
Methods for Measuring Semantic

Similarity of Texts

Miguel Angel Rios Gaona

A thesis submitted in partial fulfilment of the requirements of the

University of Wolverhampton for the degree of Doctor of Philosophy

November 21, 2014

This work or any part thereof has not previously been presented in any

form to the University or to any other body whether for the purposes of

as- sessment, publication or for any other purpose (unless otherwise indi-

cated). Save for any express acknowledgements, references and/or bibliogra-

phies cited in the work, I confirm that the intellectual content of the work is

the result of my own efforts and of no other person.

The right of Miguel Angel Rios Gaona to be identified as author of this

work is asserted in accordance with ss.77 and 78 of the Copyright, Designs

and Patents Act 1988. At this date copyright is owned by the author.

Signature: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



ii



Abstract

Measuring semantic similarity is a task needed in many Natural Language

Processing (NLP) applications. For example, in Machine Translation evalu-

ation, semantic similarity is used to assess the quality of the machine trans-

lation output by measuring the degree of equivalence between a reference

translation and the machine translation output. The problem of semantic

similarity (Corley and Mihalcea, 2005) is defined as measuring and recognis-

ing semantic relations between two texts. Semantic similarity covers different

types of semantic relations, mainly bidirectional and directional. This thesis

proposes new methods to address the limitations of existing work on both

types of semantic relations.

Recognising Textual Entailment (RTE) is a directional relation where

a text T entails the hypothesis H (entailment pair) if the meaning of H

can be inferred from the meaning of T (Dagan and Glickman, 2005; Dagan

et al., 2013). Most of the RTE methods rely on machine learning algorithms.

de Marneffe et al. (2006) propose a multi-stage architecture where a first

stage determines an alignment between the T-H pairs to be followed by an

entailment decision stage. A limitation of such approaches is that instead

of recognising a non-entailment, an alignment that fits an optimisation cri-

terion will be returned, but the alignment by itself is a poor predictor for
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non-entailment. We propose an RTE method following a multi-stage archi-

tecture, where both stages are based on semantic representations. Further-

more, instead of using simple similarity metrics to predict the entailment

decision, we use a Markov Logic Network (MLN). The MLN is based on rich

relational features extracted from the output of the predicate-argument align-

ment structures between T-H pairs. This MLN learns to reward pairs with

similar predicates and similar arguments, and penalise pairs otherwise. The

proposed methods show promising results. A source of errors was found to

be the alignment step, which has low coverage. However, we show that when

an alignment is found, the relational features improve the final entailment

decision.

The task of Semantic Textual Similarity (STS) (Agirre et al., 2012) is de-

fined as measuring the degree of bidirectional semantic equivalence between

a pair of texts. The STS evaluation campaigns use datasets that consist of

pairs of texts from NLP tasks such as Paraphrasing and Machine Translation

evaluation. Methods for STS are commonly based on computing similarity

metrics between the pair of sentences, where the similarity scores are used

as features to train regression algorithms. Existing methods for STS achieve

high performances over certain tasks, but poor results over others, particu-

larly on unknown (surprise) tasks. Our solution to alleviate this unbalanced

performances is to model STS in the context of Multi-task Learning using

Gaussian Processes (MTL-GP) (Álvarez et al., 2012) and state-of-the-art
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STS features (Šarić et al., 2012). We show that the MTL-GP outperforms

previous work on the same datasets.
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Chapter 1

Introduction

One of the most important challenges in Natural Language Processing (NLP)

is language variability: texts with the same meaning can be realised in several

ways. NLP applications need to identify how their inputs and requested out-

puts are related, even if they have different surface forms, as they can express

the same meaning. A way to address the language variability that can be ex-

plored across applications is the notion of semantic similarity. For example,

semantic similarity serves as a criterion within Text Summarisation to select

a sentence that summarises an entire paragraph (Das and Martins, 2007).

In Machine Translation (MT) evaluation, semantic similarity estimates the

quality of machine translations by measuring the degree of equivalence be-

tween a reference translation and the machine translation output (Banerjee

and Lavie, 2005). The problem of semantic similarity is defined as measuring

and recognising the presence of semantic relations between two texts (Corley

and Mihalcea, 2005; Rus et al., 2013).

Semantic similarity is associated with different types of semantic rela-

tions, mainly directional and bidirectional (Rus et al., 2013). These two

types of semantic relations provide different frameworks to address the se-
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mantic needs of various NLP applications. It is common practice for work

on directional relations to assign binary decisions to pairs of texts, while

work on bidirectional relations assigns continuous decisions scores to pairs of

texts. This thesis covers these widely studied instances of semantic similar-

ity relations, namely Recognising Textual Entailment and Semantic Textual

Similarity. Textual Entailment is a directional relation where a text T en-

tails the hypothesis H (entailment pair) if the meaning of H can be inferred

from the meaning of T (Dagan and Glickman, 2005; Dagan et al., 2013). On

the other hand, Semantic Textual Similarity is defined as measuring the de-

gree of bidirectional semantic equivalence between pairs of sentences (Agirre

et al., 2012).

Recognising Textual Entailment (RTE) has been proposed as a generic

task that captures major semantic inference (i.e. Textual Entailment) needs

across many NLP applications (Dagan and Glickman, 2005; Dagan et al.,

2013). In order to address the task of RTE, different methods have been pro-

posed and most of these methods rely on supervised Machine Learning (ML)

algorithms (Dagan et al., 2013). These approaches make the assumption

that there is a relationship between high similarity scores and a positive en-

tailment relation. Different sources of semantic information have been used

for scoring similarity in RTE, such as lexical (e.g. Mehdad and Magnini

(2009)), structural (e.g. Burchardt et al. (2007)) and coreference resolution

(e.g. Mitkov et al. (2012)).
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CHAPTER 1. INTRODUCTION

Another approach for RTE is to determine some sort of alignment between

the T-H pairs. The hypothesis H is aligned with a portion corresponding to

the text T, and the best alignment is used as a feature to train a classifier.

A common limitation of alignment approaches is that instead of recognising

non-entailment relations, they tend to choose an alignment that fits an opti-

misation criterion (de Marneffe et al., 2006). However, the use of alignment

solely is a poor predictor of non-entailment relations.

In order to address this limitation, de Marneffe et al. (2006) propose to

divide the process of textual entailment recognition into a multi-stage archi-

tecture, where the alignment and the entailment decision are separate stages.

The alignment phase is based on matching graph representations of the T-H

pair using dependency parse trees. For the entailment decision, de Marneffe

et al. (2006) define rules that strongly suggest entailment relations. The spe-

cific rules between the T-H pair can be positive or negative, depending on

whether they represent entailment or non-entailment.

In this thesis we also address the RTE problem by employing a multi-stage

architecture. However, in contrast to previous work (de Marneffe et al., 2006),

we have based both the alignment and entailment decision on semantic clues

such as “Who did what to whom, when, where, why and how”. These clues

are given by a shallow semantic parser, namely a Semantic Role Labelling

(SRL) tool. In particular, for the alignment stage we propose three new

alignment methods to match predicate-argument structures between the T-H

pairs. For the entailment decision stage we propose a propositional ML setup
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based on using the output of the alignment method as features for building

a classification model. We also propose a more advanced statistical model

based on relational information extracted from the alignment stage. Instead

of using simple similarity metrics to predict the entailment decision, the

statistical relational learning model relies on rich relational features extracted

from the output of the predicate-argument alignment structures between T-

H pairs. A Markov Logic Network (MLN) learns to reward pairs with similar

predicates and similar arguments, and penalise pairs otherwise.

In addition to RTE challenge datasets, we test our alignment methods on

different applications such as MT evaluation and Semantic Textual Similar-

ity (STS). On MT evaluation, we show that the addition of our alignment

method to a common evaluation metric (i.e. BLEU) improves overall perfor-

mance. However, for STS our predicate-argument alignment method shows

poor results compared to simpler similarity metrics, and thus alternative

methods were proposed.

STS measures the degree of semantic equivalence between two texts. STS

as an instance of a bidirectional semantic equivalence is related to RTE, but it

is more directly applicable to NLP applications such as Question Answering

(Lin and Pantel, 2001b), Text Summarisation (Lin and Hovy, 2003) and

Information Retrieval (Park et al., 2005), which depend directly on measuring

the degree of semantic similarity between pairs of texts. STS differs from

RTE in that it assumes a graded equivalence between the pair of texts. For
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CHAPTER 1. INTRODUCTION

example, in RTE a car is a vehicle, but a vehicle is not a car. On the contrary,

in STS a vehicle and a car are more similar than a computer and a car.

Methods for STS are commonly based on computing similarity metrics

between pairs of sentences, where the similarity scores are used as features to

train regression algorithms. For example, Šarić et al. (2012) extract features

from similarity metrics based on word overlap and syntax similarity. As in

most methods, a separate model is built for each one of the NLP tasks (i.e.

applications), such as Machine Translation evaluation and video paraphras-

ing. As result, STS methods show unbalanced performances across tasks.

These methods also present poor generalisation on new unseen test tasks.

In order to address this limitation, Heilman and Madnani (2013) propose to

incorporate domain/task adaptation techniques (Daumé et al., 2010) for STS

to generalise models to new tasks. In the context of STS previous work focus

on leverage information among tasks (i.e. task adaptation). They add new

features into the model, where the feature set contains task specific features

plus general task features. When an instance of a specific task is to be pre-

dicted, only the copy of the features of that task will be active; if the task is

unknown, the general features will be active. Severyn et al. (2013) propose to

use meta-classification to cope with task adaptation. They merge each text

pair and extract meta-features from them such as bag-of-words and syntactic

similarity scores. The meta-classification model predicts, for each instance,

its most likely task based on the previous features. The contribution of these

task adaptation techniques to STS is not clear, given that they do not im-
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prove overall performance and require that a specific model is assigned to an

unseen test task (Heilman and Madnani, 2013).

We propose a more advanced task adaptation technique using Gaussian

Processes (GP) in an Multi-task Learning (MTL) setting to achieve balanced

performance and generalised learning across task. We use a state-of-the-art

STS feature set (Šarić et al., 2012) and show that the MTL model improves

the results of other methods using the same feature set on the same datasets.

In addition, we use an MTL-GP model based on a combination of kernels to

tackle task adaptation. The combination of kernels learns general and task-

specific information for unknown and known test tasks, respectively. Our

method achieves superior or at least comparable performance compared to

previous work based on task adaptation.

1.1 Contributions

The main contributions of this thesis are new methods for both types of

semantic relations: RTE and STS.

In previous work (de Marneffe et al., 2006), RTE is divided into two

stages, where the first stage is based on the use of an alignment technique

and the second stage uses heuristics to determine the entailment decision.

However, these heuristics are pre-defined, handcrafted rules or features based

on the intuition of what an entailment should be realised. This leads us to

our first research question:
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CHAPTER 1. INTRODUCTION

To what extent the relational information extracted from semanti-
cally aligned T-H pairs affects the performance of an RTE method?

In order to answer the first research question we explore different align-

ment methods, and different entailment decision schemes based on the model

of a multi-stage architecture for RTE. We aim to encode the entailment de-

cision intuition directly into the feature design of the second stage with a

statistical relational learning model. The intuition behind our RTE method

is that an aligned T-H pair with similar situations and similar participants

is likely to hold an entailment relation. Our contributions belong to the

alignment and the entailment decision stages. Statistical relational learn-

ing (Getoor and Taskar, 2007), as opposed to a propositional formalism, is

focused on representing and reasoning over domains with a relational and

a probabilistic structure. These models use first-order representations to

describe the relations between the domain variables and probabilistic graph-

ical models to reason over uncertainty (Richardson and Domingos, 2006).

The MLN framework encodes relational information about the domain un-

der study. For example, instead of creating fixed rules, we can encode our

intuition about the entailment decision stage into the feature design with soft

constraints that penalise or reward T-H pairs according to relations between

predicates and arguments.
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1.1. CONTRIBUTIONS

In this work, we provide experimental support for the above research

question with the following contributions:

1. New alignment methods based on the matching of predicate-argument

structures (Chapter 3). The first method uses ontologies and distribu-

tional information for partial matching of predicates and arguments.

The findings were published in (Rios et al., 2011).

The second method is based on an optimisation step to match pred-

icates which accounts for context (i.e. similar arguments) and how

the predicates are related. The findings were published in (Rios et al.,

2012) and (Rios and Gelbukh, 2012a). Both methods show average

performance on RTE datasets.

The last method is a modification of the edit distance method (Kouylekov

and Magnini, 2005) to leverage predicate argument information within

the distance metric. Our edit distance method also led to average per-

formance on RTE datasets. The findings were published in (Rios and

Gelbukh, 2012b).

2. We propose a statistical relational learning model for the decision stage

(Chapter 3). The method achieves the best results for the RTE-3

dataset and shows comparable performance against the state-of-the-

art methods for other datasets. The findings were published in (Rios

et al., 2014).
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CHAPTER 1. INTRODUCTION

3. We reformulate a first version of the alignment method as a similarity

metric to fit the task of MT evaluation (Chapter 4). Our method

shows performance that is comparable to that of other metrics on MT

evaluation at segment level for several language pairs. We show that the

addition of the alignment method improves the performance of metrics

such as BLEU. The findings were published in (Rios et al., 2011).

4. We use a second version of the alignment method for the task of STS

(Chapter 4). We use the method as a similarity metric to train a re-

gression algorithm. Compared to the official results of the first STS

evaluation challenge, our method ranks above average, but the contri-

bution of the semantic metrics to the STS task is poor. The findings

were published in (Rios et al., 2012)

Previous work on STS achieve good results on certain tasks, but poor

results on others (e.g. Šarić et al. (2012)). Moreover, these methods have to

cope with the challenge of missing training data for unknown (surprise) tasks.

Given the results of our alignment methods and the challenges observed in

previous work on STS, we formulate our second research question:

To what extent the simultaneous learning of multiple related tasks
affects the overall performance of an STS method?

We analyse the second research question with the hypothesis that an STS

model based on MTL can improve the overall performance by learning models
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for different, but related tasks simultaneously, compared to learning models

for each task separately. MTL is based on the assumption that related tasks

can be clustered and inter-task correlations can be transferred. Our contri-

bution belongs to reducing the gap in terms of results across tasks observed

in previous work. We do that by using state-of-the-art features to cope with

the limitations of our alignment method and an MTL algorithm. We use

as model a non-parametric Bayesian approach based on kernels, namely GP

(Rasmussen and Williams, 2005).

We provide experimental support for the second research question with

the following directions:

1. We use MTL to cope with unbalanced performances and unknown tasks

(Chapter 4). The MTL model outperforms previous work on the 2012

STS evaluation challenge, achieves robust performance on the 2013

evaluation challenge datasets (i.e. unknown test tasks) and competitive

results on the 2014 dataset. The findings were published in (Rios and

Specia, 2014).

2. We use use a linear combination of kernels to generalise learning on

unseen test tasks. This model gives us the control of the inter-intra task

transfer by choosing which kernel to use for each known or unknown

test task. The linear combination model outperforms previous work

based on task adaptation for most of the 2013 datasets.
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CHAPTER 1. INTRODUCTION

1.2 Organisation of the Thesis

The organisation of this work is as follows:

• In Chapter 2, we present a literature review on RTE and STS. We

describe the main models for RTE: i) Logic-based Inferencing, ii) Sim-

ilarity Metrics, iii) Transformation Sequences. We then describe the

main components in STS: i) Similarity Metrics and ii) Task Adapta-

tion.

• In Chapter 3, we describe the proposed RTE methodology, includ-

ing the new alignment methods, and the statistical relational learning

model for RTE. We provide the experimental settings used to apply the

new methods for RTE and compare our results against related work.

• In Chapter 4, we test the proposed alignment methods on MT Eval-

uation and STS. Furthermore, we describe the STS method based on

MTL. We describe the experimental settings used to apply the new

method for STS. Finally, we compare our results with related work.

• In Chapter 5, we discuss the conclusions, revisit our contributions and

describe further research directions.
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Chapter 2

Background

In this Chapter, we present a survey of the models for both types of semantic

similarity relations. We begin by describing the models for the textual en-

tailment (i.e. directional relation). The RTE task consists of deciding, given

two text expressions, whether the meaning of one text T is entailed from the

meaning of the hypothesis H. Dagan and Glickman (2005) give the definition

for textual entailment as:

We say that the text T entails the hypothesis H (entailment pair) if the

meaning of H can be inferred from the meaning of T as could typically be

interpreted by people.

Based on the definition of applied textual entailment, in 2005 the PAS-

CAL Network of Excellence1 started the RTE Challenge (Dagan and Glick-

man, 2005), which provides the benchmark for the RTE task. The participant

methods decide for each entailment pair whether T entails H or not. The

annotation used for the entailment decision is TRUE if T entails H or FALSE

otherwise.

RTE can be thought as a classification problem, where the entailment re-

lations are the classes, and the RTE datasets provide the essential evidence

1http://pascallin.ecs.soton.ac.uk/Challenges/RTE/
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to build a supervised binary classifier (Dagan et al., 2010). The variations of

ML-based methods for RTE depend on the model used in order to train the

supervised binary classifier. In other words, the representation (e.g. words,

syntax, semantics) of the T-H pair that is used to extract features to train a

supervised classifier. For example, a baseline method proposed by Mehdad

and Magnini (2009) consists of measuring the word overlap between the T-H

pairs, where the word overlap is the number of words shared between the

text and the hypothesis. The method is divided into three main steps: i)

pre-processing: All T–H pairs are tokenised and lemmatised, ii) computing

the word overlap, and iii) building a binary classifier. An overlap threshold is

automatically learnt from the training data, and then the test data is classi-

fied based on the learnt threshold. If the word overlap (i.e. similarity) score

is greater than the threshold the entailment decision is TRUE, otherwise it is

FALSE. Thus, this method is based on the assumption that a relation exists

between high similarity scores with a positive entailment (i.e. TRUE), and

also between low similarity scores with a negative entailment (i.e. FALSE).

There are three classes of models in RTE:

Logic-based Inferencing The T-H pair is represented with symbolic mean-

ing representations and a theorem prover tries to search for a proof.

The proof is added as a binary feature (i.e. presence or absence of the

proof) into the binary classifier. The motivation for this model is that

a theorem prover can find a formal proof by using background knowl-
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edge and a first-order logic formula (e.g. symbolic representation of the

text).

Similarity Metrics The T-H pair is represented by similarity scores com-

puted from different linguistic levels. These scores become features used

to train the binary classifier. The motivation for this model is that a

pair with a strong similarity holds a positive entailment relation.

Transformation Sequences The T-H pair is represented by a linguistic

level annotation (e.g. syntax trees), and a series of transformations are

applied to transform T into H. It is hypothesised that the smaller the

amount of transformations is, the stronger the positive entailment re-

lation. The amount of transformations becomes a distance score which

is used as a feature to train the classifier.

In the remainder of this section we show the most relevant work for each

one of the above types of methods. For a comprehensive description of RTE

models we refer the reader to (Dagan et al., 2013).

2.1 Recognising Textual Entailment Methods

and Techniques

2.1.1 Logic-based Inferencing

The motivation behind this model is that the method performs a search for

whether or not the entailment holds by finding proofs with a theorem prover.
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Despite the strong theoretical foundation of these methods they do not work

well in practice. This is mostly due to the lack of background knowledge

which not many true decisions could be found.

Bos and Markert (2005) propose an ML-based method by combining shal-

low and deep features. The shallow feature comes from a simple lexical over-

lap between the words of the T-H pair, and the deep feature comes from the

output of a theorem prover. In order to provide the input for the theorem

prover first the T–H pair is transformed onto a knowledge representation

based on Discourse Representation Theory (Kamp and Reyle, 1993), and

this representation is mapped into first-order logic. A theorem prover and

a model builder are used as inference engines. The theorem prover tries to

find a proof for the input. The axioms used to support the proof for the

theorem prover are extracted from WordNet (Fellbaum, 1998) and the CIA

fact book (geographical knowledge). The model builder tries to find a model

with the negation of the input. If the models do not differ too much in size

(a model is the number of propositions generated by the inference engine), it

is likely that the entailment relation holds, since H does not introduce any,

or little, information into the model. To combine the shallow and deep fea-

tures, a decision tree is trained on the development dataset of the RTE. The

method is able to parse semantic representations and then search for proofs

for 774 of all 800 T-H pairs in the test data (a coverage of 96.8%). The the-

orem prover only finds 30 proofs of which 23 are annotated as entailment in

the gold standard. Bos and Markert (2006) improved their previous method
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by using the following model builders: Paradox2, and Mace3, and new deep

semantic features such as first-order logic formulas for entailment and the

entailment formulas with the addition of background knowledge formulas,

which are used with the theorem prover.

In contrast, Fowler et al. (2005) develop COGEX, which is a modified

version of the OTTER 4 system (theorem prover). This modified version

is adapted to work with natural language expressions. The method uses as

input a list of clauses (set of support) used for the inference search. The set

of support clauses is loaded into the method along with the negated form

of H (proof by refutation) as well as T. A second list that contains clauses

(handcrafted axioms) is used by the method to generate the inferences. This

list consists of axioms generated by hand or automatically. The axioms

are used to provide background knowledge as well as syntactic knowledge

extracted from WordNet lexical chains. First, the method parses each T–H

pair into a first-order logic (Moldovan and Rus, 2001) representation. Second,

the method generates formulas from the first-order logic representation to be

solved by a theorem prover. The background knowledge used to support

the proof consists of 310 common-sense rules, linguistic rewriting rules and

WordNet lexical chains. The lexical chain is a chain of relations between

two WordNet synsets (e.g. hyponym, hypernym, synonym relations). For

each relation in the chain the method generates an axiom. For example, the

2http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.cs.chalmers.se/ koen/paradox/
3http://www.mcs.anl.gov/research/projects/AR/mace/
4http://www.mcs.anl.gov/research/projects/AR/otter/
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chain “buy” → “pay”. The axiom states that the predicate from the first

synset implies the predicate in the second synset. The COGEX theorem

prover searches for proofs by weighting the clauses (the negated H has the

largest weight in order to ensure that it will be the last to participate in

the search). COGEX removes the clause with the smallest weight from the

set of support clauses, and it searches in the second list for new inferences.

All produced inferences are assigned an appropriate weight depending on

what axiom they were derived from and appended to the set of support list.

COGEX repeats the previous steps until the set of support is empty. If a

refutation is found, the proof is complete. If a refutation cannot be found, the

weights are relaxed. When a proof by refutation is found, a score for that

proof is calculated by starting with an initial perfect score and deducting

points for axioms that are utilised in the proof, weights that are relaxed

and predicates that are dropped. The score computed by COGEX is only a

metric of the axioms used in the proof and the significance of the dropped

arguments and predicates. The confidence score (entailment decision) for a

T-H pair is measured as the distance between the score and the threshold.

The threshold is learnt from the benchmark dataset.

Bayer et al. (2005) divide the entailment decision into two stages. First,

the alignment of the T-H pair, and second, an inference stage. The align-

ment stage is based on GIZA++ 5, which uses the Gigaword corpus to ex-

tract word statistics. The alignment is based on the hypothesis that the

5http://code.google.com/p/giza-pp/
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newspaper headlines are often aligned (i.e. entailed) by the corresponding

lead paragraph. The inference stage takes the aligned pairs, and extract

from them the following features: tokens, part-of-speech tags, morphology

and syntactic relations (Link Grammar and Dependency Parsing). The logic

feature is based on extracting information about the events from the text

(Bayer et al., 2004). Finally, the logic representation is used as input in a

probabilistic inference engine (Epilog6). Epilog is an event-oriented proba-

bilistic inference engine. The input for Epilog consists of the above features,

and the entailment decision is based on a Support Vector Machine (SVM)

classifier. However, the method fails to prove entailment for almost all the

T-H pairs. Because of parser mistakes, the method fails to convert 213 out

of the 800 test pairs into the event logic.

MacCartney and Manning (2007) propose a framework called Natural

Logic for RTE. Natural Logic is similar to a first-order logic representation

of the T-H pairs, where the method transforms T into H based on a low cost

edition scheme. Thus, it learns to classify entailment relations based on the

cost of atomic edits. The method first extracts the syntactic trees of the T-H

pairs. Second, it computes the monotonicity between the constituents of the

syntactic trees, where the monotonicity is based on the semantic types theory

from Montague in (Thomason, 1974). A relation is monotonic if one node is

a generalisation of another node, where a hypernym relation is an example

of generalisation. Third, it computes the alignment (Cooper et al., 1996) be-

6http://www.cs.rochester.edu/research/epilog/
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tween the T-H pair annotated with the previous monotonic constituents. The

method makes the entailment classification based on an ML algorithm. The

classification is based on alignment, and the method allows finding deeper

semantic alignments. With the addition of Natural Logic the method im-

proves the overall performance. The semantic alignment is computed over

dependency parse trees, where the patterns to be aligned come from regular

expressions. For example, {word:run;tag:/NN/} refers to any node in the

tree that has a value run for the attribute word and a tag that starts with

NN, while {.} refers to any node in the dependency tree. The Natural Logic

method does not translate natural language into a first-order logic, where

the proofs are expressed as edits to natural languages expressions. The ed-

its are done at conceptual level, such as contractions and expansions. For

example, the model defines an entailment relation (i.e. positive entailment

→) between nouns (hammer → tool), adjectives (deafening → loud), verbs

(sprint → run), modifiers, connectives and quantifiers. In upward-monotone

contexts (i.e. the H tends to be a generalisation), the entailment relation

between compound expressions uses the entailment relations between their

parts. Thus, “tango in Paris”→ “dance in France”, since “tango”→ “dance”

and “in Paris” → “in France”.

In summary, although the Logic-based Inferencing approaches are based

on a strong theory they use expensive processing tools and their results do

not outperform simpler methods (e.g. similarity metrics as features for super-
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vised ML algorithms). These types of methods have practically disappeared

from the recent RTE literature.

2.1.2 Similarity Metrics

The motivation behind this model is that a pair with a strong similarity score

holds a positive entailment relation. Different types of similarity metrics are

applied over the T-H pair to extract features and then train a classifier. As

we mentioned before a baseline method consists of: a linguistic preprocessing

of the T-H pair, computing similarity metrics between the T-H pair, training

a supervised binary classifier with the feature space and finally, classifying

new T-H pairs.

The preprocessing extracts different linguistic representations (e.g. lem-

mas, syntactic trees, symbolic representation, etc.) of the text. Thus, each

linguistic representation has different operations to measure similarity be-

tween their structures. For example, if the representation of the T-H pair is

bag-of-words (BoW) an operation used to measure similarity could be string

similarity metric such as BLEU (Papineni et al., 2002). The configuration

used for BLEU is the following: the text T is the reference translation and the

hypothesis H is the candidate translation, the entailment decision is based on

an empirical set threshold, and if the BLEU score is above this threshold the

entailment decision is TRUE, otherwise it is FALSE (Pérez and Alfonseca,

2005).
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Moreover, BLEU is not the only metric used to measure similarity. Malaka-

siotis and Androutsopoulos (2007) train a SVM using different string sim-

ilarity metrics as features. They propose to decide the entailment relation

by using similarity metrics such as: Jaro-Winkler, Soundex, Manhattan dis-

tance, Euclidean distance, N-gram distance, matching coefficient and Jaccard

coefficient. Finally, in order to outperform the results by just using string

similarity metrics the authors apply a feature extraction techniques for each

task (Information Retrieval (IR), Information Extraction (IE), Question An-

swering (QA), Summarisation (SUM)). They show that the use of task spe-

cialised ML models improve the overall performance. In other words, a model

should be trained for each task individually.

However, a BoW approach just can tackle certain entailment phenomena.

Vanderwende et al. (2005) shows the contribution of syntax for RTE. The

experiment relies on human annotators to decide if the information from an

idealised parser is enough to decide the entailment relation. They show that

syntax can handle 34% of the test pairs, and with the addition of a thesaurus

the coverage grows up to 48%.

Different representations and world knowledge are needed to increase the

coverage of a method based on similarity metrics. Pazienza et al. (2005) pro-

pose to measure the distance between syntax trees by using a SVM. They

define the entailment as a subsumption relation between the text and the

hypothesis. First, the text semantically subsumes the hypothesis. For ex-

ample, from the text “The cat eats the mouse” follows the hypothesis “The
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cat devours the mouse”, where eat is a semantic generalisation of devour.

Second, the text syntactically subsumes the hypothesis. For example, from

the text “The cat eats the mouse in the garden” follows the hypothesis “The

cat eats the mouse”. The text contains a prepositional phrase. Finally, the

text implies directly the hypothesis. For example, the hypothesis “The cat

killed the mouse” is implied by the text “The cat devours the mouse”, as it

is supposed that killing is a precondition for devouring. The T-H pairs are

represented by subject-verb-object representation, and the threshold is learnt

via a SVM. The subsumtion relations are based on measuring the edges of

the graphs for the subject-verb-object relation, and on measuring the nodes

for the semantic relations.

Although the SVM classifier is a common choice for binary classification,

Inkpen et al. (2006) experiment with different supervised ML algorithms.

The features used to train the classifier are: lexical, syntactical (i.e. depen-

dency relations from Minipar), mismatching of negations and numbers. The

ML algorithms used for the classification are: decision trees, Naive Bayes,

SVM and K-nearest neighbours. They show that the best ML algorithm,

given the previous features, is the SVM.

The BoW and syntax representations lack semantic information (i.e. back-

ground knowledge). For example, the hypernym relation “cat” → “animal”

can not be decided by measuring word similarity. Thus, the string simi-

larity metrics can not address lexical relations extracted from an ontology

such as: synonymy, hypernymy, hyponymy, and so on. Jijkoun and de Rijke
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(2005) propose the use of WordNet similarity metrics for RTE. The metrics

are: Dekang Lins dependency-based word similarity (Lin, 1998a), and lexical

chains in WordNet (Hirst and St-Onge, 1997).

In contrast, Burchardt and Frank (2006) propose the use of a deep se-

mantic analysis based on graph matching and ML algorithms. This method

relies on a different type of semantic formalisms. The formalisms used to rep-

resent the graphs are the Lexical Functional Grammar (Crouch and King,

2006) and Frame Semantics (Baker et al., 1998). The method differs from

the method of Bos and Markert (2005), that is, a fine grained semantic anal-

ysis and reasoning method, by achieving a high recall but at the cost of a

low precision. Burchardt and Frank (2006) defines the semantic analysis as

a structural and semantic overlap over the Frame Semantics structures.

Burchardt et al. (2007) introduce a method, which involves deep lin-

guistic analysis and shallow word overlap. The method consists of three

steps: first, representing the T-H pair with the Frame Semantics and Lexi-

cal Functional Grammar formalisms (this representation is similar to SRL).

Second, extracting a similarity score based on matching the Lexical Func-

tional Grammar graphs and then making a statistical entailment decision.

Burchardt et al. (2007) use previous RTE datasets as training data, and 47

features are extracted form the deep and the shallow overlap. The features

consist of combinations of: predicates overlaps, grammatical functions match

and lexical overlaps. The methods which use SRL for RTE use the annota-

tion provided by a semantic parser to measure the similarity between texts.
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These methods only measure the similarity in terms of how many labels the

structures share (overlaps) and not the content of those labels.

Different sources of semantic information such as lexical (e.g. WordNet)

or structural (e.g. SRL) have been used for RTE. However, the role of dis-

course information in RTE is limited because of the format of the T-H pairs

(i.e. short T-H pairs with 38 words in average). Before the third RTE-3

challenge dataset, the format of the T-H pair (i.e. size of a paragraph for the

T text) was more suitable to extract discourse information. Castillo (2010)

proposes the first attempt to use discourse information in the context of the

RTE Search Task. The method transforms the documents into the standard

T-H pair format by using coreference chains. The sentences related to an

entity found in a coreference chain are incrementally appended to T, and

this is computed for each entity in the document. A standard ML algo-

rithm (i.e. SVM) based on string similarity metrics is applied to decide the

entailment relation. Previous work on the impact of discourse information

on RTE includes: Delmonte et al. (2007), who study the the coverage of

anaphora phenomena on the RTE datasets, and Andreevskaia et al. (2005),

who propose a method for paraphrase detection based on coreference reso-

lution, where the use of discourse information hardly improves the overall

performance. (Mitkov et al., 2012) study the impact of coreference resolu-

tion on NLP applications, where the contribution to RTE is not statistically

significant.
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Mirkin et al. (2010) argue that discourse information can improve the

overall performance of RTE in the context of the Search Task. They man-

ually analyse a part of the Search task dataset to measure the impact of

coreference resolution on RTE. The study shows that most of the discourse

references that decide the entailment relation are: nominal coreference, and

verbal terms. The substitution of the referents with the entities itself is not

enough to extract all the information from discourse references. Mirkin et al.

(2010) suggest that the discourse information should be integrated into the

inference engine and not simply be part of a pre-processing step or a shallow

feature for a supervised ML algorithm.

Delmonte et al. (2005) propose an approach based on measuring the se-

mantic similarity between the T-H pairs. The features are as follows: tokens,

morphology, named entities, part-of-speech, syntax and SRL. The SRL fea-

ture is based on measuring the dissimilarities between the T-H pair. The

shallow features (e.g. tokens and part-of-speech) basically score the overlap

between the different representations of the T-H pair. The SRL similarity

consists of checking the mismatch over:

• presence of spatio-temporal locations to the same governing predicate

• presence of opacity operators such as discourse markers for having con-

ditionality a scope over the same predicate

• presence of quantifiers and other type of determiners attached to the

same noun phrase head in the T-H pair under analysis
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• presence of antonyms in the T-H pair at the level of predicates

• presence of predicates belonging to the class of “doubt” expressing

verbs

Delmonte et al. (2005) introduce semantic-mismatch features such as: lo-

cations, discourse markers, quantifiers and antonyms. The entailment deci-

sion is based on applying rewards and penalties over the semantic-similarity,

and shallow scores. Delmonte et al. (2007) show improvements to the pre-

vious method by introducing additional modules, each of which uses fine

grained inferential triggers such as anaphora resolution and the matching of

grammatical relations. They show that the RTE-3 dataset contains pairs

that could be answered via anaphora resolution, from a total of 800 pairs

in the development and test datasets: 117 pairs in the test dataset and 135

pairs in the development dataset.

Andreevskaia et al. (2005) represent the T–H pair as shallow predicate-

argument structures. The predicate-argument structures are extracted from

the RASP parser7. The method recognises paraphrases based on coreference,

and it measures distance between verbs using WordNet lexical chains. If the

hypothesis H contains the pattern “X is Y” (part of a predicate-argument).

If X is in H and X is in the text T, therefore the pair X, X’ belongs to the

same inter-sentence coreference chain. If Y is in H and Y is in T, therefore

7http://www.informatics.susx.ac.uk/research/groups/nlp/rasp/
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the pair Y, Y’ belongs to the same inter-sentence coreference chain. If X

corefers with Y the pair is a paraphrase.

de Marneffe et al. (2006) also use a two-stage alignment, but they use de-

pendency trees as representation instead of SRLs for the alignment. Cham-

bers et al. (2007) improve the alignment stage used in (de Marneffe et al.,

2006) and they combine it with a logical framework for the second stage (Mac-

Cartney and Manning, 2007). MacCartney et al. (2008) propose a phrase-

based alignment that uses external lexical resources. Glickman and Dagan

(2006) model entailment via lexical alignment, where the web co-occurrences

for a pair of words are used to describe the probability of the hypothesis

given the text.

Garrette et al. (2011) combine first-order logic and Statistical Relational

Learning methods for RTE. The approach uses discourse structures to rep-

resent T-H pairs, and an MLN model to perform inference in a probabilis-

tic manner over the following semantic phenomena: implicativity, factivity,

word meaning and coreference. A threshold to decide the entailment given

the MLN model output is manually set. Since their phenomena of interest

are not present in the standard RTE datasets, they use handmade datasets.

Beltagy et al. (2013) extend the work in (Garrette et al., 2011) to be able to

process large scale datasets such as those from the RTE challenges.

In summary, the methods which use semantic features address a wide

variety of phenomena, but simple methods that use lexical features are a dif-

ficult baseline to defeat. For example, Litkowski (2006) uses a simple overlap
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metric for RTE that shows very strong results compare to state-of-the-art

methods. Litkowski (2006) argues that syntactic and semantic tests do not

appear to improve overall results, and WordNet does not provide adequate

levels of granularity. Litkowski (2006) proposes that possible improvements

can be obtained from a thesaurus and syntactic alternation patterns derived

from FrameNet.

2.1.3 Transformation Sequences

The motivation behind this model is that the entailment relations can be

measured by applying series of transformations of T into H. This means that

if the cost of a series of transformations over T is low, T is similar to H and

they hold a positive entailment relation.

Edit distance algorithms are a common approach to transform texts,

where the basic edit operations are: insertion, substitution and deletion.

Each operation has an attached score, which means that some operations are

more expensive than others, and this cost is usually learnt via supervised ML

algorithms. The edit distance algorithms score the difference between a pair

of texts based on how many operations were necessary to transform T into

H. Kouylekov and Magnini (2005) introduce the edit distance algorithms for

RTE. The assumption is based on estimating the cost of the information

of the hypothesis, which is missing in the text. The T-H pair holds an en-

tailment relation if there is a sequence of operations over T that produce H

with an overall cost below a certain threshold. The threshold, as well as the
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cost of each operation, are learnt from the development dataset by using ML

techniques.

Cabrio et al. (2008) describe a framework that consists of a combination

of specialised entailment engines each one addressing a specific entailment

phenomenon. Due to the fact that RTE is a combination of several phenom-

ena, which interact in a complex way. Each engine is trained to deal with a

different aspect of language variability (e.g. syntax, negation, modal verbs).

Also, this framework has a modular approach to evaluate the progress on a

single aspect of entailment using the training data. The entailment engines

are based on edit distance algorithms. In each engine the cost of each edit

operation is defined (learnt) according to a specific phenomenon. The cost

schemes of the different engines are defined in order not to intersect each

other. If the costs of the edit operations are set as not 0 for a certain phe-

nomenon, they are set as 0 for the aspects that are considered by another

engine.

Transformation approaches can be combined with ML standard tech-

niques. Roth and Sammons (2007) use semantic logical inferences for RTE,

where the representation method is a bag-of-lexical-items. The bag-of-lexical-

items relies in word overlap, in which an entailment relation holds if the

overlap score is above a certain threshold. An extended set of stop words is

used to select the most important concepts for the bag-of-lexical-items (auxil-

iary verbs, articles, exclamations, discourse markers and words in WordNet).

Moreover, in order to recognise relations over the T-H pairs the method
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checks matches between SRLs, and then applies a series of transformations

over the semantic representations making it easier to determine the entail-

ment. The transformation operations are: annotate makes some implicit

property of the meaning of the sentence explicit. Simplify/Transform re-

moves or alter some section of T in order to improve annotation accuracy or

to make it more similar to H. Compares (some elements of) the two members

of the entailment pair and it assigns a score that correlates to how successfully

(those elements of) the H can be subsumed by T.

Harmeling (2007) propose a model that computes entailment decisions

with a certain probability given a sequence of transformations over a parse

tree. Wang and Manning (2010) merge the alignment and the decision into

one step, where the alignment is a set of latent variables. The alignment is

used into a probabilistic model that learns tree-edit operations on dependency

parse trees.

The entailment relation can be also defined by matching entailment rules

(i.e. positive or negative entailment) against the T-H pair. A widely used

knowledge base for entailment rules is DIRT (Discovery of Inference Rules

from Text) (Lin and Pantel, 2001a), which is based on the distributional

hypothesis (Harris, 1954). The distributional hypothesis states that words

with similar contexts tend to have the same meaning. Lin and Pantel (2001a)

add the following extension: paths in dependency trees that occur in similar

contexts tend to have similar meanings. For example, the template rule “Y

is solved by X” → “X resolves Y”, where, X and Y can have any surface
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realisation, and the knowledge base has relations of the type: entailment and

paraphrasing.

Nielsen et al. (2006) use lexical features based on similarity scores such as

unigrams, bigrams and stems. The method uses the DIRT knowledge base

as a set of syntactic templates (i.e. entailment rules). Thus, the entailment

decision is not just given by the similarity between the T-H pair, it is also

given by matching the DIRT templates. This means that the matching of a

rule becomes an evidence to decide a binary feature. Nielsen et al. (2006)

train different classifiers for each task: IE, IR, QA and SUM.

Zanzotto et al. (2006) propose to learn entailment relations from positive

and negative entailment examples. The approach is similar to DIRT, but

the extracted rules are focused just on entailment. First, the method parses

each T-H pair. Second, the method sets anchors in the trees. The anchors

are content words that maximise a given WordNet similarity metric. With

these anchors the method searches for common subtrees between the T and

H pairs. The common subtrees form a set of templates both positive and

negative. For example, the rule: “X (VP (V ...) (NP (to Y)...)” 9 “X is

Y”, is applied to the T-H pair: “Jacqueline B. Wender is Assistant to the

President of Stanford University.” 9 “Jacqueline B. Wender is the President

of Stanford University.”. Zanzotto et al. (2007) propose a shallow-semantics

fast rule learner that acquires rewriting rules from examples based on cross-

pair similarity. The rules are placeholders between sentence words that are

co-indexes in two substructures in parse trees of the T-H pair.
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Marsi et al. (2007) use the DIRT dataset for RTE. The method is based

on paraphrase substitution. If a T-H pair subtree is a paraphrase which has

the same syntactic path of the DIRT dataset the entailment relation is TRUE

otherwise it is FALSE.

Bar-Haim et al. (2007) propose a knowledge-based inference method for

RTE. The method proofs (transforms pairs of text in the same fashion as an

edit distance method) syntactic trees. In other words, the method transforms

the T syntactic tree into the H syntactic tree. The analogy to logic-based

proof methods is that generating a target text from a source text using the

entailment rules will be the same process as a theorem prover. The T-H

pair is represented as T (the left hand side) and H (the right hand side). If

a part of the left and right hand sides is matched with an entailment rule

from a knowledge base, the entailment relation is supported by the relation

of the rule. For example, the pair “I visited New York” → “I visited a city”

matches with the rule “New York” → “city”. The entailment rules can be

lexical, syntactic or semantic (e.g. SRL), and the rules are extracted from

large corpora based on the distributional hypothesis (Harris, 1954). The

motivation for this method is that the entailment relation can be defined

(or supported) by matching rules against the T-H pair in addition to the

transformation approach.

Magnini et al. (2014) propose an open source software containing state-

of-the-art algorithms for RTE, the EXCITEMENT Open Platform (EOP).

The EOP implements a generic architecture for multilingual textual entail-
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ment (i.e. English, German and Italian). The platform implements several

annotation pipelines, similarity metrics, knowledge resources and different

entailment decision algorithms (Bar-Haim et al., 2007; Cabrio et al., 2008;

Wang and Neumann, 2007).

In sum, the Transformation Sequences methods are an alternative for ex-

pensive theorem provers, and most of them rely on syntactic representations.

These methods outperform logic-based methods in terms of accuracy and

recall.

2.2 Semantic Textual Similarity Methods and

Techniques

STS measures the degree of semantic equivalence between two sentences

(Agirre et al., 2012). The STS evaluation campaign uses datasets that consist

of pairs of texts from NLP tasks such as paraphrasing, video paraphrasing

and machine translation evaluation. The participating methods have to pre-

dict a graded similarity score from 0 to 5. For example, a score of 0 means

that the two texts are on different topics and a score of 5 means that the two

texts have the same meaning.

We can broadly classify the models for STS given previous work as follows:

Similarity Metrics The sentence pairs are represented as vectors of simi-

larity features used to train regression algorithms.
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Task Adaptation The methods use domain/task adaptation techniques to

cope with the challenge of unknown tasks.

In what follows, we describe the top performing methods as well as meth-

ods related to our work. For a complete description of the methods for STS

we refer the reader to (Agirre et al., 2012, 2013, 2014).

2.2.1 Similarity Metrics

The motivation behind this model is that a similarity score between a pair

of texts is correlated with the human annotations in terms of the degree of

semantic equivalence.

Bär et al. (2012) use similarity metrics of varying complexity. The range

of features goes from simple string similarity metrics to complex vector space

models. The method shows the highest scores in the official evaluation met-

rics. The method does not achieve the best results in individual tasks but it

is the most robust on average. It is worth mentioning that the method uses

a state-of-the-art textual entailment approach (Stern and Dagan, 2011) for

generating entailment scores to serve as features. However, the contribution

of the textual entailment features is not conclusive given that they were not

chosen by a feature selection algorithm.

Šarić et al. (2012) use a similar set up based on extracting features from

similarity metrics such as: word overlap, WordNet path metric, alignment

metric, vector space metric and syntactic similarity. Their method was
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among the best performing ones in the paraphrasing datasets. In machine

translation datasets, however, their method did not show a satisfactory per-

formance beyond the training phase. Šarić et al. (2012) claim that differences

between the train and test MT datasets in terms of length and word choice

show that the MT training data is not representative of the test set for

their choice of features, where for each dataset the method uses a separate

Support Vector Regression (SVR) model. The results show that the word

overlap, WordNet path metric and the alignment metric obtain high corre-

lation despite the individual SVR models. The other features were shown to

contribute to the individual SVR models.

Jimenez et al. (2012) propose to modify a cardinality function (e.g. Dice

coefficient) for STS. The modified function is based on soft cardinality in-

stead of set cardinality. Cardinality methods in general count the number of

elements that are not identical in a set, while soft cardinality uses an aux-

iliary inter-element similarity function to make a soft count. The intuition

for computing the soft cardinality is to treat elements in a set as sets them-

selves and to treat inter-element similarities as the intersections between the

elements.

Heilman and Madnani (2012) propose a method based on discriminative

learning, where the main contribution resides on modifications to the TERp

(Wang et al., 2005) metric for machine translation evaluation. The modi-

fications allow to use the metric beyond the scope of MT evaluation. The

method shows competitive performance for the unknown tasks. For a pair of
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sentences TERp finds the set of edit operations that convert one sentence into

the other and then it produces a score. However, the features used in TERp

make the metric difficult to apply to other tasks. For example, the one-to-one

alignment of edit operations and the use of a greedy learning algorithm. The

modified TERp uses the inference algorithm from the original metric to find

the minimum cost sequence of editions, in contrast to the original inference

algorithm, the modified method uses a discriminative algorithm to learn the

weights for the edit-cost. The modifications are used as additional features.

The corresponding parameters are learnt by the discriminative algorithm as

opposed to the heuristic used by the original metric.

Following the intuition of using simple and MT metrics for similarity pre-

diction, Yeh and Agirre (2012) propose a method focused on simple metrics.

The semantic similarity metrics are based on ontologies, lexical matching

heuristics and part-of-speech tagging metrics. The MT complementary met-

ric is BLEU. Moreover, the method deals with unknown datasets by combin-

ing all the training data to train an unified model. The error analysis shows

a high performance variation across the test datasets.

Banea et al. (2012) propose a synergistic approach to STS. The method

uses semantic similarity metrics to train a supervised regression model. For

the known test tasks there are individual models trained for the correspond-

ing training task, but for unknown task the training dataset consists of all

the training instances. The method shows a robust performance by com-

bining all training data from different task into a single model. Moreover,
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the corpus-based metrics (i.e. Distributional semantics) show a higher con-

tribution to the overall performance than the knowledge-base metrics (i.e.

WordNet path metrics).

Han et al. (2013) propose a new semantic similarity feature based on a

combination of two metrics: distributional similarity and WordNet path sim-

ilarity. The method also uses a simple alignment algorithm, which penalises

poorly aligned words. The new semantic similarity feature rewards the dis-

tributional similarity score if the method finds relations between words such

as: i) words that are in the same WordNet synset, ii) words have a direct

hypernym of each other, iii) one word is the indirect hypernym of the other

and iv) adjectives have a similar relation with each other.

Wu et al. (2013a) explore different types of semantic representations such

as: named entities, distributional semantics and structured distributional

semantics. The method combines one of the state-of-the-art methods (Bär

et al., 2012) with features extracted from the semantic representations. The

semantic features complement the state-of-the-art features by using a fea-

ture selection algorithm. The structured distributional metric improves the

performance of the state-of-the-art features by incorporating syntactic infor-

mation into the distributional model.

Noeman (2013) propose a method based on the combination of different

types of similarity metrics. The main contribution is towards showing the

effect of metrics on STS such as: lexical matching, lexical matching with

term frequency and inverse document frequency, modified BLEU and named
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entities matching. The inverse document frequency lexical matching leverage

information from a corpus to expand the standard lexical matching. The

modification of BLEU relies on the alignment of exact words, stems and

synonyms. The final similarity metric is a linear combination of features,

where the weights are tuned manually. The best combination of features is

the idf lexical matching with the lexical matching using stemmed words and

synonym matching.

Shareghi and Bergler (2013) present a method based on an exhaustive

combination of 11 simple lexical features. The method uses a Support Vector

Regressor with all possible combinations of the features and it trains separate

models based on each combination. The model creates a meta-feature space

and it trains a final model based on it. The two-step method outperforms

the one using individual models.

2.2.2 Task Adaptation

The motivation behind this model is that task adaptation techniques will al-

leviate the generalisation problem imposed by unknown tasks. The methods

leverage information for the STS training datasets to improve performance

on unknown test tasks. In addition, these types of methods also use similarity

metrics to train regression algorithms.

Heilman and Madnani (2013) propose to incorporate domain/task adap-

tation techniques (Daumé et al., 2010) for STS to generalise models to new

tasks. Heilman and Madnani (2013) add extra features into the model, where
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the feature set contains task specific features plus general task (i.e. unknown

task) features. The ML algorithm infers the extra weights for each specific

task and for the general task. When an instance of a specific task is to be

predicted, only the copy of the features of that task will be active; if the task

is unknown, the general features will be active.

Severyn et al. (2013) propose to use meta-classification to cope with task

adaptation. The model merges each text pair into one text and extracts

meta-features from them. The meta-classification model predicts, for each

instance, its most likely task based on the previous features. When an in-

stance is classified into its mots likely task, the model uses features based

on tree kernels that automatically extract syntactic information to predict

similarity.

In sum, methods for STS use a wide variety of features to train regression

algorithms. The similarity metrics use different sources of information such

as: tokenisation, lemmatisation/stemming, Named Entity Recognition, part-

of-speech tagging or dependency parsing.
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Methods for Measuring the Directional

Relation of Texts

In this Chapter, we describe our proposed method for RTE based on a multi-

stage architecture model. We divide our architecture into two stages: i)

alignment stage and ii) entailment decision stage. For the first stage we

propose different alignment methods based on the matching of predicate-

argument structures. In the second stage we use different learning schemes

based on information from the alignment stage to predict the entailment

relation.

3.1 Alignment Stage

We have focused the alignment stage on matching predicate-argument struc-

tures between a T-H pair. Our assumption is that the information about

similar situations with similar participants between a T-H pair can be used

as evidence to decide on entailment. Previous work that uses the semantic

role matching is based on exact matching of roles and role fillers such as in

(Giménez et al., 2010) and (Burchardt and Frank, 2006). However, exact

matching is a limitation and it is not clear what the contribution of this

specific information is for the overall performance of their systems. Thus,
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the goals of our alignment stage are: i) comparing both the semantic struc-

ture and its content across matching arguments in the hypothesis H and

text T; and ii) using alternative ways of measuring inexact matches for both

predicates and role fillers.

The alignment uses SRL annotation to define a predicate-argument struc-

ture. However, it analyses the content of predicates and arguments seeking

for either exact or similar matches. For example, the following T-H pair:

T The lack of snow is putting people off booking ski holidays in hotels and

guest houses.

H The lack of snow discourages people from ordering ski stays in hotels and

boarding houses.

Each predicate in T is tagged with the corresponding frames:

book The lack of snow is putting [people]A0 off [booking]V [ski holidays]A1

in [hotels and guest houses]AM−LOC .

put [The lack of snow]A0 is [putting]V [people]A1 [off booking ski holidays in

hotels and guest houses]A2.

The same applies for H:

discourage [The lack of snow]A0 [discourages]V [people]A1 [from ordering

ski stays in hotels and boarding houses]A2.

order The lack of snow discourages [people]A0 from [ordering]V [ski stays]A1

in [hotels and boarding houses]AM−LOC .
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In this work, we show one pair of frames (e.g. predicates book and discour-

age) for each example of alignment between a T-H pair. We use the SENNA1

parser (Collobert et al., 2011) as source of SRL annotation. SENNA have

achieved an state-of-the-art performance with an F-measure of 75.79% for

tagging semantic roles over the CoNLL 2005 2 benchmark.

The meaning of the Argument tags is as follows:

Arguments:

• A0 subject

• A1 object

• A2 indirect object

Adjuncts:

• AM-ADV adverbial modification

• AM-DIR direction

• AM-DIS discourse marker

• AM-EXT extent

• AM-LOC location

• AM-MNR manner

• AM-MOD general modification

1The SENNA parser v2.0 outputs the numbers as 0
2http://www.lsi.upc.edu/ srlconll/
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• AM-NEG negation

• AM-PRD secondary predicate

• AM-PRP purpose

• AM-REC recipricol

• AM-TMP temporal

Other Labels:

• C-arg continuity of an argument/adjunct of type arg

• R-arg reference to an actual argument/adjunct of type arg

We propose three different alignment methods:

TINE Lexical Matching based on the inexact matching of predicate-argument

structures with ontologies and distributional semantics.

TINE Context Matching based on an optimisation step to align predi-

cates given the context (i.e arguments).

TINE Edit Distance based on a modification of the edit distance method

to allow the use of predicate-argument information. This method

matches structures, and then transforms T into H to compute the dis-

tance between them.
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3.1.1 TINE Lexical Matching

In (Rios et al., 2011), we propose an alignment method that complements

lexical matching with a shallow semantic component. The main contribution

is to provide a more flexible way of measuring the overlap between shallow

semantic representations that considers both the semantic structure of the

sentence and the content of the semantic elements. The inexact matching is

based on the use of ontologies such as VerbNet (Schuler, 2006) and distri-

butional semantics similarity metrics, such as Dekang Lin’s thesaurus (Lin,

1998b). This is an automatically built thesaurus, and for each word it has

an entry with the most similar words and their similarity scores.

A(H,T ) =

∑
v∈V verb score(Hv, Tv)

|Vt|
(3.1)

In Equation 3.1, V is the set of verbs aligned between H and T, and |Vt| is

the number of verbs in T. Hereafter the indexes h and t stand for hypothesis

and text, respectively. Verbs are aligned using VerbNet (Schuler, 2006) and

VerbOcean (Chklovski and Pantel, 2004). A verb in the hypothesis vh is

aligned to a verb in the text vt if they are related according to the following

heuristics: (i) the pair of verbs shares at least one class in VerbNet; or (ii)

the pair of verbs holds a relation in VerbOcean.

For example, in VerbNet the verbs spook and terrify share the same class

amuse-31.1, and in VerbOcean the verb dress is related to the verb wear.

verb score(Hv, Tv) =

∑
a∈At∩Ah

arg score(Ha, Ta)

|At|
(3.2)
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The similarity between the arguments of a verb pair (vh, vt) in V is mea-

sured as defined in Equation 3.2, where Ah and At are the sets of labeled

arguments of the hypothesis and the text respectively and |At| is the number

of arguments of the verb in T . In other words, we only measure the similarity

of arguments in a pair of sentences that are annotated with the same role.

This ensures that the structure of the sentence is taken into account (for

example, an argument in the role of agent would not be compared against

an argument in a role of experiencer). Additionally, by restricting the com-

parison to arguments of a given verb pair, we avoid argument confusion in

sentences with multiple verbs.

The arg score(Ha, Ta) computation is based on the cosine similarity for

BoW. We treat the tokens in the argument as a BoW. However, in this

case we change the representation of the segments. If the two sets do not

match exactly, we expand both of them by adding similar words. For every

mismatch in a segment, we retrieve the 20-most similar words from Dekang

Lin’s distributional thesaurus (Lin, 1998b), resulting in sets with richer lex-

ical variety.

The following example shows how the computation of A(H,T ) is per-

formed, considering the following example:
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T The lack of snow is putting [people]A0 off [booking]V [ski holidays]A1 in

[hotels and guest houses]AM−LOC .

H The lack of snow discourages [people]A0 from [ordering]V [ski stays]A1 in

[hotels and boarding houses]AM−LOC .

1. extract verbs from H: Vh = {discourages, ordering}

2. extract verbs from T: Vt = {putting, booking}

3. similar verbs aligned with VerbNet (shared class get-13.5.1): V =

{(vh = order,vt = book)}

4. compare arguments of (vh = order,vt = book):

Ah = {A0, A1, AM-LOC}

At = {A0, A1, AM-LOC}

5. Ah ∩ At = {A0, A1, AM-LOC}

6. exact matches:

HA0 = {people} and TA0 = {people}

argument score = 1

7. different word forms: expand the representation:

HA1 = {ski, stays} and TA1 = {ski, holidays}

expand to:

HA1 = {{ski},{stays, remain... journey...}}

TA1 = {{ski},{holidays, vacations, trips... journey...}}
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argument score(HA1, TA1) = cosine (HA1, TA1)

argument score(HA1, TA1) = |HA1
⋂

TA1|√
|HA1|×|TA1|

argument score = 0.5

8. similarly to HAM−LOC and TAM−LOC

argument score(HAM−LOC , TAM−LOC) = cosine (HAM−LOC , TAM−LOC)

argument score = 0.72

9. verb score (order, book) = 1+0.5+0.72
3

= 0.74

10. A(H,T ) = 0.74
2

= 0.37

Different from previous work, we have not used WordNet to measure

lexical similarity for two main reasons: problems with lexical ambiguity and

limited coverage in WordNet (instances of named entities are not in WordNet,

e.g. Barack Obama).

For example, in WordNet the aligned verbs (order/book) from the pre-

vious examples have: 9 senses - order (e.g. give instructions to or direct

somebody to do something with authority, make a request for something,

etc.) - and 4 senses - book (engage for a performance, arrange for and reserve

(something for someone else) in advance, etc.). Thus, a WordNet-based sim-

ilarity measure would require disambiguating segments, an additional step

and a possible source of errors. Second, a threshold would need to be set

to determine when a pair of verbs is aligned. In contrast, the structure of

VerbNet (i.e. clusters of verbs) allows a binary decision.
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In summary, this method outputs a similarity score between two predicate-

argument structures, and an alignment matrix where the predicates and ar-

guments are related with a degree of similarity. This output is given the

learning algorithm.

3.1.2 TINE Context Matching

In Rios et al. (2012), we propose modifications to the previous alignment

method, where the matching of unrelated verbs is a crucial issue, since the

sentences to be compared are not necessarily very similar. We have thus

modified TINE Lexical Matching with an optimisation step which aligns the

verb predicates by measuring two degrees of similarity: i) how similar their

arguments (context) are, and ii) how related the predicates’ realisations are.

Both scores are combined as shown in Equation 3.3 to score the similarity

between the two predicates (Hv, Tv) from a pair (T,H).

sim(Hv,Tv) = (wlex × lexScore(Hv, Tv))

+(warg × argScore(Harg, Targ))
(3.3)

where wlex and warg are the weights for each component, argScore(Harg, Targ)

is the similarity, which is computed as the BoW cosine similarity of the argu-

ments between the predicates being compared. Again, we treat the tokens in

the argument as a BoW. lexScore(Hv, Tv) is the similarity score extracted

from the Dekang Lin’s thesaurus between the predicates being compared.

If the verbs are related in the thesaurus we use their similarity score as
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lexScore, otherwise lexScore = 0. The pair of predicates with the maxi-

mum sim score is aligned. The alignment is an optimisation problem where

predicates are aligned 1-1: we search for all 1-1 alignments that lead to the

maximum average sim for the pair of sentences. For example,

T The tech - loaded [Nasdaq composite]A1 [rose]V [0 points]A2 [to 0]A2 ,

[ending at its highest level for 0 months]AM−ADV .

H The technology - laced [Nasdaq Composite Index]A1 IXIC [climbed]V [0

points , or 0 percent ,]A2 [to 0]A4.

have the following list of predicates: T = {loaded, rose, ending} and H =

{laced, climbed}. The method compares each pair of predicates and aligns

the predicates rose and climbed because they are related in the thesaurus

with a similarity score lexScore = 0.796 and a argScore = 0.185 given that

the weights are set to 0.5 and sum up to 1, the predicates reach the maximum

sim = 0.429 score. The output of this method results in a set of aligned verbs

between a pair of sentences. As in the previous method, the alignment matrix

can be used to compute a similarity metric as well.

3.1.3 TINE Edit Distance

In (Rios and Gelbukh, 2012b), we propose a semantic edit distance metric to

address the limitations of the TINE Lexical Matching method when is used

as a similarity score feature. The goal of our semantic edit distance metric is

to measure the differences between a T-H pair at a predicate-argument level.
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This metric is based on the same assumption as the transformation methods

for RTE, where the entailment relations can be measured by applying a series

of transformations from T into H.

The semantic edit distance metric is a modified version of the TINE Lex-

ical Matching method. Thus, instead of outputting an alignment matrix this

method will compute a distance score between the T-H pair. The modified

version of the alignment method is divided into two stages: i) The automatic

alignment of predicates and ii) The edition of the arguments between the

aligned predicates.

In the alignment stage a set of Verbs between the T-H pair are aligned

using VerbNet and VerbOcean as in TINE Lexical Matching.

For the edition stage we define three operations over arguments:

1. Deletion of an argument

2. Insertion of an argument

3. Substitution of an argument

The Deletion operation is applied if one of the arguments in H is missing

in T, the Insertion operation is applied if one of the arguments in T is missing

in H, and the Substitution operation is applied if the arguments in the T-H

pair are of the same type but they have a different word realisation. For

each pair of verbs from the set supplied by the previous stage, Equation 3.4

is computed. The final score is the average score over the total of verbs

Equation 3.5.
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edition score(Tv, Hv) =
1

number of operations
, (3.4)

where Tv is an aligned verb in the Text, Hv is the corresponding aligned verb

in the Hypothesis, and number of operations is the addition of the applied

operations for each argument on T. In this version the metric does not give

a score weight to each operation.

semantic score(T,H) =
1

n

n∑
v=1

edition score(Tv, Hv), (3.5)

where n is the number of verbs.

The following example shows how the computation of edition score(Tv, Hv)

is performed:

T Recent Dakosaurus research comes from a complete skull found in Ar-

gentina in 0, [studied]V [by Diego Pol of Ohio State University, Zulma

Gasparini of Argentinas National University of La Plata, and their

colleagues]A0.

H [A complete Dakosaurus]A1 was [discovered]V [by Diego Pol]A0.

1. extract verbs from T: Tv = {comes,found, studied}

2. extract verbs from H: Hv = {discovered}

3. similar verbs aligned with VerbNet (shared class discover-84-1-1) V =

{(study, discover), (find, discover)}

4. Apply operations over T arguments for (study, discover):

operation 1:insert A1 = {A complete Dakosaurus}
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operation 2:substitution A0 ={by Diego Pol}

edition score(study, discover) = 1/2 = 0.5

The transformed T for the pair of predicates (study and discover) is:

[A complete Dakosaurus]A1 [studied]V [by Diego Pol]A0.

In terms of implementation we store each chunk into a stack this means

that the order of chunks in the sentence is lost. The edition score is not

based on the order of the chunks, but in the number of applied operations.

The order can be tracked given the positions of the chunks (i.e. arguments)

in the H frame.

However, the alignment stage may not be able to match any verb. We use

a back-off score metric in case the score of the edit distance is zero. The back-

off score is based on shallow syntactic annotation or Chunking Eq. (3.10).

This method gives as output a score given the series of transformations from

T to H. We then use the output of this metric only for the entailment decision.

3.2 Entailment Decision Stage

In this section we describe the different learning models used to predict the

entailment decision.

3.2.1 Propositional Learning Model

We use a supervised ML algorithm to decide the entailment relation. The

RTE can be seen as a binary classification task where the entailment relations
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are the classes, and the RTE benchmark datasets are used to train a classifier

(Dagan et al., 2010).

As a first attempt to solve RTE, we use the previously described alignment

methods as features in a standard ML-based method. In addition, we propose

new similarity metrics based on different representations of text for RTE that

are: i) Chunks, and ii) Named entities (Rios and Gelbukh, 2012a). The goal

of these new features is to address the previously discussed limitations of

existing semantic-based alignment methods.

The similarity metrics are a fundamental part of the similarity models

for RTE. The motivation to propose different types of similarity metrics is

to exploit their complementaries: if one metric is not able capture (identify)

an RTE phenomenon, a different type of metric will be able to capture the

missing information. Moreover, the new metrics are different from previous

work by allowing the matching (alignment) of similar content of the semantic

units, whereas the standard metrics only match exact content. For example,

in the named entity metric, the entities of similar type are grouped but the

metric allows synonym surface realisations.

In order to train a classifier we extracted features based on the scores of

similarity metrics. The ML model is divided in tree steps: i) pre-process data,

ii) train a classifier and iii) classification. The similarity metrics are: token-

based similarity metrics, a syntactic similarity metric, a named entity simi-

larity metric and semantic similarity metric (e.g. a given predicate-argument

alignment).
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Token features The token-based features are as follows: Cosine similarity

(Equation 3.6), Precision (Equation 3.7), Recall (Equation 3.8), and

F-measure (Equation3.9).

cosine(T,H) =
|T
⋂
H|√

|T | × |H|
(3.6)

precision(T,H) =
|T
⋂
H|

|H|
(3.7)

recall(T,H) =
|T
⋂
H|

|T |
(3.8)

F = 2 · precision · recall
precision+ recall

(3.9)

Where T and H are a bag-of-token representation of the T–H pair. We

use different types of token representations such as: i) word, ii) lemma,

and iii) Part-of-Speech (POS). We compute the similarity between

the T-H pairs for each token representation and metric. These scores

become features for the classifier.

Chunking feature The motivation of a chunking similarity metric is that a

T-H pair with a similar syntax can hold an entailment relation. Shallow

parsing is a partial syntactic representation of texts. It is an alternative

to full parsing because it is more efficient and more robust. Chunks are
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non overlapping regions of text, and they are sequences of constituents

which form a group with a grammatical role (e.g. NP group).

The chunking feature is defined as the average of the number of similar

chunks (in the same order) between the T-H pairs.

chunking(T,H) =
1

m

m∑
n=1

simChunk(tn, hn), (3.10)

where m is the number of chunks in T, hn is the n chunk tag and

content in the same order, simChunk(tn, hn) = 1 if the content and

annotation of the chunk are the same, and simChunk(tn, hn) = 0.5 if

the content of the chunk is different but the chunk tag is still the same.

The following example shows how the chunking simChunk(tn, hn) works:

T Along with chipmaker Intel , the companies include Sony Corp. ,

Microsoft Corp. , NNP Co. , IBM Corp. , Gateway Inc. and

Nokia Corp.

H Along with chip maker Intel , the companies include Sony , Microsoft

, NNP , International Business Machines , Gateway , Nokia and

others.

First, for each chunk the metric compares and scores the content of the

tag if it is the same chunk group and if it is the same order of chunks.

Table 3.2.1 shows an example of how the metric computes the partial
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scores. Finally, the metric (Equation 3.10) computes the overall score

chunking(T,H) = 0.64.

Table 3.1: Example of simChunk(tn, hn) partial scores

Tag Content Tag Content Score
PP Along PP Along 1
PP with PP with 1
NP chipmaker Intel NP chip maker Intel 0.5
NP the companies NP the companies 1
VP include VP include 1
NP Sony Corp. NP Sony 0.5
NP Microsoft Corp. NP Microsoft 0.5
NP IBM Corp. NP International Business Machines 0.5
NP Gateway Inc. NP Gateway 0.5
NP Nokia Corp. NP Nokia and others. 0.5

Named entities feature Named Entity Recognition (NER) is a task which

identifies and classifies parts of a text that represent entities into pre-

defined classes such as names of persons, organisations, locations, ex-

pressions of times, quantities, monetary values, percentages, etc. For

example, from the text: “Acme Corp bought a new...” Acme Corp is

identified as a named entity and classified as an Organisation.

The motivation of a similarity metric based on NER is that the partic-

ipants in H should be the same as those in T, and H should not include

more participants in order to hold an entailment relation. The measure

also deals with synonym entities.

Our method for NER similarity measure consists in the following: First,

the named entities are grouped by type (e.g., Scripps Hospital is an Or-

57



3.2. ENTAILMENT DECISION STAGE

ganisation) and then the content of the same type of groups is compared

using cosine similarity. If the surface realisations are different, we re-

trieve words that share the same context as the named entity (using

Dekang Lin’s thesaurus). The cosine similarity thus takes into account

more information than just the named entities.

ne score(T,H) =
1

m

m∑
n=1

simNER(tn, hn), (3.11)

where m is the number of named entities, hn is the n entity tag and

content. In simNER(tn, hn) = 0 if the tags are different tn(TAG) 6=

hn(TAG), otherwise simNER(tn, hn) = cosine(tentity, hentity). The

tentity and hentity are BoW’s extracted from the thesaurus.

For example, the simNER score for one named entity from the T-H

pair:

T Along with chipmaker Intel , the companies include Sony Corp. ,

Microsoft Corp. , NNP Co. , [IBM Corp.]ORG , Gateway Inc. and

Nokia Corp.

H Along with chip maker Intel , the companies include Sony , Microsoft

, NNP , [International Business Machines]ORG , Gateway , Nokia

and others.

1. group entities from similar tag: ORG (i.e. Organisation)

T: IBM Corp.
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H: International Business Machines

2. add words from the similarity thesaurus resulting in the following

BoW’s:

Tentity: {IBM Corp.,... Microsoft, Intel, Sun Microsystems, Mo-

torola/Motorola, Hewlett-Packard/Hewlett-Packard, Novell, Ap-

ple Computer...}

Hentity:{International Business Machines,... Apple Computer, Ya-

hoo, Microsoft, Alcoa...}

3. simNER(Tentity, Hentity) = cosine(Tentity, Hentity)

simNER(Tentity, Hentity) = 0.53

With the previous metrics Eqs. (3.6) to (3.11) and the similarity output

from a given alignment method, we build a vector of similarity scores used as

features to train an ML algorithm. We use the RTE Challenges datasets to

train and test the following ML algorithms: SVM, NäıveBayes, AdaBoost,

BayesNet, LogitBoost, MultiBoostAB, RBFNetwork, and VotedPerceptron.

We follow a standard experimental design for ML on RTE (Malakasiotis

and Androutsopoulos, 2007). We use the default configuration of the ML

algorithms. First, for the training step we conduct a 10 fold-cross validation

test in order to chose the algorithm with the best performance over the

training dataset. Finally, we use the best ML algorithm for testing.
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3.2.2 Statistical Relational Learning Model

In (Rios et al., 2014), we propose the use of a Statistical Relational Learning

model for RTE. Instead of using simple similarity metrics to predict the

entailment decision, we use rich relational features extracted from output of

the predicate-argument alignment structures between T-H pairs. These are

used to train an MLN framework, which learns a model to reward pairs with

similar predicates and similar arguments and penalise pairs otherwise.

Different from (Garrette et al., 2011), we do not use a manually set thresh-

old for the entailment decision and we evaluate our method on the standard

RTE Challenge datasets, which are larger and contain naturally occurring

linguistic constructions that can have an effect on the entailment decision.

In the entailment decision stage we use an MLN to predict the entailment

relation of a given T-H pair. As an inherently semantic task, RTE should

naturally benefit from knowledge about the relationships among elements

in a text, in particular to check whether (some of) these relationships are

equivalent in both T and H. It is extremely difficult to fully capture relational

knowledge using standard propositional formalisms (attribute-value pairs), as

it is hard to predict how many elements are involved in a relationship (e.g.,

a compound argument) or all possible values of these elements, and it is not

possible to represent the sharing of values across attributes (e.g. the agent

of a predicate which is also the object of another predicate).
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MLN (Richardson and Domingos, 2006) provides a natural choice for

this task as it unifies first order logic and probabilistic graphical models in

a framework that enables the representation of rich relational information

(such as syntactic and semantic relations) and inference under uncertainty.

This framework learns weights for first-order logic formulas, which are then

used to build Markov networks that can be queried in the presence of new

instances.

A first-order logic knowledge base (KB) is a set of sentences or formulas

in first-order logic. The formulas are built using four types of symbols:

1. Constant symbols, which represent objects in the domain of interest.

For example, people: Anna, Bob, Chris.

2. Variable symbols, which range over the objects in the domain. For

example, x.

3. Function symbols, which represent mappings from tuples of objects to

objects. For example, Friends.

4. Predicate symbols, which represent relations among objects in the do-

main. For example, Friends(x, y).

An atomic formula or atom is a predicate symbol applied to a tuple of

terms. For example, Friends(x, y). The formulas are built in a recursive

way using logical connectives and quantifiers with the four types of symbols.

Lets say that F1 and F2 are formulas. The following are formulas as well:
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negation ¬F1, conjunction F1∧F2 and implication F1⇒ F2, among others.

A possible world assigns a truth value to each possible ground atom (i.e.

terms containing only constants, Friends(Anna,Bob)).

The first-order logic is a set of hard constraints on the set of possible

worlds that define our domain. If a world violates one formula, the probability

of this world is zero. However, MLN extends first-order logic by softening

this constraint: when a world violates a formula of the KB, it becomes less

probable, but will not have a zero probability. A world with fewer violated

formulas is more probable. Therefore, each formula is associated with a

weight learnt from data which defines how strong this constraint is.

MLN can be seen as a template for constructing Markov networks. A

Markov network is a model for the joint distribution of a set of variables

X = (x1, x2, ..., xj). It is composed by an undirected graph G and a set

of potential functions. Markov networks are often conveniently represented

as log-linear models, a potential function for each clique is replaced by an

exponentiated weighted sum of features given by:

P (X = x) =
1

Z
exp(

∑
j

wjfj(x)),

where the MLN is the knowledge base composed by the pairs (wj, fj) where

each fj is a formula (i.e. potential function) in first-order logic and wj is a

weight. The partition function Z assigns the function scores into a proba-

bility. The learning problem consists thus in tuning the weights to match a
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distribution of possible worlds which is consistent with the real world (i.e.,

the training data).

The basis for our first order logic formulas are the alignments produced in

the previous stage. At inference time, an aligned pair with similar situations

and similar participants will likely hold an entailment relation. An align-

ment consists of a pair of verbs and their corresponding arguments. Several

features extracted from these alignments are used as predicates to build a

Markov Network. We formulate a relational model based on these predicates

along with shallow features used to support the decision when there is no

evidence of an alignment for a T-H pair.

The following aligned T-H pair with id = 1 will help us to explain the

ML rules notation:

T [Russian cosmonaut Valery Polyakov]A0 [set]V [the record for the longest

continuous amount of time spent in space, a staggering 0 days, between

0 and 0]A1.

H [Russians]A0 hold [record for longest stay in space]A1.

The entailment relation for the pair id = 1 is TRUE. The alignment method

finds the predicates set and hold equivalent given their context (i.e. argu-

ments). The alignment of arguments is as follows:

A0 [Russian cosmonaut Valery Polyakov] ⇔ [Russians]

A1 [the record for the longest continuous amount of time spent in space, a

staggering 0 days, between 0 and 0]⇔ [record for longest stay in space]
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From the previous alignment structure we extract different information

to build the predicates that constitute MLN rules. Our baseline using an

MLN model is based on simple features like rules to model the entailment

decision. The simple non-relational rules are as follows:

Bag-of-words and Part of Speech (PoS) tags For each token in the T-

H pair we extract their lemmas and part of speech tags. We represent

it by the predicate TokenBaseline(pid, token). For example, the token

cosmonaut produces the following predicates TokenBaseline(1, cosmonaut)

and TokenBaseline(1, NN).

Word Overlap For each T-H pair we compute the number of lemmas shared

between the T and H: Overlap(pid, num). For example, the number of

shared words for pair id 1 is 6 Overlap(1, 6).

pid is the id of a T-H pair, token is the lemma or the PoS tag (each one has

a separate predicate), and num is the overlap score.

We define the following MLN formulas for the entailment decision:

TokenBaseline(pid,+token)

⇒ Entailment(+d, pid)

Overlap(pid,+n)

⇒ Entailment(+d, pid)
(3.12)

An example of grounding for the previous MLN rule is:

TokenBaseline(1, cosmonaut)⇒ Entailment(TRUE, 1)
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Our Relational Model takes advantage of MLN’s ability to handle rela-

tional information, and it also takes into consideration the semantic relations

between the arguments and verbs. The motivation to design the relational

formulas is based on how the alignment stage works. The alignment is per-

formed via heuristics, which means that some of the decisions may introduce

wrong or poor information about the relations between the participants and

situations of the entailment pair. In order to alleviate this problem, the re-

lational features reward or penalise each of the aligned verbs from the first

stage by making explicit their semantic relation. In addition, the relational

features generalise each of the arguments aligned by TINE Context Matching.

The following variables are created to represent this information: Arg

and V erb. Figure 3.1 shows the relationships between these variables in a

Markov Network.

FArg FVerb

Arg Verb

Entailment

Combo

Direct

Figure 3.1: Markov network of our RTE model
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The value of Arg is the label given by the SRL parser for the aligned

arguments (e.g. ARG1). The value of V erb is the lexical realisation of the

verbs, i.e., the aligned verbs themselves. Furthermore, the aligned arguments

and the aligned verbs have features related to them: FArg is the set of

features related to the arguments, and FV erb is the set of features related

to the verbs.

The following are features for each token of aligned arguments:

Lexical Word, lemma and PoS of each token. For example, the predicate

Token(A0, 1, cosmonaut).

Similar Words The 20 most similar words from Dekang Lin’s thesaurus for

each token. A predicate is created for each similar word. For example,

the predicate Token(A0, 1, astronaut).

Hypernyms The first three levels of the hypernym tree above each noun in

its first sense in WordNet. A predicate for each hypernym is created.

For example, the predicate Token(A0, 1, spaceman).

These argument features are represented by the following formula:

Token(aid, pid,+tfeature) ∧Arg(aid, vid, pid)⇒ Entailment(+d, pid) (3.13)

where tfeature takes the value of each of the previous features, aid and

vid are the values of the Arg and V erb variables. For example, the rule

grounding given the aligned verbs (set and hold) and the token predicate is
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a hypermyn:

Token(A0, 1, spaceman) ∧ Arg(A0, set-hold, 1) ⇒ Entailment(TRUE, 1).

For the aligned verbs, we extract:

Bag-of-words VerbNet bowfeature is the lexical realisation of the classes

shared between the verbs in VerbNet. Looking at the semantic classes

of the aligned verbs brings extra information about how similar they

are:

BowV N(vid,+bowfeature) ∧ V erb(vid, pid)⇒ Entailment(+d, pid)
(3.14)

For example, the rule for the aligned verbs (set and hold) is:

BowVN(set-hold, ”fit-54.3 put-9.1.2 hold-15.1.1”) ∧ Verb(set-hold, 1)

⇒ Entailment(TRUE, 1).

Strong Context strfeature compares components in Eq. 3.3. If the value

of

argScore(Aarg,Barg) is larger than that of lexScore(Av,Bv), this

feature is set to 1, i.e., the similarity of the context of the aligned verbs

is stronger than the relationship between them; it is 0 otherwise:

StrongCon(vid,+strfeature) ∧ V erb(vid, pid)⇒ Entailment(+d, pid)
(3.15)

For example, the rule for the aligned verbs (set and hold) is:

StrongCon(set-hold, 1) ∧ Verb(set-hold, 1) ⇒ Entailment(TRUE, 1).
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Similarity VerbNet simvnfeature is set to 1 if the verbs share at least

one class in VerbNet; 0 otherwise:

SimV N(vid,+simvnfeature) ∧ V erb(vid, pid)⇒ Entailment(+d, pid)
(3.16)

For example, the rule for the aligned verbs (set and hold) is:

SimVN(set-hold, 0) ∧ Verb(set-hold, 1) ⇒ Entailment(TRUE, 1).

Similarity VerbOcean simvofeature is 1 if the verbs have the similar

relation as given by VerbOcean (Chklovski and Pantel, 2004);3 0 oth-

erwise:

SimV O(vid,+simvofeature) ∧ V erb(vid, pid)⇒ Entailment(+d, pid)
(3.17)

For example, the rule for the aligned verbs (set and hold) is:

SimVO(set-hold, 0) ∧ Verb(set-hold, 1) ⇒ Entailment(TRUE, 1).

Token Verbs The predicate contains the lemmas of the aligned verbs:

TokenV erb(vid,+tokenvfeature) ∧ V erb(vid, pid)⇒ Entailment(+d, pid)
(3.18)

For example, the rule for the aligned verbs (set and hold) is:

TokenVerb(set-hold, ”set hold”) ∧Verb(set-hold, 1)⇒ Entailment(TRUE,

1).

3VerbOcean contains different relations between verbs.
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Finally, the relation between Arg and V erb is defined by the formula:

Arg(aid, vid, pid) ∧ V erb(vid, pid)⇒ Entailment(+d, pid) (3.19)

For example, the rule for the aligned verbs (set and hold) and the argu-

ment A0 is:

Arg(A0, set-hold, 1) ∧ Verb(set-hold, 1) ⇒ Entailment(TRUE, 1).

The formulas sharing variables vid and aid indicate relationships between

the aligned arguments and the aligned verbs, as well as their corresponding

features given the SRL structure. pid relates the previous predicates to the

decision of an entailment pair. Many of these formulas can take up multiple

values through multiple groundings (e.g. the hypernyms of nouns). The

predicate Entailment(+d, pid) takes two possible values for the decision d:

true or false. The + operator indicates that a weight will be learned for

each grounding of the formula. The entailment decision is a hidden variable

in the MLN model and it is used to query the MLN.

In the alignment stage, it is possible that the metric cannot align some of

the T-H pairs, mostly because SENNA does not produce any SRL structure

for certain pairs. In order to be able to make a decision for these pairs using

MLNs, we add the variables Combo and Direct as shallow supporting features

for the entailment decision in Figure 3.1. Combo holds the value cfeature

which consists of all the combinations of unigrams between the H-T pair. We

create a new predicate for each unigram combination:

Combo(pid,+cfeature)⇒ Entailment(+d, pid) (3.20)
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For example, the rule from the combinations of tokens (cosmonaut and

space) is: Combo(1, ”cosmonaut space”) ⇒ Entailment(TRUE, 1).

The Direct variable holds the value simdfeature with 1 if the verbs hold

an entailment relation as given by the Directional Database (Kotlerman et al.,

2010); 0 otherwise:

Direct(pid,+simdfeature)⇒ Entailment(+d, pid) (3.21)

The database contains directional lexical entailment rules. The lexical

entailment rules are, for example, koala ⇒ animal, bread ⇒ food. The

meaning of the left-hand-side implies the meaning of its right-hand-side. For

example, the rule from the pair of tokens (cosmonaut and space) is: Direct(1,

0) ⇒ Entailment(TRUE, 1)

The Markov Network built from these formulas we can be queried for an

entailment decision. For a new T-H pair, the model predicts a decision based

on the type of arguments it has, the features of the words in the arguments,

the alignment between its verbs, the relations between such verbs, and the

shallow support features.

For the MLN models we use the Alchemy4 toolkit and the datasets from

the RTE challenges 1-3 (Dagan and Glickman, 2005; Bar-Haim et al., 2006;

Giampiccolo et al., 2007), which are publicly available, to evaluate our MLN

models. To predict the entailment decision we take the marginal probabilities

4http://alchemy.cs.washington.edu/
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that Alchemy outputs for a given query, i.e. the Entailment predicate. The

query with the highest probability gives the entailment decision.

3.3 Recognising Textual Entailment Evalua-

tion Datasets

The RTE datasets consist of small text snippet’s pairs manually labelled for

entailment, corresponding to the news domain. The datasets provided by the

RTE challenge organisers are intended to include text pairs corresponding to

success and failure results of NLP applications such as: IE, IR, QA and

SUM. The datasets are divided into two: development and test datasets. In

addition, Dagan and Glickman (2005) define the official guidelines for the

RTE as follows:

• Entailment is a directional relation; the hypothesis must be entailed by

the text and not the contrary.

• The hypothesis must be fully entailed by the text and do not include

parts which could not be inferred.

• Cases in which the inference is likely to be high but not with absolute

certainty, should be judge as true.

• The background knowledge about the world must be typical to a normal

reader of that kind of text (news domain); it is not acceptable the

known presupposition of high specific knowledge.
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The definition of RTE is based on two assumptions: the common human

understanding of language as well as common background knowledge. An

example of background knowledge is: a company has a CEO, a CEO is an

employee of the company, an employee is a person and so on.

The judgements (classifications) produced by the methods are compared

to a gold standard, where the accuracy and the average precision are used

to evaluate the performance of each method. The principal measure used

to evaluate this task is accuracy, which is the percentage of correctly clas-

sified decisions. The second evaluation measure is the confidence weighted

score (also known as Average Precision), in which the judgements of the test

examples are sorted by their confidence (in decreasing order).

Several NLP applications may benefit from RTE. For example:

• In Summarisation, a summary should be entailed by the source text

(Lloret et al., 2008).

• In Information Extraction, the information extracted by the system

should also be entailed by the source text (Androutsopoulos and Malaka-

siotis, 2010).

• In Question Answering the answer, which is obtained from the question

after an IR process, must be entailed by a supporting snippet of text

(Negri and Kouylekov, 2009).

• In MT Evaluation, the meaning of the machine translation should entail

the meaning of a human reference translation (Padó et al., 2009b).
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• In Paraphrase Recognition (PP), there is a mutual entailment between

the T–H pair (Rus et al., 2008).

• In coreference resolution, the longest most informative mention in the

coreference chain across the T-H pair serves as evidence to decide the

entailment relation (Mitkov et al., 2012).

The first RTE challenge (Dagan and Glickman, 2005) started in 2005, and

it was organised by Ido Dagan, Oren Glickman and Bernardo Magnini. The

main goal was to develop a framework to evaluate the performance of the

participating methods over the RTE task. In total 17 groups participated

in the challenge which showed that the RTE task is relevant for various

applications.

The datasets come from different text processing applications such as:

IR, QA, IE and MT. The examples represent a range of different levels of

entailment such as: reasoning, lexical, syntactic, logical and world knowledge.

A total of 567 entailment pairs are part of the development dataset and 800

pairs are part of the test dataset, the datasets are split into TRUE/FALSE

examples. For the manual evaluation each T-H pair is judged by a first

annotator, and the pairs are cross-evaluated by a second judge, who received

only the pair without any additional information from the original context.

The annotators agreed in their judgement for 80% of the pairs, reaching a

0.6 Kappa level (moderate agreement). The remainder 20% of the pairs with

disagreement among the judges were discarded of the final dataset.
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The main goal of the second RTE-2 Challenge (Bar-Haim et al., 2006)

was to provide more “realistic” entailment pairs. The datasets have 1600

pairs divided into development and test, each one containing 800 pairs. The

challenge target was four applications: IR, IE, QA and SUM. As in the

previous challenge most of the approaches were based on ML algorithms.

The agreement of the dataset was computed in the same way as the RTE-1.

The annotators agreed in 89.2% of the pairs with an average Kappa level of

0.78, which corresponds to substantial agreement. Where 18.2% of the pairs

were discarded because of disagreement.

The RTE-3 Challenge (Giampiccolo et al., 2007) followed the same struc-

ture of the previous versions. However, a resource pool was introduced, where

participants had the possibility to share the same resources. For the man-

ual annotation the annotators agreed on 87.8% of the pairs, with an average

Kappa level of 0.75 (substantial agreement), and 19.2% of the pairs were

discarded because of disagreement.

The RTE-4 Challenge (Giampiccolo et al., 2008) introduced the three-way

decision of “ENTAILMENT”, “CONTRADICTION” and “UNKNOWN”,

where methods have to make more precise decisions. For example, a hypoth-

esis is unknown if there is not enough evidence to support the entailment

decision. Also, the text should be distinguished from a hypothesis to be false

or contradicted by that text. The two-way RTE task was still a part of the

challenge, in which the pairs where T entailed H were marked as ENTAIL-
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MENT, and those where the entailment did not hold were marked as NO

ENTAILMENT. The three-way task guidelines are as follows:

• T entails H - in which case the pair will be marked as ENTAILMENT.

• T contradicts H - in which case the pair will be marked as CONTRA-

DICTION.

• The truth of H cannot be determined on the basis of T - in which case

the pair will be marked as UNKNOWN.

The RTE-4 dataset contains 1000 pairs (300 pairs each from IE and IR,

200 pairs each from SUM and QA). The annotator agreement was not pub-

lished in this Challenge, but the same method of discarding pairs as in previ-

ous Challenges was used. From RTE-4 onwards, the datasets are not publicly

available, only upon request.

The impact of discourse information is measure in the context of the RTE

Search Task 5. The RTE Search Task consist in identifying all the sentences

among candidate sentences, which entail a given Hypothesis. In other words,

given a corpus and a set of “candidate” sentences (documents) retrieved by

an IR engine from that corpus the systems decide if the candidate sentences

entail the hypothesis.

5http://www.nist.gov/tac/2011/RTE/
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3.4 Results and Discussion

In this Section, we test our proposed models with different RTE datasets.

We discuss and compare the results of our proposed models with previous

work. We define the following names for our proposed models:

ML-TINE: SVM classifier using the features of the Propositional model

Eqs. (3.6) to (3.11) and TINE Context Matching Eq. (3.1). We use

the SVM implementation with the default configuration from scikit-

learn (Pedregosa et al., 2011).

ML-EDIT: SVM classifier using the features of the Propositional model

Eqs. (3.6) to (3.10) and TINE Edit Distance Eq. (3.5). We use the

SVM implementation with the default configuration from scikit-learn

(Pedregosa et al., 2011).

MLN-BASE: MLN model using the simple rules from Eq. (3.12). We use

the Alchemy toolkit with the default configuration.

MLN-RELATIONAL: MLN model using relational rules from Eqs. (3.13)

to (3.21). We use the Alchemy toolkit with the default configuration.

For the alignment stage we use the TINE Context Matching method

given that TINE Lexical Matching method makes simple errors such as the

matching of unrelated verbs and suffers from the lack of coverage of the

ontologies. For example, in the following T-H pair:
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T If snow falls on the slopes this week, Christmas will sell out too, says

Schiefert.

H If the roads remain snowfall during the week, the dates of Christmas will

dry up, said Schiefert.

The verbs remain and say are (incorrectly) related as given by the VerbOcean

heuristic. Then, TINE Context Matching method is a more robust source of

alignment information.

We compare ML-TINE with other ML-based methods, and with methods

that use a SRL representation as features. In addition, we train a baseline

system using a SVM classifier. This baseline is based on simple representa-

tions of the T-H pairs and simple string similarity metrics. The goal is to

find the best combination of simple representations/features that optimise

accuracy over the test datasets to train a classifier. The motivation is to

compare a strong baseline based on simple features with our proposed meth-

ods. We also compare our method with the baseline proposed by Mehdad

and Magnini (2009) as mentioned in Chapter 2. We defined the previous

system as official baseline.

The representations are: tokens, lemmas and PoS, which are extracted

from the TreeTagger6. The string similarity metrics are: word overlap, cosine,

dice, jaccard, and overlap. These metrics are based on set operations over

BoW’s. For example, the cosine metric is Eq. 3.6. The full description of

6http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/
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these metrics is described in (Manning and Schütze, 1999). We define this

baseline system as SVM-gen.

The Baseline system uses the following features:

1. Tokens with Word overlap, Cosine, Dice, Jaccard, and Overlap

2. Lemmas with Word Overlap, Cosine, Dice, Jaccard, and Overlap

3. PoS with Word overlap, Cosine, Dice, Jaccard, and Overlap

The result is a vector of 15 features where each representation of the T-H

pair is scored by a different lexical metric. For example, with the previous 15

features over the RTE-3 development dataset. Using an SVM with 10-fold

cross-validation results in an accuracy of 63.25%. The design of the genetic

algorithm is as follows:

• The chromosome of the individual is composed of three genes. Each

gene is one of the representations (i.e. token, lemma and PoS), and

each representation could be measure with one of the similarity metric

(i.e. word overlap, cosine, dice...)

• The fitness function is the accuracy of the features over a given devel-

opment set

• A population of 80 individuals

• Number of generations 1,000

• A crossover probability of 60%
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• A mutation probability of 10%

• The selection method is the Roulette scheme

• The crossover strategy is two point

• The offspring comes from two parents

• The tree best individual of the previous generation are preserved

The standard parameter setting for a genetic algorithm is (Jong and

Spears, 1990) individual size 50, number of generations 1,000, crossover type

typically two point, crossover rate of 60% and mutation rate of 10%. We

increase the number of individuals given that our fitness function is fairly

fast to compute (i.e. the standard RTE dataset has 800 instances).

The features chosen by the genetic algorithm feature selection are:

1. Tokens with Overlap

2. Lemmas with Cosine

3. Lemmas with Overlap

The results of the SVM-gen baseline for the RTE-3 development dataset

with a 10-fold-cross-validation is 63.8% accuracy. The results for SVM-gen

with and without feature selection are similar in the 10-fold-cross-validation.

The experimental results for both SVM-gen versions are summarised in

Table 3.2. In addition, we compute the McNemar’s test on both SVM-gen

versions, and there is no statistically significant difference between them.
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Table 3.2: Accuracy results for the SVM-gen baseline system with all the
features and with the selected features

Method RTE-1 RTE-2 RTE-3

SVM-gen 51.38% 58.5% 59.5%
SVM-gen

with feature selection 50.75% 58.37% 59%
Official baseline 49% 53% 57%

The SVM-gen baseline with feature selection shows worst results on the test

datasets. A possible reason for this results is that the genetic algorithm found

an over-fitted solution from the development dataset.

Table 3.3: The 10-fold cross-validation accuracy results over the RTE devel-
opment datasets for the ML-TINE model

Algorithm RTE-1 RTE-2 RTE-3

ML-TINE 64.90% 59% 66.62%
NäıveBayes 62.25% 58.25% 64.50%
AdaBoost 64.90% 57.75% 62.75%
BayesNet 64.19% 59% 65.25%
LogitBoost 62.25% 52.5% 61%
MultiBoostAB 64.55% 60.5% 64%
RBFNetwork 61.90% 54.25% 64.8%
VotedPerceptron 63.31% 57.75% 65.8%

We use the RTE-1, RTE-2, and RTE-3 development datasets to train

different classifiers for the ML-TINE model. Table 3.3 shows the 10-fold

cross-validation results for different ML algorithms using the same feature

set of ML-TINE. The SVM algorithm achieved the best results in the ex-

periments during the training phase. We use this algorithm to perform the

classification over the RTE test datasets (i.e. ML-TINE).
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The data used for classification are the test datasets of the RTE Chal-

lenge. The experimental results and comparison with previous work are

summarised in Table 3.4.

Table 3.4: Accuracy comparison against previous work over the RTE test
datasets for the ML-TINE model

Method RTE-1 RTE-2 RTE-3

Roth and Sammons (2007) - - 65.56%
Burchardt and Frank (2006), Burchardt et al. (2007) 54.6% 59.8% 62.62%

Delmonte et al. (2005),

Delmonte et al. (2006), Delmonte et al. (2007) 59.25% 54.75% 58.75%
ML-TINE 53.87% 55.37% 61.75%
SVM-gen 50.75% 58.37% 59%

Official baseline 49% 53% 57%

However, previous work are more complex systems. In contrast, ML-

TINE relies in scoring predicate-argument information with the support of

simple string metrics. Our main semantic feature is focused in predicate-

argument information, where other methods tackle several semantic phe-

nomena such as negation and discourse information (Roth and Sammons,

2007), or exploit a large number of other types of features (Burchardt et al.,

2007).

Table 3.5: Comparison with overall accuracy results over the RTE test
datasets for the ML-TINE model

Challenge ML-TINE Average Best

RTE-1 53.87% 55.12% 70.00%
RTE-2 55.37% 58.62% 75.38%
RTE-3 61.75% 61.14% 80.00%
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Table 3.5 shows the overall accuracy results of the RTE test datasets

against our method. Our method ML-TINE is close to the average perfor-

mance but far from the best method.

For the ML-EDIT model we use the same configuration for the SVM as the

SVM-gen baseline. The experimental results for the ML-EDIT model using

the edit distance metric with the chunking metric backoff are summarised in

Table 3.6. The backoff score is used if the edit score between a T–H pair is

zero. We also train a second ML-EDIT model using a a feature set consisting

of simple lexical extra features and the edit distance metric, where the simple

features are the same as those used in ML-TINE.

Table 3.6: Accuracy results for ML-EDIT model over the test datasets

Method RTE-1 RTE-2 RTE-3

ML-EDIT plus backoff 50.25% 51.87% 51.25%
ML-EDIT plus lexical features 51.5% 57.87% 59.37%

ML-EDIT based on lexical features outperforms the backoff strategy. We

use the method based on lexical features for further comparison.

Table 3.7: Comparison of ML-EDIT with overall accuracy results over the
RTE test datasets

Challenge ML-EDIT Average Best

RTE-1 51.5% 55.12% 70.00%
RTE-2 57.87% 58.62% 75.38%
RTE-3 59.37% 61.14% 80.00%
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Table 3.7 shows the overall accuracy results of the RTE test datasets

against our method. ML-EDIT is close to the average performance but far

from the best method. However, our method ML-EDIT shows very compet-

itive results on the RTE 2 and 3 datasets.

Table 3.8: Accuracy comparison with previous works over the RTE test
datasets for the ML-EDIT

Method RTE-1 RTE-2 RTE-3

Roth and Sammons (2007) - - 65.56%
Burchardt and Frank (2006), Burchardt et al. (2007) 54.6% 59.8% 62.62%

Delmonte et al. (2005),
Delmonte et al. (2006), Delmonte et al. (2007) 59.25% 54.75% 58.75%

Kouylekov and Magnini (2005),
Kouylekov and Magnini (2006) 55% 60% -

ML-EDIT 51.5% 57.87% 59.37%
SVM-gen 50.75% 58.37% 59%

Official baseline 49% 53% 57%

Table 3.8 shows the comparison with previous work. ML-EDIT is compa-

rable with Kouylekov and Magnini (2005). However, ML-EDIT improves in

a small degree the proposed baseline with feature selection (i.e. SMV-gen).

Thus, ML-EDIT reduces the amount of errors with additional semantic-

scored pairs (aligned and edited pairs). In addition, the remaining pairs

out of the coverage of the semantic score are scored by the back-off, and this

back-off shows to be a poor predictor for entailment.

In the remainder of this section, we show the comparison of the Statis-

tical Relational Learning models with previous work. Table 3.9 shows the

performance of our MLN-BASELINE and MLN-RELATIONAL against that
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of the official baseline. It also shows the top system and the average accuracy

scores for all systems reported in the RTE challenges.

Table 3.9: Comparison of MLN-BASELINE and MLN-RELATIONAL with
overall accuracy results over the RTE test datasets

Method RTE-1 RTE-2 RTE-3

Top system 70% 75% 80%
Avg. systems 55% 59% 61%

Official baseline 49% 53% 57%
MLN-BASELINE 56% 54% 51%

MLN-RELATIONAL 57% 55% 65%

The MLN-RELATIONAL achieves a competitive performance compared

to the average of the participating systems, particularly on the RTE-1 dataset

(Avg. systems). However, its performance is far from that of the best system

(Top).

Table 3.10: Comparison of MLN-BASELINE and MLN-RELATIONAL with
the Propositional learning models

Method RTE-1 RTE-2 RTE-3

ML-TINE 53.87% 55.37% 61.75%
ML-EDIT 51.5% 57.87% 59.37%
SVM-gen 50.75% 58.37% 59%

Official baseline 49% 53% 57%
MLN-BASELINE 56% 54% 51%

MLN-RELATIONAL 57% 55% 65%

Table 3.10 shows the comparison of the MLN models with the proposi-

tional models. The MLN models outperform the propositional models on the

RTE 1 and 3 but on the RTE 1 the simple SVM-gen baseline outperforms all

the proposed models. The RTE-2 dataset shows to be a hard evaluation for
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methods using semantic information. For example, the method of Delmonte

et al. (2006) achieves an accuracy of 59.25%, Burchardt and Frank (2006)

an accuracy of 59.8% and a strong alignment-based method (de Marneffe

et al., 2006) achieves an accuracy of 60.5% on the same dataset. The average

accuracy of methods for the RTE-2 dataset is 59%.

For a fair comparison, we evaluate our MLN-RELATIONAL method

against all previous work for RTE that is also based on alignment tech-

niques. de Marneffe et al. (2006) use a two-stage alignment similar to ours,

but using dependency trees instead of SRLs. In addition, the entailment

decision problem is represented with a vector of 54 features. Where these

features try to capture entailment and non-entailment by focusing on nega-

tions and quantifiers. Then, they perform training and testing with a logistic

regression classifier. Chambers et al. (2007) improve the alignment stage in

(de Marneffe et al., 2006) and combine it with a logical framework for the

second stage (MacCartney and Manning, 2007). The inference in the logical

framework is expressed by a sequence of edits over texts expressions, where

the edits represent operations that affect monotonicity over texts expressions.

The logical framework maps alignments into a sequence of edits that defines

the entailment decision. MacCartney et al. (2008) propose a phrase-base

alignment that uses external lexical resources. They improve the first stage

via knowledge about semantic similarity and a specific dataset only to train

the alignment.

85



3.4. RESULTS AND DISCUSSION

Table 3.11: Accuracy against previous work based on alignment over the
RTE datasets for the MLN-RELATIONAL model

Method RTE-1 RTE-2 RTE-3

de Marneffe et al. (2006) - 60.5% 60.5%
Chambers et al. (2007) - - 63.62%

MacCartney et al. (2008) - 60.3% -
MLN-RELATIONAL 57% 55% 65%

Table 3.11 shows that our MLN-RELATIONAL method outperforms pre-

vious work for the RTE-3 dataset. However, the results are less positive for

RTE-2. A possible reason for this error is the low performance of our align-

ment method. TINE Context Matching only finds alignments for a subset

of the test sets: 162 pairs (out of 287) for RTE-1, 463 pairs (out of 800) for

RTE-2, and 385 pairs (out of 800) for RTE-3. Therefore, the proportionally

fewer noisy alignments obtained for RTE-3 could have contributed to the

better performance of the method on this dataset. Another reason for the

differences in performance across datasets can be the way the RTE datasets

were built. RTE-3 contains longer T parts, for which our method can find

a good quality alignment because of the larger context. This also seem to

affect the overall performance of the participating systems, since the average

accuracy for RTE-1 is 55%, 59% for RTE-2, and 61% for RTE-3.

Our method predicts a larger proportion of the TRUE class for RTE-3

than for RTE-2. There is a big gap between precision (54%) and recall (70%)

for the RTE-3 dataset, whereas for the RTE-2 this gap is smaller, with 52%

precision and 57% recall. This behaviour can be because TINE Context

Matching finds more alignments for the TRUE pairs.
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Furthermore, we test how our model behave over a subset of the datasets

for which TINE Context Matching produces an alignment. We compare the

relational model only with the alignment features (i.e. without the shallow

features) against the official baseline. We compare our MLN methods with a

widely used SVM baseline (Mehdad and Magnini, 2009) as well as of our in-

house baseline SVM-gen. Table 3.12 shows the results, where the relational

model clearly outperforms the official baseline, and by a large margin on the

RTE-3 dataset. This shows the potential of the relational features and MLNs

for RTE.

Table 3.12: Accuracy on a subset of RTE 1-3 where an alignment is produced
by TINE for T-H

Algorithm RTE-1 RTE-2 RTE-3

Official baseline 50% 51% 56%
SVM-gen 50.75% 58.37% 59%

MLN-RELATIONAL 57% 55% 78%

The results over this subset are similar on the RTE 1 and 2 datasets com-

pared to the full model over the complete RTE 1 and 2 datasets. Therefore,

the shallow features decrease the performance in the RTE 3 dataset with the

inclusion of instances without a semantic structure.

For a comparison covering the other main aspect of our method – its

probabilistic nature, in a second evaluation experiment, in Table 3.13 we

compare our method against other methods based on probabilistic modelling.

Glickman and Dagan (2006) model entailment via lexical alignment, where

the web co-occurrences for a pair of words are used to describe the probabil-
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ity of the hypothesis given the text. Harmeling (2007) propose a model that,

with a given sequence of transformations over a parse tree, keeps entailment

decisions with a certain probability. Wang and Manning (2010) merge the

alignment and the decision into one step, where the alignment is a latent

variable. The alignment is used into a probabilistic model that learns tree-

edit operations on dependency parse trees. Beltagy et al. (2013) extend the

work in (Garrette et al., 2011) to be able to process large scale datasets such

as those from the RTE challenges. The method transforms distributional

similarity judgements into weighted inference formulas, where the distribu-

tional similarity describes a degree of entailment between pairs (i.e., If X and

Y occur in similar contexts they describe similar entities).

Table 3.13: Accuracy against previous work based on probabilistic modelling
over the RTE datasets for the MLN-RELATIONAL model

Method RTE-1 RTE-2 RTE-3

Glickman and Dagan (2006) 59% - -
Harmeling (2007) - - 59.3%

Wang and Manning (2010) - 63% 61.1%
Beltagy et al. (2013) 57% - -
MLN-RELATIONAL 57% 55% 65%

Table 3.13 shows a similar behaviour as the previous comparison: consid-

erably better results on RTE-3, but lower results for RTE-2. In addition, for

the RTE-1 dataset, which has also been used by most of these other methods,

our relational model shows very competitive performance. In particular, our

method achieves the same performance as Beltagy et al. (2013), which also

uses an MLN for the entailment decision, as mentioned in Chapter 2.
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3.5 Summary

The TINE Lexical Matching and TINE Context Matching alignment methods

give as output an alignment matrix, as well as similarity score between a

semantic representation of the T-H pair. The TINE Edit Distance gives as

output only a similarity score. We use these sources of information to train

two different entailment models: i) a propositional learning model and ii) a

statistical learning model. The methods show promising results compared to

previous work. However, the coverage of the alignment methods affects the

overall performance.
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Chapter 4

Methods for Measuring the Bidirectional

Equivalence of Texts

In this Chapter, we use our proposed alignment methods in two NLP ap-

plications, namely MT evaluation and STS. These applications serve as an

extrinsic evaluation for measuring the impact of our alignment methods. In

MT evaluation, the alignment is used as part of a metric to assess machine

translations against human translations. In STS, the alignment plays the

role of a feature to score the similarity between text pairs. In this section we

also describe our proposed method for STS based on MTL.

4.1 Alignment-based Machine Translation Eval-

uation

The automatic evaluation of MT is a long-standing problem. A number of

metrics have been proposed in the last two decades, mostly measuring some

form of matching between the machine translation (hypothesis) and one or

more human (reference) translations. However, most of these metrics focus

on fluency aspects, as opposed to adequacy (meaning). Therefore, measuring

whether the meaning of the hypothesis and reference translation are the same

or similar is still an understudied problem.
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The most commonly used metrics, BLEU (Papineni et al., 2002) and alike,

perform simple exact matching of n-grams between hypothesis and reference

translations. Such a simple matching procedure has well known limitations,

including that the matching of non-content words counts as much as the

matching of content words, that variations of words with the same meaning

are disregarded, and that a perfect matching can happen even if the order

of sequences of n-grams in the hypothesis and reference translation are very

different, changing completely the meaning of the translation.

A few metrics have been proposed in recent years to address the problem

of measuring whether a hypothesis and a reference translation share the

same meaning. The most well-know metric is probably METEOR (Banerjee

and Lavie, 2005; Denkowski and Lavie, 2010). METEOR is based on a

generalised concept of unigram matching between the hypothesis and the

reference translation. Alignments are based on exact, stem, synonym, and

paraphrase matches between words and phrases. However, the structure of

the sentences is not considered, but similar word orders are rewarded through

higher scores for the matching of longer fragments.

Wong and Kit (2010) measure word choice and word order by the match-

ing of words based on surface forms, stems, senses and semantic similarity.

The informativeness of matched and unmatched words is also weighted.

Liu et al. (2010) propose to match bags of unigrams, bigrams and trigrams

considering both recall and precision and F-measure giving more importance

to recall, but also using WordNet synonyms.
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Tratz and Hovy (2008) use transformations in order to match short syn-

tactic units defined as Basic Elements (BE). The BE are minimal-length

syntactically well defined units. For example, nouns, verbs, adjectives and

adverbs can be considered BE-Unigrams, while a BE-Bigram could be formed

from a syntactic relation (e.g. subject+verb, verb+object). BEs can be lex-

ically different, but semantically similar.

Padó et al. (2009a) use Textual Entailment features extracted from the

Stanford Entailment Recogniser (MacCartney et al., 2006). The Textual

Entailment Recogniser computes matching and mismatching features over

dependency parses. The metric predicts the MT quality with a regression

model. The alignment is improved using ontologies.

He et al. (2010) measure the similarity between hypothesis and reference

translation in terms of the Lexical Functional Grammar (LFG) represen-

tation. The representation uses dependency graphs to generate unordered

sets of dependency triples. Calculating precision, recall, and F-score on the

sets of triples corresponding to the hypothesis and reference segments allows

measuring similarity at the lexical and syntactic levels. The measure also

matches WordNet synonyms.

Castillo and Estrella (2012) propose and approach based on a STS setup.

The metric is based on similarity metrics extracted from WordNet. The

metric produces feature vectors for the language pairs ES-EN, DE-EN, FR-

EN and CS-EN. The method takes advantage of available resources for EN

(i.e. WordNet).
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Wang and Manning (2012) propose a metric that computes probabilistic

edit distance used as predictions to evaluate MT translation outputs. The

method learns the weights of edit distance operations for a finite state model.

The major contribution of this method is the extension of edit operations

based on phrase shift and word swapping. The finite state model accept the

sequence of edit operations that transforms the reference translation into the

system translation.

Wu et al. (2013b) propose the use of syntax features in the source side to

evaluate MT. The metric computes distance between paths from dependency

trees. This metric outperforms the most common metrics such as BLEU and

METEOR.

For a more detailed description of metrics we refer the reader to (Callison-

Burch et al., 2012; Macháček and Bojar, 2013; Machacek and Bojar, 2014).

The closest related metric to TINE Lexical Matching is that by Lo and

Wu (2011), which is a semi automated metric based on the matching of

semantic role fillers. First, the translations are annotated with SRL manually

or automatically. The semantic frames between the reference and translation

are compared frame by frame and argument by argument. The frame score

is the weighted sum of the correctly translated arguments. The metric score

is defined by the f-score where the precision and recall is computed by the

average of the translation accuracy for all the frames in the system translation

over the number of frames in the reference translation.
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Giménez et al. (2010) also uses shallow semantic representations. Such a

metric combines a number of components, including lexical matching metrics

like BLEU and METEOR, as well as components that compute the matching

of constituent and dependency parses, named entities, discourse representa-

tions and semantic roles. However, the semantic role matching is based on

exact matching of roles and role fillers. Moreover, it is not clear what the

contribution of this specific information is for the overall performance of the

metric.

4.1.1 Metric Description

We use TINE Lexical Matching as an adequacy component in order to deal

with both word choice and semantic structure. Additionally, TINE Lexical

Matching uses an exact lexical matching component to reward hypotheses

that present the same lexical choices as the reference translation. The overall

score s is defined using the simple weighted average model in Equation (4.1):

s(H,R) = max

{
αL(H,R) + βA(H,R)

α+ β

}
R∈R

(4.1)

whereH represents the hypothesis translation, R represents a reference trans-

lation contained in the set of available references R; L defines the (exact)

lexical match component in Equation (4.2), A defines the adequacy compo-

nent in Eq. (3.1); and α and β are tunable weights for these two components.

In Eq. (3.1) we use as variables: H hypothesis translation and R reference

translation instead of hypothesis H and text T from RTE. If multiple refer-
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ences are provided, the score of the segment is the maximum score achieved

by comparing the segment to each available reference.

L(H,R) =
|H
⋂
R|√

|H| ∗ |R|
(4.2)

The lexical match component measures the overlap between the two rep-

resentations in terms of the cosine similarity metric. A segment, either a

hypothesis or a reference, is represented as a bag of tokens extracted from

an unstructured representation, that is, bag of unigrams (words or stems).

Cosine similarity was chosen, as opposed to simply checking the per-

centage of overlapping words (POW), because cosine similarity does not pe-

nalise differences in the length of the hypothesis and reference translation

as much as POW. Cosine similarity normalises the cardinality of the inter-

section |H ∩ R| using the geometric mean
√
|H| ∗ |R| instead of the union

|H∪R|. This is particularly important for the matching of arguments - which

is also based on cosine similarity. If an hypothesised argument has the same

meaning as its reference translation, but differs from it in length, cosine will

penalise less the matching than POW. That is specially interesting when core

arguments get merged with modifiers due to bad semantic role labelling (e.g.

[A0 I] [T bought] [A1 something to eat yesterday] instead of [A0 I] [T bought]

[A1 something to eat] [AM-TMP yesterday]).
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4.1.2 Machine Translation Metric Evaluation Datasets

The evaluation task estimates the performance of automatic evaluation met-

rics for machine translation (Callison-Burch et al., 2012). The organisers

provide translations produced by the participating systems in the transla-

tion task along with the reference human translations. The automatic metrics

rank each of the translations at the system-level or at the segment-level. The

metrics performance is evaluated using the correlation between the predicted

scores (i.e. rankings) with the human judgements.

The evaluation datasets consist of the output of machine translation sys-

tems for five different language pairs (e.g. French-English, Spanish-English,

German-English, Czech-English) along with the reference translations for

each language pair and the respective ranking annotation. The metric com-

putes scores for each of the outputs at the system-level and the segment-level.

The correlation is measured as follows:

System-level correlation Spearman’s rank correlation coefficient (rho) to mea-

sure the correlation of the automatic metrics with the human judge-

ments of translation quality at the system-level. The system rank will

be assigned based on the percent of time that the sentences it produced

were judged to be better than or equal to the translations of any other

system. The automatic metrics scores are converted into rankings be-

fore calculating the correlation.
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Segment-level correlation Kendall’s tau to measure metrics’ correlation with

human judgements at the sentence-level. For every pairwise comparison

of the output of two systems for a sentence the correlation is computed

by counting if the metric score (i.e. decision) is concordant with the

human judgement if the metric orders the output in the same way.

In other words, if the metric gives a higher score to a higher ranked

system. The ties are not counted for correlation.

The datasets are created by translators using news articles, where the

annotator agreement is measured with the kappa coefficient. The inter-

annotator agreement ranges from 0.176 kappa to 0.336, while intra-annotator

agreement ranges from 0.279 to 0.648 kappa. The WMT08, WMT09 and

WMT10 datasets (Callison-Burch et al., 2012) with manually annotated

rankings are used by the automatic metrics to tune their parameters. The

baseline metric is BLEU, which achieves an average correlation of 0.53 for

system-level and 0.17 for segment-level.

4.1.3 Results and Discussion

We set the weights α and β by experimental testing to α = 1 and β = 0.25.

The lexical component weight is prioritised because it has shown a good

average Kendall’s tau correlation (0.23) on a development dataset (Callison-

Burch et al., 2010). Table 4.1 shows the correlation of the lexical component

with human judgements for a number of language pairs.

We use the SENNA SRL system to tag the dataset with semantic roles.

98



CHAPTER 4. METHODS FOR MEASURING THE BIDIRECTIONAL
EQUIVALENCE OF TEXTS

Table 4.1: Kendall’s tau segment-level correlation of the lexical component
with human judgements

Metric cz-en fr-en de-en es-en avg

L(H,R) 0.27 0.21 0.26 0.19 0.23

We discuss with a few examples some of the common errors made by the

TINE Lexical Matching method for MT evaluation. The errors made by our

alignment methods are also present on the previous RTE results. Overall,

we consider the following categories of errors:

1. Lack of coverage of the ontologies.

H: This year, women were awarded the Nobel Prize in all fields except

physics.

R: This year the women received the Nobel prizes in all categories less

physical.

The lack of coverage in the VerbNet ontology prevented the detection

of the similarity between receive and award.

2. Matching of unrelated verbs.

H: If snow falls on the slopes this week, Christmas will sell out too, says

Schiefert.
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R: If the roads remain snowfall during the week, the dates of Christmas

will dry up, said Schiefert.

In VerbOcean remain and say are incorrectly said to be related. Ver-

bOcean (Chklovski and Pantel, 2004) was created by a semi-automatic

extraction algorithm with an average accuracy of 65.5%.

3. Incorrect tagging of the semantic roles by the semantic parser SENNA.

H: Colder weather is forecast for Thursday, so if anything falls, it should

be snow.

R: On Thursday , must fall temperatures and, if there is rain, in the

mountains should.

The position of the predicates affects the SRL tagging. The predicate

fall has the following roles (A1, V, and S-A1) in the reference, and

the following roles (AM-ADV, A0, AM-MOD, and AM-DIS) in the

hypothesis. As a consequence, the metric cannot attempt to match the

fillers. Also, SRL systems do not detect phrasal verbs, where the action

putting people off is similar to discourages.

We compare TINE Lexical Matching against standard BLEU, METEOR

(Denkowski and Lavie, 2010) and other previous metrics reported in (Callison-

Burch et al., 2010) which also claim to use some form of semantic informa-
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tion. The comparison is made in terms of Kendall’s tau correlation against

the human judgements at a segment-level. For our submission to the shared

evaluation task (i.e. (Rios et al., 2011)), system-level scores are obtained by

averaging the segment-level scores. Our metric achieved rank 13 at segment-

level with an average correlation of 0.23 and rank 2 at system-level with

an average correlation of 0.87. Our metric outperforms most the previous

work at system-level. A full comparison of metrics at system/segment level

is reported in (Callison-Burch et al., 2011).

Table 4.2: Comparison with common metrics and previous semantically-
oriented metrics using segment-level Kendall’s tau correlation with human
judgements

Metric cz-en fr-en de-en es-en avg

Liu et al.
(2010)

0.34 0.34 0.38 0.34 0.35

Giménez
et al. (2010)

0.34 0.33 0.34 0.33 0.33

Wong and
Kit (2010)

0.33 0.27 0.37 0.32 0.32

METEOR 0.33 0.27 0.36 0.33 0.32
TINE Lex-
ical Match-
ing

0.28 0.25 0.30 0.22 0.26

BLEU 0.26 0.22 0.27 0.28 0.26
He et al.
(2010)

0.15 0.14 0.17 0.21 0.17

Tratz
and Hovy
(2008)

0.05 0.0 0.12 0.05 0.05

TINE Lexical Matching achieves the same average correlation with BLEU,

but outperforms it for some language pairs. Additionally, TINE outperforms

101



4.1. ALIGNMENT-BASED MACHINE TRANSLATION EVALUATION

some of the other metrics which use WordNet to deal with synonyms as part

of the lexical matching.

The closest metric to TINE Lexical Matching on this dataset is (Giménez

et al., 2010), which also uses semantic roles as one of its components, achieves

better performance. However, this metric is a rather complex combination of

a number of other metrics to deal with different linguistic phenomena. The

metric uses lexical, syntactical and semantic information, which the latest

version has more than 600 metrics (i.e. different variants of each metric).

The lexical representation the uses variants of BLEU, METEOR, ROUGE,

and TERp. The syntactic representation metrics are: i) shallow parsing met-

ric that is the average lexical overlap over parts of speech and base phrase

chunk types, ii) dependency parsing metric that is the head matching over

word forms, grammatical categories and relations, and average lexical over-

lap between tree nodes according to their tree level, category or relation, and

iii) constituency parsing metric that is average lexical overlap over parts of

speech and syntactic constituents, and syntactic tree matching. The seman-

tic representation metrics are: i) named entities metric that is the average

lexical overlap between NERs according to their type, ii) semantic roles met-

ric that is the average lexical overlap between frames according to their type,

and average role overlap, and iii) discourse representation metric that is the

average lexical overlap over discourse representations according to their type.

As an additional experiment, we use BLEU as the lexical component

L(H,R) in order to test if the shallow-semantic component can contribute
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to the performance of this standard evaluation metric. Table 4.3 shows the

results of the combination of BLEU and TINE Lexical Matching defined as

TINE-B by using the same parameter configuration as above. The addition

of TINE Lexical Matching increased the average correlation of BLEU from

0.26 to 0.28.

Table 4.3: TINE-B: Combination of BLEU and the shallow-semantic com-
ponent

Metric cz-en fr-en de-en es-en avg

TINE-B 0.27 0.25 0.30 0.30 0.28

The best contribution of the TINE-B combination is on the es-en language

pair, where the solely use of TINE achieves a correlation of 0.22 and BLEU

0.28. Thus, TINE is helping BLEU to improve the overall performance in

a similar way as the work of (Giménez et al., 2010), where different types

of metrics cope with several linguistic phenomena. Finally, we attempt to

improve the tuning of the weights of the components (α and β parameters)

by using a simple genetic algorithm (Back et al., 1999) to select the weights

that maximise the correlation with human scores on a development set (we

use the development sets from WMT10 (Callison-Burch et al., 2010)).

The configuration of the genetic algorithm is as follows:

• Fitness function: Kendall’s tau correlation

• Chromosome: two real numbers, α and β

• Number of individuals: 80
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• Number of generations: 100

• Selection method: roulette

• Crossover probability: 0.9

• Mutation probability: 0.01

We use a similar configuration for the genetic algorithm as in Chapter 3.

We decrease the number of generations given the large amount of sentences

present in the WMT datasets (i.e. 2034 sentences for each language pair).

However, we increase the probability of crossing to give a chance to a larger

amount of solutions (i.e. individuals) to contribute during search.

Table 4.4: Optimised values of the parameters using a genetic algorithm and
Kendall’s tau correlation of the metric on the test sets

Language pair Correlation α β

cz-en 0.28 0.62 0.02
fr-en 0.25 0.91 0.03
de-en 0.30 0.72 0.1
es-en 0.31 0.57 0.02

avg 0.29 – –

Table 4.4 shows the parameter values obtaining from tuning for each lan-

guage pair and the correlation achieved by the metric with such parameters.

With such an optimisation step the average correlation of the metric increases

to 0.29. The addition of the shallow-semantic component into a lexical com-

ponent yields absolute improvements in the correlation of 3%-6% on average,

depending on the lexical component used (cosine similarity or BLEU).
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4.2 Alignment-based Semantic Textual Sim-

ilarity

For STS, we train a regression algorithm with different types of similarity

metrics as features: i) lexical, ii) syntactic and iii) semantic. The lexical

similarity metrics are: i) cosine similarity using a BoW representation, and

ii) precision, recall and F-measure of content words.

The syntactic metric computes BLEU over the labels of base-phrases

(chunks) instead of words, two semantic metrics are used: a metric based on

the preservation of named entities and TINE Context Matching. Named en-

tities are matched by type and content: while the type has to match exactly,

the content is compared with the assistance of a distributional thesaurus.

Finally, we use METEOR, that computes inexact word overlap.

The lexical and syntactic metrics complement the semantic metrics in

dealing with the phenomena observed in the task’s dataset. For example,

from the MSRvid dataset:

S1 Two men are [playing]V football.

S2 Two men are [practicing]V football.

In this case, as typical of paraphrasing, the situation and participants are

the same while the surface realisation differs, but playing can be considered

similar to practicing. From the SMTeuroparl dataset:
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S3 The Council of Europe, along with the [Court of Human Rights]AM−ADV ,

[has]V a wealth of experience of such forms of supervision, and we can

build on these.

S4 Just as the [European Court of Human Rights]AM−ADV , the Council of

Europe [has]V also considerable experience with regard to these forms

of control; we can take as a basis.

Similarly, here although with different realisations, the Court of Human

Rights and the European Court of Human Rights represent the same entity.

Semantic metrics based on predicate-argument structure can play a role

in cases when different realisation have similar semantic roles:

S5 The right of a government arbitrarily to set aside its own constitution is

the defining characteristic of a tyranny.

S6 The right for a government to draw aside its constitution arbitrarily is

the definition characteristic of a tyranny.

For sentence S5 the SRL annotation is as follows:

right The [right]V [of a government]A0 [arbitrarily to set aside its own constitution]A1

is the defining characteristic of a tyranny.

set The right of [a government]A0 [arbitrarily]AM−MNR to [set]V [aside]A2 [its

own constitution]A1 is the defining characteristic of a tyranny.

define The right of a government arbitrarily to set aside its own constitution

is [the]A0 [defining]V [characteristic of a tyranny]C−A0.
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characteristic The right of a government arbitrarily to set aside its own

constitution is the [defining]A1 [characteristic]V [of a tyranny]A1.

For sentence S6 the SRL annotation is as follows:

right The [right]V [for a government to draw aside its constitution]A0 arbi-

trarily is the definition characteristic of a tyranny.

draw The right for [a government]A0 to [draw]V [aside]AM−DIR [its constitution]A1

arbitrarily is the definition characteristic of a tyranny.

characteristic The right for a government to draw aside its constitution

arbitrarily is the [definition]A1 [characteristic]V [of a tyranny]A1.

4.2.1 Features Description

All our lexical metrics use the same surface representation: words. However,

the cosine metric uses BoW, while all the other metrics use only content

words. We thus first represent the sentences as BoW. For example, given

the pair of sentences S7 and S8:

S7 A man is riding a bicycle.

S8 A man is riding a bike.

the BoW’s are S7 = {A, man, is, riding, a, bicycle,.} and S8 = {A, man,

is, riding, a, bike, .}, and the bag-of-content-words are S7 = {man, riding,

bicycle} and S8 = {man, riding, bike}.
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We compute similarity scores using the following metrics between a pair

of sentences A and B: cosine distance (Eq. 3.6), precision (Eq. 3.7), recall

(Eq. 3.8) and F-measure (Eq. 3.9).

The BLEU metric computes the precision of exact matching of n-grams

between a hypothesis and reference translations. This simple procedure has

limitations such as: the matching of non-content words mixed with the counts

of content words affects in a perfect matching that can happen even if the

order of sequences of n-grams in the hypothesis and reference translation

are very different, changing completely the meaning of the translation. To

account for similarity in word order we use BLEU over base-phrase labels

instead of words, leaving the lexical matching for other lexical and semantic

metrics. We compute the matchings of 1-4-grams of base-phrase labels. This

metric favours similar syntactic order.

The METEOR metric, previously described, is also a lexical metric based

on unigram matching between two sentences. However, matches can be exact,

using stems, synonyms, or paraphrases of unigrams.

TINE Context Matching is an automatic metric based on the use semantic

roles to align predicates and their respective arguments in a pair of sentences.

We use the following state-of-the-art tools to pre-process the data for

feature extraction: i) TreeTagger1 for lemmas and ii) SENNA for Part-of-

Speech tagging, Chunking, Named Entity Recognition and Semantic Role

Labelling.

1http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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The complete feature set includes:

• Lexical metrics

– Cosine metric over BoW

– Precision over content words

– Recall over content words

– F-measure over content words

• BLEU metric over chunks

• METEOR metric over words (with stems, synonyms and paraphrases)

• Named entity metric Eq. (3.11)

• Semantic Role Labelling metric (i.e. TINE Context Matching Eq.

(3.3))

The Machine Learning algorithm used for regression is the LIBSVM2

Support Vector Machine (SVM) implementation using the radial basis kernel

function (RBF). We used a simple genetic algorithm to tune the parameters

of the SVM. We use a similar configuration for the genetic algorithm as in

Chapter 3, but we modify the parameters of the genetic algorithm to fit this

task. For example, less generations for faster results. The configuration of

the genetic algorithm is as follows:

2http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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• Fitness function: minimise the mean squared error found by cross-

validation

• Chromosome: real numbers for SVM parameters γ, cost and ε

• Number of individuals: 80

• Number of generations: 100

• Selection method: roulette

• Crossover probability: 0.9

• Mutation probability: 0.01

4.2.2 Semantic Textual Similarity Evaluation Datasets

The participating methods in the STS evaluation challenge have to compute a

similarity score between the pair of sentences S1 and S2. The participants are

allowed to send a limited number of different versions of their main proposed

method, which are called runs. The similarity scores range between 0 and 5

for each pair of sentences, given the following official guidelines:

• Score (5) The two sentences are completely equivalent, as they mean

the same thing. For example,

The bird is bathing in the sink.

Birdie is washing itself in the water basin.

• Score (4) The two sentences are mostly equivalent, but some unimpor-

tant details differ. For example,
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In May 2010, the troops attempted to invade Kabul.

The US army invaded Kabul on May 7th last year, 2010.

• Score (3) The two sentences are roughly equivalent, but some important

information differs/missing. For example,

John said he is considered a witness but not a suspect.

”He is not a suspect anymore.” John said.

• Score (2) The two sentences are not equivalent, but share some details.

For example,

They flew out of the nest in groups.

They flew into the nest together.

• Score (1) The two sentences are not equivalent, but are on the same

topic. For example,

The woman is playing the violin.

The young lady enjoys listening to the guitar.

• Score (0) The two sentences are on different topics.

John went horse back riding at dawn with a whole group of friends.

Sunrise at dawn is a magnificent view to take in if you wake up early

enough for it.

The similarity scores are rated by human judges using Amazon Mechan-

ical Turk based on the 0-5 score range. The results of the methods perfor-

mance is evaluated using the Pearson product-moment correlation coefficient
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between the method scores and the human scores. The agreement of each

annotator with the average scores was between 87% and 89%. Similar to

RTE the STS task also provides a unified framework that accounts for the

impact of an extrinsic evaluation of multiple semantic components.

The first STS challenge in 2012 (Agirre et al., 2012) used training and

test datasets that contain sentence pairs from publicly available paraphrase

and machine translation resources. The MSR-Paraphrase, Microsoft Re-

search Paraphrase Corpus (MSRPar) were used to evaluate text similarity

algorithms. The MSR-Video, Microsoft Research Video Description Cor-

pus (MSRVid), where the authors showed brief video segments to annotators

from Amazon Mechanical Turk and they were asked to provide a one-sentence

description of the main action or event in the video. Each of the previous

datasets include 1500 sentence pairs each. As well as for machine transla-

tion evaluation 1500 sentence pairs. The mapping between OntoNotes and

WordNet senses (OnWN) have 750 sentence pairs.

A common approach for STS is based on using similarity metrics as fea-

tures to train regression algorithms. For example, the baseline approach

consists in using a simple word overlap. The input sentences are prepro-

cessed with tokenisation and splitting at white spaces, and each sentence is

represented as a vector in a multidimensional token space. Each dimension

have value 1 if the token is present in the sentence, 0 otherwise. The similar-

ity score of the previous vectors is computed by using cosine similarity. On

the STS 2012 the correlation results of the official baseline were as follows:
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OnWN r=0.5864, MSRpar r=0.4334 and MSRvid r=0.2996, and the results

on the MT evaluation task are for SMT-europarl r=0.4542 and SMT-news

r=0.3908.

For the STS 2013 (Agirre et al., 2013) the participating methods had

to cope with the additional challenge of the lack of training data, namely

CORE task. The CORE task is similar to the STS 2012 task, but with

datasets from different tasks compare to 2012. The included tasks are: news

wire headlines, machine translation evaluation datasets and multiple lexical

resource glossed sets. The headlines dataset is composed by naturally oc-

curring news headlines gathered by the Europe Media Monitor engine3 from

several different news sources. The OnWN/FnWN lexical recourse dataset

contains gloss pairs from two sources: OntoNotes-WordNet (OnWN) and

FrameNet-WordNet (FnWN). The baseline is the same as in 2012, but with

the addition of the best 2012 systems (Šarić et al., 2012; Bär et al., 2012).

Also, the new typed-similarity (TYPED) task was proposed. The TYPED

task is based on computing the similarity between items, using textual meta-

data. The participants need to score specific types of similarity, like similar

author, similar time period among others. The TYPED dataset is annotated

by using crowdsourcing with 1500 pairs, where the dataset is divided in 750

pairs for training and 750 for test.

3http://emm.newsbrief.eu/overview.html
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In the STS 2014 (Agirre et al., 2014) new tasks were proposed to evaluate

the participating systems4. The new tasks are: deft discussion forum and

news (deft-forum and deft-news), deft-news (news article data in the DEFT

project), image description (image), news title and tweet comments (tweet-

news). A new subtask was proposed, namely Spanish STS. The goal of this

subtask is evaluating STS systems for Spanish. As well as in the 2013 STS

both subtask evaluation challenges lack of a training dataset.

4.2.3 Results and Discussion

We have three different system runs (run1, run2, run3), each is a variation

of the above feature set. For the official submission to STS 2012 we used the

systems with optimised SVM parameters. We trained SVM models with each

of the following STS 2012 task datasets: MSRpar, MSRvid, SMTeuroparl and

the combination of MSRpar+MSRvid. For each test dataset we applied their

respective training task, except for the unseen test tasks, not covered by any

training task: for On-WN we used the combination MSRpar+MSRvid, and

for SMTnews we used SMTeuroparl.

Tables 4.5 to 4.7 show the Pearson correlation of our three systems/runs

for individual datasets of the predicted scores against human annotation,

compared against the official baseline.

Our first run (run1) uses the lexical, BLEU, METEOR and named entities

features, without the TINE Context Matching feature. Table 4.5 shows the

4http://alt.qcri.org/semeval2014/task10/
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results over the test set, where run1-A is the version without SVM parameter

optimisation and run1-B are the official results with optimised parameters

for SVM.

Table 4.5: Results STS 2012 for run1 using lexical, chunking, named entities
and METEOR as features. A is the non-optimised version, B are the official
results

Task run1-A run1-B Baseline

MSRpar 0.455 0.455 0.433
MSRvid 0.706 0.362 0.300

SMTeuroparl 0.461 0.307 0.454
OnWN 0.514 0.281 0.586

SMTnews 0.386 0.208 0.390

In run1 we use only the TINE Context Matching feature in order to

analyse whether this feature on its own could be sufficient or lexical and

other simpler features are important. Table 4.6 shows the results over the

test set without parameter optimisation (run2-A) and the official results with

optimised parameters for SVM (run2-B).

Table 4.6: Results STS 2012 for run2 using the SRL feature only. A is the
non-optimised version, B are the official results

Task run2-A run2-B Baseline

MSRpar 0.335 0.300 0.433
MSRvid 0.264 0.291 0.300

SMTeuroparl 0.264 0.161 0.454
OnWN 0.281 0.257 0.586

SMTnews 0.189 0.221 0.390

ALL 0.096 0.536 0.311
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In run3 we use all features. Table 4.7 shows the results over the test

set without parameter optimisation (run3-A) and the official results with

optimised parameters for SVM (run3-B).

Table 4.7: Results for run3 using all features. A is the non-optimised version,
B are the official STS 2012 results

Task run3-A run3-B Baseline

MSRpar 0.472 0.353 0.433
MSRvid 0.705 0.572 0.300

SMTeuroparl 0.471 0.307 0.454
OnWN 0.511 0.264 0.586

SMTnews 0.410 0.116 0.390

Table 4.8 shows the average results over all five datasets, where ALL

stands for the Pearson correlation with the gold standard for the five dataset,

Rank is the absolute rank among all submissions, ALLnrm is the Pearson cor-

relation when each dataset is fitted to the gold standard using least squares,

RankNrm is the corresponding rank and Mean is the weighted mean across

the five datasets, where the weight depends on the number of sentence pairs

in the dataset.

Table 4.8: Official STS 2012 results and ranking over the test set for runs
1-3 with SVM parameters optimised

System ALL Rank ALLnrm RankNrm Mean RankMean

run1 0.640 36 0.719 71 0.382 80
run2 0.536 59 0.629 88 0.257 88
run3 0.598 49 0.696 82 0.347 84

Baseline 0.311 87 0.673 85 0.436 70
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Table 4.8 shows the ranking and normalised official scores of our official

submissions compared against the baseline. Our submissions outperform the

official baseline but significantly underperform the top systems in the shared

task. The best system (run1) achieved an above average ranking, but dis-

appointingly the performance of our most complete system (run3) using the

semantic metric is poorer. Surprisingly, the non-optimised versions outper-

form the optimised versions used in our official submission. One possible

reason for that is the overfitting of the optimised models to the training sets.

Our run1 and run3 have very similar results: the overall correlation be-

tween all datasets of these two systems is 0.98. One of the reasons for these

results is that the alignment is compromised by the length of the sentences.

In the MSRvid dataset, where the sentences are simple such as “Someone is

drawing”, resulting in a good semantic parsing, a high performance for this

metric is achieved. However, in the SMT datasets, sentences are much longer

(and often ungrammatical, since they are produced by a machine translation

system) and the performance of the metric drops. In addition, the alignment

makes mistakes such as judging as highly similar sentences such as “A man

is peeling a potato” and “A man is slicing a potato”, where the arguments

are the same but the situations are different.
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4.3 Multi-task Learning-based Semantic Tex-

tual Similarity

We propose to model STS by using MTL in order to address challenges

observed in previous work. We use a state-of-the-art STS feature set (Šarić

et al., 2012) to train an MTL algorithm. As MTL algorithm we use a non-

parametric Bayesian model called Gaussian Processes (GP) (Rasmussen and

Williams, 2005). We show that the MTL model outperforms previous work

on the 2012 datasets, and it has a robust performance on the 2013 datasets.

On the STS 2014 challenge our method shows competitive results. However,

the challenge of unknown tasks is a sensitive variable that affects the overall

performance. In addition, we compare our proposed MTL models with a

task adaptation baseline based on a Transductive Support Vector Machine

algorithm in terms of unknown tasks.

4.3.1 TakeLab Features Description

We use the features from one the top best performing systems on the STS.

The TakeLab5 system for STS 2012 is publicly available and it extracts the

following types of features:

N-gram overlap is the harmonic mean of the degree of matching between

the first and second texts, and vice-versa. The overlap is computed for

unigrams, bigrams, and trigrams.

5http://takelab.fer.hr/sts/
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WordNet-augmented word overlap is the partial WordNet path length

similarity score assigned to words that are not common to both texts.

Vector space sentence similarity is the representation of each text as a

distributional vector by summing the distributional (i.e., LSA) vectors

of each word in the text and taking the cosine distance between these

texts vectors.

Shallow NE similarity is the matching between named entities that indi-

cates whether they were found in both of the two texts.

Numbers overlap is an heuristic that penalises differences between num-

bers in texts.

The features make of a vector of 21 similarity scores.

4.3.2 Multi-task Gaussian Process

Gaussian Processes (Rasmussen and Williams, 2005) is a Bayesian non-

parametric machine learning framework based on kernels for regression and

classification. In GP regression, for the inputs x we want to learn a function

f that is inferred from a GP prior:

f(x) ∼ GP (m(x), k(x, x′)), (4.3)

where m(x) defines a 0 mean and k(x, x′) defines the covariance or kernel

functions. In the single output case, the random variables are associated to

a process f evaluated at different values of the input x while in the multiple
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output case, the random variables are associated to different processes and

evaluated at different values of x.

We are interested in the intrinsic coregionalization model for GP. The

coregionalization model is an heterotopic MTL in which each output is asso-

ciated with a different set of inputs. In our case the different inputs are the

STS tasks. The intrinsic coregionalization model (i.e. MTL-GP) is based on

a separable multi-task kernel (Álvarez et al., 2012) of the form:

K(X,X) = B⊗ k(X,X) (4.4)

= (Bij × k(xi,xj)) ,

where k(X,X) is a standard kernel over the input points and B is a posi-

tive semi-definite matrix encoding task covariances called coregionalization

matrix. B is built from other matrices B = WWT + diag(k), where W is

a matrix that determines the correlations between the different outputs and

k is a vector which allows the outputs (i.e. tasks) to behave independently.

The representation of data points is augmented with a task id and given the

id of a pair of data points the covariance from the standard kernel between

points is multiplied by a corresponding covariance from B, which modifies

the covariance of the data points depending if they belong to the same task

or different tasks.

The coregionalization matrixB controls the amount of inter and intra task

transfer of learning among tasks. Cohn and Specia (2013) propose different

types of B matrices for predicting the quality of machine translations. They
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developed B matrices that represent an explicit intra-task transfer to be a

part of the parametrised kernel function. However, we use a default B where

the weights of the matrix are learnt along with the hyper-parameters by the

GP tool.

For training our method we use GPy 6. We use the combination of the

RBF kernel with the coregionalization kernel. The parameters used to build

the coregionalization matrix are the number of outputs to coregionalize and

the rank of W . For example, the number of outputs to coregionalize are the

3 tasks from the STS 2012 training dataset. The B matrix and the RBF

kernel hyper-parameters are jointly optimised by GPy. Each instance of the

training data is augmented with the id of their corresponding task. During

testing a new instance to be predicted has to be matched to a specific task

id from the training data. In the case of an unknown test task we match it

to a similar training task, given the task description of the test dataset.

4.3.2.1 Linear Combination of Coregionalization Kernels

In order to cope with unknown test tasks, as a first approach, we add an extra

training task into the MTL-GP which consists of all the training instances.

The intuition is that the kernel function will assign a higher correlation (i.e.

covariance) of the unknown test inputs to similar training inputs (e.g. related

tasks) and a lower correlation otherwise. However, the inputs with a low

6https://github.com/SheffieldML/GPy
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correlation may introduce prediction errors. We select the extra training

task for unknown test tasks.

In addition, we use a linear combination of kernels to allow learning dif-

ferentiation between tasks. In this way, we can control the inter-intra task

transfer by choosing which kernel to use for each task. We used a kernel for

general learning and task-specific kernels. The resulting kernel has the form:

KLCM1(X,X) = K0(X,X) + I{task1}K1(X,X) + ...

+ I{taskD}KD(X,X), (4.5)

where KLCM1(X,X) is the sum of separable multi-task kernels, and I{·}

are index functions that have value 0 or 1 depending on the task. Hence,

K0(X,X) is the only kernel used for all the tasks, while kernels Ki(X,X)

are private for each task. In the case of the 2012 training set, the kernel

KLCM1(X,X) has one general kernel and three specific kernels. Therefore,

any additional task added after training will use only the general kernel. We

also set Bi,j = 1 for i = j (i.e. same tasks in the coregionalization matrix)

and 0 otherwise in all the kernels. Such condition is necessary for the Ki

kernels to be private and allow using K0 with unseen tasks.

Following the intuition of the combination of kernels we also define the

kernel:

KLCM2(X,X) = KI(X,X) + I{trained}KII(X,X), (4.6)
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where KI(X,X) has a coreginalization matrix such that Bi,j = 0 for

i 6= j. KII has no restrictions, but it is only used for tasks that have been

trained.

Furthermore, given the large amount of training data used for the STS

2014 (i.e. 6832 training instances) we also train a sparse GP model from

GPy. The main limitation of the GP model is the that memory demands

grow O(n2) and the computational demands grow O(n3), where n is the num-

ber of training instances. Sparse methods for example in (Titsias, 2009) try

to overcome this limitation by constructing an approximation on a small set

of m support or inducing instances that allow the reduction of computational

demands to O(nm2). For the sparse version on GPy we use the same com-

bination of kernels, we select empirically the number of inducing instances

and the GP tool randomly pick the instances from the training data.

4.3.3 Transductive Support Vector Machine

Our main motivation is to use the TSVM as a task adaptation baseline.

TSVM takes into consideration a particular test set and tries to minimise

errors only on those particular instances (Vapnik, 1995). The particular test

set is added into the training dataset without labels. The TSVM learns a

large margin hyperplane classifier using labelled training data, but at the

same time it forces that hyperplane to be far from the unlabelled data. The

TSVM considers f that maps inputs x to outputs y. However, TSVM does

not construct a function f where the output of the transduction algorithm
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is a vector of labels, and the method transfers the information from labelled

instances to the unlabelled.

We use SVM-light Joachims (1998) for training. Our TSVM uses an RBF

kernel with no hyper-parameter optimisation. Each unknown task in the

test dataset is added (without labels) to the training dataset. This improved

training data is used to perform testing.

In the following section we show a comparison with previous work for the

STS 2012 and 2013 datasets and the official results for English and Spanish

STS 2014 datasets.

4.3.4 Results and Discussion

To evaluate our proposed models we define the following runs7:

MTL-GP model based on the multi-task kernel from equation (4.4). In

this model each input of the training data is augmented with the index

of their corresponding task. During testing a training task with an

specific index has to be selected for a new test input. In the case of an

unknown test task we set a training task with a similar one, given the

description of the task of the test dataset.

MTL-GP extra model based on the multi-task kernel from equation (4.4)

with an extra training task to be selected in the case of unknown tests

tasks.

7We use a sparse GP approximation with m=50 inducing points and with a combination
of RBF and coregionalization kernels.
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MTL-GP LCM1 model based on the linear combination of multi-task ker-

nels that are the general kernel and specific task kernels from equation

(4.5) to avoid the necessity of selecting a training task during testing.

MTL-GP LCM2 model based on the linear combination of the indepen-

dent and shared multi-task kernels from equation (4.6).

We use the STS datasets, described in Section 4.2.2, to compare our pro-

posed models with previous work. For training we use the STS 2012 training

datasets and we compare the results on the STS 2012 with publicly available

systems and with the official Baseline based on the cosine metric computed

over word overlaps, where the official score is the Pearson correlation. We

match the unknown task OnWN to MSRpar given that the task of paraphras-

ing is news from the web that contains a broad vocabulary. We compare the

MTL-GP to 2012, 2013 and 2014 and the TSVM only with the unknown

tasks of SMTnews and OnWN in 2012, and the STS 2013.

Table 4.9: Comparison with previous work on the STS 2012 test datasets

Method MSRpar MSRvid SMTeuroparl SMTnews OnWN

Šarić et al. (2012) 0.7343 0.8803 0.4771 0.3989 0.6797
Bär et al. (2012) 0.68 0.8739 0.5280 0.4937 0.6641

MTL-GP 0.7324 0.8877 0.5615 0.6053 0.7256
MTL-GP extra 0.7176 0.8877 0.5615 0.5128 0.7055
MTL-GP LCM1 0.7148 0.8670 0.5617 0.6470 0.7406
MTL-GP LCM2 0.7148 0.8565 0.5526 0.6427 0.7288

TSVM - - - 0.4411 0.6840
Baseline 0.4334 0.2996 0.4542 0.3908 0.5864
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Table 4.10: Matching of new 2013 tasks with 2012 training data for the
MTL-GP

Test
Train

MSRVid MSRpar SMTeuroparl

Headlines 0.6666 0.6595 0.5693

OnWN 0.6516 0.4635 0.4113

FNWN 0.4062 0.3217 0.2344

Table 4.9 shows the comparison of the MTL-GP with previous work,

where our method outperforms in most of the tasks. Our method improves

the results of TakeLab that is trained with a separate Support Vector Regres-

sion model for each task. We compare our method with the simple version

of TakeLab that is available, however there is a different version with syn-

tactic features where the results do not show a significant variation only in

SMTnews r=0.4683. For the complete alternative results we refer the reader

to (Šarić et al., 2012). The MTL-GP extra, LCM1 and LCM2 achieve closer

results to the MTL-GP without the necessity of selecting a task during test-

ing. However, the MTL-GP extra imposes the problem of a slow training

because of the extra task, where we have repeated training instances. The

model LMC1 outperform the best system on unknown tasks and the model

run1.

On the STS 2013 dataset we compare our method with work based on

task adaptation and the official baseline. We use the 2012 data for train-

ing because of the lack of training data for this dataset. To compare the

MTL-GP extra, LCM1 and LCM2 we use the MTL-GP with the best result

(MSRvid). Table 4.10 shows all the possible matching combinations between
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the STS 2013 test and STS 2012 training data. It is worth mentioning that

the best results are given by the matching unseen tasks with the MSRvid

task, where all the tasks achieve their highest result with the same training

task. Our TSVM baseline is close to the official baseline and to the worst

MTL-GP matching. Transductive Learning (TL) transfers the information

from labelled instances to the unlabelled by adding a particular test dataset/-

task into the training to minimise errors only on those particular instances.

Furthermore, the TSVM shows poor results on new tasks, where a possible

reason for this performance is the lack of hyper-parameter optimisation.

Table 4.11: Comparison of the best matching MTL-GP (MSRvid) with pre-
vious work on STS 2013 test datasets

Method Headlines OnWN FNWN

Heilman and Madnani (2013) 0.7601 0.4631 0.3516
Severyn et al. (2013) 0.7465 0.5572 0.3875

MTL-GP 0.6666 0.6516 0.4062
MTL-GP extra 0.6417 0.6498 0.4036
MTL-GP LCM1 0.6676 0.6163 0.4020
MTL-GP LCM2 0.6615 0.4030 0.4084

TSVM 0.5857 0.61 0.21
Baseline 0.5399 0.2828 0.2146

In Table 4.11, we show the comparison with previous work on the 2013

datasets. Our method shows very competitive results but with the correct

matching of task (MSRvid), whereas the worst performed matching (SM-

Teuroparl, Table 4.10) shows results that are closer to the official baseline.

In previous work the task adaptation is performed with the addition of ex-

tra features and the subsequent extra parameters to the model, where in
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the MTL-GP the transfer learning is done with the coregionalization matrix

and does not depend in large amounts of data as opposed to previous work.

The MTL-GP extra, LCM1 and LCM2 show comparable results to the best

selection of test task for the MTL-GP.

For our official participation8 the training dataset consists of the com-

bination of each English training and test STS tasks from 2012 and 2013

which gives a number of 7 tasks. During testing on the first run we matched

similar datasets/tasks with each other and the new tasks with the MSR-

par. For the second run we matched the new task datasets with a related

one. The dataset matching (test/training) is as follows: deft-forum/MSRpar,

deft-news/SMTnews, tweet-news/SMTnews and images/MSRvid. For the

third run the difference in matching is for deft-news/headlines and tweet-

news/headlines, where the other tasks remain with the same matching. Ta-

ble 4.12 show the official STS 2014 results where our best method (i.e. run3)

achieves the rank 10.

Table 4.12: Official English STS 2014 test datasets results for the MTL-GP

Run deft-forum deft-news headlines images OnWN tweet-news rank

UoW run1 0.3419 0.7512 0.7535 0.7763 0.7990 0.7368 11
UoW run2 0.3419 0.5875 0.7535 0.7877 0.7990 0.6281 17
UoW run3 0.3419 0.7634 0.7535 0.7877 0.7990 0.7529 10

In Table 4.13, we show the comparison of the MTL-GP and the sparse

MTL-GP with the best 2014 system (DLSCU run2). For both MTL methods

8We participate with the system called UoW, which is based on the MTL-GP
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we match the 2014 tasks with the best scored training task headlines. For

the sparse MTL-GP run1 (Table 4.13) we chose experimentally a number

of m=500 random induced points. As a reference, the correlation of sparse

MTL-GP with 50 points on deft-forum is r=0.4691 on 0.23 hours, 100 points

is r=0.4895, with 500 points r=49124 and 1000 points r=0.49108. The sparse

MTL-GP with 500 points runs in 1.38 hours compared with 2.39 hours for the

full MTL-GP9. The sparse version achieves results similar to the full model

and it shows very competitive performance compared with the best system.

Model run3 shows competitive results compared to the best system in few

tasks. However, in the OnWN dataset the run3 shows poor results despite

the presence of this task within the training tasks.

Table 4.13: Comparison of the best matching MTL-GP (headlines), Sparse
MTL-GP and best system in STS 2014 test datasets

Run deft-forum deft-news headlines images OnWN tweet-news

DLSCU run2 0.4828 0.7657 0.7646 0.8214 0.8589 0.7639
MTL-GP 0.4903 0.7633 0.7535 0.8063 0.7222 0.7528

Sparse

MTL-GP run1 0.4910 0.7642 0.7540 0.8057 0.7276 0.7539
MTL-GP extra 0.4149 0.7530 0.7429 0.7832 0.7793 0.7126
MTL-GP LCM1 0.4937 0.7186 0.7282 0.7886 0.6875 0.7645
MTL-GP LCM2 0.4089 0.6449 0.7510 0.7331 0.6768 0.7481

For the Spanish STS we use both simple and state-of-the-art (SoA) fea-

tures to train the MTL-GP. The simple features are similarity scores from

string metrics such as Levenshtein, Gotoh, Jaro, etc10. The SoA similar-

9Intel Xeon(R) at 2.67GHz with 24 cores
10https://github.com/Simmetrics/simmetrics
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ity scores features come from one of the top ranked STS systems TakeLab.

Moreover, the training dataset consists of the combination of each English

STS tasks from 2012 and 2013 and the Spanish trial dataset with task-id

matching each instance to a given task. We represent the feature vectors

with sparse features for the English and Spanish training datasets, where in

English the pairs have simple and SoA features and for Spanish only the sim-

ple features. In other words, the feature vectors have the same amount of 34

features: 13 simple features and 21 SoA features. However, for Spanish the

SoA features are set to 0 in training and testing. The motivation to use SoA

and simple features in English is that the extra information will improve the

transfer learning on the English task and discriminate between the English

tasks and the Spanish tasks, which only contains simple features. For testing

we only extract the simple features and the SoA features are set to 0. For

the coregionalization matrix we set the number of taks to be the English STS

tasks from 2012 and 2013 plus the Spanish trial, where the Spanish is treated

as an additional task, which results in 8 tasks. In the first run of testing we

matched the test datasets to the Spanish task, and for the second run we

matched the datasets to the MSRpar task. Table 4.14 shows the official re-

sults for the Spanish subtask. We compare our method with the best ranked

system, where our method shows competitive performance placed in rank 7.

However, we only show the results of run1 because both runs achieved the

same performance on the official results.
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Table 4.14: Official Spanish STS 2014 test datasets results

Run Wikipedia News Weighted mean rank

UMCC DLSI run2 0.78021 0.82539 0.80718 1
UoW run1 0.7483 0.8001 0.7792 7

Table 4.15: Comparison of best system against sparse MTL-GP Spanish STS
2014 results

Run Wikipedia News

UMCC DLSI run2 0.78021 0.82539
Sparse MTL-GP run1 0.7468 0.7959
Sparse MTL-GP run2 0.7380 0.7878

Table 4.15 shows the comparison of the best STS 2014 system against two

different sparse MTL-GP matched with the Spanish trial with 500 induced

random points. The Sparse MTL-GP run1 uses the sparse features described

above and the run2 uses a modification of the feature set that consists of

specific features for each type of tasks. In other words, for the English tasks

the simple features are set to 0 and for Spanish the SoA are still set to 0.

The difference between both sparse MTL-GP models is very low, where the

use of all the features on the English tasks improve the results. However, the

performance of both models is still lower than the best system.

4.4 Summary

We use our RTE proposed alignment methods for STS and MT evaluation.

For MT evaluation the combination of our method with BLEU improves the

overall performance. However, the contribution of the alignment method for

STS is poor in comparison with simple similarity metrics. Moreover, most
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of the methods for STS show good results on some datasets and poor on

others. In order to solve this limitation, we propose a system based on MTL

along with state-of-the-art features. Our method improves the performance

of the state-of-the-art features on the same datasets. Our method shows a

competitive performance with methods based on task adaptation.
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Conclusions

In this thesis we have introduced new methods for two types of semantic

relations, namely RTE and STS. The methods are based on semantic in-

formation from the input texts, and on ML modelling to identify how their

inputs and corresponding outputs are related. In this Chapter we revisit

our main contributions to the two semantic relations. We also discuss future

research directions for our work on both types of relations.

5.1 Contributions Revisited

The main contributions of this work are related with the following research

questions:

Recognising Textual Entailment To what extent the relational informa-

tion extracted from semantically aligned T-H pairs affects the perfor-

mance of an RTE method?

In Chapter 3, we introduced an RTE method employing a multi-stage

architecture. In the first stage, we proposed new predicate-argument

alignment methods, and for the entailment decision stage we explored

the use of different learning models.
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The propositional learning model for RTE is based on a new predicate-

argument alignment and simple string-based metrics. The method has

comparable performance with the average of methods in the RTE Chal-

lenges, but is far from the best system. The evaluation of the RTE

datasets shows that the coverage of the predicate-argument alignment

methods affect its overall performance. The main difference with re-

spect to previous work (Burchardt et al., 2007) is that our method

relies on semantically-oriented features only (i.e. predicate-argument

information). Our contributions include the method based on measur-

ing the semantic information between the T-H pairs, and the encoding

of this semantic information within the entailment decision. Previous

work (e.g. (Burchardt et al., 2007)) show that predicate-argument in-

formation is relevant for modelling RTE. Our method is able to address

T-H pairs for which the presence of predicate-argument information is

critical to decide the entailment relation.

The RTE method based on statistical relational learning led to promis-

ing results. The main source of errors was still found to be the align-

ment stage, which has a low coverage. We showed that when an align-

ment is found, the relational features improve the final entailment deci-

sion. However, the objective of the relational features is to improve the

final decision with the given alignment structure by adding information

into the model. The novelties with respect to previous work (Garrette

et al., 2011) are that our method does not rely on a manually set
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threshold to decide the entailment relation, and that the source of in-

formation used to train the MLN model comes from the RTE datasets,

as opposed to ontologies.

Semantic Textual Similarity To what extent the simultaneous learning of

multiple related tasks affects the overall performance of an STS method?

In Chapter 4 we showed that MTL improves the results of one of the

best STS systems, TakeLab. The matching of a training task with

a new unknown task during testing is a key variable that affects the

overall performance. Our method tends to achieve best results when

known/unknown tasks are matched to similar training task (i.e. MSR-

par for 2013 and headlines for 2014). However, this is an artificial

setting for truly unknown test tasks, given that their identity will not

be given for the matching. We show that the proposed linear combina-

tion of kernels achieves comparable results to the best MTL-GP model

without the limitation of having to know and set a test task manually.

In the Spanish subtask, we train our method with English datasets

and the Spanish trial data as an additional task. For this subtask our

method also achieved competitive results. The novelty with respect to

previous work is that our method uses a linear combination of kernels

to predict all the STS tasks, as opposed to task/domain adaptation

techniques or meta-classification. The MTL model learns a different

set of hyperparameters (i.e. coregionalization matrix) by using a gen-
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eral or task-specific kernels. The general kernel allows us to leverage

information from all the training tasks, which alleviates the problem of

poor generalisation on unseen test tasks.

The tasks of RTE and STS aim to generalise semantic needs across NLP

applications. Methods based on semantic information and ML modelling

contribute to different aspects of RTE and STS. The results vary drastically

from task to task even though in theory the data belong to the same task

(e.g. MT evaluation datasets for STS and RTE). In practice methods for

measuring semantic similarity are designed to fit a particular task in terms

of their features and ML modelling. Moreover, even within a particular

task, the performance of methods is affected if datasets belong to different

tasks. Task-dependent methods are based on the assumption that the test

and training datasets are drawn from the same distribution, but in practice

training instances are scarce and the test data can thus belong to very dif-

ferent tasks. We show that the use of MTL techniques alleviate the problem

of task adaptation. With minimum reformulation, our methods are also ap-

plicable to tasks beyond RTE and STS challenges where measuring semantic

similarity is needed. For example, in MT evaluation, we show that the addi-

tion of our alignment method to a common evaluation metric improves the

overall correlation with human judgements. We believe this also applies to

many other tasks, such as text summaries generation or evaluation.
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5.2 Future Work

Future work on the RTE statistical relational learning model will include

improvements in the alignment stage as well as the incorporation of a more

robust set relational features, such as using syntactic structures along with

the semantic structures into a combined relational model. In other words,

it will use different types of alignments (e.g. monolingual word alignment,

syntactic alignment, predicate-argument alignment), where the objective of

the MLN formulas will be to penalise or reward decisions made by these

different aligners. We could also define formulas that relate decisions across

aligners.

Future work on STS involves studying the impact of different types of

kernel combinations on the overall performance. Another direction is that of

deep learning for the task. Most methods for STS use vector space models

only as features that are extracted from a preprocessing stage (Bär et al.,

2012). These type of models are tools to represent text as continuous vec-

tors of features. The Compositional Distributional Semantics (CDS) theory

aims to obtain distributional meaning for sequences of text by composing

the continuous vectors into sequences. As a new research direction we can

encode this type of representations directly into a GP model, where we can

frame the STS as a deep learning problem. The motivation to use deep GP

(Damianou and Lawrence, 2013) is to have a model that does not depend on

pipeline architectures, where errors made at one stage (e.g. preprocessing)
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are propagated through the following stages. A possible deep GP model for

STS may consists of two layers. In the first layer the model learns the CDS

function which maps a sentence into a feature space (i.e. latent variables). In

the second layer the model learns the function which maps the feature vec-

tors to similarity scores. We can start by first modelling the CDS function

as a syntactic feature vector (Zanzotto and Dell’Arciprete, 2013) and then

expand horizontally the deep GP with other types of vector representations

such as syntactic and semantic dependencies.
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