar or too short for WSD systems.

Sense Definition

World2 People in general; especially a distinctive group of people with some shared interest

World5 People in general considered as a whole

Medical1 Relating to the study or practice of medicine

Medical2 Requiring or amenable to treatment by medicine as opposed to surgery

Here1 In or at this place; where the speaker or writer is

Here3 To this place (especially toward the speaker)

Bell5 The shape of a bell

Time4 a suitable moment

Recent1 New

Verbs were the words discarded more often. Common verbs (like be, have and do)

have more than ten definitions in WordNet and are used widely across all domains. Please

remember that verbs' meaning is more likely to be defined by its complements. For

example, in the following text:

ñI started drinking some soda. Later, I decided to drink a cold beer."

Now let us disambiguate using the following definitions extracted from WordNet:

[drink1:take in liquids] and [drink2:consume alcohol]. In this example, both definitions are

clear for people but they are rather short for WSD algorithms. You can easily select the

sense of the verb drink by looking at the direct object in both cases. Most of dictionary

based methods do not disambiguate both instances of the verb correctly. The verb drink

does not have OSD, so it is recommended that dictionary-based methods do not

disambiguate this word.

Avoiding such ñdifficultò words will allow systems to have high precision with low

coverage, closing in to a 100% precision solution. Such solution should be used first for

solving easy problems and identifying hard problems. We believe that by putting effort in

such solution will allow us to be one step closer to a 100% accuracy WSD system.

Using OSD for Disambiguating Domain Words

-53-

5.3 Performance Analysis

Test results displayed on Tables 15, 16 and 17 confirm that disambiguating just the

words with OSD increases precision at the cost of coverage. Figure 8 provides you a

graphical alternative for you to observe these performance changes. We can conclude the

following from these tables and figures:

¶ The precision boost ranged from 3% to 25% (an average of 16%).

¶ The coverage loss ranged from 11% to 57% (an average of 34%).

¶ The improved first sense heuristic was the best approach in the tests: it

obtained a precision of at least 79%.

Additionally, we observed that forcing the OSD assumption does not lead to a

consistent increase in precision (although, it often leads to a coverage boost). We have

added Table 18 for further reference. Table 18 contains the best results observed in

Senseval 2 and Senseval 3 (see Table 18). Please note that our improved first sense

heuristic overcome the precision of the best systems in these competitions.

Table 15 Test results corresponding to Conceptual Density and Naive Bayes algorithms

observed in Senseval 2 and Senseval 3 competitions.

WSD method
Senseval-2 Senseval-3

P R F1 P R F1

OSD Conceptual Density 57.1 5.8 10.5 64.7 13.4 22.2

Conceptual density 25.1 4.2 7.2 25.6 5.8 9.5

OSD Naïve Bayes 73.7 36.0 48.3 74.5 30.6 43.4

Naïve Bayes 58.4 57.0 57.7 54.9 54.2 54.6

Table 16 Test results corresponding to GETALP system at Semeval 2013 competition.

WSD method
Semeval 2013

P R F1

OSD GETALP 65.7 37.9 48.1

GETALP (Schwab et al 2013) 51.6 51.6 51.6

Using OSD for Disambiguating Domain Words

-54-

Table 17 Performance comparison of some bag of words algorithms. All methods exhibit a

precision boost and coverage lost when solving just OSD words. FG means forcing one sense

per discourse and OSD means solving OSD words exclusively.

WSD method
Senseval-2 Senseval-3

P R F1 P R F1

OSD Simplified Lesk Algorithm 61.0 12.1 20.2 52.7 10.4 17.4

FG Simplified Lesk Algorithm 45.5 31.0 36.8 30.9 23.3 26.6

Simplified Lesk Algorithm 50.4 7.5 13.1 39.1 13.2 19.7

OSD Graph indegree 78.1 39.9 52.9 70.1 29.5 41.5

FG Graph indegree 57.5 57.4 57.4 51.1 50.9 51.0

Graph indegree 45.4 37.2 40.1 35.1 30.4 32.6

OSD Lesk 67.6 31.9 43.3 64.3 37.8 35.2

FG Lesk 49.4 49.4 49.4 49.4 49.4 49.4

Lesk 48.1 46.0 47.0 38.4 36.7 37.8

OSD First Sense 78.8 40.0 53.1 79.3 33.1 46.5

First Sense 62.8 62.8 62.8 57.2 57.2 57.2

Table 18 Systems having the highest precision in Senseval 2 and Senseval 3 competitions.

WSD method
Senseval-2

P R F1

OSD First Sense 78.8 40.0 53.1

IRST (Magnini et al. 2001) 74.8 35.7 48.3

SMUaw (Mihalcea & Moldovan 2001) 69.0 69.0 69.0

CNTS-Antwerp (Hoste et al. 2001) 63.6 63.6 63.6

 Senseval-3

OSD First Sense 79.3 33.1 46.5

IRST-DDD-09-U (Strapparava et al. 2004) 72.9 44.1 54.9

IRST-DDD-LSA-U 66.1 49.6 56.6

Gambl-AW-S (Decadt et al. 2004) 65.1 65.1 65.1

Using OSD for Disambiguating Domain Words

-55-

Figure 8 Precision/coverage graph for the Simplified Lesk, Graph Indegree and Lesk

algorithms observed on Senseval 2 test set. We used different window sizes (ranging from 1 to

the whole text). Algorithms disambiguating just the OSD words (squares) overcome the

baselines (dotted lines) and its original performance (triangles).

-57-

Chapter 6. Using Co-Occurring Words for

Improving WSD

Extending glosses improves the quality of WSD by adding useful words to the bag-of-

words. The most common practice is to use related terms existing in the dictionary and

specified by the lexicographer. We propose adding co-occurring words for extending

glosses. Co-occurring words are the ones that appear together through the corpus in

different documents. For example, the words art, popularity, folklore and cultural can be

seen as co-occurring words. Co-occurring words are automatically extracted from a corpus.

We have discovered that this practice gives a consistent performance boost to dictionary-

based methods and can be used along with other gloss extending practices.

Using Co-occuring Words for Disambiguating Domain Words

-58-

6.1 State-of-the-Art Practices for Extending Glosses

Extending glosses is a common practice for improving WSD. The most common ones

are:

¶ Using synonyms: consist of adding the synonyms of the current sense.

¶ Using related terms: consist of adding semantic related terms such as

hyperonyms, antonyms, and so on.

¶ Using glosses of related terms: consist of adding the complete glosses of

related terms.

¶ Using corpus samples: consist of adding sentences where the target sense

appears.

Table 19 shows that all these methods improve Simplified Lesk Algorithmôs

performance. The best method is using corpus samples. Currently, there is no study of gloss

extending practices and its interactions between them.

Table 19 Performance comparison of the Simplified Lesk when using different gloss extending

methods.

WSD method
Senseval-2 Senseval-3

P R F1 P R F1

Regular glosses 43.6 41.7 42.6 32.4 30.9 31.7

Adding synonyms 48.6 48.2 48.4 36.6 36.1 36.4

Adding related terms 49.8 49.4 49.6 48.0 47.1 47.6

Adding related glosses 59.6 59.5 59.6 53.3 53.1 53.2

Corpus samples 66.3 66.0 66.1 67.0 66.7 66.9

6.2 Using Co-occurring Words for Extending Glosses

Co-occurring words are commonly used for aiding other tasks of natural language

processing such as information retrieval and keyword extraction. They can be extracted

Using Co-occuring Words for Disambiguating Domain Words

-59-

from a corpus using statistical methods. We propose to use co-occurring words in WSD as

a mean to extend glosses.

There are many ways of extracting co-occurring words. The standard way of doing is

using a statistical measure of word relatedness. These measures identify co-occurring words

with regular quality. Please note that such measures need to take into account that there are

many common words that appear in most of the documents like be, do and have so. Here

they are some common measures:

¶ Conditional probability

¶ Point wise mutual information (Church & Hanks 1990)

¶ Semantic similarity measures (Agirre & Edmonds 2006)

We have selected conditional probability because it has greater precision than the other

measures (as shown in Cimiano et al. 2005). Conditional probability is calculated with the

following equation:

0!ȿ"
0!᷊ "

0"

We used the same equation for all test sets. We used SemCor corpus as our base

corpus. The algorithm looks for co-occurring words for each sense of the target word as

following:

1. Look for all the corpus documents containing the target sense.

2. Calculate the conditional probability of all the words in the documents and the

target sense.

3. The target will be A and the possible word will be B.

4. Select the words having a P(A|B)>0.3 (this threshold was determined by

testing with values in the range of [0.0,0.1,é,1.0]).

5. Remove duplicated words if any.

Let us look at some example co-occurring words extracted by our algorithm:

¶ [rookie_N, pitching_N, monday_N, indianapolis_N, husky_J, left-hander_N]

¶ [wizard_N, violin_N, recital_N, thursday_N, 20th_J, slashing_J, demon-

ridden_J, cadenza_N]

¶ [angry_J, turmoil_N, briefing_N, insult_V, hulk_N]

Using Co-occuring Words for Disambiguating Domain Words

-60-

However, our method still selects some common or unuseful words such as

thursday_N and 20th_J. Future work will be aimed to solve this issue.

6.3 Performance Analysis

Using co-occurring words gives the Simplified Lesk Algorithm a performance rivaling

the use of corpus samples as shown in Tables 19 and 20. Table 21 shows that co-occurring

words can be combined with other methods with some success.

Table 20 Using co-occurring words for extending the gloss is an effective way of increasing

performance.

WSD method
Senseval-2 Senseval-3

P R F1 P R F1

Simplified Lesk Algorithm with co-

occurring words
68.5 61.8 65.0 65.4 61.4 63.4

Simplified Lesk Algorithm with

Corpus samples
66.3 66.0 66.1 67.0 66.7 66.9

Simplified Lesk Algorithm 50.4 7.5 13.1 39.1 13.2 19.7

Table 21 Combining all the gloss extending methods with co-occurring words.

WSD method
Senseval-2 Senseval-3

P R F1 P R F1

Adding synonyms with co-occurring

words
66.5 66.3 66.4 59.9 59.7 59.8

Adding related terms with co-

occurring words
65.9 65.7 65.8 60.9 60.6 60.8

Adding related glosses with co-

occurring words
67.1 67.1 67.1 61.5 61.5 61.5

Corpus samples with co-occurring

words
66.9 66.6 66.8 67.4 67.0 67.2

Using Co-occuring Words for Disambiguating Domain Words

-61-

Table 22 Comparison of our proposed modifications.

WSD method
Senseval-2 Senseval-3

P R F1 P R F1

All of our modifications 82.4 40.4 54.2 81.0 32.7 46.6

Useful words window 50.2 47.9 49.0 39.4 37.5 38.4

OSD 61.0 12.1 20.2 52.7 10.4 17.4

Co-occurring words 68.5 61.8 65.0 65.4 61.4 63.4

Simplified Lesk Algorithm 50.4 7.5 13.1 39.1 13.2 19.7

6.4 Integrating All of Our Modifications

We tested all of our modifications together. Test results can be seen in Table 22. Tests

confirm that:

¶ Using our modifications combined leads the Simplified Lesk Algorithm into good

precision level (greater than 80%).

¶ Our system has almost the same precision than a human when solving domain

words (inter annotator agreement for both test sets was 85%).

¶ Our system has better precision than the best performing systems observed in

Senseval 2 and 3 contests.

¶ The greater recall was obtained when using co-occurring words.

¶ All of our modifications greatly overcome the original Simplified Lesk Algorithm.

-63-

Chapter 7. Integration with the

Original Lesk Algorithm

We also wanted to find out if our modifications can be used with the original Lesk

algorithm. It is believed (but not confirmed) that the original Lesk algorithm can be better

than its simplified counterpart. However, one of the major drawbacks of this algorithm itôs

the great amount of computational resources it needs. For that reason, we developed a

heuristic that can return good results in short time lapses called Simple Adaptive Climbing

(SAC). First, we tested our heuristic as a global optimizer in well-known benchmark

problems. Then, we tested it within the Lesk algorithm. We have noted that our heuristic

need very little time for obtaining comparable results to other heuristics. So, we have

successfully reduced the Lesk algorithm limitation.

After that, we tested our modifications into the Lesk algorithm with great success.

They obtained good precision. We also confirmed that the simplified version is better for

solving domain words.

Integrating our modifications with the Lesk algorithm

-64-

7.1 State of the Art: Hill -Climbing Like Algorithms

7.1.1 Global optimization problem

In the most general case, global optimization is the task of finding the point (x*) with

the smallest (minimization case) or bigger (maximization case) function value (f(x*)).

There are a wide number of solutions for the global optimization problem, but it is still

considered an open problem. The first state-of-the-art solution consisted in improving a

solution until reaching the time limit. These solutions were called hill-climbers. Hill-

climbers were quickly left out because they are quite limited for solving complex problems.

Currently, evolutionary algorithms have been widely utilized to find optimal solutions.

They are called evolutionary because they somehow mimic the natural evolution process.

Its main features are: relatively good performance, low resource needs and parallelization

capabilities. They are able to find a good answer quite fast. However, they often are

incapable of finding the best answer. The most commonly used Evolutionary Algorithms

are the following: Differential Evolution, Genetic Algorithm and Particle Swarm

Optimization.

Global optimization currently need:

¶ Optimizers capable of finding the best answer for solving problems without a

time limit.

¶ Optimizer capable of finding a good answer for solving problems in which

time is more important that quality.

In this work we improved a hill-climber algorithm with some evolutionary algorithm

for creating an optimizer capable of finding a good answer faster than most of the state-of-

the-art algorithms.

7.1.2 Brief Review of Hill-Climbing Like Algorithms

Let us imagine that you are a mountain climber trying to reach a mountain peak while

having really thick fog. Imagine that you have forgotten some important gadgets like a

compass and a map, but at least you have a lot of food, the perfect climbing suit and

equipment, and a machine that tells your current altitude. How will you find the mountain

Integrating our modifications with the Lesk algorithm

-65-

peak? Hill -climbing like algorithms are heuristics for getting you to the highest point

surrounding you.

Hill -climbing algorithms are single point optimizers with adjustable search radius.

Algorithm 3 depicts a generalization of hill-climbing algorithms. As we can observe in

Algorithm 3, these algorithms are greedy strategies that try to move only to a highest next

point. The main difference between hill-climbers lies in the specific implementation of the

following functions:

¶ mutate(Xbest,steps,parameters): Function for searching a new point.

¶ adjustStepswhenSuccess(steps,parameters): Function for adjusting the search

control values ïcommonly the search radius- when finding a better location than

the current one.

¶ adjustStepswhenFailure(steps,parameters): Function that adjust the search control

values when finding a worst location than the current one.

Algorithm 3 Generic algorithm for hill climbers (minimization case)

1 Set X as a random initial solution

2 Initialize the search radius vector (steps) using parameters

3 While(terminationCriterion())

4 Set Xnew=mutate(Xbest,steps,parameters)

5 If f(Xnew)<f(Xbest)

6 Set steps=adjustStepswhenSuccess(steps,parameters)

7 Set Xbest=Xnew

 Else

8 Set steps=adjustStepswhenFailure(steps,parameters)

Integrating our modifications with the Lesk algorithm

-66-

a) Foothill problem: the searching process is stuck in a local optimum

b) Plateau problem: the searching process is stuck in a flat surface

c) Ridge problem: the searching area (dark gray) does not allow improving.

Figure 9 Most common problems found in Hill-Climbing algorithms (maximization case).

Integrating our modifications with the Lesk algorithm

-67-

Hill climbing algorithms are known for being fast on getting to the top of the current

hill (local optimum value). However, most of these strategies fail when the mountain have

multiple hills (as many real mountains do). The main reasons behind this behavior are the

following (Winston 1992):

¶ The foothill problem: the optimizer gets stuck in a local optimum value

(frequently, the hill where the climber started).

¶ The plateau problem: the optimizer gets stuck in flat surfaces with some sharp

peaks.

¶ The ridge problem: the optimizer gets stuck because the direction of the ascent is

not within the set of possible search directions.

You can find a graphical description of these problems in Figure 9.

7.2 Our Algorithm

SAC is a simple single-point optimizer. Its implementation is smaller than most of the

evolutionary algorithms, while maintaining a competitive performance. Algorithm 4 shows

the algorithm for SAC (minimization case). The general ideas behind the algorithm are the

following:

1. Increase the search radius when improving ïit promotes a better exploration of

the search space.

2. Reduce the search radius when failing ïit allows a faster exploration of the

current hill.

3. Restart when failing too much -it prevents getting stuck in local optimum

values.

Figure 10 shows a graphical example of SAC main behaviors.

SAC requires configuration of two user parameters. These parameters allow adjusting

the kind of search behavior. The two user parameters are the following:

¶ Base step sizes (B [ɴ0.0,0.5]). B is the initial and also the maximum possible

search radius. It represents a proportion of the whole search space. So, a B=0.5

Integrating our modifications with the Lesk algorithm

-68-

value is equivalent to half the search space, in which case the algorithm has the

possibility of going to any point in the search space. A value greater than 0.5 will

encourage exploration for a longer time and could transform SAC into a random

search. Hence, greater values of B encourage more exploration of the search space

and slower convergence while lower values encourage a hill-climbing like

behavior.

¶ Maximum consecutive errors (R>0). R indicates the maximum consecutive errors

necessary to restart the searching process. Very small values of R could avoid

convergence in a precise search situation. Long values of R could provoke SAC

gets stuck for a long time in a local optimum value. A zero value will turn SAC

into a hill-climbing like algorithm.

SAC searches by performing explorations in random dimension subsets -this feature

allows SAC to overcome the aforementioned ridge problem. SAC uses adaptive step sizes

for each dimension of the problem (bj, j=1,é, D). These b step sizes are the key of SAC

exploration process. SAC adjusts them accordingly to the current success/failure state of

the search:

¶ b values become greater when improving the current solution, encouraging

exploration of the search space (see line 17 on Algorithm 4).

¶ b values became smaller when failing, encouraging exploration of nearby areas

(see line 24 on Algorithm 4).

In SAC, the search space is connected at the beginning and the end of all problem

dimensions. Hence, if SAC tries to explore outside the upper limit, it will explore a valid

region near the lower limit, and vice versa. SAC keeps track of the consecutive

unsuccessful explorations (restart on Algorithm 4) to avoid premature convergence

(foothill problem) and optimizing in almost flat surfaces (plateau problem). When restart

reaches the user-defined limit (R), the step-sizes and the current position are restarted, as

seen in line 26 on Algorithm 4.

Integrating our modifications with the Lesk algorithm

-69-

Algorithm 4 Algorithm for SAC (minimization case).

1 Set X as a random initial point, Xbest=X as the best known solution and restart=0;

2 Set bj=B, j=1,é,D as the initial stepsizes;

3 For(g=1 To MaxFes)

5 Set ὖ
ȟ

6 If(flip j(Pa), j=1,é,D)

7 Oj=Xj+rndreal(-bj,bj)× (upj-lowj);

8 If(Oj<lowj)

9 Set Oj=lowj + (Oj-upj);

10 If(Oj>upj)

11 Set Oj=upj - (lowj-Oj);

13 Else

14 Oj=Xj;

15 If f(O)<f(X)

16 Set restart=0;

17 Set bj=rndreal(bj,B) for all j dimensions where Oj Xj;

18 Set X=O

19 If(f(O)<f(Xbest))

20 Set Xbest=O;

21 Else

22 Set restart=restart+1;

23 If(restart<R)

24
Set ὦ for all j dimensions where O j Í Xj;

25 Else

26 Set restart=0 , X=O and bj=Bj, j=1,é,D;

Integrating our modifications with the Lesk algorithm

-70-

a) SAC could search in any dimension subset with a maximum radius of bj

b) When failing (white dot) SAC decreases the search space

c) Restart occurs after R consecutive failures. Please note that search space is considered connected

at the extremes

d) SAC increases the search space when improving

Figure 10 SAC main behaviors (minimization case).

X

