
INSTITUTO POLITÉCNICO NACIONAL

CENTRO DE INVESTIGACIÓN EN COMPUTACIÓN

Laboratorio de Procesamiento de Lenguaje Natural

Polarity summarization with opinion mining

TESIS

QUE PARA OBTENER EL GRADO DE:

MAESTRIA EN CIENCIAS DE LA COMPUTACIÓN

P R E S E N T A:

Ing. Iván Omar Cruz Garćıa

Directores de tesis:
Dr. Alexander Gelbukh

Dr. Grigori Sidorov

Mexico, D.F. Diciembre 2014

'SIP-14 bis

INSTITUTO POLITÉCNICO NACIONAL
SECRETARíA DE INVESTIGACiÓN Y POSGRADO

ACTA DE REVISiÓN DE TESIS

En la Ciudad de México, D.F. siendo las 11:00 horas del día 30 del mes de
oc~ubfe de 2014 se reunieron los miembros de la Comisión Revisora de la Tesis, designada

por el Colegio de Profesores de Estudios de Posgrado e Investigación del:

Centro de Investigación en Computación

"Polarity summarization with opinion mining"

Presentada por el alumno:

CRUZ GARCíA
Apellido patemo Apellido matemo

Con registro: L...:;=--L-~+'--;=--J--';""'-)"""":=---L-.:::"""'L....::....-J

aspirante de: MAESTRíA EN CIENCIAS DE LA COMPUTACiÓN

Después de intercambiar opiniones los miembros de la Comisión manifestaron APROBAR LA
TESIS, en virtud de que satisface los requisitos señalados por las disposiciones reglamentarias
vigentes.

LA COMISiÓN REVISORA
Directores de Tesis

Dr. Alexander Gelbukh

PRESIDENTE DEL

Dr.

Dra. Oiga Kolesnikova

Resumen

Este trabajo de tesis presenta un nuevo modelo para resúmenes de opinión. Esta
tarea consiste en la extracción de partes las principales opiniones de un texto y
construir un resumen de opinión legible y entendible para los humanos. Esta tarea
es muy difícil y está constituida por diferentes métodos de minería de opinión,
procesamiento del lenguaje natural, aprendizaje de máquina, recuperación de in-
formación y otras áreas.

El objetivo principal de este trabajo es expandir el estado del arte en la min-
ería de opinión, investigando en nuevas métodos de resúmenes de opinión y las
tareas involucradas. Otro objetivo de este trabajo es proveer a la comunidad cien-
tífica nuevas herramientas para afrontar los retos en esta área. Al momento de
escribir esta tesis existen muy pocas, de existir alguna, herramientas públicamente
disponibles para resúmenes de opinión.

Este trabajo explica a detalle los modelos que describen los fenómenos encontra-
dos al investigar esta tarea, los diferentes métodos usados y/o desarrollados para
resúmenes de opinión, su implementación y los resultados obtenidos.

Una herramienta de resúmenes de opinión recibe como entrada un texto con opin-
iones. La salida de este método podría ser las oraciones o frases de dicho documento
que mejor resumen las opiniones encontradas en el texto. Otra posibilidad sería
una especie de resumen estructurado que describe las propiedades cuantitativas
de las opiniones encontradas en el documento. El trabajo propuesto usa ambos
enfoques.

El método propuesto para resúmenes de opinión puede ser descrito en 3 pasos.

4

• Primero es necesario descomponer la entrada en oraciones y determinar cual
de estas frases son opiniones, obteniendo su polaridad en el proceso.

• El siguiente paso es determinar que tópicos o aspectos tiene cada oración.

• Finalmente, el resumen es creado usando las oraciones extraídas. Puede ser
un texto corto o un resumen estructurado.

Cada paso así como los resultados obtenidos en los experimentos son descritos a
detalle. Toda la investigación realizada se centró solamente en texto en inglés.

5

Abstract

This thesis work presents a novel framework for Opinion Summarization. This
task consist in the extraction of parts of a opinionated text that represents the
main opinions and build a legible and human-readable opinion summary. This
task is very difficult and it involves several methods related to Opinion Mining,
Natural Language Processing, Machine Learning, Information Retrieval and other
areas.

The main goal of this work is to expand the state of the art in Opinion Mining
by researching in new ways for Opinion Summarization and the tasks it involves.
Another goal of this work is to provide to the scientific community new tools to
tackle challenges in this area. At the moment of writing this thesis there are few,
if any, public available opinion summarization tools.

The present work explains in detail the models that describes the phenomena found
investigating this task, the different methods used and/or developed for Opinion
Summarization, their implementation and the results obtained.

An opinion summarization tool receives an opinionated text document. The out-
put could be the sentences or phrases of the given document that summarize better
the opinions found in the text. Another possibility would be some sort of struc-
tured summary describing the quantitative properties of the opinions found in the
document. This work uses both approaches.

The proposed method for opinion summarization can be described in 3 steps:

• First it is necessary to decompose the input document into sentences and
determine which of these sentences are opinionated, obtaining their polarity
in the process.

6

• Next step is determine which topics or aspects each opinionated sentence
have.

• Finally the summary is made using the extracted sentences. It could be a
short text or a structured summary.

Each step and the results obtained during the performed experiments are described
in detail. The whole research work focused only on the English language.

7

Acknowledgments

This thesis work would not have been possible without the support of many people.
First and foremost, I would like to thank my two advisors Alexander Gelbukh and
Grigori Sidorov for their support and their knowledge. To all the researchers and
colleagues that I met and I work with during my research.

I also want to thank my parents and my family for their support, encouragement
and love; to my friends for their support and advise through this journey. I would
also thank to the CIC and the IPN for all the support and for the opportunity to
study my MSc there; To CONACYT for the financial support

8

Contents

List of figures 2

List of tables 3

1. Introduction 4
1.1. Overview . 4
1.2. Objetives . 4
1.3. Opinion Mining and Opinion Summarization 5
1.4. Contributions . 6
1.5. Problem definition . 7

1.5.1. Opinion Definition . 7
1.6. Opinion Mining Analysis Levels . 9

1.6.1. Document Level . 10
1.6.2. Sentence Level . 10
1.6.3. Aspect-based Level . 11

1.7. Sentiment Classification . 12
1.7.1. Supervised Sentiment Classification 12
1.7.2. Lexicon-based Sentiment Classification 12

1.8. Aspect Extraction . 13
1.8.1. Explicit Aspect Extraction 14
1.8.2. Implicit Aspect Extraction 14

1.9. Aspect-based Opinion Summarization 17

2. State of the Art 20
2.1. Overview . 20

i

Contents Contents

2.2. Sentiment Classification . 20
2.2.1. Supervised Approaches . 20
2.2.2. Lexicon-based Approaches 21

2.3. Aspect Extraction . 21
2.3.1. Explicit Aspect Extraction 22
2.3.2. Implicit Aspect Extraction 26

2.4. Aspect-based Opinion Summarization 27

3. Research Methodology 30
3.1. Overview . 30
3.2. Polarity Classification . 30

3.2.1. Description . 30
3.2.2. Algorithm . 31
3.2.3. Implementation . 34

3.3. Explicit Aspect Extraction . 34
3.3.1. Description . 34
3.3.2. Supervised Learning . 35
3.3.3. Sequence Labeling . 35
3.3.4. Conditional Random Fields 36
3.3.5. Explicit Aspect Extraction Approach 37

3.4. Implicit Aspect Extraction . 45
3.5. IAI Extraction . 46

3.5.1. IAI Corpus . 46
3.5.2. Feature Crafting . 49
3.5.3. Implementation . 49
3.5.4. Baselines . 51

3.6. Mapping IAI to Implicit Aspects 52
3.6.1. Word Representation . 54
3.6.2. Neural Network Language Models 55
3.6.3. Learning Word Representations with NNLM 57
3.6.4. IAI to Implicit Aspects Mapping Method 62
3.6.5. Baselines . 65

ii

Contents Contents

3.7. Opinion Summarization . 66
3.7.1. Structured Opinion Summary 66
3.7.2. Textual Opinion Summary 67
3.7.3. Set Covering problem as an ILP problem 69
3.7.4. Sentences Costs . 70
3.7.5. Textual Opinion Summary Generation with ILP 72
3.7.6. Textual Opinion Summary Baselines 75

4. Results 81
4.1. Overview . 81
4.2. Polarity Classification . 81
4.3. Explicit Aspect Extraction . 82
4.4. Implicit Aspect Indicators Extraction 83
4.5. Implicit Aspect Extraction . 85
4.6. Opinion Summarization . 87

4.6.1. Structured Opinion Summarization 87
4.6.2. Textual Opinion Summarization. 88

Conclusions 96

A. Probabilistic Graphical Models 98
A.1. Overview . 98
A.2. Introduction . 98
A.3. Conditional Random Fields Definition 101
A.4. Features Functions . 102
A.5. Linear Chain Conditional Random Fields 103
A.6. Parameter Estimation in Linear Chain CRF 105

B. Neural Networks 107
B.1. Overview . 107
B.2. Supervised classification with Neural Networks 107
B.3. Forward Propagation . 110
B.4. Backpropagation . 110
B.5. Softmax Regression in Neural Networks 112

iii

Contents Contents

C. Linear Programming and Integer Linear Programming 115
C.1. Overview . 115
C.2. Linear Programming . 115
C.3. The Simplex Algorithm . 118

C.3.1. Standard Augmented Form 119
C.3.2. Simplex Tableaux . 119
C.3.3. Pivot operations . 120
C.3.4. Algorithm . 121

C.4. Integer Linear Programming . 122
C.4.1. Solving ILP problems . 123

Bibliography 125

Nomenclature 131

iv

List of Figures

1.1. Aspect Extraction Example . 14
1.2. An aspect-based opinion summary 18

2.1. Visualization of aspect-based summary of opinions on a digital camera 27
2.2. Visual opinion comparison of two digital cameras 27

3.1. Sequence Labeling in POS Tag . 37
3.2. Example of a sentence in the reviews dataset. 39
3.3. Disjunction feature example. 40
3.4. A sentence in a CRFClassifier training data file. 42
3.5. CRFClassifier console training command 43
3.6. CRFClassifier properties file . 44
3.7. CRFClassifier testing command . 45
3.8. CRFClassifier properties file for IAI extraction 50
3.9. A 2-dimensional feature space . 57
3.10. A lookup table . 58
3.11. Collobert et al. NNLM . 59
3.12. Collobert et al. NNLM with one-hot vectors as input and a projec-

tion layer. 61
3.13. The Skip-gram model. 62
3.14. Word2Vec command . 65
3.15. The bar chart displayed by the opinion summarization tool 68
3.17. ILP model MathProg code . 73
3.18. ILP instance MathProg code . 74
3.19. GLPSOL command . 74
3.16. The graphical representation of the textual summarization approach. 80

1

List of Figures List of Figures

4.1. Precision, Recall and F1 Score with Biased CRF 86
4.2. Apex DVD Player structured summary 91
4.3. Canon Camera structured summary 92
4.4. Nikon Camera structured summary 93
4.5. Nokia Cellphone structured summary 94
4.6. Nomad MP3 player structured summary 95

A.1. Probabilistic Graphical representation of a Naive Bayes Classifica-
tion scheme . 100

A.2. Feature Functions Example . 103
A.3. Linear Chain CRF . 104
A.4. Examples of feature functions for POS Tagging with k = 2 105

B.1. A single neuron . 108
B.2. Sigmoid and tanh functions plots 108
B.3. A small neural network . 109

C.1. An LP feasible region . 117

2

List of Tables

3.1. Dataset Statistical Properties. 38
3.2. Features Description . 41
3.3. Corpus Properties. 47
3.4. Statistical Properties. 48
3.5. Corpus POS Distribution . 48

4.1. Polarity classification performance 81
4.2. Explicit aspect extraction performance 82
4.3. Explicit aspect extraction performance comparation. 83
4.4. IAI Extraction performance with different features 84
4.5. Precision, Recall and F1 Score with different IAI Class bias 85
4.6. Precision performance . 86
4.7. Recall performance . 87
4.8. F1-Score performance . 87
4.9. Global Performance . 87
4.10. Aspect coverage percentage comparative analysis 89
4.11. Compression rate comparative analysis 89
4.12. Summary entropy comparative analysis 90

3

1. Introduction

1.1. Overview

This chapter gives and introductory view of the topics involved in Opinion Summa-
rization. Also it describes the scope of this work, its objectives and its justification.

1.2. Objetives

General Objectives

• Design and create software that implements a polarity summarization method.
It will be based on opinion mining.

• Design and create new methods for Aspect Extraction and Opinion Summa-
rization.

Particular Objetives

• Implement a Opinion Polarity Classifier.

• Implement an Explicit Aspect Extractor.

• Implement an Implicit Aspect Extractor.

• Implement an Opinion Summarization Tool.

4

1.3 Opinion Mining and Opinion Summarization

1.3. Opinion Mining and Opinion Summarization

Opinions are central to almost all human activities and are key influencers of our
behaviors. Our beliefs and perceptions of reality, and the choices we make are, to
a considerable degree, conditioned upon how others see and evaluate the world.
For this reason, when we need to make a decision we often seek out the opinions
of others. This is not only true for individuals but also true for organizations.
Opinions and its related concepts such as sentiments, evaluations, attitudes, and
emotions are the subjects of study of sentiment analysis and opinion mining. The
inception and rapid growth of the field coincide with those of the social media on
the Web, e.g., reviews, forum discussions, blogs, microblogs, Twitter and social
networks. We have a huge volume of opinionated data recorded in digital forms
for the first time in human history. Since early 2000, sentiment analysis has grown
to be one of the most active research areas in natural language processing. It
is also widely studied in data mining, Web mining, and text mining. In fact, it
has spread from computer science to management sciences and social sciences due
to its importance to business and society as a whole. In recent years, industrial
activities surrounding sentiment analysis have also thrived. Numerous startups
have emerged. Many large corporations have built their own in-house capabilities.
Sentiment analysis systems have found their applications in almost every business
and social domain.

Unlike factual information, opinions are essentially subjective. One opinion from
a single source is usually not sufficient for action. In most applications, one needs
to analyze opinions from a large number of people. This indicates that some form
of summary of opinions is desired. Although an opinion summary can be in one of
many forms, e.g., structured summary or short text summary, the key components
of a summary should include opinions about different entities and their aspects
and should also have a quantitative perspective. The quantitative perspective is
especially important because 20% of the people being positive about a product is
very different from 80% of the people being positive about the product

In general, opinion summarization can be seen as a form of multi-document text
summarization. Text summarization has been studied extensively in NLP. How-

5

1.4 Contributions

ever, an opinion summary is quite different from a traditional single document or
multi-document summary (of factual information) as an opinion summary is often
centered on entities and aspects and sentiments about them, and also has a quanti-
tative side. Traditional single document summarization produces a short text from
a long text by extracting some “important” sentences. Traditional multi-document
summarization finds differences among documents and discards repeated informa-
tion. Neither of them explicitly captures different topics/entities and their aspects
discussed in the document, nor do they have a quantitative side. The “importance”
of a sentence in traditional text summarization is often defined operationally based
on the summarization algorithms and measures used in each system. Opinion sum-
marization, on the other hand, can be conceptually defined. The summaries are
thus structured. Even for output summaries that are short text documents, there
are still some explicit structures in them. The approach proposed in this work
includes both structured opinion summary and short text summary.

1.4. Contributions

This thesis work introduces a novel method for extracting implicit aspect indicators
(these indicators are explained in sec. 1.8.2.1) using Conditional Random Fields. It
is shown that this method significantly outperforms existing approaches. As a part
of this effort, this work presents a corpus for implicit aspect indicators extraction
and for implicit aspect extraction. To the best of our knowledge, this is the first
corpus of its kind.

This work also proposes a novel method for implicit aspect extraction using se-
mantic relatedness computed with distributed representations of words. This work
shows that this method outperforms the current approaches based on ontologies.

Finally, this work introduces a novel approach for opinion summarization that tries
to maximize the informativeness and the aspect coverage of such summary. This
method is compared with 3 baselines, verifying its effectiveness

6

1.5 Problem definition

1.5. Problem definition

Opinion Mining mainly studies opinions which express or imply positive or negative
sentiments. This section thus defines the problem in this context.

1.5.1. Opinion Definition

In order to illustrate better the problem, a look to an opinion is useful. The
next text is a camera review extracted from a opinion mining corpus and it is an
opinionated document.

“(1) I bought a Canon G12 camera six months ago. (2) I simply love
it. (3) The picture quality is amazing. (4) The battery life is also long.
(5) However, my wife thinks it is too heavy for her.”

The whole phrase was divided by sentences. There are five of them and each one
express an opinion.

1.5.1.1. Opinion Polarity

The opinion polarity is the value expressing if an opinion is positive or negative.
This approach is also known as binary opinion polarity classification and it is
the simplest way to quantize an opinion. Another way to express the polarity is
using the neutral class, i.e. a document without opinion. Other approach is to
classify how positive or negative an opinion is, usually using a discrete metric, e.g.
a five-stars movie rating. Unless stated otherwise, it will be assumed a binary
opinion polarity. A person can observe in the review that the sentence (1) express
no opinion whatsoever. The phrases (2), (3) and (4) express a positive opinion,
although sentence (4) is implicitly positive since a long battery life is consider a
good thing. Finally the sentence 5 express again an implicit opinion. In this case is
negative since a camera being “too heavy” is considered a drawback. The notation
for the opinion polarity used in this work is s, and it expresses the sentiment of
an opinionated instance.

7

1.5 Problem definition

1.5.1.2. Entity

Back to our example, it is possible to observe that the sentence (2) expresses a
positive opinion about “it”. If someone looks just to that sentence there is no way
to know what “it” is referring to. But if the whole review is given, it is possible to
infer that the sentence (2) is giving a positive opinion of the “camera” entity. The
entity is the target of an opinion that has been expressed. It is also know as the
opinion target. The notation for expressing the entity used during this work is e.

1.5.1.3. Opinion Holder

Another thing to notice is that opinions come from a source. It could be a friend
or a blog on the internet. In the given example, the source of the sentences (1-4)
is the review’s author. In the sentence (5) the source is the author’s wife. This
sources are called opinion sources or opinion holders. The notation for opinion
holder is h.

1.5.1.4. Time

The time of when an opinion was expressed is also important. Usually later opin-
ions have more importance than the previous ones. The notation for time is t.

1.5.1.5. Aspects

Finally, is it possible to notice that the entity for the whole review is the “Canon
camera”. However, some of the sentences describe different aspects of the entity.
For example the sentence (3) is talking about the picture quality of the camera.
The sentence (4) describes the battery life. The sentence (5) implicitly describes
the “weight” of the camera.

Many approaches for opinion mining don’t consider aspects as part of the analysis
framework. This work does include aspects as part of the analysis and it will be
discussed in depth in the next section. The notation for aspect is a.

8

1.6 Opinion Mining Analysis Levels

1.5.1.6. Opinion quintuple

Considering the previous analysis, it is possible to come up with a more formal
definition of what an opinion is. Therefore, an opinion is a quintuple,

(ei, aij, sijkl, hk, tl) (1.1)

where ei is the entity of the opinion, aij is an aspect j of the entity ei, sijkl is the
opinion polarity of the aspect aj of the entity ei, hk is the opinion holder and tl is
the time when the opinion is expressed by hk.

The research presented in this work uses this opinion definition. The main task
is to extract every opinion expressed by this quintuple and use them to generate
the opinion summary. However our approach only focuses on the sentiment, the
aspects and the entities of opinions. The opinion holder and the time the opinions
were expressed are considered irrelevant.

1.6. Opinion Mining Analysis Levels

There are different levels of analysis granularity in opinion mining. They can be
classified in 3 main levels:

• Document Level

• Sentence Level

• Aspect-based Level

In the following each level is described more deeply.

9

1.6 Opinion Mining Analysis Levels

1.6.1. Document Level

Document level focuses on the opinion polarity classification of an entire document.
This level assumes each element of the expression (1.1) is the same for every sen-
tence. Also this level is useful when every element in (1.1), beside the sentiment,
is considered irrelevant. A large majority of research papers on this topic clas-
sifies online reviews. Document sentiment classification is not easily applicable
to non-reviews such as forum discussions, blogs, and news articles, because such
postings tend to evaluate multiple entities and compare them. In many cases, it is
hard to determine whether a posting actually evaluates the entities that the user
is interested in, and whether the posting expresses any opinion at all, let alone
to determine the sentiment about them. Document-level sentiment classification
does not perform such fine-grained tasks, which require in-depth natural language
processing. In fact, online reviews do not need sentiment classification because
almost all reviews already have user-assigned star ratings. In practice, it is the fo-
rum discussions and blogs that need sentiment classification to determine people’s
opinions about different entities (e.g., products and services) and topics.

1.6.2. Sentence Level

Sentence level, also called subjective analysis, tries to determine the sentiment for
each sentence in a document. This level make the same assumptions for every
sentence that document level makes. Sentence sentiment classification can be
solved either as a three-class classification problem or as two separate classification
problems. In the latter case, the first problem is to classify whether a sentence
expresses an opinion or not. The second problem then classifies those opinion
sentences into positive and negative classes. The first problem is usually called
subjectivity classification, which determines whether a sentence expresses a piece of
subjective information or factual (objective) information. Objective sentences are
regarded as expressing no sentiment or opinion. This can be problematic because
objective sentences can also imply opinions. For example the second sentence in
the phrase “My phone worked pretty well the last 6 months. Then, it stopped

10

1.6 Opinion Mining Analysis Levels

working yesterday” is an objective sentence, but it implies a negative sentiment
about the phone due to an undesirable fact.

1.6.3. Aspect-based Level

Classifying opinion texts at the document level or the sentence level is often in-
sufficient for applications because they do not identify opinion targets or assign
sentiments to such targets. Even if we assume that each document evaluates a
single entity, a positive opinion document about the entity does not mean that the
author has positive opinions about all aspects of the entity. Likewise, a negative
opinion document does not mean that the author is negative about everything. For
more complete analysis, we need to discover the aspects and determine whether
the sentiment is positive or negative on each aspect.

To extract such details we go to the aspect level, which was also called the feature-
based opinion mining. At the aspect level, the objective is to discover every quin-
tuple (1.1) in a given document d. To achieve this goal, two main tasks have to
be performed.

1. Aspect Extraction: This task extracts aspects that have to be evaluated. For
example, in the sentence, “The voice quality of this phone is amazing,” the
aspect is “voice quality”, and it is an aspect of a larger entity represented
by “this phone.”. In the sentence “I love this phone” the entity is again the
phone but this time the entity is the one which is being evaluated and there
are no aspects.

2. Aspect Sentiment Classification: This task determines whether the opinions
on different aspects are positive, negative, or neutral.

In task such as opinion summarization, a higher analysis granularity level is needed.
This is because this task tries to extract the information that summarizes better
the input document. Therefore the aspect-based level is the best choice for opinion
summarization and this is the approach used in the research described in this work.

11

1.7 Sentiment Classification

1.7. Sentiment Classification

This is the task of determining the orientation of the sentiment expressed in a
sentence. For Aspect-based Opinion Mining, this task also considers the sentiment
for each aspect in an opinionated document. There are three main approaches:
supervised learning, lexicon-based and unsupervised learning.

1.7.1. Supervised Sentiment Classification

This approach commonly uses supervised machine learning techniques, e.g. it
requires labeled data to train a classifier that models the inherent properties of the
used training set. The basic approach in Sentiment Classification tasks is to label
the sentiment of whole sentences based on the aspects within them. However, the
key issue is how to determine the scope of each sentiment expression, i.e., whether
it covers the aspect of interest in the sentence.

Supervised learning is dependent on the training data. A model or classifier trained
from labeled data in one domain often performs poorly in another domain. Al-
though domain adaptation (or transfer learning) has been studied by researchers,
the technology is still far from mature, and the current methods are also mainly
used for document level sentiment classification as documents are long and contain
more features for classification than individual sentences or clauses. Thus, super-
vised learning has difficulty to scale up to a large number of application domains.

1.7.2. Lexicon-based Sentiment Classification

Lexicon-based approaches can avoid some of the issues found in supervised tech-
niques, and has been shown to perform quite well in a large number of domains.
Such methods are typically unsupervised. They use a sentiment lexicon (which
contains a list of sentiment words, phrases, and idioms), composite expressions,
rules of opinions, and (possibly) the sentence parse tree to determine the sentiment

12

1.8 Aspect Extraction

orientation on each aspect in a sentence. They also consider sentiment shifters,
but-clauses and many other constructs which may affect sentiments.

Sentiment shifters are words that change the sentiment of other words or whole
sentences. The negation is the simplest sentiment shifter. For example the sentence
“This phone is nice” has a positive sentiment since the word nice have a positive
cognotation. On the other hand the sentence “This phone is not nice” has a
negative sentient because the sentiment shifter “not” changes the polarity of the
whole sentence given by the word “nice”.

The lexicon-based approach also has its own shortcomings. They will be discussed
later. This approach is the one used for sentiment classification.

1.8. Aspect Extraction

Recalling from the opinion quintuple shown in the equation 1.1, every opinion has
an an entity which is the opinion target. Moreover the opinion might be about
specific aspects of such entity. These aspects aij are also considered in equation
1.1. For simplicity, “aspects” is used to reefer the entities and aspects together,
which are the opinion targets. Thus the aspect extraction task consists in the
extraction of every aspect aij from every opinion quintuple given as input.

Aspects can be divided in 2 main classes: explicit aspects and implicit aspects.

Explicit aspects are words in a opinionated document that explicitly denote the
opinion target. In the sentence “The screen of my new phone is superb”, the word
“screen” is the opinion target, and the whole sentence gives an opinion about the
larger entity “phone”.

On the other hand, an implicit aspect is a concept that represents the opinion
target of an opinionated document but is not specified explicitly in the text. One
can infer that the sentence “This camera is sleek and very affordable" implicitly
gives a positive opinion on the aspects appearance and price of the entity camera.

13

1.8 Aspect Extraction

These aspects would be explicit in an equivalent sentence “The appearance of this
camera is sleek and its price is very affordable."

The present work considers explicit aspects and implicit aspects.

1.8.1. Explicit Aspect Extraction

The basic idea in explicit aspect extraction is to mark words from an opinionated
input text as aspects. The Fig. 1.1 shows an example of this. There is an opin-
ionated sentence as input. The output is a set of duples. Each duple consists of
a token of the sentence and the label assigned by an aspect extractor tool. The
label ’A’ is for “Aspect” and the label ’O’ is for “Other”. One can observe that
the words “screen” and “camera” are labeled as aspects, as they should be.

INPUT :“The screen of my phone is superb, but its camera is really awful.”

OUTPUT :{(′The′,O), (′screen′,A), (′of ′,O),
(′my′,O), (′phone′,O), (′is′,O),
(′superb′,O), (′,′ ,O), (′but′,O),
(′its′,O), (′camera′,A), (′is′,O),
(′really′,′O′), (′awful′,O), (′.′,O)}

Figure 1.1.: Aspect Extraction Example

The explicit aspect extraction approach used in this research work is described in
detail in sec. 3.3.

1.8.2. Implicit Aspect Extraction

Explicit aspect extraction modeling is straightforward and has been widely re-
searched. There are several approaches for this task. Still, limited work has been

14

1.8 Aspect Extraction

done in extracting implicit aspects. This task is very difficult yet very important
because the phenomenon of implicit aspects is present in nearly every opinionated
document. For example, the following sentence uses only implicit aspects:

“This is the best phone one could have. It has all the features one
would need in a cellphone: It is lightweight, sleek and attractive. I
found it very user-friendly and easy to manipulate; very convenient to
scroll in the menu...”

Here, the word “lightweight” refers to the phone aspect weight; the words “sleek”
and “attractive” to its appearance; the compound “user-friendly” to its interface;
the phrase “easy to manipulate” to its functionality; finally, the phrase “to scroll in
menu" can be interpreted as a reference to the interface of the phone or its menu.

Even though the aspects appearance, weight and interface do not appear in the
sentence, the context contains clues that permit us to infer them. Namely, the
words “sleek”, “lightweight”, and “user-friendly” that do occur in the context
suggest these aspects.

In contrast to the task of identification of explicit aspects, the general scheme for
identification of implicit aspects, a task called implicit aspect extraction, involves
two steps:

1. Identify the words or expressions in the opinionated document that suggest
an aspect (e.g. “sleek”).

2. Map them to the corresponding aspects (appearance).

This research work presents a novel approach for each task. Regarding the first
one, the present research work proposes a new model and framework for this
phenomenon. We call the words or expressions that suggest the implicit aspects
of the opinionated document, Implicit Aspect Indicators (IAI). For the second
task, this research work proposes a novel approach that consist in mapping IAI
to implicit aspects using semantic similarity with vector representation of words.
Implicit aspect extraction will be discussed in detail in sec. 3.4

15

1.8 Aspect Extraction

1.8.2.1. Implicit Aspect Indicators Extraction

As mentioned earlier, identify IAI in an opinionated document is a difficult task.
This is because the syntactic and semantic properties of IAI are varied and exten-
sive.

An IAI could be a single word, such as “sleek”, a compound, such as “user-
friendly”, or even a complete phrase, such as “to scroll in menu”.

They can be of different parts of speech: in the example “This MP3 player is
really expensive” the IAI “expensive” suggesting the aspect price is an adjective;
in “This camera looks great” the IAI “look” suggesting appearance is a verb; in “I
hate this phone. It only lasted less than six months!”, the IAI “lasted” suggesting
durability of the phone is a verb. The following examples shows IAI as nouns or
noun phrases: in “Even if I had paid full price I would have considered this phone
a good deal” the IAI “good deal” suggest the aspect price; in “Not to mention
the sleekness of this phone” the IAI “sleekness” suggest the aspect appearance;
in “The player keeps giving random errors” the IAI “random errors” suggest the
aspect quality; in “This phone is a piece of crap” the IAI “piece of crap” suggest
the aspect quality.

Moreover the same implicit aspect can be implied by different IAI. In the following
opinions, the implicit aspect price is implied by different IAI (underlined):

• This mp3 player is very affordable.

• This mp3 player also costs a lot less than the iPod.

• This mp3 player is quite cheap.

• This mp3 is inexpensive.

• I bought this mp3 for almost nothing!

• This mp3 player has been fairly innovative and reasonably priced.

16

1.9 Aspect-based Opinion Summarization

1.8.2.2. IAI Extraction

A common approach for IAI identification is to assume that the sentiment or
polarity words are good candidates for IAI: for example, in “This MP3 player is
really expensive” the word “expensive”, which indicates the negative polarity, is
also the IAI for the aspect price.

However, this is not always true. For example, in “This camera looks great” the
word “looks” implies the appearance of the phone, while the polarity is given by the
word “great”. In “I hate this phone. It only lasted less than six months!”, the word
“lasted” is the IAI for durability of the phone, while the polarity is indicated by
“hate”. What is more, the second sentence of this example could appear without
the first one:, i.e.“This phone only lasted less than six months”. This sentence
by itself stills constitute a negative opinion of the phone’s durability, but not
expressed by any specific word. This phenomenon is known in Opinion Mining as
desirable facts: communicating fact that by common sense are good or bad, which
indirectly implies polarity. Another example: in a camera review, the objective
fact “The camera can hold lots of pictures” does not contain any sentiment or
polarity words yet gives a positive opinion about the camera’s memory capacity
(IAI “hold”) because it is desirable for a camera to hold many pictures.

In this research work, we present a novel approach for IAI extraction. The sec. 3.4
explains this in detail.

1.9. Aspect-based Opinion Summarization

Aspect-based opinion summarization has two main characteristics. First, it cap-
tures the essence of opinions: opinion targets (entities and their aspects) and
sentiments about them. Second, it is quantitative, which means that it gives the
number or percent of people who hold positive or negative opinions about the
entities and aspects. The quantitative side is crucial because of the subjective na-
ture of opinions. The resulting opinion summary is a form of structured summary

17

1.9 Aspect-based Opinion Summarization

Figure 1.2.: An aspect-based opinion summary

produced from the opinion quintuple (1.1). The Fig. 1.2 shows an aspect-based
summary of opinions about a digital camera (Hu and Liu (2004)). The aspect
GENERAL represents opinions on the camera as a whole, i.e., the entity. For each
aspect (e.g., picture quality), it shows how many people have positive and negative
opinions respectively. <individual review sentences> links to the actual sentences
(or full reviews or blogs).

In fact, the opinion quintuples allows one to provide many more forms of structured
summaries. For example, if time is extracted, one can show the trend of opinions on
different aspects. Even without using sentiments, one can see the buzz (frequency)
of each aspect mentions, which gives the user an idea what aspects people are most
concerned about.

Even though Aspect-based opinion summarization research focuses on structured
summaries, it is possible to come up with a more “natural” approach, e.g., a sum-
mary in a form of a short text with the main phrases, entities and aspect. The
nature of Aspect-based Opinion Mining allows to make this kind of summaries
since the granularity level is detailed enough to discriminate between the different
elements in the opinion quintuples that conforms an opinionated document. More-
over, the structured nature of the opinion definition given by the opinion quintuple
allows to use an optimization approach to generate such summaries. This approach

18

1.9 Aspect-based Opinion Summarization

is also used in this work.

19

2. State of the Art

2.1. Overview

This chapter shows an overview of the current research made in Opinion Mining
focused in Aspect-based Opinion Summarization, which is the approach this work
uses. The state-of-the-art for each one of the task involved in opinion summariza-
tion are described, along with a brief description of the models, methods and the
phenomena involved.

2.2. Sentiment Classification

2.2.1. Supervised Approaches

The current main technique is to use parsing to determine the dependency and
the other relevant information. For example, Jiang et al. (2011) used dependency
parserto generate a set of aspect dependent features for classification. A related
approach was also used by Boiy and Moens (2009), which weights each feature
based on the position of the feature relative to the target aspect in the parse tree.
For comparative sentences, “than” or other related words can be used to segment
a sentence (Ding and Zhang (2009); Ganapathibhotla and Liu (2008)).

Socher et al. (2013) developed a Recursive Neural Tensor Network (RNTN) and a
sentiment Treebank. The RNTN was trained with the treebank in order to com-
pute a semantic vector space of words that captures the sentiment compositionality

20

2.3 Aspect Extraction

of large sentences. Then the sentiment of each element in a context is computed
using a RNTN language model.

2.2.2. Lexicon-based Approaches

Ding and Yu (2008) proposed a word distance-based metric to determine the scope
of each individual sentiment word. In this case, parsing is needed to find the
dependency. The basic method is to use the word distance between sentiment
words and the aspects of the sentence

We can also automatically discover the sentiment orientation of context dependent
words, e.g. the word “long” in the sentence “The battery life is long” has a
positive sentiment since the word “long” is a good thing in a battery. Blair-
Goldensohn et al. (2008) integrated the lexicon-based method with supervised
learning. Kessler and Nicolov (2009) experimented with four different strategies
of determining the sentiment on each aspect/target (including a ranking method).
They also showed several interesting statistics on why it is so hard to link sentiment
words to their targets based on a large amount of manually annotated data. Along
with aspect sentiment classification research, researchers also studied the aspect
sentiment rating prediction problem which has mostly been done together with
aspect extraction in the context of topic modeling. As indicated above, apart
from sentiment words and phrases, there are many other types of expressions that
can convey or imply sentiments. Most of them are also harder to handle.

2.3. Aspect Extraction

In the following we discuss the related work regarding opinion aspect extraction
in opinion mining. Thera are two task in Aspect Extraction: Explicit Aspects
Extraction and Implicit Aspects Extraction.

21

2.3 Aspect Extraction

2.3.1. Explicit Aspect Extraction

2.3.1.1. Rule-based approaches.

Aspect extraction from opinions was first studied by Hu and Liu (2004). They
introduced the distinction between explicit and implicit aspects (this will be dis-
cussed in detail in sec. 3.4). However, the authors only dealt with explicit aspects.
Nouns and noun phrases (or groups) were identified by a part-of-speech (POS)
tagger. Their occurrence frequencies are counted, and only the frequent ones are
kept. A frequency threshold can be decided experimentally.

This method was improved by Popescu and Etzioni (2005). Their algorithm tried
to remove those noun phrases that may not be aspects of entities. It evaluated
each discovered noun phrase by computing a pointwise mutual information (PMI)
score between the phrase and some meronymy discriminators associated with the
entity class, e.g., a camera class. The meronymy discriminators for the camera
class are, “of camera,” “camera has,” “camera comes with,” etc., which were used
to find components or parts of cameras. Web search was used to find the number of
hits of individual terms and also their co-occurrences. The idea of this approach is
clear. If the PMI value of a candidate aspect is too low, it may not be a component
of the product because a and d do not co-occur frequently. The algorithm also
distinguishes components/parts from attributes using WordNet’s is-a hierarchy
(which enumerates different kinds of properties) and morphological cues (e.g., “-
iness,” “-ity” suffixes).

Blair-Goldensohn et al. (2008) refined the frequent noun and noun phrase approach
by considering mainly those noun phrases that are sentiment bearing sentences or
in some syntactic patterns which indicate sentiments. Several filters were applied
to remove unlikely aspects, e.g., dropping aspects which do not have sufficient
mentions along-side known sentiment words. They also collapsed aspects at the
word stem level, and ranked the discovered aspects by a manually tuned weighted
sum of their frequency in sentiment-bearing sentences and the type of sentiment
phrases/patterns, with appearances in phrases carrying a greater weight.

22

2.3 Aspect Extraction

A frequency-based approach was also taken by Ku et al. (2006). The authors
called the so discovered terms the major topics. Their method also made use of
the TF-IDF scheme considering terms at the document level and at the paragraph
level.

Guo et al. (2009) proposed a method based on the Cvalue measure for extracting
multi-word aspects. The Cvalue method is also based on frequency, but it considers
the frequency of multi-word term t, the length of t, and also other terms that
contain t. However, Cvalue only helped find a set of candidates, which is then
refined using a bootstrapping technique with a set of given seed aspects. The idea
of refinement is based on each candidate’s co-occurrence with the seeds.

Long et al. (2010) extracted aspects (nouns) based on frequency and information
distance. Their method first finds the core aspect words using the frequency-based
method. It then uses the information distance to find other related words to an
aspect, e.g., for aspect price, it may find “$” and “dollars”. All these words are
then used to select reviews which discuss a particular aspect most.

Other rule-based methods are described by Kobayashi et al. (2006) and by Soma-
sundaran et al. (2009).

2.3.1.2. Supervised Approaches

Taking a supervised learning approach, aspect extraction can be seen as a general
information extraction problem. There are many algorithms for this task. The
most dominant methods are based on sequential labeling. Since they are super-
vised methods, they need manually labeled training data. There are basically two
techniques for this task: Hidden Markov Models (Rabiner (1989)) or HMM’s and
Conditional Random Fields (Lafferty et al. (2001)) or CRF’s. Jin and Ho (2009)
used a lexicalized HMM for extraction of aspects and opinions jointly.

Jakob and Gurevych (2010) used CRF’s. They trained a CRF classifier on review
sentences from Hu and Liu (2004). The reviews were from different domains for a
more domain independent extraction. A set of domain independent features were

23

2.3 Aspect Extraction

also used, e.g. tokens, POS tags, syntactic dependency, word distance, and opinion
sentences.

Li et al. (2010a) integrated two CRF variations: Skip-CRF and Tree-CRF. These
variations enable CRF to exploit structure features. Unlike the original CRF,
which can only use word sequences in learning, Skip-CRF and Tree- CRF enable
CRF to exploit structure features.

Choi and Cardie (2010) used CRF to determine the boundaries of an opinion, its
polarity and its intensity. Huang et al. (2012) used CRF with syntactic dependency
distributional context extraction features. They also categorize the features.

2.3.1.3. Unsupervised Approaches

There are also unsupervised learning techniques for aspect extraction. They are
mainly based on topic modeling. This is an unsupervised learning method that
assumes each document consists of a mixture of topics and each topic is a proba-
bility distribution. The random variables are words. A topic model is a generative
model which describes how a document is generated according the probability
distributions for each topic.

The main techniques for this approach are PLSA (Hofmann (1999)) and LDA
(Blei et al. (2003)). These are graphical models based in Bayesian Networks and
they are applied in aspect extraction under the assumption that the topics of a
opinionated document are the opinion targets or aspects. These techniques have
the advantage of clustering synonym aspects.

Although they are mainly used to model and extract topics from text collections,
they can be extended to model many other types of information simultaneously.
For example, in the sentiment analysis context, one can design a joint model to
model both sentiment words and topics at the same time, due to the observation
that every opinion has a target.

Intuitively topics from topic models are aspects in the sentiment analysis context.
Topic modeling can thus be applied to extract aspects. However, there is also a

24

2.3 Aspect Extraction

difference. That is, topics can cover both aspect words and sentiment words. For
sentiment analysis, they need to be separated. Such separations can be achieved
by extending the basic model (e.g., LDA) to jointly model both aspects and sen-
timents.

There are several works based on this approach. Mei et al. (2007) proposed a joint
model for sentiment analysis based on PLSA. Lin and He (2009) proposed a joint
topic-sentiment model by extending LDA, where aspect words and sentiment words
were not explicitly separated. Brody and Elhadad (2010) identified aspects using
topic modeling and then identify aspect-specific sentiment words by considering
adjectives only. Li et al. (2010b) proposed two joint models: Sentiment-LDA and
Dependency-Sentiment-LDA to find aspects with positive and negative sentiments.

In spite of being really useful, topic modeling have several disadvantages in aspect
extraction. Titov and McDonald. (2008) showed that global topic modeling such
as LDA might not be suitable for detecting aspects. This is because LDA relies on
word co-occurrence frequencies among documents to model topics and word prob-
ability distributions. But opinion documents and reviews are quite homogeneous,
meaning that every documents talks about the same aspects. This makes topic
modeling very ineffective. The authors then proposed the multigrain topic models.
The global model discovers entities while the local model discovers aspects using
a few sentences (or a sliding text window) as a document. Here, each discovered
aspect is a unigram language model, i.e., a multinomial distribution over words.
Different words expressing the same or related facets are automatically grouped
together under the same aspect. However, this technique does not separate aspects
and sentiment words

Other problem is that topic modeling needs large volumes of data and a significant
amount of tuning in order to achieve reasonable results. Also, topic modeling relies
on Gibbs Sampling, which can throw different results each run due to Markov
Chain Monte Carlo Sampling. While it is not hard for topic modeling to find those
very general and frequent topics or aspects from a large document collection, it is
not easy to find those locally frequent but globally not so frequent aspects. Such
locally frequent aspects are often the most useful ones for applications because they

25

2.3 Aspect Extraction

are likely to be most relevant to the specific entities that the user is interested in.
Those very general and frequent aspects can also be easily found by the methods
discussed earlier. These methods can find less frequent aspects as well without the
need of a large amount of data. Topic modeling is very useful, but the current state-
of-the-art approaches for sentiment analysis, and aspect extraction in particular,
are far from being practical.

2.3.2. Implicit Aspect Extraction

In this section we discuss the related work regarding implicit aspect extraction in
opinion mining.

The OPINE extraction system proposed by Popescu and Etzioni (2005) was the
first which tried to extract implicit aspects for a better performance in polarity
classification. There are not enough published information on the methods and
techniques used in their approach or the implicit aspects extraction performance
and the OPINE system is not publicly available.

In Su et al. (2008) a clustering method was proposed to map implicit aspect expres-
sions, which were assumed to be sentiment words, to their corresponding explicit
aspects. The method exploits the mutual reinforcement relationship between an
explicit aspect and a sentiment word forming a co-occurring pair in a sentence.

In the work of Hai et al. (2011) a two-phase co-occurrence association rule mining
approach was proposed to match implicit aspects (which are also assumed to be
sentiment words) with explicit aspects.

Finally the work of Zeng and Li (2013) proposes a rule-based method to extract
explicit aspects and then map implicit features using a set of sentiment words and
clustering explicit features-opinions word pairs.

26

2.4 Aspect-based Opinion Summarization

2.4. Aspect-based Opinion Summarization

The vast majority of research made in Aspect-based Opinion Summarization fo-
cuses on structured summaries. The approach proposed in Hu and Liu (2004) was
the first one. Liu et al. (2005) proposed another approach with some visualization
techniques. The Fig. 2.1 shows how the opinion summary in Fig. 1.2 could be visu-
alized as a bar chart. Fig. 2.2 shows the visual opinion comparison of two cameras.
We can see how consumers view each of them along different aspect dimensions
including the entities themselves.

Figure 2.1.: Visualization of aspect-based summary of opinions on a digital
camera

Figure 2.2.: Visual opinion comparison of two digital cameras

Several improvements and refinements have been proposed by researchers for the
basic aspect-based summary. Carenini and Pauls (2006) proposed to integrate
aspect-based summarization with two traditional text summarization approaches
of factual documents, i.e., sentence selection (or extraction) and sentence genera-
tion.

27

2.4 Aspect-based Opinion Summarization

Tata and Eugenio. (2010) produced an opinion summary of song reviews similar
to that in Hu and Liu (2004), but for each aspect and each sentiment (postive or
negative) they first selected a representative sentence for the group. The sentence
should mention the fewest aspects (thus the representative sentence is focused).
They then ordered the sentences using a given domain ontology by mapping sen-
tences to the ontology nodes. The ontology basically encodes the key domain
concepts and their relations. The sentences were ordered and organized into para-
graphs following the tree such that they appear in a conceptually coherent fashion.

Lerman and McDonald (2009) defined opinion summarization in a slightly different
way. Given a set of documents D (e.g., reviews) that contains opinions about
some entity of interest, the goal of an opinion summarization system is to generate
a summary S of that entity that is representative of the average opinion and
speaks to its important aspects. This paper proposed three different models to
perform summarization of reviews of a product. All these models choose some
set of sentences from a review. The first model is called sentiment match (SM),
which extracts sentences so that the average sentiment of the summary is as close
as possible to the average sentiment rating of reviews of the entity. The second
model, called sentiment match + aspect coverage (SMAC), builds a summary that
trades-off between maximally covering important aspects and matching the overall
sentiment of the entity. The third model, called sentiment-aspect match (SAM),
not only attempts to cover important aspects, but cover them with appropriate
sentiment. A comprehensive evaluation of human users was conducted to compare
the three types of summaries. It was found that although the SAM model was the
best, it is not significantly better than others.

In Nishikawa et al. (2010) a more sophisticated summarization technique was
proposed, which generates a traditional text summary by selecting and order-
ing sentences taken from multiple reviews, considering both informativeness and
readability of the final summary. The informativeness was defined as the sum of
frequency of each aspect-sentiment pair. Readability was defined as the natural
sequence of sentences, which was measured as the sum of the connectivity of all
adjacent sentences in the sequence. The problem was then solved through opti-
mization. Nishikawa et al. (2010a) further studied this problem using an integer

28

2.4 Aspect-based Opinion Summarization

linear programming formulation.

29

3. Research Methodology

3.1. Overview

This chapter describes the research made and the methodology used to build the
Opinion Summarization framework. It describes the models and methods proposed
for polarity classification, aspect Extraction and opinion summarization.

3.2. Polarity Classification

3.2.1. Description

The approach used for polarity classification is the one proposed by Ding and Yu
(2008). This is a holistic lexicon-based approach that exploits external evidences
and linguistic conventions of natural language expressions. This approach allows
the system to handle opinion words that are context dependent, which cause major
difficulties for existing algorithms. It also deals with many special words, phrases
and language constructs which have impacts on opinions based on their linguistic
patterns. It also has an effective function for aggregating multiple conflicting
opinion words in a sentence.

This method is used because:

• It is domain independent, unlike supervised methods which require training
data. Therefore this restrict the domains the classifier can work based on
the data domain.

30

3.2 Polarity Classification

• It has a very good performance.

• It is computationally inexpensive.

The main drawbacks found are the following:

• It requires the opinion targets as input. If the opinion targets are incorrect,
or there are not any, the performance decreases drastically.

• It depends on a sentiment lexicon, where there can be some ambiguity of the
polarity of words based on the contexts and the domain.

3.2.2. Algorithm

This method can be described in four steps:

1. Mark sentiment words and phrases: For each sentence that contains one
or more aspects, this step marks all sentiment words and phrases in the
sentence. Each positive word is assigned the sentiment score of +1 and each
negative word is assigned the sentiment score of -1. For example, we have the
sentence, “The voice quality of this phone is not good, but the battery life is
long.” After this step, the sentence becomes “The voice quality of this phone
is not good [+1], but the battery life is long” because “good” is a positive
sentiment word (the aspects in the sentence are italicized). Note that “long”
here is not a sentiment word as it does not indicate a positive or negative
sentiment by itself in general, but we can infer its sentiment in this context.

2. Apply sentiment shifters: Sentiment shifters (also called valence shifters)
are words and phrases that can change sentiment orientations. There are
several types of such shifters. Negation words like not, never, none, nobody,
nowhere, neither, and cannot are the most common type. This step turns
our sentence into “The voice quality of this phone is not good[-1], but the
battery life is long” due to the negation word “not.”. Note that not every
appearance of a sentiment shifter changes the sentiment orientation, e.g.,

31

3.2 Polarity Classification

“not only . . . but also.” Such cases need to be dealt with care. That is, such
special uses and patterns need to be identified beforehand.

3. Handle but-clauses: Words or phrases that indicate contrary need special
handling because they often change sentiment orientations too. The most
commonly used contrary word in English is “but”. A sentence containing
a contrary word or phrase is handled by applying the following rule: the
sentiment orientations before the contrary word (e.g., but) and after the
contrary word are opposite to each other if the opinion on one side cannot
be determined. The if-condition in the rule is used because contrary words
and phrases do not always indicate an opinion change, e.g., “Car-x is great,
but Car-y is better.” After this step, the above sentence is turned into “The
voice quality of this phone is not good[-1], but the battery life is long[+1]”
due to “but” ([+1] is added at the end of the but-clause). Notice here, we
can infer that “long” is positive for “battery life”. Apart from but, phrases
such as “with the exception of,” “except that,” and “except for” also have
the meaning of contrary and are handled in the same way. As in the case of
negation, not every but means contrary, e.g., “not only . . . but also.” Such
non-but phrases containing “but” also need to be identified beforehand.

4. Aggregate opinions: This step applies an opinion aggregation function to the
resulting sentiment scores to determine the final orientation of the sentiment
on each aspect in the sentence. Let the sentence be s, which contains a set of
aspects a1, . . . , am and a set of sentiment words or phrases sw1, . . . , swn with
their sentiment scores obtained from steps 1- 3. The sentiment orientation
for each aspect ai in s is determined by equation 3.1, where swj is a sentiment
word/phrase in s, dist(swj, ai) is the distance between aspect ai and THE
sentiment word swj in s. score(swj) is the sentiment score of swi. The
multiplicative inverse is used to give lower weights to sentiment words that
are far away from aspect ai. If the final score is positive, then the opinion
on aspect ai in s is positive. If the final score is negative, then the sentiment
on the aspect is negative. It is neutral otherwise.

score(ai, s) =
∑
swjεS

score(swj)
dist(swj, ai)

(3.1)

32

3.2 Polarity Classification

The Algorithm 3.1 shows the polarity computation. The variable orientation holds
the the polarity given as a result in the output. The Algorithm 3.2 describes how
the polarity of a given word is computed.

The negation word or phrase usually reverses the opinion expressed in a sentence.
Negation words include traditional words such as “no”, “not”, and “never”, and
also pattern-based negations such as “stop” + “vb-ing”, “quit” + “vb-ing” and
“cease” + “to vb”. Here, vb is the POS tag for verb and “vb-ing” is vb in its -ing
form (represented in the Penn Treebank POS tag set as “VBG”). The following
rules are applied for negations:

• Negation Negative → Positive

• Negation Positive → Negative

• Negation Neutral → Negative

For pattern-based negations, the algorithm detects the patterns and then applies
the rules above. For example, the sentence, “the camera stopped working after
3 days”, conforms to the pattern “stop”+“vb-ing”, and is assigned the negative
orientation by applying the last rule as “working” is neutral. Note that “Negative”
and “Positive” above represent negative and positive opinion words respectively.

This approach proposes a special handling for the opinionated sentences with a
“but” clause. The opinion before and after the word “but” are usually opposite to
each other. Phrases such as “with the exception of”, “except that”, and “except
for” behaves similarly to “but” and are handled in the same way as “but”.

The Algorithm 3.3 shows the “but” clauses handling. The intuition is that that
one must follow the semantic orientation of the “but” clause first. If one cannot get
an orientation there, then one must to look at the clause before“but”and negate
its orientation. Non-but clauses containing but-like words: Similar to negations
and opinion words, a sentence containing “but” does not necessarily change the
opinion orientation. For example, “but” in “I not only like the picture quality
of this camera, but also its size” does not change opinion after “but” due to the
phrase “but also”.

33

3.3 Explicit Aspect Extraction

In this research work some improvements where made to the original approach.
In the Negation Rule handling, lemmatization to special negation words such as
“stop”, “quit” and “cease” was added. This was made aiming to handled past
tense sentence like “the camera stopped working after 3 days” better.

3.2.3. Implementation

The polarity classification tool was build using Python 2.7. The syntactic proper-
ties of this language makes the development easier. The Natural Language Toolkit
(NLTK)1 is a series of Python libraries that offers natural language processing ca-
pabilities. This toolkit was used for Part-Of-Speech Tagging (POS Tagging) and
word lemmatization.

The Sentiment Lexicon used by Hu and Liu (2004) was used to determine the
polarity of common sentimental words. Some tools for extracting and using these
words were developed.

The performance analysis of the polarity classifier implementation is presented in
the sec. 4.2.

3.3. Explicit Aspect Extraction

3.3.1. Description

As described in the previous section, the polarity classifier needs as input the words
that represent the opinion explicit aspects of the document to classify. Moreover
the Opinion Summarization approach proposed in this research work use these
explicit aspects. Therefore, an explicit aspect extraction tool is required.

1http://www.nltk.org/

34

3.3 Explicit Aspect Extraction

The proposed approach is to model explicit aspect extraction as a Name Entity
Recognition task. This area has been widely researched an there are several tech-
niques used. The most predominant are those based on sequence labeling. This is
a machine learning technique that involves the algorithmic assignment of a cate-
gorical label to each member of a sequence of observed values.

3.3.2. Supervised Learning

In order to understand sequence labeling, a brief description of supervised learning
is given.

Supervised learning is the machine learning task of inferring a function from labeled
training data. The training data consist of a set of training examples. In supervised
learning, each example is a pair consisting of an input object (typically a vector)
and a desired output value (also called the supervisory signal). A supervised
learning algorithm analyzes the training data and produces an inferred function,
which can be used for mapping new examples. An optimal scenario will allow for
the algorithm to correctly determine the class labels for unseen instances. This
requires the learning algorithm to generalize from the training data to unseen
situations in a "reasonable" way.

Given a set on N of the form {(x1, y1), ..., (xn, yn)} such that xi is the feature
vector of the i-th example and yi is its label (i.e. the class), a learning algorithm
seeks a function g : X → Y , where X is the input space and Y is the output
space. The function g is an element of some space of possible functions G, usually
called a hypothesis space. It is sometimes convenient to represent g using a scoring
function f : X × Y → R such that g is defined as returning the y value that gives
the highest score.

3.3.3. Sequence Labeling

In the following an overview of sequence labeling scheme is given. It is out of the
scope of this work to make a deeper explanation on this topic.

35

3.3 Explicit Aspect Extraction

In sequence labeling we have a dataset with a set of inputs X = {x1, ..., xm} and
a set of assigned labels Y = {y1, ..., ym} to those inputs. The goal is to predict the
set of labels Y ′ = {ym+1, ..., yn} given a set of new inputs X ′ = {xm+1, ..., xn}. If
the model used to predict Y ′ is obtained with the observed data X and Y then
the model is supervised. This is the approach used in this work.

There are 2 models currently used for sequence labeling and supervised learning
in general: generative models and discriminative models. This research work only
focuses on the discriminative approach since this is the one used.

3.3.3.1. Discriminative Sequence Labeling

Discriminative models, also called conditional models, are mathematical models
for modeling the dependence of an unobserved data Y on an observed variable
X. Within a probabilistic framework, this is done by modeling the conditional
probability distribution p(y|x), which can be used for predicting a random variable
Y from a random variable X.

Discriminative sequence labeling tries to model a conditional probability distribu-
tion P (y|x) for a set sequence of labels Y given a set of sequential data X.

The Fig. 3.1 shows an example of the basic Discriminative Sequence Labeling
scheme used in the Part-Of-Speech Tagging. A sequence labeler has as input
a sequence X. Then the labeler computes the conditional probability of a label
for each element in X. The label sequence output is the sequence of labels that
maximizes the probability.

3.3.4. Conditional Random Fields

The selected approach for aspect extraction task is discriminative sequential la-
beling. One of the state-of-the-art techniques for this approach are Conditional
Random Fields (Lafferty et al. (2001)), commonly known as CRF. Concretely,
this work uses the Linear Chain Conditional Random Fields Sequential Labeling

36

3.3 Explicit Aspect Extraction

Figure 3.1.: Sequence Labeling in POS Tag

method. In order to understand better what CRF are, the Appendix A gives a
brief introduction on Probabilistic Graphical Models and the full description of
CRF.

3.3.5. Explicit Aspect Extraction Approach

In this section we describe the approach used for explicit aspect extraction. The
proposed approach uses Linear Chain Conditional Random Fields Sequential La-
beling. In the following it is described the dataset used in the experiments for
training and testing, the features crafted and the implementation of the CRF-
based aspect extraction tool.

3.3.5.1. Dataset

We used the corpus from the work of Hu and Liu (2004) in our experiments.
It consist of 314 amazon reviews of 5 products in the electronics commodities
domain: a DVD player(DVD), a Canon camera (Canon), a MP3 player (MP3), a
Nikon camera (Nikon) and a Nokia Cellphone (Phone). The Tab. 3.1 shows some
of the properties of this corpus. The field Rev show the number of reviews per
document. Sent is how many sentences are in the document. Words is the number
of words in the whole document. WPR is Words per Review, and it is on average

37

3.3 Explicit Aspect Extraction

how many words a review has. ES shows how many sentences of the documents
have at least one explicit aspect. The field EA Dict. indicates how many unique
words were seen as an explicit aspect. Finally EA % shows the percentage between
sentences with explicit aspects versus the rest of the sentences.

Table 3.1.: Dataset Statistical Properties.

DVD Canon MP3 Nikon Phone
Rev 99 45 95 34 41
Sent 740 597 1796 346 546
Words 56661 55638 149676 31416 44497
WPR 572.3 1236.4 1575.5 924 1085.3
ES 345 239 721 160 266

EA Dict. 116 105 188 75 111
EA % 46.62% 40.03% 42.01% 46.24% 48.71%

The dataset has the explicit aspects labeled in each opinionated sentence. Also
unmentioned aspects are indicated, i.e. pronouns that indicate an aspect men-
tioned earlier in the text or implicit aspects. Explicit aspect extraction only uses
the aspects that appear labeled in the sentence.

The structure of this dataset is as follows: A review starts with a string “[t]”
followed by the title of the review. Then each line is a sentence in the original
review. The review finishes when the string “[t]” is found. This line is the title
of the next review in the file. Each sentence has a 2-pound string (“##”). If the
sentence has explicit aspects, they appear in the left side of the “##” string as
a comma-separated list of words. If the sentence does not have any aspects, the
string “##” is at the beginning of the sentence

The Fig. 3.2 shows an example of a sentence in a review. We have an opinionated
sentence in this example . It has a positive opinion about the “audio output”
aspect. This sentence is shown in 4 lines due to space issues.

38

3.3 Explicit Aspect Extraction

audio output##another nice thing is that the unit has both
optical and coax digital audio outputs , though the latter
was not mentioned in the literature i’d scanned before
buying .

Figure 3.2.: Example of a sentence in the reviews dataset.

3.3.5.2. Feature Crafting

The proposed features uses different linguistic and syntactic properties of the text
and the model itself. These properties captures the opinion target phenomena
effectively. This linguistic properties are:

• Part Of Speech: POS is a linguistic category of words (or more precisely
lexical items), which is generally defined by the syntactic or morphological
behavior of the lexical item in question. Common linguistic categories include
noun and verb, among others. The POS Tagging used is based on the Penn
Treebank tagging scheme. For every classification instance the POS tagging
is performed.

• Character N-Grams: Character N-Gram are fragments of a word. They
consist the different segments of characters of length N. These kind of features
describe the text morphological properties.

Other proposed features try to model the context of an instance:

• Context: These features are the word and tag for the previous and next word
of the current instance to be labeled .

• Class sequences: These are the combination of a particular word with the
labels given to the previous words. We used a label window of 2, i.e. the
labels of the 2 previous words plus the current word and as features.

39

3.3 Explicit Aspect Extraction

• Disjunction of words: these are features that gives disjunction of words in
the context of the token with an specific window size. The Fig. 3.3 gives
an example of these features. At training time we have a sentence “the best
feature of my phone is the camera” and the token being evaluated is “camera”
with a class label of ’A’ indicating it is an aspect. In a disjunction window
size of 3, the features functions are built to compute the disjunction of the
previous 3 words and the next 3 words of the word “camera”. In this case,
the function f1 will map to 1 if the previous word is “the” and the current
class label is ’A’ or if the previous 2 words are “is the” and the current label
is ’A’ or if the previous 3 words are “phone is the” and the current label
is ’A’. Since there are no more words after the word “camera”, there is no
function modeling the disjunction words for the next 3 words.

f1(yj, ~x, j) =



1 if yj = ′A′ and
(~xj−1 = ”the”
or ~xj−2,j−1 = ”is the”
or ~xj−3, j−2, j−1 = ”phone is the”)

0 Otherwise

Figure 3.3.: Disjunction feature example.

The Tab. 3.2 show a detailed description of the features used in the experiments.
Recalling from Subsection sec.A.5, at training time a feature function takes the
current sentence token to be labeled (it sometimes takes the context tokens, i.e.
the previous or the next token, the two previous tokens, etc.) or some property
of this token (e.g. its POS tag) and the class label assigned (it can also take
k previous labels). The field “Features” shows this information for each feature
built. For example, the first row “word, class” indicates that there will be features
indicating if a specific word given a class label exist.

40

3.3 Explicit Aspect Extraction

Table 3.2.: Features Description

Features Description
word, class Vocabulary word
tag, class Part of Speech

prev. word, class The previous word to a token being labeled
next word, class The next word to a token being labeled
prev. tag, class The tag of the previous word to a token

being labeled
next tag, class The tag of the next word to a token being

labeled
prev. word, word, class Previous word pair
next word, word, class Next word pair

(prev. word; prev. 2 words;
prev. 3 words; ...), class The disjunction of context words

prev. class, class The sequence of class labels of order 1
prev. class, word, class Combination of word and the sequence of

class labels of order 1.
char-n-gram(word), class The character n-grams of a word

3.3.5.3. Implementation

The Stanford NER2 is a Java implementation of a Named Entity Recognizer. It
includes a general implementation of an arbitrary-order linear-chain Conditional
Random Field sequence model. It is called CRFClassifier. This work uses such
implementation for the aspect extractor. This software allows to train a NER
model with an annotated text. The training data is arranged in a tab-separated
column text file. For convention, the most-left column is the text tokens, the most-
right column is the class label and the inner columns are the token features, such
as tag, lemma, chunk, etc. For the proposed features, the CRFClassifier needs the
text token, the token POS tag and the class label as input. The Fig. 3.4 shows part
of a CRFClassifier training data file. Each line is a token in a sentence. An empty
line is used to indicate a new sentence. The first tab-separated column indicates
the token, the second column is the POS tag of that particular token in the whole
sentence context. The third column is the class label. The label ’A’ indicates that

2http://nlp.stanford.edu/software/CRF-NER.shtml

41

3.3 Explicit Aspect Extraction

the token is an explicit aspect. The label ’O’ is for “Other”, i.e. it is not an aspect.

i PRP O
think VBP O
apex NN A
is VBZ O
the DT O
best JJS O
dvd NN A
player NN A
you PRP O
can MD O
get VB O
for IN O
the DT O
price NN O
. . O

Figure 3.4.: A sentence in a CRFClassifier training data file.

In order to train the CRFClassifier with the corpus of Hu and Liu (2004), a parser
tool was built as part of this research. It uses the files of the corpus as input and
creates a CRFClassifier training data file. The NLTK POS Tagger is used in this
parser for POS Tagging.

The CRFClassifier can be used programatically as a Java class or it can be used
out-of-the-box as an executable program. The latter option was used.

The command to train the CRFClassifier is shown in the Fig. 3.5. The executable
file name is “StanfordNER.jar”. The CRFClassifier can be configured using a con-
figuration file. The name of this file can be set with the option “-prop”. In the
example given in theFig. 3.5 the configuration file name is “CRFAspectExtrac-
tor.prop”

42

3.3 Explicit Aspect Extraction

java -cp StanfordNER.jar edu.stanford.nlp.ie.crf.CRFClassifier
-prop CRFAspectExtractor.prop

Figure 3.5.: CRFClassifier console training command

The StanfordNER package includes the documentation needed to set it up (in a
Javadoc format). The CRFClassifier parameters used in this research work are
described. It is out of the scope of this work a full description of the Stanford
NER and the CRFClassifier capabilities.

The Fig. 3.6 shows the properties file used to train the CRFClassifier used as an
aspect extractor. In the following these properties are listed and explained:

• trainFile: This is the training data file name. The .tsv extention is for
convention. It can use any extension as long as the training data file has an
ASCII or UTF-8 format.

• serializeTo: The CRFClassifier model can be serialized to a file. This pa-
rameter allows to set the file name of this file. If the .gz extension is added
to the file name, the CRFClassifier will compress the model automatically.

• map: This set the training set structure mapping. It consist of a comma-
separated set of assignations. The assignation left side is the data label and
the right side is the column number counted from left to right.

The rest of the file is the CRFClassifier features configuration. These parameter
are set according to the feature crafting described in sec. 3.3.5.2.

43

3.3 Explicit Aspect Extraction

trainFile = CRFPOSTaggedCamTrainData.tsv
#location where you would like to save (serialize to) your
#classifier; adding .gz at the end automatically gzips
#the file, making it faster and smaller
serializeTo = CRFAspectExtractor-model.ser.gz
#structure of your training file; this tells the classifier
#that the word is in column 0 and the correct answer is in
#column 1
map=word=0,tag=1,answer=2
#these are the features we’d like to train with
#some are discussed below, the rest can be
#understood by looking at NERFeatureFactory
useClassFeature=true
useWord=false
useNGrams=true
useTags=true
noMidNGrams=true
maxNGramLeng=6
usePrev=true
useNext=true
useSequences=true
usePrevSequences=true
useNextSequences=true
useDisjunctive=true

Figure 3.6.: CRFClassifier properties file

The command to test the trained model is shown in the Fig. 3.7. The “-loadClassifier”
parameter specifies the model file name to be used. The “-testFile” indicates the
data to label. The “ > TestResults.txt” saves the labeled data in the file “TestRe-
sults.txt”.

44

3.4 Implicit Aspect Extraction

java -cp StanfordNER.jar edu.stanford.nlp.ie.crf.CRFClassifier

-loadClassifier CRFAspectExtractor-model.ser.gz
-testFile TestData.tsv > TestResults.txt

Figure 3.7.: CRFClassifier testing command

In order to validate the results and check for over-fitting, a 10-fold cross validation
scheme was set up. It consists of a Python script that divides the dataset in 10
parts of the same size. Then it creates 10 batch files. Each batch file trains and
test the CRFClassifier with a different part of the dataset, making this a fold.
In each fold, the 80% of the dataset is used for training and the rest is used for
testing.

The testing command gives the precision, recall and F1-Score measures at the end
of the testing. These metrics were used to report the results.

The sec. 4.3 shows the performance analysis of the implementation of this explicit
aspect extraction approach.

3.4. Implicit Aspect Extraction

Most of the research in Aspect-based Opinion Mining does not consider implicit
aspects, mainly because the extraction of this type of aspects have been not studied
enough and it is a phenomenon difficult to model. This research work does consider
implicit aspects as part of aspect extraction.

As described in sec. 2.3.2, implicit aspect extraction is divided in 2 subtasks:

1. Identify the implicit aspect indicators (IAI) in the opinionated document.

2. Map them to the corresponding aspects.

45

3.5 IAI Extraction

This research work proposes a novel approach for both of these subtasks. The first
one is called IAI extraction and the second one Implicit Aspect Extraction. The
IAI extraction approach proposed is the state-of-the-art, as the results obtained
prove it.

3.5. IAI Extraction

As described in sec. 1.8.2.2, this tasks consist on the identification of words in an
opinionated document that suggests the opinion aspects, e.g. the sentence “This
camera is sleek and very affordable" implicitly gives a positive opinion on the
aspects appearance and price of the entity camera. One can infer these aspect
because the words “sleek” and “affordable” suggest them.

The proposed approach is to model IAI extraction as a Name Entity Recognition
task. The CRF-based framework proposed for explicit aspect extraction is used
again to tackle this problem. As a part of this effort, a corpus for IAI extraction
was developed by manually labeling IAI and their corresponding aspects in a well-
known opinion-mining corpus. This is the first corpus that specifies implicit aspects
along with their indicators.

3.5.1. IAI Corpus

It was noticed that there was no suitable dataset for IAI extraction. As explained
in sec. 1.8.2, limited work has been done in extracting implicit aspects. Moreover,
the task that this research work defines as IAI extraction was not defined since the
common approach to infer implicit aspects was to take sentiment words as the best
words to infer such aspects. Therefore, it is natural that there are no resources for
IAI extraction. As a result of this, the first corpus for IAI extraction was created
during this research work.

Hu and Liu (2004) developed a corpus for explicit aspect extraction. This corpus
has been widely used in many opinion mining subtasks. The texts of this corpus

46

3.5 IAI Extraction

were used to create a new one for IAI extraction. The text of this corpus was
labeled indicating the IAI and their corresponding implicit aspects. The sentences
that have at least one implicit aspect were selected in order to label the corpus.
Therefore, not every opinionated sentence is labeled.

The Tab. 3.3 shows some of the properties of the IAI corpus. It consists of 314
Amazon reviews of 5 products in the electronics commodities domain: a DVD
player (the column “DVD” in the table), a Canon camera (“Canon”), an MP3
player (“MP3”), a Nikon camera (“Nikon”) and a Nokia Cellphone (“Phone”).
This table describes the number of reviews per document. It also describes how
many words and sentences a review has on average.

The corpus statistical properties at different granularity levels are shown in Tab. 3.4.
The the name of each column is the same as the name of the columns in Tab. 3.3.
This table is divided in 3 section for each granularity level:

• Sentence level.

• Token level.

• Type level.

The sentence-level section shows how many sentences are in the document, how
many sentences of the documents have at least one IAI (shown in the row labeled
as “IAI#”) and the percentage of sentences that have at least one IAI (“IAI%”).
The token-level and type-level section describes the same properties for these gran-
ularity levels.

Table 3.3.: Corpus Properties.

DVD Canon MP3 Nikon Phone
Reviews 99 45 95 34 41

Words per Review 572.3 1236.4 1575.5 924 1085.3
Sentences per Review 7.47 13.26 18.90 3.64 13.31

The Tab. 3.5 shows the POS distribution for the IAI labeled in the corpus. Each
row represents a general Penn Treebank POS tag. The first row represents all the

47

3.5 IAI Extraction

Table 3.4.: Statistical Properties.

DVD Canon MP3 Nikon Phone
Sentence level

Sentences 740 597 1796 346 546
IAI# 147 63 155 36 44
IAI% 19.86% 10.55% 9.03% 10.40% 8.05%

Token level
Tokens 56661 55638 149676 31416 44497
IAI# 164 79 214 50 66
IAI% 0.289% 0.141% 0.142% 0.159% 0.148%

Type level
Types 1767 1881 3143 1285 1619
IAI# 72 63 136 40 42
IAI% 4.07% 3.34% 4.32% 3.11% 2.59%

tags that are adjectives (JJ, JJR, JJS), the second one represents the noun tags
(NN,NNS, NNP, NNPS) and the third one represents the verb tags (VB, VBD,
VBG, VBN, VBP, VBZ). The last row is the rest of tags seen with an IAI. The
IAI column shows how many vocabulary words were seen labeled with the given
tag. The third column describes how many words with the given tag were seen in
sentences with IAI. The fourth column shows the tag distribution observed in the
IAI.

Table 3.5.: Corpus POS Distribution

POS IAI POS in
IAI

Sentences

P(IAI |
POS)

JJ 157 527 0.2818
NN 167 1692 0.3000
VB 220 1112 0.3826
other 19 3900 0.0346

48

3.5 IAI Extraction

3.5.2. Feature Crafting

All the features used for explicit aspect extraction are included in the features set
for IAI extraction. These features model the syntactic, semantic and morphological
properties of IAI:

1. Part Of Speech.

2. Character N-Gram.

3. Context features.

4. Class sequences.

5. Disjunction of words.

Other features were added. The following features gave a performance boost in
IAI extraction.

• Word Pairs: These features are the combination of word and its class label
with the previous word.

• Word-Tag combination: These are features crafted with all the combinations
of word and tag seen.

The Fig. 3.8 shows the text of the CRFClassifier prop file for IAI extraction. The 4
last lines of the document are the parameters concerning the new features described
above. The line “splitDocument=true” makes the classifier to consider the training
file and the testing file as a set of documents. Each document is separated by a
empty line. There is no gain in terms of labeling performance but it takes a little
bit less to train the classifier with this parameter set to “true”.

3.5.3. Implementation

The Stanford NER was used for the IAI extraction tool implementation. The
IAI corpus has the same text structure than the original corpus with some minor

49

3.5 IAI Extraction

changes. Therefore the tools implemented for parsing the original corpus are used
again to parse the IAI corpus. Also the tools created for cross-validation are used
for experimental validation.

trainFile = TrainData0.tsv
#location where you would like to save (serialize to) your
#classifier; adding .gz at the end automatically gzips the file,
#making it faster and smaller
serializeTo = CRFImplicitAspectExtractor-model.ser.gz
#structure of your training file; this tells the classifier
#that the word is in column 0 and the correct answer is in
#column 1
map=word=0,tag=1,answer=2
#these are the features we’d like to train with
#some are discussed below, the rest can be
#understood by looking at NERFeatureFactory
useClassFeature=false
useWord=true
useNGrams=true
useTags=true
noMidNGrams=true
useDisjunctive=true
maxNGramLeng=6
usePrev=true
useNext=true
useSequences=true
usePrevSequences=true
maxLeft=1
useTypeSeqs=true
useWordPairs=true
useWordTag=true
splitDocuments=true

Figure 3.8.: CRFClassifier properties file for IAI extraction

50

3.5 IAI Extraction

3.5.4. Baselines

The IAI extraction approach proposed in this research work turned out to be the
state-of-the-art. As explained in sec. 1.8.2.2 and sec. 2.3.2 the common approach
for IAI identification is to assume that the sentiment or polarity words are good
candidates for IAI: for example, in “This MP3 player is really expensive” the word
“expensive”, which indicates the negative polarity, is also the IAI for the aspect
price. Also it was explained that this is not always true. For example, in “This
camera looks great” the word “looks” implies the appearance of the phone, while
the polarity is given by the word “great”. The IAI extraction approach proposed
does not do such assumptions since the objective is to find the best word that
suggest the implicit aspects, whether these words are sentiment words or not.

Therefore, 3 baselines were implemented to compare the performance of our ap-
proach. These baselines were also the state-of-the-art since there was no other
proposed methods for IAI extraction. These were developed under the assumption
that sentiment words are the best candidates.

The first baseline is to label the sentiment words as IAI for each sentence in a review
(Su et al. (2008); Hai et al. (2011); Zeng and Li (2013)). We use the sentiment
lexicon used by Hu and Liu (2004) to determine if a word has an opinion polarity.
This lexicon is conformed by two word lists. The first list is conformed by "positive
words", which are words that suggest a positive opinion in an opinionated context
(e.g. "awesome"). The second list is conformed by "negative words". These words
suggest a negative opinion (e.g. "awful"). The algorithm for this baseline is as
follows: for each word in a sentence we determine if this word is in any of the two
list of the lexicon. If it is, we label it as IAI. We call this baseline BSLN1.

A second baseline based on text classification was proposed and it was based on
a Naive Bayes (NB) text classifier. The classifier was trained with the texts of
the IAI corpus. The task of this classifier is to determine whether a sentence has
at least one IAI or not. If a sentence is classified as a one with IAI, we label the
sentiment words as IAI.

The features used in the NB classier were:

51

3.6 Mapping IAI to Implicit Aspects

• Corpus vocabulary stems. Stop words are excluded.

• The best 500 bi-gram collocations obtained by a Point-wise Mutual Infor-
mation association measure.

Finally, we also implemented a second-order Hidden Markov Model sequence la-
beler. This is the standard method for sequence labeling. We called this method
BSLN3. We trained this labeller with our corpus. Since the labeller is a sec-
ond order HMM, we use bi-grams and trigrams as features. The training data is
per-processed as follows:

• The words that appears less than 5 times in the corpus (rare words) are
changed in the training data for the label RARE.

• The rare words that contains at least one numeric character are changed for
the label NUMERIC

• The rare words that consists entirely of capitalized letters are changed for
the label ALLCAPS

All baselines were implemented in Python. We used the NB Classifier included in
NLTK for the BSLN2.

The sec. 4.4 shows the performance analysis of the proposed IAI extraction ap-
proach and the different baselines used.

3.6. Mapping IAI to Implicit Aspects

As explained in sec. 3.4, implicit aspect extraction is performed in 2 steps:

1. Extract the indicators of these aspects

2. Map these indicators to their corresponding implicit aspects.

52

3.6 Mapping IAI to Implicit Aspects

Regarding step two, it is intuitively clear for a human that the word “expensive”
in the sentence “This phone is very expensive” is more related to the aspect price
than the aspect appearance. Therefore, given the words price and appearance, the
natural inference process would be to associate the word “expensive” with price.
However this association process is a non-trivial task for a computer.

To overcome this issue, the present research work proposes to use semantic re-
latedness. The main idea is to exploit the semantic relatedness of IAI with their
implicit aspects to infer such aspects. Semantic relatedness is a metric defined
over a set of documents or terms, where the idea of distance between them is
based on the likeness of their meaning or semantic content. This can be achieved
with mathematical tools that are used to estimate the strength of the semantic
relationship between units of language, concepts or instances, through a numer-
ical description obtained according to the comparison of information formally or
implicitly supporting their meaning or describing their nature.

Many authors uses semantic similarity and semantic relatedness as synonyms.
However, there are subtle differences between them. Pedersen et al. (2004) defines
semantic similarity as a metric of relatedness between is–a relations. E.g. a car
and a train are semantic similar since both have an is-a relation with the concept
of transport, while the concepts of car and road are not semantically similar since
they do not share such relation. Semantic relatedness is defined as a more general
metric of a relation of two or more entities. In this case, the concepts of car and
road can be considered related since cars can use a road, while the concepts of a
train and a road are less related. This research work uses the concept of semantic
relatedness.

There are many approaches to tackle semantic relatedness. It can be estimated by
defining a topological similarity. This can be achieved using ontologies to define the
distance between terms/concepts. Another approach is to use statistical similarity
techniques such Latent Semantic Similarity, Latent Dirichlet Allocation, Pointwise
Mutual Information and others.

Recent research made in distributed word representation has shown that linguistic
regularities such as semantic relatedness can be embed in these representations.

53

3.6 Mapping IAI to Implicit Aspects

Then they can be used to compute the semantic similarity between words. These
techniques outperforms drastically the existing semantic similarity methods (Col-
lobert et al. (2011); Mikolov et al. (2013a)).

Moreover, it was found out in the development of this research work that the
common topological approaches performs very poorly in the inference of implicit
aspects with IAI. The usual approaches for semantic similarity, like the Leacock
similarity, Resnick similarity and others are based on ontologies, such as WordNet.
These ontologies commonly organizes nouns and verbs into hierarchies of is–a
relations. While WordNet includes adjectives and adverbs, these are not organized
into is–a hierarchies so similarity measures can not be applied (Pedersen et al.
(2004)). This is a serious drawback for the implicit aspect extraction approach
proposed because adjectives are a key part of it. The Tab. 3.5 describes the POS
distribution found in the IAI corpus. It is possible to observe that IAI that are
adjectives are almost a third part of all IAI found. There are some techniques to
overcome the issue of using topological-based approaches. However, they are far
from being practical.

Therefore, distributed word representation is the approach chosen to compute the
semantic similarity between IAI and their aspects. In the following an introduction
to distributed word representation is given. It is out of the scope a full description
of these techniques.

3.6.1. Word Representation

Representation of text is very important in many NLP applications. This is closely
related to language modeling. There are several approaches for word representa-
tion. However they can be classified in two main groups:

• Local representations: These techniques considers words as the atomic units.
There is no notion of similarity between words, as these are represented as
an index in a vocabulary. This choice has several good reasons: simplicity,
robustness and the observation that simple models trained on huge amounts

54

3.6 Mapping IAI to Implicit Aspects

of data outperform complex systems trained on less data. An example is the
popular N-gram model used for statistical language modeling. It is possible
to train N-grams on virtually all available data. Similar to this is the Bag-
of-Words (BOW) model and the 1-of-N coding model.

• Continuous representation: These techniques represents words as vectors of
identifiers. They are closely related to the vector space model. Latent Seman-
tic Analysis and its variations, Latent Dirichlet Allocation and Distributed
Representations of Words are the common approaches.

With the progress of machine learning techniques in recent years, it has become
possible to train more complex continuous representation models on much larger
data set, and they typically outperform the simple local models. Probably the most
successful concept is to use distributed representations of words. For example,
neural network based language models significantly outperform N-gram models.

3.6.1.1. Distributed Word Representation

A distributed representation of a symbol is a tuple (or vector) of features which
characterize the meaning of the symbol, and are not mutually exclusive. If a
human were to choose the features of a word, he might pick grammatical features
like gender or plurality, as well as semantic features like “animate" or “invisible”,
morphological or even discourse properties. Unlike vector space model used in
Information Retrieval, the dimensions of these vectors are not computed in terms
of word frequencies. Each dimension of that space corresponds to a semantic or
grammatical characteristic of words.

The main technique to compute these distributed representation of words are the
Neural Network Language Models (NNLM).

3.6.2. Neural Network Language Models

A language model is a function, or an algorithm for learning such a function, that
captures the salient statistical characteristics of the distribution of sequences of

55

3.6 Mapping IAI to Implicit Aspects

words in a natural language, typically allowing one to make probabilistic predic-
tions of the next word given the preceding ones.

A neural network language model is a language model based on Neural Networks,
exploiting their ability to learn distributed representations to reduce the impact
of the curse of dimensionality.

In the context of learning algorithms, the curse of dimensionality refers to the need
for huge numbers of training examples when learning highly complex functions.
When the number of input variables increases, the number of required examples
can grow exponentially. The curse of dimensionality arises when a huge number of
different combinations of values of the input variables must be discriminated from
each other, and the learning algorithm needs at least one example per relevant
combination of values. In the context of language models, the problem comes
from the huge number of possible sequences of words, e.g., with a sequence of 10
words taken from a vocabulary of 100,000 there are 1050 possible sequences.

With a neural network language model, one relies on the learning algorithm to
discover these features, and the features are continuous-valued. This is very useful
because it makes the optimization problem involved in learning these features much
simpler.

The basic idea is to learn to associate each word in the dictionary with a continuous-
valued vector representation. Each word corresponds to a point in a feature space.
The objective is that functionally similar words get to be closer to each other in
that space, at least along some directions. The Fig. 3.9 shows an example of this
concept. This is an euclidean space and each instance is described in terms of the
dimensions X1 and X2. Terms that belongs to name of countries such “Germany”
and “France” are grouped closer according to the euclidean distance. The terms
that corresponds to names of the days appear grouped closer.

A sequence of words can thus be transformed into a sequence of these learned
feature vectors. The neural network learns to map that sequence of feature vectors
to a prediction of interest, such as the probability distribution over the next word
in the sequence. What pushes the learned word features to correspond to a form

56

3.6 Mapping IAI to Implicit Aspects

Figure 3.9.: A 2-dimensional feature space

of semantic and grammatical similarity is that when two words are functionally
similar, they can be replaced by one another in the same context, helping the
neural network to compactly represent a function that makes good predictions
on the training set, the set of word sequences used to train the model. The
Appendix B gives a brief description of neural networks.

3.6.3. Learning Word Representations with NNLM

Several NNLM have been proposed for Word Representation Learning. The general
approach is described as follows.

Let D be a finite dictionary of the training data. Let w be a word such that w ∈ D.
Given a task of interest, a relevant representation of each word is then given by
a lookup table W , which is trained by backpropagation. More formally, for each
word w ∈ D, an internal k-dimensional feature vector representation is given by the
lookup table layer Wi where W ∈ <k×|D|. The parameter k is usually predefined
and it will define the dimensionality of the feature vector for each word. In other
words, for each w ∈ D, a k-dimensional vector is built. Then all the vectors
are put together in a matrix W . The initial values of W are random generated,
usually subject to a normal distribution Γ(0, ε2) with a small ε value. The Fig. 3.10

57

3.6 Mapping IAI to Implicit Aspects

shows a graphical representation of a lookup table W given the dictionary D. The
dimensionality of each vector is defined by the hyperparameter k = 5.

Figure 3.10.: A lookup table

From here, one can use the vectors in W as input to a neural network. The
backpropagation algorithm (and the underlying architecture given by the NNLM
used) will modify the values of W .

As a concrete example, an explanation of the NNLM proposed by Collobert et al.
(2011) is given. The main idea behind this work is that a word and its context is
a positive training sample; a random word in that same context gives a negative
training sample. E.g. the sentence “cat chills on a mat” in the training data is
a positive example. The word “on” is changed for the random dictionary word
“Jeju” and the sentence “cat chills Jeju a mat” constitutes a negative training
example.

The formal definition of this model is as follows. Let score : <k·l 7→ < be a function
that determines the score of a sentence. To compute this score, a neural network
is used. The score of a positive training example must be greater than the score of
a negative training example. In the case when a positive example and a negative
example are forward propagated and the result is that the score of the negative

58

3.6 Mapping IAI to Implicit Aspects

example is greater than the score of the positive example, then there will be a
loss in terms of a defined loss function. With this loss is possible to learn a better
representation of the words by using the backpropagation algorithm.

A single layer in a neural network is a combination of a linear layer z = Wx + b

and a non-linearity a = f(z) where f(·) is commonly the sigmoid function. The
neural activations a can then be used to compute some function. For instance, the
score of a positive or negative training example, i.e. score(x) = UTa ∈ <.

The first step to compute the score of a sentence is to build the appropriate input.
To describe a sentence with n tokens, retrieve (via index) the corresponding vectors
from the lookup table W and concatenate them to a n · k vector. This vector will
be forward propagated to a 3-layer neural network. The hidden layer will compute
a, which would be used by the output vector to compute the score. The Fig. 3.11
describes conceptually the score computation with the sentence “cat chills on a
mat”, using the lookup table W shown in the Fig. 3.10, where the cardinality k
of each feature vector was 5. In this example, the number of units in the hidden
layer is 10.

Figure 3.11.: Collobert et al. NNLM

The score is defined as:

s = UT · a (3.2)

where U ∈ <10×1. The vector a is defined as:

59

3.6 Mapping IAI to Implicit Aspects

a = f(V x+ b) (3.3)

where V ∈ <25×10. Note that the input layer encodes a window of 5 words. Let l
denote the window size, and l is a hyperparameter defined in the model. Thus the
number of units in the input layer is defined by l · k, i.e., the window size times
the cardinality of the feature vectors from W .

This model proposes to compute the cost function as follows:

J = max(0, 1− s+ sc) (3.4)

where s is the score of a positive sentence and sc is the score of a negative sentence.
If the score of a positive sentence is greater than the score of a negative sentence,
there will be no loss. However, if the score of a negative sentence is greater than
the score of a positive sentence, there will be a loss, and it will be possible to
learn from it with backpropagation. The function J is differentiable, therefore it
is possible to train the model with gradient descend techniques.

Note that the backpropagation algorithm not only modifies the parameters U and
V , but also the lookup table W . The intuition is that these modifications to the
word vectors inW will make better word representations. Although the conceptual
representation of the neural network described in the Fig. 3.11 does not show the
W table as parameter of the model, the table W could be represented as the
matrix of weights between the input layer and a previous layer where the window
of words is encoded by a |D|-sized one-hot vector per word and a layer of size
|D| · l, i.e., for each word in a window of words of size l, create a |D|-sized one-hot
vector and use it as input to a new |D| · l-sized input layer. Therefore the old
input layer becomes a projection layer, i.e, a layer that reduces the dimensionality
of the input. The Fig. 3.12 shows conceptually the neural network with the new
input layer and the projection layer. The matrix of weights W is the lookup table
with the word representations.

60

3.6 Mapping IAI to Implicit Aspects

Figure 3.12.: Collobert et al. NNLM with one-hot vectors as input and a pro-
jection layer.

3.6.3.1. Continuous Skip-gram NNLM

This research work uses the Continuous Skip-gram (Skip-gram) Neural Network
Language Model proposed by Mikolov et al. (2013b). The Fig. 3.13 describes
conceptually the Skip-gram model. The intuition behind this model is that the
Skip-gram architecture predicts the context of a word based on the word itself.
Words that are semantically similar tend to be used in the same contexts, so this
architecture will try to fit the word representations according to the context in
which these words appear. This make semantically similar words grouped closer
in the feature space. The non-linear hidden layer is removed in this model and
the projection layer is shared for all words (not just the projection matrix); thus,
all words get projected into the same position (their vectors are averaged). The
neural network topology gives a better training performance along with a better
word representation.

It was shown by Mikolov et al. (2013b) that the word vectors computed with
this model captures many linguistic regularities. Analogies testing dimensions of
similarity can be solved quite well just by doing vector subtraction in the embed-
ding space. For example vector operations vector(Paris) - vector(France) + vec-
tor(Italy) results in a vector that is very close to vector(Rome), and vector(king)

61

3.6 Mapping IAI to Implicit Aspects

Figure 3.13.: The Skip-gram model.

- vector(man) + vector(woman) is close to vector(queen).

3.6.4. IAI to Implicit Aspects Mapping Method

The mapping between IAI and implicit aspects is as follows. The proposed ap-
proach consist firstly in computing a vector space of words using the Skip-gram
model and some training data. The semantic relatedness between words can be
measured with the euclidean distance between these vectors.

The equation 3.5 describes the objective function to map an IAI with its respective
aspect. Let I denote the set of implicit aspect indicators present in a document.
Let A denote the set of possible implicit aspects for any indicator i ∈ I. The map
M(i) for a given indicator i is computed by finding the aspect a that is closest to
it in the vector space according to the euclidean distance.

62

3.6 Mapping IAI to Implicit Aspects

M(i) = arg min
a∈A

dist(i, a) (3.5)

The Algorithm 3.4 describes how to compute the objective function . The semantic
similarity between an IAI and a set of implicit aspects is computed for every IAI
in the document being evaluated. The algorithm uses the vector representation
of the IAI and a particular aspect and computes the euclidean distance between
those vectors. The aspect that is closer to the IAI is chosen as implicit aspect.
The IAI corpus described in sec. 3.5.1 was used to perform the tests.

The data used to compute the vector space comes from the site Amazon.com,
which is one of the largest e-commerce sites. One of its features is that it allows
to its users to submit reviews of the different products offered. These reviews
are publicly available and they are organized by product, by opinion polarity and
other search criteria. The data amount available is quite large, and new reviews
are added daily by thousands.

To gather the data needed to build the vector representations, an Amazon.com
web-crawler was built. It collected the data of 250,000 reviews in the electronics
commodities domain. The data was normalized by removing the punctuation and
changing all the characters to lowercase.

The Word2Vec3 toolkit is an efficient C++ implementation of the Skip-gram model
for computing vector representations of words. There are several parameters that
allow to configure how the vector space is computed. These parameters are the
following:

• -train: This parameter specifies the training data file name. This file must
be an UTF-8 or ASCII encoded text file.

• -output: This parameter specifies the file name where the vector representa-
tion will be saved.

3https://code.google.com/p/word2vec/

63

3.6 Mapping IAI to Implicit Aspects

• -cbow: This parameter specifies if the CBOWNNLM is used. This is because
this toolkit also implements the CBOW NNLM. It is out of the scope of this
research work a deeper analysis of this model since the Skip-gram model is
the only one used.

• -size: This parameter defines the dimensionality of the vectors. The size
used was 200.

• -window: This parameter specifies the size of the context window used by
the Skip-gram model during training. The window size value used was 5.

• -hs: This parameter specifies if the training algorithm will use Hierarchical
Softmax (Morin and Bengio (2005)). This is a computationally efficient
approximation of the full softmax. The Appendix B describes the softmax
method in the context of Neural Networks. This option is used to compute
the vector representations of words. It is out of the scope of this work a full
description of hierarchical softmax.

• -ns: This parameter specifies if the algorithm will use Negative Sampling
(Mikolov et al. (2013c)). This is a simplified version of the Noise Contrastive
Estimation Method, which performs a similar function to hierarchical soft-
max. Negative sampling is the method used.

• -threads: This parameter specifies the number of threads used in training
time. The default value of 12 was used.

• -binary: This parameter defines the output format as binary or as text. The
binary option was used.

The Fig. 3.14 shows the command used to compute the vector space. There are
other parameters that were not described since they are irrelevant or not used.

64

3.6 Mapping IAI to Implicit Aspects

./word2vec -train reviews.txt -output vectors.bin -cbow 0 -size 200

-window 5 -negative 1 -hs 0 -sample 1e-3 -threads 12 -binary 1

Figure 3.14.: Word2Vec command

3.6.5. Baselines

Two semantic relatedness techniques were used as baselines: lesk (Banerjee and
Pedersen (2003)) and vector (Patwardhan et al. (2003)). The wop (Wu and Palmer
(1994)) semantic similarity technique was also used as baseline. All these methods
are based in WordNet. The wup method finds the path length to the root node in
the WordNet ontology from the least common subsumer (LCS) of two concepts to
be evaluated, which is the most specific concept they share as an ancestor. This
value is scaled by the sum of the path lengths from the individual concepts to the
root.

Each concept (or word sense) in WordNet is defined by a short gloss. The lesk
and vector measures use the text of that gloss as a unique representation for the
underlying concept. The lesk measure assigns relatedness by finding and scoring
overlaps between the glosses of the two concepts, as well as concepts that are
directly linked to them according to WordNet. The vector measure creates a
co–occurrence matrix from a corpus made up of the WordNet glosses. Each content
word used in a WordNet gloss has an associated context vector. Each gloss is
represented by a gloss vector that is the average of all the context vectors of the
words found in the gloss. Relatedness between concepts is measured by finding
the cosine between a pair of gloss vectors.

All the methods described give as output a number between 0 and 1. The more
closer the output is to 1, the more related two concepts are.

65

3.7 Opinion Summarization

The WordNet::Similarity4 toolkit was used. This toolkit includes implementations
of the lesk and vector methods. We also used the Natural Language Toolkit or
NLTK5, which has an implementation of the wup method.

The baselines were implemented in a similar way that our approach described in
the Algorithm 3.4, as shown by the Algorithm 3.5. The sim(·) function represents
one of the 3 methods proposed as baselines.

The performance analysis of this implicit aspect extraction approach is given in
the sec. 4.5.

3.7. Opinion Summarization

As explained in sec. 1.9, this research work uses two approaches for opinion sum-
marization:

• A structured summary. This summary will show every opinion quintuple
described by the expression 1.1 in a graphical presentation, such as a table
or a bar chart. The opinion holder and time of the opinion are consider
irrelevant.

• A text summary. This summary is composed of parts of the original opinion
texts. The method will produce this summary under different constraints in
order to obtain the best summary according to a specific performance metric.

This section explains the methods used for both opinion summarization approaches.

3.7.1. Structured Opinion Summary

The structured opinion summary method is straightforward once each opinion is
retrieved as a quintuple described by the expression 1.1. The aspect extraction and

4wn-similarity.sourceforge.net/
5http://www.nltk.org/

66

3.7 Opinion Summarization

sentiment classification methods described in sec. 3.2, sec. 3.3 and sec. 3.4 computes
the different elements of each opinion quintuple in a document. Then each opinion
can be classified according to its polarity or the entity and its aspects. Finally this
classification can be displayed in a human-legible way. A table or a graphic is the
common approach to display the information.

As part of this research work, a structured opinion summary generator tool was
developed. It consist of a Python program that receives the opinions as quintuples.
This program generates a report displaying the results using graphics.

The Fig. 3.15 shows an example of the bar charts generated with this tool. This is
the structured summary of a set of reviews of a DVD player. These reviews were
taken from the corpus introduced by Hu and Liu (2004). The corpus has labeled
each aspect found in every review, along with the aspect polarity. Let A be the set
of all the aspects in the reviews. Each element in the bar chart x axis is an aspect
a ∈ A. The y axis represent the number of positive and negative opinions for an
aspect ai. There are 2 bars for each aspect. One shows the amount of positive
opinions while the other shows the negative ones.

3.7.2. Textual Opinion Summary

The main idea that describes the text opinion summary approach proposed is to
extract specific contexts (such as a sentence or a paragraph) from a review or a
set of reviews that gives the best summary according to some evaluation criteria.
E.g. a specific method would extract the key sentences from a set of reviews that
best summarize the information in such reviews.

The approach proposed in this research work makes three assumptions regard-
ing the quality of an textual opinion summary. First, the quality of an opinion
summary increases as the number of entities and aspects covered by this summary
does. This is assumed since an opinion summary has to contain all the information
related to the opinion targets in a concise way.

67

3.7 Opinion Summarization

Figure 3.15.: The bar chart displayed by the opinion summarization tool

The second assumption made is that a good opinion summary has to be infor-
mative. The quality of an opinion summary increases as the informativeness of
such summary does. It is difficult to measure the informativeness of a text, since
this concept is ambiguous and subjective. The proposed approach uses the con-
cept of entropy used in information theory as the measure of information content
associated to the outcome of data.

The last assumption is that the size of the summary has to be much smaller than
the size of the original document.

This research work uses an optimization approach to generate a text opinion sum-
mary. The proposed method is as follows. A review (or set of reviews) of an
specified entity (e.g. a set of reviews of a camera) can be seen as the universe of
aspects U . An specific context i is a subset of aspects Ai ∈ U . E.g. the i-th sen-
tence in a camera review gives a positive opinion about the aspect lens, therefore

68

3.7 Opinion Summarization

the set si = {”lens”}.

The proposed approach is to maximize the aspect coverage and the information
content according to its entropy. This is done as follows. Let S be all the sentences
in a document. Let si ∈ S be a sentence i, which can be seen as a set of aspects.
The objective is to extract a set of sentences C ∈ S where the union of each
element in C is U . Thus C is the summary of S. This can be modeled as the
Set Covering problem. This problem is usually formulated with an additional
constraint, which is the maximum number of sets required to cover all aspects.
Therefore, the optimization approach for textual opinion summarization consist
in extract the minimum amount of sentences that covers all the aspect within a
review or a set of reviews. The Fig. 3.16 shows the graphical representation of the
proposed approach. The first graphic represents the universe of aspects U and each
ellipse inside of it represent a sentence and it is a subset of aspects. The shaded
ellipses on the second graphic represent the sentences extracted as the summary.
These sentences cover all the aspects present in U .

|

3.7.3. Set Covering problem as an ILP problem

To solve the weighted set covering problem, the proposed approach is to use Inte-
ger Linear Programing (ILP). This is a NP-complete problem and it is is composed
of a linear objective function, subject to linear equality and linear inequality con-
straints. One of these constrains is that the decision variables involved must be
integer, hence the name. The Appendix C gives a deeper explanation of linear
programming and integer linear programming.

Both set covering and ILP are NP-complete, and it can be shown that one can
be reduced to the other. Therefore a set covering problem can be solved as an
ILP problem. The reduction is as follows. Let Xi be a random variable associated
with each subset si ∈ S. Xi = 1 if si is a solution, and 0 otherwise. The ILP
formulation is shown in the expression 3.6.

69

3.7 Opinion Summarization

minimize
∑

cTX s.t.

∀a ∈ U,
∑
i:a∈si

Xi ≥ 1 (3.6)

∀Xi, Xi ∈ {0, 1}

The first constrain ensures that every aspect is present in at least one of the
chosen subsets. The second constrain means that every subset is chosen or not.
The objective function chooses a feasible function, if any.

E.g. there is a weighted set cover problem that needs to be solved. This problem
involves 5 subsets. The set covering problem is reduced to an ILP problem and
solved. The solution is given by a vector X = {0, 1, 0, 0, 1}. This vector indicates
that the second and last element satisfies the ILP problem. Therefore the second
and last subset satisfies the set covering for the original problem.

3.7.4. Sentences Costs

Note that the objective function in the expression 3.6 is multiplied by the vector cT .
This vector represent the weight, or cost, associated with each subset. Concretely,
c is in function of the informativeness of an specific sentence.

The entropy defined in information theory is used as the measure of information
within a sentence. The entropy H of a random variable X is described in the
equation 3.7.

H(X) = E[I(X)] = E[−ln(P(X))] (3.7)

E is the expected value operator, and I is the information content of X. When
taken from a finite sample, the entropy can explicitly be written as the equation
3.8.

70

3.7 Opinion Summarization

H(X) =
∑
i

P (xi)I(xi) =
∑
i

P (xi)logbP (xi) (3.8)

The Bag-of-Words (BOW) language model is used to compute the probability
distribution of words needed to compute the entropy. In this model, a text (such
as a sentence or a document) is represented as the bag (multiset) of its words,
disregarding grammar and even word order but keeping multiplicity. Each word in
a document is modeled as a random variable where its probability depends entirely
on itself.

The probability of an specific term ti in a set of terms D is the number of occur-
rences of this term in the document divided by the total of terms in the document.
More formally, let T = {t|t ∈ D, t = ti} be the set of terms ti. The probability of
ti is described by the equation 3.9:

P (ti) = |T |
|D|

(3.9)

The proposed method to calculate the cost of a sentence si is given by the equation
3.10:

csi
= λ ·

(∑
t′∈DH(t′)∑
t∈si

H(t)2

)
+ (1− λ) ·

(
|U |
|Asi
|

)
(3.10)

where Asi
is the set of aspects in the sentence s. The first term indicates that

the sentences with higher entropy will have a lower cost. The second term gives
lower cost to sentences that have a bigger number of aspects. If the second term
is omitted, high entropy sentences with few aspects in them will have a low cost,
and this is undesirable since the objective is to extract the minimum amount of
sentences describing the aspects. Therefore, sentences describing several aspects
must have a lower cost. The hyperparameter λ acts as a scale factor and as a
balance factor between both terms.

71

3.7 Opinion Summarization

3.7.5. Textual Opinion Summary Generation with ILP

The textual opinion summary is obtained by solving an ILP instance. There are
several libraries and tools to solve ILP problems. The GNU Linear Programming
Kit (GLPK)6 is a software package intended for solving large-scale linear program-
ming (LP), mixed integer programming (MIP), ILP and other related problems.
It is a set of routines written in ANSI C and organized in the form of a callable
library. The package is part of the GNU Project and is released under the GNU
General Public License. Problems can be modeled in the language GNU Math-
Prog and solved with standalone solver GLPSOL, which is included in the GLPK
package.

The GLPSOL software is used to solve the ILP instances. This program can
use as input a script written in the MathPro language. This program needs a
model and an instance to solve. The model is the formulation of an ILP problem
and it describes the data, the objective function, the constrains of the problem,
computation and display settings, etc. This model can be saved in a text file.

The instance is the description of the data, i.e. the values of the cost vector, the
constrains coefficients and the number of variables and constrains.

The Fig. 3.17 shows the code of the model created for the proposed text opinion
summarization tool.

6https://www.gnu.org/software/glpk/

72

3.7 Opinion Summarization

param NAspects;
param NSentences;
param L;
param AMatrix {i in 1..NAspects, j in 1..NSentences};
param costs { i in 1..NSentences};
var s{i in 1..NSentences} binary;
minimize obj: sum{i in 1..NSentences} costs[i] * s[i];
s.t.
bndConstr {k in 1..NAspects}:

sum{i in 1..NSentences} AMatrix[k,i] * s[i] >= 1;

LConstr: sum{i in 1..NSentences} s[i] <= L;
solve;
display{i in 1..NSentences} s[i];
end;

Figure 3.17.: ILP model MathProg code

The Fig. 3.18 shows an example of the code of an ILP instance. The parameter
NAspects indicates the number constrains, which are the number of aspects in the
entire document. The parameter NSentences indicates the number of of variables
in this ILP instance, which are the number of subsets or sentences in the original
problem. The parameter L defines the constrain of maximum number of sentences.
The parameter AMatrix represents the relation between aspects and sentences.
Each row is a particular aspect while the columns are the sentences in the instance.
There are 7 aspects and 11 sentences in the instance shown in the Fig. 3.18.

73

3.7 Opinion Summarization

param NAspects := 7;
param NSentences := 11;
param L := 10;
param AMatrix:
1 2 3 4 5 6 7 8 9 10 11 :=
1 1 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 1 1 0
3 0 0 0 0 1 0 0 0 0 0 0
4 0 0 0 0 0 1 1 0 0 1 0
5 0 0 0 0 0 0 0 0 1 0 0
6 0 0 0 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0 0 0 1 0 ;
param costs :=
1 1.0
2 1.0
3 1.0
4 1.0
5 1.0
6 1.0
7 1.0
8 1.0
9 1.0
10 1.0
11 1.0 ;

Figure 3.18.: ILP instance MathProg code

The Fig. 3.19 shows the command used to solve an ILP instance stored in the
file “instance.data” with the model “ilp.model” using the GLPSOL solver. The
parameter “–math” indicates that the data is written in the MathProg language.

glpsol --math --model ilp.model --data instance.data

Figure 3.19.: GLPSOL command

74

3.7 Opinion Summarization

The textual opinion summarization tool was built using Python and the GLPSOL
solver. This tool includes a Python script to compute the BOW language model
from a corpus. The structure that contains the BOW language model is serialized
in a file. The corpus created by Hu and Liu (2004) was used to compute this model
and it is also used for testing.

The opinion summarization tool receives as input the text to summarize divided by
sentences. Each sentence must have their respective aspects as part of the input.
Then it formulates the ILP problem associated and solves it using GLPSOL. It
reads the output and displays the sentences selected as the opinion summary.

3.7.6. Textual Opinion Summary Baselines

Three baselines were created in order to compare the performance of the proposed
textual opinion summarization approach. All baselines uses as input a set of
reviews. Each review is divided in sentences and each sentence has labeled its
aspects.

The first baseline consist in extract L sentences at the beginning of the article.
The second baseline extracts a sentence if one of its aspects is not in an extracted
sentences. The third baseline models also the textual opinion summarization as
an ILP problem. However the cost of each sentence is the same.

The first metric used to compare the performance is the aspect coverage defined
by the equation 3.11.

ζ = |{ai|ai ∈ U, ai ∈ S}|
|A|

× 100 (3.11)

The compression rate defined by the equation 3.12 is used to compare the size re-
lation between the entire set of sentences S and the summary C (which cardinality
is defined by the number of sentences in it).

75

3.7 Opinion Summarization

CR = |S|
|C|

(3.12)

Finally the entropy of the summary is measured, which is defined by the equation
3.13.

H(C) =
∑
s∈C

∑
t∈s

H(t) (3.13)

The performance analysis of both opinion summarization approaches is given in
the sec. 4.6.

76

3.7 Opinion Summarization

Algorithm 3.1 Opinion Orientation Algorithm
for all sentence si that contains a set of aspects do

aspects = aspects contained in si
for all aspect aj in aspects do

orientation = 0
if feature aj is in the ’but’ clause then

orientation = ButClauseRule()
else

remove ’but’ clause from si if it exists
for all unmarked opinion word ow in si do

orientation+ = wordOrientation(ow, aj, si)
end for

end if
if orientation > 0 then

aj’s orientation in si = 1
else

if orientation < 0 then
aj’s orientation in si = −1

else
aj’s orientation in si = 0

end if
end if
if aj is an adjective then

(aj).orientation+ = aj’s orientation in si
else

let oi,j is the nearest adjective word to aj in si
(aj, oi,j).orientation+ = aj’s orientation in si

end if
end for

end for
//Context dependent opinion words handling

for all aspects as aj with orientation = 0 in sentence si do
if aj is an adjective then

aj’s orientation in si = (aj).orientation
else// synonym and antonym rule should be applied too

let oi,j is the nearest opinion word to aj, in si
if (aj, oi,j) exists then

aj’s orientation in si = (aj, oi,j).orientation
end if

end if
if aj’s orientation in si = 0 then

aj’s orientation in si = InterSentenceConjunctionRule()
end if

end for 77

3.7 Opinion Summarization

Algorithm 3.2 Word Orientation Algorithm
if word is a Negation word then

orientation = NegationRules()
mark words in sentence used by Negation rules

else
if word is a ’TOO’ word then

orientation = apply TOO Rules
mark words in sentence used by TOO rules

else
orientation = orientation of word in opinionWord list

end if
end if
orientation = orientation

dist(word,feature)

Algorithm 3.3 But Clause Rule
if aspect ai appears in the but clause then

for all unmarked opinion word ow in the but clause of sentence si do
orientation+ = WordOrientation(ow, aj, si)

end for
if orientation 6= 0 then

return orientation
else

orientation = orientation of the clause before "but"
if orientation 6= 0 then

return -1
else

return 0
end if

end if
end if

78

3.7 Opinion Summarization

Algorithm 3.4 IAI to implicit aspect mapping.
A = The set of all possible aspects that an IAI can suggest.
I = The set Implicit Aspect Indicators in the document
L = The lookup table with the vector representation of words.
M = Map hash table.
for all i ∈ I do

MinDist = ∞
for all a ∈ A do

d = dist(Li,La))
if d ≥MinDist then

MinDist := d
M(i, a) := 1

end if
end for

end for

Algorithm 3.5 Baselines algorithm for implict aspect extraction performance
evaluation.
M = Map hash table.
for all i ∈ I do

MaxSim = 0
for all a ∈ A do

s = sim(i, a)
if s ≤MaxSim then

max_a := a
MaxSim := s

end if
end for
M(i,max_a) := 1

end for

79

3.7 Opinion Summarization

Figure 3.16.: The graphical representation of the textual summarization
approach.

80

4. Results

4.1. Overview

This chapter shows the results obtained with the different experiments described
in chapter 3.

4.2. Polarity Classification

The Tab. 4.1 shows the polarity classifier performance. It was built according
to the description in sec. 3.2. The classifier implemented (CLSFR in Tab. 4.1) is
compared with the results reported by Ding and Yu (2008) (DLY in Tab. 4.1). The
results used were the reported for the Opinion Observer System without context
dependency handling since this was the method implemented.

Table 4.1.: Polarity classification performance

Classifier Precision Recall F1-score
CLSFR 0.866 0.861 0.863
DLY 0.920 0.830 0.870

The differences between both implementations are attributed to different tools
used for POS tagging and lemmatization. This implementation is considered good
enough since the difference in terms of the F1 score is minimal.

81

4.3 Explicit Aspect Extraction

4.3. Explicit Aspect Extraction

The Tab. 4.2 shows the performance of the explicit aspect extraction tool. The
first ten rows correspond to the results of each fold in the 10-fold cross validation
scheme. Last row is the average performance.

Table 4.2.: Explicit aspect extraction performance

Fold Precision Recall F1-score
1 0.6667 0.4865 0.5625
2 0.6857 0.5565 0.6144
3 0.6609 0.6586 0.6598
4 0.7189 0.5908 0.6486
5 0.7793 0.6384 0.7018
6 0.5714 0.7174 0.6361
7 0.6638 0.6290 0.6460
8 0.7283 0.6050 0.6610
9 0.6877 0.6429 0.6645
10 0.7284 0.4621 0.5655

Average 0.6891 0.5987 0.6497

The results reported by Huang et al. (2012) were used to compare the performance.
This method also uses CRF to extract explicit aspects. This method uses syntactic
dependency distributional context extraction features. The shows the results of
both approaches. The row named EAE is method proposed in this work. The row
named HPLN corresponds to the result reported by Huang et al. (2012).

The performance of the proposed approach is quite poor in comparison with the
HPLN method. However, HPLN relies on heavily crafted features. Moreover, the
syntactic dependency tree of each sentence is needed to build these features, which
is computationally expensive. The method proposed in this work uses simple
features that does not need a pre-processing stage, while it has a fairly good
performance. Therefore, the proposed approach is consider good enough.

82

4.4 Implicit Aspect Indicators Extraction

Table 4.3.: Explicit aspect extraction performance comparation.

Classifier Precision Recall F1-score
HPLN 0.7500 0.675 0.711
EAE 0.6891 0.5987 0.6497

4.4. Implicit Aspect Indicators Extraction

The Tab. 4.4 compares the performance of the baselines described in sec. 3.5.4 and
the proposed CRF-based approach with different features combinations. The WT
features are the combination of the word and tag features (points 1 and 3 from
the features description in sec. 3.5.2). CNG features are the character n-grams
features (point 2). CNTX are context features and word bigram features (points
4 and 6). CLS are the class sequence features (point 5).

One can observe that the WT features give the greatest precision. However the
recall is poor.

The CNG features give a recall boost. These features capture the morphological
properties of the words (roots, prefixes, suffixes). Words with similar morpholog-
ical properties tend to be semantically similar. For example the sentence “This
phone looks great” could be rephrased as “The phone’s look is great” or even
“This phone looked great with its case.” The root “look” present in the previous
sentences is the best IAI to infer the appearance aspect. Therefore words with this
root should have greater probability of being extracted as IAI. The drawback is
that these features decrement the overall precision because more words that are
not IAI but contain these character n-grams will have greater probability of being
extracted.

The CNTX and CLS features improve both precision and recall. The best perfor-
mance is obtained with the combination of WT, CNG, CNTX and CLS features.

83

4.4 Implicit Aspect Indicators Extraction

Table 4.4.: IAI Extraction performance with different features

Precision Recall F1 Score
BSLN1 0.0381 0.3158 0.0681
BSLN2 0.1016 0.1379 0.1170
BSLN3 0.5307 0.1439 0.2264
WT 0.6271 0.0575 0.1053
CNG 0.4765 0.1925 0.2742
CNTX 0.5030 0.1148 0.1869

WT,CNG 0.4697 0.1992 0.2795
WT,CNG,CNTX 0.5209 0.2031 0.2932

WT,CNG,CNTX,CLS 0.5458 0.2064 0.2970

The approach proposed in this work is better for this task. It outperforms signifi-
cantly BSLN1, BSLN2 and BSLN3. The precision is very high. However the recall
is lower than BSLN1.

In order to tradeoff precision for recall in the proposed CRF-based approach, a
biased CRF classifier (Minkov et al. (2006)) was used . This method allows to set
a bias towards the different classes. These biases (which internally are treated as
feature weights in the log-linear model underpinning the CRF classifier) can take
any real value. As the bias of a class A tends to plus infinity, the classifier will
only predict A labels, and as it tends towards minus infinity, it will never predict
A labels. These biases are used to manually adjust the precision-recall tradeoff.

Several experiments with the IAI class bias were performed in order to get the
best precision-recall tradeoff. The value of this bias was changed within a range
of 1.5 to 3.5. The Other class bias value was fixed to 1. The set of features used
are those shown in the last row of the Tab. 4.4. The Tab. 4.5 shows the precision,
recall and F1 Score of several experiments with different IAI class bias values. The
Fig. 4.1 shows a graphic of this data.

The best F1 Score is obtained with an IAI class bias value of 2.5. It gives a
boost of 28.61% in terms of the IAI extraction performance without IAI class bias.

84

4.5 Implicit Aspect Extraction

Table 4.5.: Precision, Recall and F1 Score with different IAI Class bias

IAI Class Bias Precision Recall F1 Score
1.5 0.5252 0.2602 0.3479
2.0 0.4636 0.3095 0.3711
2.5 0.4201 0.3503 0.3820
3.0 0.3656 0.3850 0.3750
3.5 0.3184 0.4203 0.3623

Furthermore both precision and recall are higher than any of the baselines.

4.5. Implicit Aspect Extraction

The corpus proposed and described in sec. 3.5.1 was used for evaluation. This
corpus has 8 implicit aspects labelled: functionality, appearance, quality, price, size,
performance, weight and behavior. The Tab. 4.6, Tab. 4.7 and Tab. 4.8 describes
the performance of the baselines along with our approach for each one of these
implicit aspects.

The corpus used for evaluation has 8 implicit aspects labelled: functionality,
appearance, quality, price, size, performance, weight and behavior. The Tables
Tab. 4.6, Tab. 4.7 and Tab. 4.8 describes the performance of the baselines along
with our approach for each one of these implicit aspects.

We noted that all baselines cannot extract the implict aspects functionality and
behavior, while our approach do a better job. However, the performance for the
implicit aspect behavior is still poor. This implicit aspect is difficult to extract
since the semantic relatedness between this implicit aspect and its IAI is subtle. An
example would be the sentence “The dvd player runs silently”, where the implicit
aspect is behavior and the IAI is the word “silently”.

Our approach has better precision for the implicit aspects functionality, size, per-
formance and behavior. These implicit aspect are more ambiguous in contrast to
the implicit aspects appearance, price and weight, which are more specific. As for

85

4.5 Implicit Aspect Extraction

Figure 4.1.: Precision, Recall and F1 Score with Biased CRF

recall, our approach has better performance for the implicit aspects functional-
ity, appearance, price, size and behavior. Finally, in terms of the F1-score, our
approach is better for the implicit aspects functionality, appearance, price, size,
weight and behavior.

Table 4.6.: Precision performance

Functionality Appearance Quality Price Size Performance Weight Behavior
Wop 0 1.0 0.115 0 0 0 0 0
Vector 0 0.807 0.178 0.785 0.333 0.222 0.583 0
Lesk 0 0.807 0.211 0.333 0.727 0.542 0.625 0

Skip-gram 0.638 0.398 0.038 0.687 0.783 0.571 0.315 0.01

86

4.6 Opinion Summarization

Table 4.7.: Recall performance

Functionality Appearance Quality Price Size Performance Weight Behavior
Wop 0 0.344 0.265 0 0 0 0 0
Vector 0 0.362 0.797 0.297 0.037 0.016 0.233 0
Lesk 0 0.362 0.829 0.054 0.1 0.308 0.166 0

Skip-gram 0.303 0.788 0.01 0.970 0.587 0.100 0.966 0.250

Table 4.8.: F1-Score performance

Functionality Appearance Quality Price Size Performance Weight Behavior
Wop 0 0.512 0.161 0 0 0 0 0
Vector 0 0.5 0.292 0.431 0.067 0.030 0.333 0
Lesk 0 0.5 0.337 0.09 0.175 0.393 0.263 0

Skip-gram 0.411 0.529 0.01 0.804 0.671 0.169 0.475 0.028

The Tab. 4.9 shows the global performance. The proposed approach in this work
outperforms the baselines. The precision and recall is better.

Table 4.9.: Global Performance

Precision Recall F1-Score
Wop 0.135 0.078 0.099
Vector 0.243 0.208 0.224
Lesk 0.310 0.265 0.286

skip-gram 0.375 0.375 0.375

4.6. Opinion Summarization

4.6.1. Structured Opinion Summarization

The Fig. 4.2, Fig. 4.3, Fig. 4.4, Fig. 4.5 and Fig. 4.6 show the graphics generated
by the structured opinion summarization tool developed in this research work.

87

4.6 Opinion Summarization

The corpus introduced by Hu and Liu (2004) was used as input to generate such
graphics. This tool uses as input the reviews divided by sentences. Each sentence
must have the aspects that it contains specified in the input. And the polarity
of each aspect must also be given. The corpus has labeled each aspect found in
every review, along with the aspect polarity. Let A be the set of all the aspects in
the reviews. Each element in the bar chart x axis is an aspect a ∈ A. The y axis
represent the number of positive and negative opinions for an aspect ai. There are
2 bars for each aspect. One shows the amount of positive opinions while the other
shows the negative ones.

4.6.2. Textual Opinion Summarization.

The approach proposed in this research work is compared against 3 baselines. The
first baseline consist in extract L sentences at the beginning of the article. The
second baseline extracts a sentence if one of its aspects is not in an extracted
sentences. The third baseline also models the textual opinion summarization as
an ILP problem. However the cost of each sentence is the same. The corpus
introduced by Hu and Liu (2004) was used to evaluate the performance.

The Tab. 4.10 compares the aspect coverage of the proposed approach and the
different baselines. The proposed approach is labeled as TOS. The first, second
and third baselines are labelled as BSLN1, BSLN2 and BSLN3 respectively.

Recall that TOS needs to compute a cost for each sentences in a set of reviews. This
cost was defined in the equation 3.10. This equation specifies the λ hyperparameter
and its purpose is to balance and scale the two terms in the equation 3.10. The λ
value used to obtain the following results was 0.5.

One can observe that almost all approaches covers the aspects totally. Only BSLN1
fails to cover all aspects in the reviews.

The Tab. 4.11 shows the compression rate of each method. The TOS method
significantly outperforms BSLN1 and BSLN2. However, the performance of BSLN3
is slightly better than TOS. This is natural since the BSLN3 selects the minimum

88

4.6 Opinion Summarization

Table 4.10.: Aspect coverage percentage comparative analysis

Apex Canon Nomad Nikon Nokia
TOS 100 100 100 100 100

BSLN1 67.24 40.95 36.70 50.66 36.93
BSLN2 100 100 100 100 100
BSLN3 100 100 100 100 100

number of sentences possible, while TOS considers the entropy of the resulting
summary. A higher number of sentences would result in a higher entropy level.

Table 4.11.: Compression rate comparative analysis

Apex Canon Nomad Nikon Nokia
TOS 8.13 7.10 11.07 5.86 6.57

BSLN1 1.96 3.43 4.58 2.68 3.54
BSLN2 7.11 5.91 9.58 5.08 5.35
BSLN3 8.13 7.19 11.14 5.86 6.65

The Tab. 4.12 compares the summary entropy of each method. One can observe
that the summary produced by BSLN1 has the higher entropy and this is expected.
It is possible to show that what gives higher entropy to a document are words that
are not rare or not common, i.e. words that have a probability near to 0.5 in the
language model used give higher entropy to a document. The summary produced
by BSLN1 uses the 4 first sentences of a set of reviews to form a summary, whether
these sentences have aspects or not. That being the case, it is more probably that
this summary would have words of varying entropy levels. A summary containing
sentences that include all the aspects have words that are regularly seen with these
aspects (e.g. it is expected that sentences that are about the aspect price have
words in common, such as “expensive”, “cheap”, “money”, etc). Therefore this
summary is quite homogeneous, meaning that it talks about the same aspects and
uses words common between these sentences to describe these aspects. Thus the
words that form this summary are more common. Consequently, the summary
will have a low entropy level.

89

4.6 Opinion Summarization

As for the comparison between TOS and BSLN2, one can observe that there are
mixed results depending on the document evaluated. TOS summary has a much
higher entropy level for the Nikon reviews and a slightly higher entropy level for
the Nomad reviews, while BSLN2 has a higher, though slightly, entropy level for
the Apex, Canon and Nokia reviews.

Finally, TOS summaries have a higher entropy level in comparison to the sum-
maries produced by BSLN3

Table 4.12.: Summary entropy comparative analysis

Apex Canon Nomad Nikon Nokia
TOS 11.50 10.91 21.88 17.05 10.59

BSLN1 39.58 20.63 42.83 15.93 15.00
BSLN2 12.22 12.09 21.71 8.19 11.36
BSLN3 9.98 9.69 18.35 7.14 9.86

A qualitative analysis allows to assert that TOS outperforms all baselines. TOS
has a better aspect coverage than BSLN1 by several orders of magnitude and a
much higher compression rate.

Regarding BSLN2, TOS has a better compression rate. The entropy level of
the summaries produced by TOS are comparable to the summaries produced by
BSLN2.

As for the BSLN3, TOS summaries have a much higher entropy level. However,
TOS compression rate is slightly lower than BSLN3.

90

4.6 Opinion Summarization

Figure 4.2.: Apex DVD Player structured summary 91

4.6 Opinion Summarization

Figure 4.3.: Canon Camera structured summary 92

4.6 Opinion Summarization

Figure 4.4.: Nikon Camera structured summary 93

4.6 Opinion Summarization

Figure 4.5.: Nokia Cellphone structured summary 94

4.6 Opinion Summarization

Figure 4.6.: Nomad MP3 player structured summary 95

Conclusions

This research work presented a novel framework for Polarity Opinion Summariza-
tion. It described the phenomena involved in this task along with the models
proposed. It also described the methods used and their implementation.

This research work fulfill the objectives stated in sec. 1.2 since new methods for
opinion summarization, and the tasks it involves, were created. Furthermore the
state-of-the-art in opinion mining was expanded by introducing new and better
methods for the tasks involved.

This work introduced Implicit Aspect Indicators (IAI) and a novel approach for
IAI extraction. This approach proved to be the state-of-the-art method. It was
also presented a comparative performance evaluation of the proposed approach
with three baselines. Furthermore, and as part of this effort, the first corpus for
IAI extraction and implicit aspect extraction was created.

Moreover, this work also introduced a novel implicit aspect method using dis-
tributed word representations. The semantic relatedness between implicit aspects
and IAI was calculated using vector space of words, which was computed using
a neural network language model. The semantic relatedness was used to extract
implicit aspects using IAI. It was shown that this method outperforms the current
approaches based on semantic relatedness by presenting a detailed performance
analysis comparing this method and the baselines proposed.

Finally, this work introduced a novel framework for polarity opinion summariza-
tion. This framework consist in two opinion summary approches: structured opin-
ion summarization and textual opinion summarization. The proposed textual

96

opinion summarization method tries to generate a summary that covers all the
aspects present in the input. It also tries to maximize the informativeness of the
summary (defined as the entropy of the data) and to minimize the size of the sum-
mary. It was shown that the presented textual opinion summarization approach
outperforms the baselines.

97

A. Probabilistic Graphical Models

A.1. Overview

This appendix gives a brief description on Probabilistic Graphical Models. It is
out of the scope of this work a complete description of this framework.

A.2. Introduction

Probabilistic Graphical Models is a mathematical framework for representation
and inference in multivariate probabilistic distributions. The key concept is that
a probability distribution over many variables can be represented as product of
local functions or factors, and these functions depend on a small set of variables.
This factors can make the inference of a multivariate probabilistic distribution
tractable.

Factors are just functions with a given scope. A factor could be a function p that
represents the probability distribution in the scope of two independent random
variables X and Y , i.e p(X, Y).

The chain rule for probabilistic distributions is an example on how a probabilistic
distribution can be represented as a product of factor . This rule allows the
calculation of any member of the joint distribution of a set of random variables
using conditional probabilities. The equation A.1 gives an example of this chain
rule applied to some probability distribution over the random variables A1, A2, A3

and A4.

98

A.2 Introduction

p(A1, A2, A3, A4) = p(A4|A3, A2, A1) · p(A3|A2, A1) · p(A2|A1) · p(A1) (A.1)

The chain rule representation of a joint distribution can be drastically compressed
knowing conditional dependencies between variables. If we consider that every
random variable in equation A.1 is independent of other variables, then the chain
rule would be represented as in equation A.2.

P (A1, A2, A3, A4) = P (A4) · P (A3) · P (A2) · P (A1) (A.2)

The graphical part of this frameworks comes from the possibility of representing
the conditional dependencies of a probability distribution in a graph. As an ex-
ample, the Fig.A.1 represents the probabilistic graphical model for a Naive Bayes
model. In such model it is assumed that every input variable is conditionally in-
dependent between each other. Each node is a random variable in the probability
distribution. Each directed edge represents the conditional dependency between
variables. In this case, the probability of x1, x2, x3 depend on a class y and there
are not conditional dependencies between input variables (the naive assumption
of this model, hence the name).

This type of graphs representing conditional interdependencies are called Bayesian
Networks. They are represented with directed graphs.

There are other type of probabilistic graphical models. These are called Markov
Networks and they are represented by an undirected graph. The nodes also rep-
resent the random variables of a probability distribution. The difference are the
edges, which represent the affinity rate between variables. The concept of affinity
is not a concept easy to explain since it depends on the phenomena modeled, but
in simple terms affinity can be described as the degree of acceptance or agreement
between variables. An intuitive example would be a word represented by a variable
x and its POS Tag represented as a variable y. In a POS tagging task the affinity

99

A.2 Introduction

Figure A.1.: Probabilistic Graphical representation of a Naive Bayes Classifica-
tion scheme

of x being the word “dog” and the label y being the tag “NOUN” is higher than
x being “dog” and y being “VERB”.

One could argue that the affinity concept is the same as probability. The main
difference is that affinity allows to represent the phenomena in a more general way.
The affinity could be computed as a number between 0 and 10 and it is not re-
stricted as a probability distribution representation. This makes Markov Networks
more flexible and powerful than Bayesian Networks. Conditional Random Fields
is a type of Markov Network.

The formal definition for these Markov Networks is given in the equation A.3.
It describes the conditional probability distribution as a product of n factors Ψ
in the scope of an input vector ~x and a label vector ~y. The Z(~x) function is a
normalization factor. This is because the affinity between random variables could
be represented in different ways (e.g. a integer number), and what it is wanted at
the end is the conditional probability distribution.

100

A.3 Conditional Random Fields Definition

p(~y|~x) =
 1
Z(~x)

n∏
j=1

Ψj(~x, ~y)
 (A.3)

The equation A.4 describes the normalization factor. It consist on the summation
of factor products for all the possible combinations of the class vector ~y. The com-
plexity to calculate this normalization factor is exponential but there are several
techniques to compute this factor efficiently.

Z(~x) =
∑
~y′

n∏
j=1

Ψj(~x, ~y) (A.4)

A.3. Conditional Random Fields Definition

Conditional Random Fields, or CRF is a probabilistic graphical framework for
building probabilistic models to segment and label sequences of data. It takes a
discriminative approach. More generally, a CRF is a log-linear model that defines
a probability distribution over sequences of data given a particular observation
sequence. Lafferty et al. (2001) defined a CRF on a set of observations X and
a set of labels sequences Y as follows: Let G = (V,E) be a graph such that
Y = (Yv)vεV so that Y is indexed by the vertices of G, then (X, Y) is a conditional
random field in case, when conditioned on X the random variables Yv obey the
Markov property with respect to the graph:

p(Yv|X, Yu, u 6= v) = p(Yv|X, Yu, u ∼ v) (A.5)

where u ∼ v means that w and v are neighbors in G. The joint distribution over
the label sequences Y given X has the form:

pθ(y|x) ∝ exp

∑
eεE,k

λkfk(y|e, x) +
∑
vεV,k

µkgk(y|υ, x)
 (A.6)

101

A.4 Features Functions

where x is the data sequence, y is a label sequence, y|S is the set of components
of y associated with the vertices in subgraph S and θ is the set weight parameters
θ = (λ1, λ2, λ3, ...;µ1, µ2, µ3, ...). We assume that the features fk and gk are given
and fixed. They are usually Boolean and crafted by hand. For example, a vertex
feature fk might be true if the word Xi is upper case and the tag Yi is a proper
noun.

The parameter estimation problem is to determine the parameters θ from training
dataD = (x(i), y(i))Ni=1 with empirical distribution ~p(x, y). Usually gradient descent
and its variations are used for this. This will be discussed further in sec. A.6.

A.4. Features Functions

The equation A.6 describes the conditional distribution in function of some feature
functions. The intuitive explanation is that the data is represented as a series of
questions. Each question is represented by these function features and they use
the input value, the label of the class assigned, the value of the previous input,
etc., to compute a score. If the data fits the model proposed, the score will be
higher.

An example would be the application of CRF in Name Entity Recognition. This
is a task in Natural Language Processing of identifying the entities like PERSON,
LOCATION or COMPANY in a document. A Name Entity Extractor would label
“Mister Smith” as PERSON in the phrase “There goes Mister Smith singing”.
The features that the extractor could use are shown in the Fig.A.2. For simplicity
these functions only uses the current input value x. The function f1 tries to model
the fact that words like “Mr.”, “Mister” or “Miss” usually refers to a PERSON, so
the function will return the value of 1 indicating that there is strong evidence the
word must be tagged as PERSON. The function f2 models the fact that entities
are always nouns. So if the Part of Speech Tag of the input sentence is a noun
then the function returns 1, so the probability of y being PERSON for the input
x is higher. The function f3 models the fact that the first letter of an entity word
is usually uppercase.

102

A.5 Linear Chain Conditional Random Fields

f1(x) =

1 if x = Mister,Miss,Ms,Mr

0 Otherwise

f2(x) =

1 if Tag(x) = NOUN

0 Otherwise

f3(x) =

1 if Start(x) is uppercase
0 Otherwise

Figure A.2.: Feature Functions Example

The term f(y|e, x) of the equation A.6 is the general feature function representa-
tion. Its value will depend on the edges y|e for every input variable x and each
feature function is weighted by the parameter λk. The term µkgk(y|υ, x) also de-
scribes the feature functions but these are parametrized by vertices.

A.5. Linear Chain Conditional Random Fields

CRF is a general framework for discriminative modeling rather than a specific
technique. A special CRF case for sequence label modeling is Linear Chain CRF.
This CRF case is structured as a linear chain, and it models the output variables
as a sequence. The Fig.A.3 shows the graphical representation of a Linear Chain
CRF. This graph tries to model the relations present in a input x and a sequence
of labels yt, ..., yt+k. In this case it is assumed that there is a relation between the
input variable x and its label yt. Moreover the graph models a relation between
x and labels near to its own label and also it is assumed that there is a relation
between labels.

The factor definition for a Linear Chain CRF is given in the equation A.7. The
features are now in function of the input x and a k-sized label window y. The
value j is the position of x in the sequence.

103

A.5 Linear Chain Conditional Random Fields

Figure A.3.: Linear Chain CRF

Ψj(~x, ~y) = exp

(
m∑
i=1

λkfk(yj−k,yj−k−1, ..., yj, ~x, j)
)

(A.7)

The equation A.8 is the formal definition of the Linear Chain CRF:

p~λ(~y|~x) = 1
Z~λ
· exp

 n∑
j=1

m∑
i=1

λkfk(yj−k,yj−k−1, ..., yj, ~x, j)
 (A.8)

The normalization factor is described in equation A.9:

Z~λ(~x) =
∑
~yεY

exp

 n∑
j=1

m∑
i=1

λkfk(yj−k,yj−k−1, ..., yj, ~x, j)
 (A.9)

The k parameter in the features functions indicates the label window size. E.g.
with k = 2 the model just takes as input for sequence labeling the label associated
to the current input and the label associated to the previous input. The equation
A.10 shows this.

104

A.6 Parameter Estimation in Linear Chain CRF

λkfk(, yj−1, yj, ~x, j) (A.10)

By restricting the features to depend on only the current and previous labels,
rather than arbitrary labels throughout the sentence, it is built a special case of a
linear-chain CRF.

The Fig.A.4 shows some examples of 2-label-sized feature functions and how these
functions try to model POS Tagging. For example, if the weight λ1 associated with
the feature f1 is large and positive, then this feature models that words ending in -
ly tend to be labeled as ADVERBS. Another example is if the weight λ2 associated
with feature f2 is large and positive, then labels VERB assigned to the first word
in a question (e.g “Is this a sentence beginning with a verb?”) are preferred.

f1(yj−1, yj, ~x, j) =

1 if yj = ADV ERB; end(~x) = ”ly”
0 Otherwise

f2(yj−1, yj, ~x, j) =

1 if j = 1; yj = V ERB; end(~x) = ”?”
0 Otherwise

f3(yj−1, yj, ~x, j) =

1 if yj−1 = ADJETIV E; yj = NOUN

0 Otherwise

f3(yj−1, yj, ~x, j) =

1 if yj−1 = PREPOSITION ; yj = PREPOSITION

0 Otherwise

Figure A.4.: Examples of feature functions for POS Tagging with k = 2 .

A.6. Parameter Estimation in Linear Chain CRF

The method for estimation of the set of weights θ is as follows: Assuming there is
a set of training examples (sentences and associated class labels):

105

A.6 Parameter Estimation in Linear Chain CRF

• Randomly initialize the set of weights θ of our CRF model.

• To shift these randomly initialized weights to the correct ones, for each train-
ing example:

– Go through each feature function fi, and calculate the gradient of the
log probability of the training example with respect to θi as shown in
the equation A.11:

∂

∂θi
log(y|~x) =

m∑
j=1

fk(, yj−1, yj, ~x, j)−
∑
y′
p(y′|~x)

m∑
j=1

fk(, yj−1, yj, ~x, j)

(A.11)

– Move λi in the direction of the gradient:

λi = λi + α

 m∑
j=1

fk(, yj−1, yj, ~x, j)−
∑
y′
p(y′|~x)

m∑
j=1

fk(, yj−1, yj, ~x, j)


(A.12)
where α is some learning rate.

– Repeat the previous steps until some stopping condition is reached (e.g
the updates fall under some threshold).

106

B. Neural Networks

B.1. Overview

This appendix gives a brief description on the Neural Networks framework. It is
out of the scope of this research work a full description of neural networks.

B.2. Supervised classification with Neural Networks

Consider a supervised learning problem where we have access to labeled training
examples (x(i), y(i)). Neural networks give a way of defining a complex, non-linear
form of hypotheses hW,b(x), with parameters W, b that one can fit to the data.

The best example to start to describe neural networks is the simplest possible neu-
ral network, one which comprises a single "neuron." The Fig. B.1 shows a diagram
that denote a single neuron.

This neuron is a computational unit that takes as input x1, x2, x3 (and a +1 inter-
cept term), and outputs hW,b(x) = f(W Tx) = f(∑3

i=1 Wixi + b), where f : < 7→ <
is called the activation function. In this research work, we will choose f(·) to be
the sigmoid function:

f(z) = 1
1 + e−z

(B.1)

107

B.2 Supervised classification with Neural Networks

Figure B.1.: A single neuron

Thus, this single neuron corresponds exactly to the input-output mapping defined
by logistic regression. Another common choice for f is the hyperbolic tangent, or
tanh, function:

f(z) = tanh(z) = ez − e−z

ez + e−z
(B.2)

The plots of the sigmoid function and the tanh function are shown in the Fig. B.2.

Figure B.2.: Sigmoid and tanh functions plots

108

B.2 Supervised classification with Neural Networks

The tanh(z) function is a rescaled version of the sigmoid, and its output range is
[−1, 1] instead of [0, 1]. If f(z) = 1/(1 + exp(−z)) is the sigmoid function, then its
derivative is given by f ′(z) = f(z)(1−f(z)). (If f is the tanh function, then its
derivative is given by f ′(z) = 1−(f(z))2).

A neural network is put together by hooking together many simple neurons, so
that the output of a neuron can be the input of another. The Fig. B.3 shows an
example of a small neural network.

Figure B.3.: A small neural network

The inputs to the network are also denoted as circles. The circles labeled "+1" are
called bias units, and correspond to the intercept term. The leftmost layer of the
network is called the input layer, and the rightmost layer the output layer (which,
in the Fig. B.3, has only one node). The middle layer of nodes is called the hidden
layer, because its values are not observed in the training set. This neural network
has 3 input units (not counting the bias unit), 3 hidden units, and 1 output unit.

Let nl denote the number of layers in a network; thus nl = 3 in the Fig. B.3. Each
layer l is labelled as Ll, so layer L1 is the input layer, and layer Lnl

the output
layer. The neural network has parameters (W, b) = (W (1), b(1),W (2), b(2)), Let W (l)

ij

109

B.3 Forward Propagation

be the parameter (or weight) associated with the connection between unit j in
layer l, and unit i in layer l + 1. Also, b(l)

i is the bias associated with unit i in
layer l + 1. Thus, in the Fig. B.3, W (1) ∈ <3×3, and W (2) ∈ <1×3. Note that bias
units don’t have inputs or connections going into them, since they always output
the value +1. Let sl denote the number of nodes in layer l (not counting the bias
unit).

B.3. Forward Propagation

Let a(l)
i to denote the activation (meaning output value) of unit i in layer l. For

l = 1, let a(1)
i = xi to denote the i-th input. Given a fixed setting of the parameters

W, b, the neural network defines a hypothesis hW,b(x) that outputs a real number.
Specifically, the computation that this neural network represents is given by:

a
(2)
1 = f(W (1)

11 x1 +W
(1)
12 x2 +W

(1)
13 x3 + b

(1)
1) (B.3)

a
(2)
2 = f(W (1)

21 x1 +W
(1)
22 x2 +W

(1)
23 x3 + b

(1)
2) (B.4)

a
(2)
3 = f(W (1)

31 x1 +W
(1)
32 x2 +W

(1)
33 x3 + b

(1)
3) (B.5)

hW,b(x) = a
(3)
1 = f(W (2)

11 x1 +W
(2)
12 x2 +W

(2)
13 x3 + b

(2)
1) (B.6)

The computation of hW,b(x) is called forward propagation.

B.4. Backpropagation

The backpropagation algorithm is used to learn the parametersW, b from a training
set. Let {(x(1), y(1)), . . . , (x(m), y(m))} be a fixed training set ofm training examples.
A neural network can be trained using batch gradient descent. In detail, for a single
training example (x, y), let the cost function with respect to that single example
to be:

110

B.4 Backpropagation

J(W, b;x, y) = 1
2 ‖hW,b(x)− y‖2 (B.7)

The equation B.7 is a one-half square error cost function. Given a training set of
m examples, the overall cost function is:

J(W, b) =
[

1
m

m∑
i=1

J(W, b;x(i), y(i))
]

+ λ

2

nl−1∑
l=1

Sl∑
i=1

Sl+1∑
j=1

(
W

(l)
ji

)2

=
[

1
m

m∑
i=1

(1
2 ‖hW,b(x)− y‖2

)]
+ λ

2

nl−1∑
l=1

Sl∑
i=1

Sl+1∑
j=1

(
W

(l)
ji

)2
(B.8)

The first term in the definition of J(W, b) is an average sum-of-squares error term.
The second term is a regularization term (also called a weight decay term) that
tends to decrease the magnitude of the weights, and helps prevent overfitting. The
weight decay parameter λ controls the relative importance of the two terms.

The objective is to minimize J(W, b) as a function of W and b. To train a neural
network, one must initialize each parameter W (l)

ij and each b(l)
i to a small random

value near zero (say according to a Γ(0, ε2) distribution for some small ε), and then
apply an optimization algorithm such as batch gradient descent. Since J(W, b) is
a non-convex function, gradient descent is susceptible to local optima; however,
in practice gradient descent usually works fairly well. It is important to initialize
the parameters randomly, rather than to all 0’s. If all the parameters start off
at identical values, then all the hidden layer units will end up learning the same
function of the input (more formally, W (1)

ij will be the same for all values of i, so
that a(2)

1 = a
(2)
2 = a

(2)
3 = . . . for any input x). The random initialization serves the

purpose of symmetry breaking.

One iteration of gradient descent updates the parameters W, b as follows:

111

B.5 Softmax Regression in Neural Networks

W
(l)
ij = W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b) (B.9)

b
(l)
i = b

(l)
i − α

∂

∂b
(l)
i

J(W, b) (B.10)

where α is the learning rate. The backpropagation algorithm computes the par-
tial derivatives shown in the equations B.9 and B.10. The intuition behind the
backpropagation algorithm is as follows. Given a training example (x, y), we will
first run a "forward pass" to compute all the activations throughout the network,
including the output value of the hypothesis hW,b(x). Then, for each node i in
layer l, we would like to compute an "error term" δ(l)

i that measures how much
that node was "responsible" for any errors in our output. For an output node, we
can directly measure the difference between the network’s activation and the true
target value, and use that to define δ(nl)

i (where layer nl is the output layer). For
the hidden layer, we will compute δ(l)

i based on a weighted average of the error
terms of the nodes that uses a(l)

i as an input.

B.5. Softmax Regression in Neural Networks

If a neural network is used in a multiclass problem, then the softmax regression
model is used to predict the probabilities of the different possible outcomes of a
categorically distributed dependent variable, given a set of independent variables.

In the softmax regression setting, the goal is multiclass classification (as opposed to
only binary classification), and so the label y can take on k different values, rather
than only two. Thus, in the training set {(x(1), y(1)), . . . , (x(m), y(m))}, we now have
that y(i) ∈ {1, 2, . . . , k}. (Note the convention will be to index the classes starting
from 1, rather than from 0.) The softmax function is defined in the equation B.11.

σ(z)j = ezj∑K
k=1 e

zk
(B.11)

112

B.5 Softmax Regression in Neural Networks

In softmax regression, the input to the function is the result of K distinct linear
functions, and the predicted probability for the j class given a sample vector x(i)

is given in the equation B.12.

p(y(i) = j|x(i); θ) = eθ
T
j x

(i)∑K
k=1 e

θT
k
x(i) (B.12)

Given a test input x, the objective of an hypothesis is to estimate the probability
that p(y = j|x) for each value of j = 1, . . . , k. I.e., the objective is to estimate
the probability of the class label taking on each of the k different possible values.
Thus, the hypothesis will output a k dimensional vector (whose elements sum to
1) giving us our k estimated probabilities. Concretely, the equation B.13 describes
the the hypothesis hθ(x).

hθ(x(i)) =


p(y(i) = 1|x(i); θ)
p(y(i) = 2|x(i); θ)

...
p(y(i) = k|x(i); θ)

 = 1∑k
j=1 e

θT
j x

(i)


eθ

T
1 x

(i)

eθ
T
2 x

(i)

...
eθ

T
k x

(i)

 (B.13)

The softmax regression cost function is defined in the equation B.14. The 1{·}
expression is the indicator function, so that 1{a true statement} = 1, and 1{a false
statement} = 0. For example, 1{2 + 2 = 4} evaluates to 1; whereas 1{2 + 2 = 5}
evaluates to 0.

J(θ) = − 1
m

 m∑
i=1

k∑
j=1

1{y(i) = j}log eθ
T
j x

(i)∑k
l=1 e

θT
l
x(i)

 (B.14)

= − 1
m

 m∑
i=1

k∑
j=1

1{y(i) = j}log(p(y(i) = j|x(i); θ))


There is no known closed-form way to solve for the minimum of J(θ), and thus
as usual one must resort to an iterative optimization algorithm such as gradient

113

B.5 Softmax Regression in Neural Networks

descent or L-BFGS. The gradient of J(θ) is shown in the

∂

∂θj
J(θ) = − 1

m

m∑
i=1

[
x(i)(1{y(i) = j} − p(y(i) = j|x(i); θ))

]
(B.15)

When a softmax regression model is integrated to a neural network, there is some
changes in how this network is trained. Concretely, let l be the layer in a neural
network that is constrained to the softmax function as activation function rather
than the sigmoid or tanh function. Therefore the activation function gradients
used by backpropagation change. Let k be the number of units in this layer. Since
we have n activation functions parametrized by θ, to compute the gradients one
must compute the Jacobian matrix. The equation B.16 describes the Jacobian
matrix based on the probability of a class j described in equation B.15.

[J]ij = p(y(i) = i|x(i); θ)(δij − p(y(i) = j|x(i); θ)) (B.16)

where δij is the Kronecker Delta (and not the term error δ from the backpropaga-
tion algorithm.) So the Jacobian matrix is a square matrix of size n× n.

To compute the error term δl multiply the vector of error terms of the next layer
by the Jacobian matrix as described in the equation B.17.

δl = [J] δl+1 (B.17)

If the softmax layer is the output layer, then the equation B.17 is the same as
a regular neural network with the sigmoid or tanh function, as described in the
equation B.18.

δl = hθ(x(i))− y(i) (B.18)

114

C. Linear Programming and Integer
Linear Programming

C.1. Overview

This appendix gives a brief description on Linear Programming (LP) and Integer
Linear Programming (ILP). It is out of the scope of this research work to give a
full description of LP and ILP.

C.2. Linear Programming

Linear programming is a technique for the optimization of a linear objective func-
tion, subject to linear equality and linear inequality constraints. Its feasible region
is a convex polyhedron, which is a set defined as the intersection of finitely many
half spaces, each of which is defined by a linear inequality. Its objective function
is a real-valued affine function defined on this polyhedron. A linear programming
algorithm finds a point in the polyhedron where this function has the smallest (or
largest) value if such a point exists.

Linear programs are problems that can be expressed in canonical form described
by the expression C.1:

115

C.2 Linear Programming

maximize cTx

subject to Ax ≤ b (C.1)

and x ≥ 0

where x represents the vector of variables to be determined, c is a vector of known
coefficients usually associated to a cost of each variable, b is a known vector of
coefficient associated to the constraints of the problem, A is a known matrix of
coefficients and (·)T is the matrix transpose. The expression to be maximized or
minimized is called the objective function. The inequalities Ax ≤ b and x ≥
0 are the constraints which specify a convex polytope over which the objective
function is to be optimized. In this context, two vectors are comparable when
they have the same dimensions. If every entry in the first is less-than or equal-to
the corresponding entry in the second then we can say the first vector is less-than
or equal-to the second vector.

The Fig. C.1 shows the feasible region for an LP problem of maximizing the objec-
tive function z = x1+x2 with the constraints given by the inequalities x1+2x2 ≤ 4,
4x1 + 2x2 ≤ 12, −x1 + x2 ≤ 1, x1 ≥ 0 and x2 ≥ 0. The optimal value is given
by the point (8/3, 2/3), which is the intersection of the planes x1 + 2x2 ≤ 4 and
4x1 + 2x2 ≤ 12.

The standard form is the usual and most intuitive form of describing a linear
programming problem. It consists of the following three parts:

• A linear function to be maximized. The equation C.2 shows an example of
this:

f(x1, x2) = c1x1 + c2x2 (C.2)

• The problem constraints. The equations in the expression C.3 describe the

116

C.2 Linear Programming

Figure C.1.: An LP feasible region

constrains of the problem defined in the equation C.2:

a11x1 + a12x2 ≤ b1

a21x1 + a22x2 ≤ b2

a31x1 + a32x2 ≤ b3

(C.3)

• The non-negative variables constraints. The expression C.4 describe this:

x1 ≥ 0
x2 ≥ 0

(C.4)

Other forms, such as minimization problems, problems with constraints on al-
ternative forms, as well as problems involving negative variables can always be
rewritten into an equivalent problem in standard form.

117

C.3 The Simplex Algorithm

C.3. The Simplex Algorithm

The simplex algorithm is a method for linear programming. This method computes
the optimal solution (if there is any) to an LP problem.

In geometric terms, the feasible region Ax = b, xi ≥ 0 is a (possibly unbounded)
convex polytope. There is a simple characterization of the extreme points or
vertices of this polytope, namely x = (x1, . . . , xn) is an extreme point if and only
if the subset of column vectors Ai corresponding to the nonzero entries of x(xi 6= 0)
are linearly independent. In this context such a point is known as a basic feasible
solution (BFS).

It can be shown that for a linear program in standard form, if the objective function
has a minimum value on the feasible region then it has this value on (at least) one
of the extreme points. This in itself reduces the problem to a finite computation
since there is a finite number of extreme points, but the number of extreme points
is unmanageably large for all but the smallest linear programs.

It can also be shown that if an extreme point is not a minimum point of the
objective function then there is an edge containing the point so that the objective
function is strictly decreasing on the edge moving away from the point. If the
edge is finite then the edge connects to another extreme point where the objective
function has a smaller value, otherwise the objective function is unbounded below
on the edge and the linear program has no solution. The simplex algorithm applies
this insight by walking along edges of the polytope to extreme points with lower
and lower objective values. This continues until the minimum value is reached
or an unbounded edge is visited, concluding that the problem has no solution.
The algorithm always terminates because the number of vertices in the polytope
is finite; moreover since we jump between vertices always in the same direction
(that of the objective function), we hope that the number of vertices visited will
be small.

The solution of a linear program is accomplished in two steps. In the first step,
known as Phase I, a starting extreme point is found. Depending on the nature

118

C.3 The Simplex Algorithm

of the program this may be trivial, but in general it can be solved by applying
the simplex algorithm to a modified version of the original program. The possible
results of Phase I are either a basic feasible solution is found or that the feasible
region is empty. In the latter case the linear program is called infeasible. In the
second step, Phase II, the simplex algorithm is applied using the basic feasible
solution found in Phase I as a starting point. The possible results from Phase
II are either an optimum basic feasible solution or an infinite edge on which the
objective function is unbounded below.

C.3.1. Standard Augmented Form

Linear programming problems must be converted into the standard augmented
form before being solved by the simplex algorithm. This form introduces non-
negative slack variables to replace inequalities with equalities in the constraints.
This is done as follows:

• Let z be the objective function cTx. Therefore z = cTx. If the problem is
min z, convert it to max z.

• If a constraint is ai1x1+ai2x2+. . .+ainxn ≤ bi convert it into an equality con-
straint by adding a non-negative slack variable si. The resulting constraint
is ai1x1 + ai2x2 + . . .+ ainxn + si = bi where si ≥ 0.

• If a constraint is ai1x1 + ai2x2 + . . . + ainxn ≥ bi convert it into an equality
constraint by subtracting a non-negative surplus variable si. The resulting
constraint is ai1x1 + ai2x2 + . . .+ ainxn − si = bi where si ≥ 0.

• If some variable xj is unrestricted in sign, replace it everywhere in the for-
mulation by x′

j − x
′′
j where x′

j ≥ 0 and x′′
j ≥ 0.

C.3.2. Simplex Tableaux

A linear program in standard form can be represented as a tableau of the form
shown in the expression C.5:

119

C.3 The Simplex Algorithm

1 −cT 0
0 A b

 (C.5)

The first row defines the objective function and the remaining rows specify the
constraints. If the columns of A can be rearranged so that it contains the identity
matrix of order p (the number of rows in A) then the tableau is said to be in
canonical form. The variables corresponding to the columns of the identity matrix
are called basic variables while the remaining variables are called nonbasic or free
variables. If the nonbasic variables are assumed to be 0, then the values of the
basic variables are easily obtained as entries in b and this solution is a basic feasible
solution.

Conversely, given a basic feasible solution, the columns corresponding to the
nonzero variables can be expanded to a nonsingular matrix. If the correspond-
ing tableau is multiplied by the inverse of this matrix then the result is a tableau
in canonical form.

C.3.3. Pivot operations

The geometrical operation of moving from a basic feasible solution to an adjacent
basic feasible solution is implemented as a pivot operation. First, a nonzero pivot
element is selected in a nonbasic column. The row containing this element is
multiplied by its reciprocal to change this element to 1, and then multiples of
the row are added to the other rows to change the other entries in the column to
0. The result is that, if the pivot element is in row r, then the column becomes
the r-th column of the identity matrix. The variable for this column is now a
basic variable, replacing the variable which corresponded to the r-th column of
the identity matrix before the operation. In effect, the variable corresponding to
the pivot column enters the set of basic variables and is called the entering variable,
and the variable being replaced leaves the set of basic variables and is called the
leaving variable. The tableau is still in canonical form but with the set of basic
variables changed by one element.

120

C.3 The Simplex Algorithm

C.3.4. Algorithm

Let a linear program be given by a canonical tableau. The simplex algorithm
proceeds by performing successive pivot operations which each give an improved
basic feasible solution; the choice of pivot element at each step is largely determined
by the requirement that this pivot improve the solution.

C.3.4.1. Entering variable selection

Since the entering variable will, in general, increase from 0 to a positive number,
the value of the objective function will decrease if the derivative of the objective
function with respect to this variable is negative. Equivalently, the value of the
objective function is decreased if the pivot column is selected so that the corre-
sponding entry in the objective row of the tableau is positive.

If there is more than one column so that the entry in the objective row is positive
then the choice of which one to add to the set of basic variables is somewhat
arbitrary and several entering variable choice rules have been developed.

If all the entries in the objective row are less than or equal to 0 then no choice of
entering variable can be made and the solution is in fact optimal. It is easily seen
to be optimal since the objective row now corresponds to an equation of the form
shown in the equation C.6:

z(x) = zB +NB (C.6)

where NB is the non-negative terms corresponding to non-basic variables.

C.3.4.2. Leaving variable selection

Once the pivot column has been selected, the choice of pivot row is largely de-
termined by the requirement that the resulting solution be feasible. First, only

121

C.4 Integer Linear Programming

positive entries in the pivot column are considered since this guarantees that the
value of the entering variable will be non-negative. If there are no positive en-
tries in the pivot column then the entering variable can take any non-negative
value with the solution remaining feasible. In this case the objective function is
unbounded below and there is no minimum.

Next, the pivot row must be selected so that all the other basic variables remain
positive. A calculation shows that this occurs when the resulting value of the
entering variable is at a minimum. In other words, if the pivot column is c, then
the pivot row r is chosen so that br/acr is the minimum over all acr > 0. This
is called the minimum ratio test. If there is more than one row for which the
minimum is achieved then a dropping variable choice rule can be used to make the
determination.

C.4. Integer Linear Programming

An Integer Linear Programming (ILP) problem is an LP problem with the added
constraint of all the variables must be integers. Integer programming is NP-hard.
0-1 integer programming or binary integer programming (BIP) is the special case
of integer programming where variables are required to be 0 or 1 (rather than
arbitrary integers). This problem is also classified as NP-hard.

An integer linear program in canonical form is expressed as:

maximize cTx

subject to Ax ≤ b, (C.7)

x ≥ 0

and x ∈ Z

and an ILP in standard form is expressed as:

122

C.4 Integer Linear Programming

maximize cTx

subject to Ax+ s ≤ b, (C.8)

x ≥ 0

and x ∈ Z

C.4.1. Solving ILP problems

The naive way to solve an ILP is to remove the constraint x ∈ Z, solve the
corresponding LP and then round the entries of the solution. This method is
called the LP relaxation. However, not only may this solution not be optimal, it
may not even be feasible. That is, it may violate some constraint.

Since integer linear programming is NP-complete, many problem instances are in-
tractable and so heuristic methods must be used instead. For example, tabu search
can be used to search for solutions to ILP problems. To use tabu search, moves
can be defined as incrementing or decrementing an integer constrained variable of
a feasible solution, while keeping all other integer-constrained variables constant.
The unrestricted variables are then solved for. Short term memory can consist of
previous tried solutions while medium term memory can consist of values for the
integer constrained variables that have resulted in high objective values (assuming
the ILP is a maximization problem). Finally, long term memory can guide the
search towards integer values that have not previously been tried.

Other heuristic methods that can be applied to ILP include hill climbing methods,
simulated annealing, reactive search optimization, ant colony optimization and
Hopfield neural networks.

There are also a variety of other problem-specific heuristics, such as the k-opt
heuristic for the traveling salesman problem. Note that a disadvantage of heuristic
methods is that if they fail to find a solution, it cannot be determined whether it
is because there is no feasible solution or whether the algorithm simply was unable

123

C.4 Integer Linear Programming

to find one. Further, it is usually impossible to quantify how close to optimal a
solution returned by these methods is.

124

Bibliography

M. Hu and B. Liu, “Mining and summarizing customer reviews.” in Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, Aug 2004.

L. Jiang, M. Yu, M. Zhou, X. Liu, and T. Zhao, “Target-dependent twitter senti-
ment classification,” in Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics (ACL-2011), 2011.

E. Boiy and M.-F. Moens, “A machine learning approach to sentiment analysis in
multilingual web texts.” Information retrieval, vol. 12(5), pp. 526–558., 2009.

B. L. Ding, Xiaowen and L. Zhang, “Entity discovery and assignment for opinion
mining applications.” in Proceedings of ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-2009), 2009.

M. Ganapathibhotla and B. Liu, “Mining opinions in comparative sentences.”
in Proceedings of International Conference on Computational Linguistics
(COLING-2008)., 2008.

R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a sentiment
treebank,” in Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP 2013)., 2013.

B. L. Ding, Xiaowen and P. S. Yu, “A holistic lexicon-based approach to opinion
mining,” in Proceedings of the Conference on Web Search and Web Data Mining
(WSDM-2008), 2008.

125

Bibliography

S. Blair-Goldensohn, K. Hannan, R. McDonald, T. Neylon, G. A. Reis, and J. Rey-
nar, “Building a sentiment summarizer for local service reviews.” in Proceedings
of WWW-2008 workshop on NLP in the Information Explosion Era., 2008.

J. S. Kessler and N. Nicolov, “Targeting sentiment expressions through supervised
ranking of linguistic configurations.” in Proceedings of the Third International
AAAI Conference on Weblogs and Social Media (ICWSM-2009)., 2009.

A.-M. Popescu and O. Etzioni, “Extracting product features and opinions from re-
views. in proceedings of conference on empirical methods,” in Natural Language
Processing (EMNLP-2005), 2005.

L.-W. Ku, Y.-T. Liang, and H.-H. Chen, “Opinion extraction, summarization and
tracking in news and blog corpora.” in Proceedings of AAAI-CAAW’06., 2006.

H. Guo, H. Zhu, Z. Guo, X. Zhang, and Z. Su, “Product feature categorization with
multilevel latent semantic association.” in Proceedings of ACM International
Conference on Information and Knowledge Management (CIKM-2009)., 2009.

C. Long, J. Zhang, and X. Zhu., “A review selection approach for accurate feature
rating estimation.” in Proceedings of Coling 2010: Poster Volume, 2010.

N. Kobayashi, R. Iida, K. Inui, and Y. Matsumoto, “Opinion mining on the
web by extracting subject-attribute-value relations.” in Proceedings of AAAI-
CAAW’06., 2006.

S. Somasundaran, G. Namata, L. Getoor, and J. Wiebe, “Opinion graphs for
polarity and discourse classification.” in Proceedings of the 2009 Workshop on
Graph-based Methods for Natural Language Processing., 2009.

L. R. Rabiner, “A tutorial on hidden markov models and selected applications in
speech recognition.” in Proceedings of the IEEE, 1989.

J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields: prob-
abilistic models for segmenting and labeling sequence data.” in Proceedings of
the 18th International Conference on Machine Learning, M. K. Publishers, Ed.,
June 2001, pp. 282–289.

126

Bibliography

W. Jin and H. H. Ho, “A novel lexicalized hmm-based learning framework for
web opinion mining.” in Proceedings of International Conference on Machine
Learning (ICML-2009)., 2009.

N. Jakob and I. Gurevych, “Extracting opinion targets in a singleand cross-domain
setting with conditional random fields.” in Proceedings of Conference on Empir-
ical Methods in Natural Language Processing (EMNLP-2010)., 2010.

F. Li, C. Han, M. Huang, X. Zhu, Y.-J. Xia, S. Zhang, , and H. Yu, “Structure-
aware review mining and summarization.” in Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics (COLING-2010)., 2010.

Y. Choi and C. Cardie, “Hierarchical sequential learning for extracting opinions
and their attributes.” in Proceedings of Annual Meeting of the Association for
Computational Linguistics (ACL-2010)., 2010.

S. Huang, X. Liu, X. Peng, and Z. Niu, “Fine-grained product features extraction
and categorization in reviews opinion mining.” in Proceedings of the IEEE 12th
International Conference on Data Mining Workshops., 2012.

T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings of Confer-
ence on Uncertainty in Artificial Intelligence (UAI-1999)., 1999.

D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation.” The Journal
of Machine Learning Research, vol. 3, pp. 993– 1022., 2003.

Q. Mei, X. Ling, M. Wondra, H. Su, and C. Zhai., “Topic sentiment mixture: mod-
eling facets and opinions in weblogs.” in Proceedings of International Conference
on World Wide Web (WWW- 2007)., 2007.

C. Lin and Y. He, “Joint sentiment/topic model for sentiment analysis.” in Pro-
ceedings of ACM International Conference on Information and Knowledge Man-
agement (CIKM-2009)., 2009.

S. Brody and N. Elhadad, “An unsupervised aspect-sentiment model for online
reviews.” in Proceedings of The 2010 Annual Conference of the North American
Chapter of the ACL., 2010.

127

Bibliography

F. Li, M. Huang, and X. Zhu., “Sentiment analysis with global topics and local de-
pendency.” in Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-2010)., 2010.

I. Titov and R. McDonald., “A joint model of text and aspect ratings for senti-
ment summarization.” in Proceedings of Annual Meeting of the Association for
Computational Linguistics (ACL-2008)., 2008.

Q. Su, X. Xu, H. Guo, Z. Guo, X. Wu, X. Zhang, B. Swen, and Z. Su, “Hidden
sentiment association in chinese web opinion mining,” in Proceedings of Inter-
national Conference on World Wide Web (WWW-2008), 2008.

Z. Hai, K. Chang, and J. jae Kim, “Implicit feature identification via co-occurrence
association rule mining,” in Computational Linguistics and Intelligent Text Pro-
cessing, 2011, pp. 393–404.

L. Zeng and F. Li, “A classification-based approach for implicit feature identifica-
tion,” in Chinese Computational Linguistics and Natural Language Processing
Based on Naturally Annotated Big Data Lecture Notes in Computer Science,
2013, pp. 190–202.

B. Liu, M. Hu, and J. Cheng., “Opinion observer: Analyzing and comparing opin-
ions on the web.” in Proceedings of International Conference on World Wide
Web (WWW-2005)., 2005.

R. N. Carenini, Giuseppe and A. Pauls, “Multi-document summarization of evalu-
ative text.” in Proceedings of the European Chapter of the Association for Com-
putational Linguistics (EACL-2006)., 2006.

S. Tata and B. D. Eugenio., “Generating fine-grained reviews of songs from album
reviews.” in Proceedings of Annual Meeting of the Association for Computational
Linguistics (ACL-2010)., 2010.

S. B.-G. Lerman, Kevin and R. McDonald, “Sentiment summarization: Evaluating
and learning user preferences.” in Proceedings of the 12th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics (EACL-2009).,
2009.

128

Bibliography

H. Nishikawa, T. Hasegawa, Y. Matsuo, , and G. Kikui., “Optimizing informa-
tiveness and readability for sentiment summarization.” in Proceedings of Annual
Meeting of the Association for Computational Linguistics (ACL-2010)., 2010.

H. Nishikawa, T. Hasegawa, Y. Matsuo, and G. Kikui., “Opinion summarization
with integer linear programming formulation for sentence extraction and order-
ing.” in Proceedings of Coling 2010: Poster Volume., 2010a.

T. Pedersen, S. Patwardhan, and J. Michelizzi., “Wordnet:: Similarity: measuring
the relatedness of concepts.” in Demonstration Papers at HLT-NAACL 2004.,
2004.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa,
“Natural language processing (almost) from scratch.” The Journal of Machine
Learning Research, vol. 12, pp. 2493–2537, 2011.

T. Mikolov, W. tau Yih, and G. Zweig., “Linguistic regularities in continuous space
word representations.” in Proceedings of NAACL-HLT., 2013.

T. Mikolov, K. Chen, G. Corrado, and J. Dean., “Efficient estimation of word
representations in vector space.” arXiv preprint arXiv:1301.3781, 2013.

F. Morin and Y. Bengio, “Hierarchical probabilistic neural network language
model.” in Proceedings of the international workshop on artificial intelligence
and statistics., 2005.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances
in Neural Information Processing Systems, 2013, pp. 3111–3119.

S. Banerjee and T. Pedersen, “Extended gloss overlaps as a measure of semantic
relatedness.” in Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence, 2003, pp. 805–810.

S. Patwardhan, S. Banerjee, and T. Pedersen, “Using measures of semantic related-
ness for word sense disambiguation.” in Proceedings of the Fourth International

129

Nomenclature

Conference on Intelligent Text Processing and Computational Linguistics, 2003,
pp. 241–257.

Z. Wu and M. Palmer, “Verb semantics and lexical selection.” in Annual Meeting
of the Association for Computational Linguistics., 1994, pp. 133–138.

E. Minkov, R. C. Wang, A. Tomasic, and W. W. Cohen, “NER systems that suit
user’s preferences: adjusting the recall-precision trade-off for entity extraction,”
in Proceedings of the Human Language Technology Conference of the NAACL,
Companion Volume: Short Papers, 2006, pp. 93–06.

W. Wei and J. A. Gulla, “Sentiment learning on product reviews via sentiment
ontology tree,” in Proceedings of Annual Meeting of the Association for Compu-
tational Linguistics (ACL-2010), 2010.

130

Nomenclature

ASCII American Standard Code for Information Interchange

BOW Bag of Words

CRF Conditional Random Fields

DVD Digital Video Disc

HMM Hidden Markov Models

IAI Implicit Aspect Indicator

ILP Integer Linear Programming

LDA Latent Dirichlet Allocation

MP3 MPEG-2 Audio Layer III; an audio coding format

NB Naive Bayes

NER Name Entity Recognition

NLP Natural Language Processing

NNLM Neural Network Language Model

131

Nomenclature

PLSA Probabilistic Latent Semantic Analysis

PMI Pointwise Mutual Information

POS Part-of-Speech

RNTN Recursive Neural Tensor Network

Skip-gram Continuous Skip-gram Neural Network Language Model

TF-IDF Term Frecuency - Inverse Document Frecuency

UTF-8 Universal Character Set + Transformation Format 8-bit

132

	Contents
	List of figures
	List of tables
	1 Introduction
	1.1 Overview
	1.2 Objetives
	1.3 Opinion Mining and Opinion Summarization
	1.4 Contributions
	1.5 Problem definition
	1.5.1 Opinion Definition

	1.6 Opinion Mining Analysis Levels
	1.6.1 Document Level
	1.6.2 Sentence Level
	1.6.3 Aspect-based Level

	1.7 Sentiment Classification
	1.7.1 Supervised Sentiment Classification
	1.7.2 Lexicon-based Sentiment Classification

	1.8 Aspect Extraction
	1.8.1 Explicit Aspect Extraction
	1.8.2 Implicit Aspect Extraction

	1.9 Aspect-based Opinion Summarization

	2 State of the Art
	2.1 Overview
	2.2 Sentiment Classification
	2.2.1 Supervised Approaches
	2.2.2 Lexicon-based Approaches

	2.3 Aspect Extraction
	2.3.1 Explicit Aspect Extraction
	2.3.2 Implicit Aspect Extraction

	2.4 Aspect-based Opinion Summarization

	3 Research Methodology
	3.1 Overview
	3.2 Polarity Classification
	3.2.1 Description
	3.2.2 Algorithm
	3.2.3 Implementation

	3.3 Explicit Aspect Extraction
	3.3.1 Description
	3.3.2 Supervised Learning
	3.3.3 Sequence Labeling
	3.3.4 Conditional Random Fields
	3.3.5 Explicit Aspect Extraction Approach

	3.4 Implicit Aspect Extraction
	3.5 IAI Extraction
	3.5.1 IAI Corpus
	3.5.2 Feature Crafting
	3.5.3 Implementation
	3.5.4 Baselines

	3.6 Mapping IAI to Implicit Aspects
	3.6.1 Word Representation
	3.6.2 Neural Network Language Models
	3.6.3 Learning Word Representations with NNLM
	3.6.4 IAI to Implicit Aspects Mapping Method
	3.6.5 Baselines

	3.7 Opinion Summarization
	3.7.1 Structured Opinion Summary
	3.7.2 Textual Opinion Summary
	3.7.3 Set Covering problem as an ILP problem
	3.7.4 Sentences Costs
	3.7.5 Textual Opinion Summary Generation with ILP
	3.7.6 Textual Opinion Summary Baselines

	4 Results
	4.1 Overview
	4.2 Polarity Classification
	4.3 Explicit Aspect Extraction
	4.4 Implicit Aspect Indicators Extraction
	4.5 Implicit Aspect Extraction
	4.6 Opinion Summarization
	4.6.1 Structured Opinion Summarization
	4.6.2 Textual Opinion Summarization.

	Conclusions
	A Probabilistic Graphical Models
	A.1 Overview
	A.2 Introduction
	A.3 Conditional Random Fields Definition
	A.4 Features Functions
	A.5 Linear Chain Conditional Random Fields
	A.6 Parameter Estimation in Linear Chain CRF

	B Neural Networks
	B.1 Overview
	B.2 Supervised classification with Neural Networks
	B.3 Forward Propagation
	B.4 Backpropagation
	B.5 Softmax Regression in Neural Networks

	C Linear Programming and Integer Linear Programming
	C.1 Overview
	C.2 Linear Programming
	C.3 The Simplex Algorithm
	C.3.1 Standard Augmented Form
	C.3.2 Simplex Tableaux
	C.3.3 Pivot operations
	C.3.4 Algorithm

	C.4 Integer Linear Programming
	C.4.1 Solving ILP problems

	Bibliography
	Nomenclature

