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Resumen

La detección de plagio se puede abordar de dos maneras diferentes: detección
intŕınseca la cual consiste en, dado un documento, encontrar cambios en el
estilo de escritura; y detección externa la cual consiste en recuperar los posi-
bles documentos fuentes y en encontrar los fragmentos que fueron plagiados.
La detección de plagio es un tema muy estudiado actualmente y de gran
importancia para la comunidad de editores, investigadores e instituciones
educativas.

Detectar plagio requiere analizar los diferentes tipos de ofuscación usados
en un documento sospechoso, donde la mayoŕıa están estrechamente rela-
cionados al uso de paráfrasis en diferentes niveles. En esta tesis nos enfo-
camos en encontrar los fragmentos de texto exactos que fueron plagiados, una
tarea también conocida como alineación de textos, y en estudiar de forma
independiente la tarea de paráfrasis dada su importancia para la detección
de plagio.

Primero, modificamos el sistema de plagio que propusimos en trabajos
anteriores adaptándola a diferentes tipos de ofuscación. Luego, proponemos
un algoritmo genético para optimizar el conjunto de parámetros de nuestro
sistema. Ambas aproximaciones mejoraron los resultados del estado del arte.

Con respecto a la identificación de paráfrasis, estudiamos los métodos
propuestos en esta tarea basados en bases de conocimientos y en modifi-
caciones del tradicional modelo de espacio vectorial, y proponemos nuevas
combinaciones de técnicas en diferentes etapas del proceso como lo son el pre-
procesamiento, normalización, similitud término-término, similitud de frases,
entre otras. Superamos los resultados de los métodos existentes basados en
bases de conocimientos.

Finalmente, llevamos a cabo un estudio a fondo de métodos del estado
del arte basados en aprendizaje profundo. Estudiamos el desempeño a través
de una comparación de la precisión durante el aprendizaje y la evaluación,
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aśı como modificamos ciertos detalles faltantes no descritos en sus modelos.
También, proporcionamos información relevante sobre los retos y proble-
mas que presentan dichas aproximaciones en la tarea de identificación de
paráfrasis.



Abstract

Plagiarism Detection can be addressed in two different ways: intrinsic de-
tection which consists in, given a document, finding writing style changes;
and external detection which consists in retrieving possible source documents
and finding the exact fragments that were plagiarized. Plagiarism detection
is a hot topic and of paramount importance for publishers, researchers, and
educational institutions.

Detecting plagiarism requires analyzing the several types of obfuscation
that might be presented in the suspicious documents, most of them closely
related to paraphrase on different levels. In this thesis, we focus on finding
the exact plagiarized text passages, also known as Text Alignment, and we
independently study the paraphrase task given its importance to plagiarism
detection.

First, we modify our previously proposed plagiarism detection system to
adapt to different types of obfuscation. Then, we propose a genetic algorithm
to optimize the set of parameters of our system. Both approaches improved
the state-of-the-art results on plagiarism detection.

In the paraphrase regard, we study methods for solving this task based on
knowledge bases and modifications of the traditional Space Vector Model and
propose new combinations of techniques on different stages of the process like
pre-processing, normalization, word-to-word and phrase similarities, among
others. We outperformed the existing approaches based on knowledge bases.

Finally, we carry out an in-depth analysis of state-of-the-art approaches
using Deep Learning. We study their performance through a comparison of
training vs validation accuracy as well as modifying certain details missing
from their models. We provided insights into the challenges and issues of
Deep Learning approaches for paraphrase identification.
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16 CHAPTER 1. INTRODUCTION

1.1 Plagiarism Detection

There are several definitions of plagiarism. According to Merriam-Webster
online dictionary, to “plagiarize” means1:

• To steal and pass off (the ideas or words of another) as one’s own: use
(another’s production) without crediting the source.

• Intransitive verb: To commit literary theft: present as new and original
an idea or product derived from an existing source.

An interesting article2 in the www.plagiarism.org portal provides an ex-
tended description of what constitutes plagiarism. The author lists a set of
actions that are considered plagiarism:

• turning in someone else’s work as your own

• copying words or ideas from someone else without giving credit

• failing to put a quotation in quotation marks

• giving incorrect information about the source of a quotation

• changing words but copying the sentence structure of a source without
giving credit

• copying so many words or ideas from a source that it makes up the
majority of your work, whether you give credit or not

Plagiarism detection and paraphrase identification as an implicit part
of the former are hot topics for publishers, researchers, and educational in-
stitutions. Paraphrase identification is used in several other tasks beside
plagiarism detection, like machine translation [45], information retrieval [55],
question answering [7], among others.

In computer science, plagiarism detection is a natural language process-
ing task that can be addressed in two different ways: intrinsic analysis,
which aims to identify potential cases of plagiarism searching for writing
style changes; and corpus-based analysis, which compares a suspicious doc-
ument to a collection of possible sources. The later can be divided into two

1https://www.merriam-webster.com/dictionary/plagiarize
2http://www.plagiarism.org/article/what-is-plagiarism

https://www.merriam-webster.com/dictionary/plagiarize
http://www.plagiarism.org/article/what-is-plagiarism
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subtasks which the PAN workshop series3 define as Source Retrieval and Text
Alignment respectively. Their description goes as follows:

Source Retrieval: Given a suspicious document and a web search en-
gine, the task is to retrieve all plagiarized sources while minimizing the re-
trieval costs.

Text Alignment: Given a pair of documents, the task is to identify all
contiguous maximal-length passages of reused text between them.

We focus on advancing the state-of-art on plagiarism detection, specif-
ically the task of Text Alignment. To achieve this goal, a more granular
description of plagiarism is needed, classifying it into different subclasses
given the type of obfuscation and approaching its detection accordingly. For
example, detecting plagiarism where the copy was verbatim, paraphrased or
summarized, needs to be done consequently to the features of each obfusca-
tion type, which at the same time suggests using other parameter settings or
applying other methods.

Addressing these problems brings two main issues into the spotlight.
First, improving or proposing new ways to detect plagiarism on the doc-
ument level. Then, recognizing paraphrase, the most common phenomena in
plagiarized documents. Detectors at the document level, like those presented
at PAN workshops, usually focused on basic lexical and syntactic similarities
due to their simplicity and computational efficiency. In the other hand, para-
phrase recognition is approached as a classification problem at the phrase or
sentence level only given its complexity and computational cost, and it is
commonly referred as paraphrase identification. All of this, gives room to
propose new and innovative models to resolve both tasks and integrating
them efficiently into a plagiarism detection system.

Hence, our efforts are directed to contribute solving these issues. First,
by improving our previously proposed method at the PAN Text Alignment
task [73], and then applying new techniques to the paraphrase identification.
For the Text Alignment objective, we plan to use machine learning to in-
tegrate various methods and to optimize our model’s parameters, while for
paraphrase recognition we plan to apply new ways of computing similarities
like the soft cosine and more advance techniques based on Deep Learning.

3https://pan.webis.de

https://pan.webis.de
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1.2 Hypothesis

The hypotheses raised in this work are:

1. Adapting the model to handle different types of obfuscation through
different parameters and/or different methods improves performance.

2. A genetic algorithm helps to find a near optimal set of parameters.

3. A combination of methods works better than each one separately in
paraphrase identification.

4. Deep learning only works when there is much data or some sort of
transfer learning for models trained on other datasets and/or tasks.
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1.3 Objectives

1.3.1 General Objective

To build an optimized and adaptable computational model for plagiarism
detection, capable of recognizing different types of obfuscation, focused on
paraphrase identification.

1.3.2 Particular Objectives

1. Develop a plagiarism detection model adaptive to different types of
obfuscation.

2. Optimize the parameters of a plagiarism detection model and analyze
their behavior on various obfuscation types.

3. Study and experiment with new approaches for paraphrase identifica-
tion.
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1.4 Main Contributions

We divide the main contributions of our work into scientific and practical.
In the former, we state our proposed models and experiments that have been
published in journals or conference articles, or that are in the process of being
published. In the later we refer to the software, tools and resources we have
created that are freely available to the scientific community.

1.4.1 Scientific Contributions

• Adaptive plagiarism model per obfuscation type with state-of-the-art
results.

• Optimization model to improve the state-of-the-art results that can be
use in a traditional or paraphrase-focused plagiarism detection model.

• Combination of knowledge-based models for paraphrase identification
that outperforms similar approaches.

• Exploration of deep learning models and in-depth analysis of its per-
formance and reproducibility challenges.

1.4.2 Practical Contributions

• Code in Python of our genetic model for parameter tuning of our pla-
giarism detection system.

• Jupyter notebook using Python for easy testing of WordNet similarity
metrics applied to the paraphrase identification task.

• Three deep learning models implementations for paraphrase identifica-
tion using Python and Keras capable of running on GPU and allowing
fast prototyping of new models and experiment designs.
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1.5 Structure of the Document

Chapter 1 details the problems, motivation, hypotheses, and contributions of
this work. Chapter 2 describes methods and models as part of the theoretical
background necessary to understand the content of this thesis. Chapter 3
describes related work in both plagiarism detection and paraphrase identi-
fication tasks. Chapter 4 contains the proposed models, experiments and
results on the text alignment task. Specifically, the adaptive model to differ-
ent obfuscation types and the genetic algorithm to optimize the plagiarism
detection parameters. Chapter 5 includes the proposed model for knowledge
base paraphrase identification and a detailed analysis of selected approaches
based on deep learning. Chapter 6 draws conclusions and provides directions
for future work.
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2.1 Basic Text Processing Techniques

2.1.1 Stop Words

We place words in different categories depending on their grammatical func-
tions, which in turn can be open or closed classes. An open class is one that
commonly accepts the addition of new words, while a close class is one to
which new items are rarely added.

Stop words, stop list, function words; usually, refers to the most common
words in a language. They are deemed unlikely to be useful for searching in
information retrieval system based on a word-by-word match or for comput-
ing similarity in a vector space models. Most of these words belong to closed
classes like articles, prepositions, pronouns, auxiliary verbs, etc. A small stop
list extracted from the British National Corpus is shown in Table 2.1.

The usefulness of removing the stop words depends greatly on the task
being solved and the taken approach. For instance, in plagiarism detection,
Stamatatos [80] demonstrated that stop words n-grams can capture syntactic
similarities between a suspicious and original documents and that they can
be used to detect the exact plagiarized passage boundaries. Moreover, he
showed the robustness of this approach when dealing with highly obfuscated
cases where most of the words or phrases have been replaced with synonyms.
Also, some search engines avoid using these stop lists because it prevents
from searching phrases that contain stop words like when and where.

In the other hand, some authors in order to improve performance prefer
to remove stop words. For instance, in the plagiarism detection task, Kong’s
approach [32] is based on a bag of words model and cosine similarity where
the order of words is not relevant, and hence, phrases are not taken into
consideration; also, Torrejón [69] uses context skip n-grams formed by only
important words. In text summarization, Yulia [36] applied this technique
reducing the content of the text to more specific expressions (multi-word
descriptions), containing only the words that are useful and meaningful for
the generation of automatic summaries. Additionally, a stop list has the
advantage that it reduces the size of the inverted index. According to Zipf’s
law, a stop list that covers a few dozen words can reduce the size of the
inverted index by half [41].
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Table 2.1: List of the 50 most frequent words of BNC corpus
1. the 11. with 21. are 31. or 41. her
2. of 12. he 22. not 32. an 42. n’t
3. and 13. be 23. his 33. were 43. there
4. a 14. on 24. this 34. we 44. can
5. in 15. i 25. from 35. their 45. all
6. to 16. that 26. but 36. been 46. as
7. is 17. by 27. had 37. has 47. if
8. was 18. at 28. which 38. have 48. who
9. it 19. you 29. she 39. will 49. what
10. for 20. ‘s 30. they 40. would 50. said

2.1.2 Morphology

We may have different forms of a word given the tense, number or gender of
it. For example, sit, sits, or sat represents the same word sit, which raises the
question of separating or collapsing them depending on the task we choose.
When grouping such forms together and working concerning lexemes, we
have some basic techniques like lemmatization or stemming.

Stemming

Stemming refers to a simplified form of morphological analysis consisting
merely of truncating a word. For example, laughing, laugh, laughs, and
laughed are all stemmed to laugh-. Common stemmers are the Lovins and
Porter stemmers, which differ in the actual algorithms used for determining
where to truncate words [39,60].

Two problems with the truncation stemmers are that they conflate seman-
tically different words (for example, gallery and gall may both be stemmed
to gall-) and that the truncated stems can be unintelligible to users. They
are also much harder to make work well for morphology-rich languages [41].

Lemmatization

Lemmatization consists in attempting to find the lemma or lexeme of an
inflected form. This process implies disambiguation at the level of lexemes,
such as whether the use of lying represents the verb lie-lay meaning ‘to pros-
trate oneself’, or lie-lied meaning ‘saying an intentionally false statement’.



2.2. PART OF SPEECH TAGGING 25

2.2 Part of Speech Tagging

The task of part of speech (POS) tagging is the process of assigning a gram-
matical tag to each word in a phrase or sentence. Tagging a word involve
taking into consideration its definition and its context and is usually ad-
dressed in one of two ways: rule-based algorithms or probabilistic models.
Most successful approaches achieve quite high accuracy between 96% and
97%.

When tagging tokens in a sentence, some are processed given its defini-
tion, for example those that always have the same tag like in the case of
articles. However, to tag some words we need to look more into its context.
For example, the word “play” can be considered as a noun (a) or as a verb
(b).

(a) That was a good play.

(b) He likes to play.

Several authors have created sets of tags with different levels of granu-
larity. One of the most populars is the Penn tag set for English shown in
Table 2.2.

Describing methods for POS tagging is out of the scope of this thesis
but we strongly recommend reviewing some of the basic methods presented
by Manning and Schütze in their book Foundations of Statistical Natural
Language Processing [41].
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Table 2.2: Penn POS tags for English
Tag Part Of Speech
AT article
BEZ the word is
IN preposition
JJ adjective
JJR comparative adjective
MD modal
NN singular or mass noun
NNP singular proper noun
NNS plural noun
PERIOD . : ? !
PN personal pronoun
RB adverb
RBR comparative adverb
TO the word to
VB verb, base form
VBD verb, past tense
VBG verb, present participle, gerund
VBN verb, past participle
VBP verb, non-3rd person singular present
VBZ verb, 3rd singular present
WDT wh- determiner (what, which)
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2.3 Vector Space Model

The vector space model is a traditional and widely used model in natural
language processing tasks and was first popularized in information retrieval.
The main characteristic that makes this model so popular is its simplic-
ity and the possibility of computing semantic similarity using a traditional
vector space. The model consists in representing text documents in a high-
dimensional space where each dimension is a word from a vocabulary in the
document collection selected.

This model is also regarded as Bag of Words (BOW) since the order of
the dimensions of the vectors does not matter when defining the space.

Defined the dimensions of the space, representing documents on this space
requires selecting a weighting scheme, meaning giving a value to each dimen-
sion.

2.3.1 Weighting Schemes

There are several schemes that have been proposed, the simplest being a bi-
nary representation, i.e., Assigning 1 to a dimension (word) if the word occurs
in the document, 0 otherwise. We could also use the count of a word in the
document, called term frequency tfi,j which is defined as the number of oc-
currences of word wi in document dj. Through experimentation, researchers
have acknowledge the need to apply a smoothing non-linear function to pre-
vent higher values of co-occurrences from receiving too much importance, for
example log(tfi,j).

Term frequency assumes that a higher occurrence of word describes better
the content of a document. However, this assumption is not always true, for
example, the words we identified as stop words in 2.1.1, are words that will
occur quite often in every single document and that do not significantly
contribute to the meaning of a text.

Another metric often use is the inverse document frequency idf(w,D)
which is the ratio of the total of documents in our collection and the number
of documents where a word occurs. This metric is an indicator of the speci-
ficity of a term in a given corpus, for example terms related to a particular
topic in a collection where we have plenty of topics. This metric will reduce
drastically the importance of stop words since these occurs in most of the
documents regardless of the topic. Logarithm is also applied to this metric
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to reduce the importance of rare term in large corpora.

The most effective method for weighting uses a combination of term fre-
quency and inverse document frequency tf · idf .

2.3.2 Vector Similarity

There are several vector similarity measures used in natural language pro-
cessing that can be interpreted as semantic similarity. When using a binary
weighting scheme we can define some of these measures. Table 2.3.2, ex-
tracted from [41], lists some of the most common measures.

Table 2.3: Similarity measures for binary vectors

Similarity measure Definition

matching coefficient |X ∩ Y |

Dice coefficient 2|X∩Y |
|X|+|Y |

Jaccard coefficient |X∩Y |
|X∪Y |

Overlap coefficient |X∩Y |
min(|X|,|Y |)

cosine |X∩Y |√
|X|+|Y |

For real-value vectors with have two main measures: cosine (of the angle
between two vectors) and Euclidean distance. They are define as follows:

cos(~x, ~y) =
~x · ~y
|~x||~y|

=

n∑
i=1

xiyi√
n∑
i=1

x2i

√
n∑
i=1

y2i

,

euc(~x, ~y) = |~x− ~y| =

√√√√ n∑
i=1

(xiiyi)2
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Semantic Similarity

One of the properties of the traditional space vector is orthogonality, meaning
that all of its dimensions are perpendicular to each other. In other words, we
assume that each word in our vocabulary is completely different the rest. This
assumption is obviously wrong given that in languages we have synonyms
or closely related words. This issue suppose a weakness of the traditional
vector space model to compute semantic similarity where the text have been
paraphrased.

There are some approaches that take into account relations between di-
mensions of the vector space. Usually these approaches make use of knowl-
edge bases to compute term-to-term similarities and composed them into a
phrase similarity metric. One of the most popular of such bases is Word-
Net [51] which we described in section 2.4.

Mihalcea et al. [47] propose a model to compute the similarity between
two phrases using term-to-term similarity. Given two text phrases T1 and T2
the proposed scoring function is:

sim(T1, T2) =
1

2


∑

w∈{T1}
(maxSim(w, T2) ∗ idf(w))∑

w∈{T1}
idf(w)

+

∑
w∈{T2}

(maxSim(w, T1) ∗ idf(w))∑
w∈{T2}

idf(w)

 ,

(2.1)

where idf(w) represents the inverse document frequency of w in the British
National Corpus (BNC) and maxSim(w, T2) is the maximum similarity of
word w to all words in T2 using a WordNet similarity metric.

Fernando and Stevenson [17] use binary representations of sentences and
compute a matrix of word-to-word similarities W of all the words in the
vocabulary computed using WordNet metrics. Assuming ~a and ~b are the
binary vectors of two sentences then their similarity is defined as:

sim(~a,~b) =
~aW~bT

|~a||~b|
(2.2)

Similarly, Sidorov et al. [77] uses a word-to-word similarity matrix to
complement their metric. The called their model SoftCosine where its ratio-
nal is breaking the orthogonality of the traditional vector space model. It is
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defined as:

soft cosine1(~a,~b) =

N∑
i,j

sijaibj√
N∑
i,j

sijaiaj

√
N∑
i,j

sijbibj

, (2.3)

where sij is an element of the word-to-word similarity matrix W . The differ-
ence between the last two approaches is that Sidorov et al. uses real-valued
vectors and normalizes the metric using the values of the similarity matrix
as well.
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2.4 WordNet

Quoting the resource website1, WordNet R©is a large lexical database of En-
glish. Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive
synonyms (synsets), each expressing a distinct concept. Synsets are inter-
linked by means of conceptual-semantic and lexical relations.

Most of WordNet’s relations are between same part of sppech (POS),
either nouns, verbs, adjectives and adverbs. Thus, we can see it as four
different sub-nets. This should be taken into consideration when computing
word-to-word similarities.

As mentioned before, the main unit in WordNet is the synset which com-
prise words that are synonyms. It also includes a description of each word
and in some cases example sentences.

WordNet builds as an ontology where the main relation y the is a, also
called hyperonymy, hyponymy or super-subordinate. For example: car is a
type of vehicle. This structure tree-liked is the base of the similarity metrics
we will see in the next section.

WordNet is included in NLTK Python module along with the most pop-
ular similarity measures. This allows to easily implement approaches that
include knowledge-based semantic similarity.

2.4.1 Wordnet Similarity Measures

There are several metrics that works using the WordNet ontology and in
some cases a supporting corpus.

Patwardhan [57] and Mihalcea [47] use these metrics for Word Sense Dis-
ambiguation and Paraphrase Identification. They provide a brief description
of these measures as follows:

Leacock-Chodorow

The measure of Leacock-Chodorow [35] uses the length of the shortest path
between two concepts shortest length(c1, c2) and the maximum depth D of
the WordNet ontology.

simlch(c1, c2) = − log
shortest length(c1, c2)

2 ∗D
. (2.4)

1https://wordnet.princeton.edu/

https://wordnet.princeton.edu/


32 CHAPTER 2. THEORETICAL FRAMEWORK

Wu and Palmer

The measure of Wu and Palmer [86] uses the depth of each concept and the
depth of the closest ancestor shared by both concepts, also referred as the
least common subsumer (LCS).

simwup(c1, c2) =
2 ∗ depth(LCS(c1, c2))

depth(c1) + depth(c2)
. (2.5)

Resnik

The measure of Resnik [68] uses the Information Content (IC) of the least
common subsumer (LCS). The Information Content measures the specificity
of a concept. It depends on frequency counts of words in a corpus where
each occurrence of a word also affects the counts of all of its ancestors in the
WordNet taxonomy. Given the structure of WordNet taxonomy, it is only
possible to compute the IC of nouns and verbs. From the frequency counts
IC is defined as:

IC(c) = − logP (c). (2.6)

Hence, higher values are associated with more specific concepts (e.q. car),
while more general concepts receive lower values (e.q. vehicle). Defined the
IC of a concept, the measure of Resnik is defined as:

simres(c1, c2) = IC(LCS(c1, c2)). (2.7)

Lin

The measure of Lin [38] also uses the Information Content metric and it is
defined as:

simlin(c1, c2) =
2 ∗ IC(LCS(c1, c2))

IC(c1) + IC(c2)
. (2.8)

2.4.2 Jiang & Conrath

Similarly, the measure of Jiang & Conrath combine the Information Content
metric and least common subsumer in the following score:

simjcn =
1

IC(c1) + IC(c2)− 2 ∗ IC(LCS(c1, c2))
(2.9)
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2.5 Deep Learning Architectures

2.5.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are widely popular in computer vision
and have been successfully applied in tasks like facial recognition, self-driving
cars, hand-written recognition, among others. Most recently there have been
used in a series of natural language processing tasks, specially classification
problems, like author profiling [78], personality detection [40], paraphrase
identification [26], sentence modelling [30], sentiment analysis [74], and oth-
ers.

As its name says, CNN works by convolving a function (filter) over an-
other (input). In other words, it is a sliding window function applied to an
input matrix.

Formally, given k filters the output of a CNN is defined as:

fkij = g((W k ∗ x)ij + bk), (2.10)

where g is a non-linear function, W k and bk are the weights and bias repre-
senting each filter k to be learned.

Although CNN refers only to a convolution operation, when talking about
these type of networks, the expected architecture usually includes an input,
convolution, pooling and fully-connected layers.

In Figure 2.5.1 we show an example of CNN extracted from [88]. The
model is applied to a sentence where each word is represented as word em-
beddings.

2.5.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) or sequence models more generally are
very useful when dealing with sequential data like text, audio or video. There
is a set of problems that have been addressed successfully using these models
like speech recognition, sentiment classification, machine translation, among
others.

These neural networks receive their “recurrent” name because they per-
form the same set of operations on every element of the sequence. The main
property of RNNs is that they are able to memorize information it has seen
before in the sequence. In Figure 2.5.2 we show the basic diagram of a RNN.
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Figure 2.1: CNN applied to text

There are several configurations of RNNs depending on the task at hand
and its expected input and output sizes . In Figure 2.5.2 we show the possible
configurations.

For example, Part-of-Speech tagging models output a tag for each input
word (many-to-many), sentiment analysis returns a class given a sequence of
words (many-to-one), a text generator creates a sequence from an input word
(one-to-may) , and in machine translation a sequence of words is translated
to another after the first was fully processed (second type of many-to-many).

The diagram of a cell of a basic RNN is given in Figure 2.5.2.
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Figure 2.2: Basic RNN diagram

Figure 2.3: RNNs configurations

Its activations and output values is defined as:

a<t> = tanh(Waxx
<t> +Waaa

<t−1> + ba)

ŷ<t> = softmax(Wyaa
<t> + by)

(2.11)

In practice, basic RNN can look back only a few steps and therefore they
are not very effective to model long term dependencies. Also, when deal-
ing with long sequences this models suffer from vanishing gradient problem.
There are other architectures of RNNs other than the basic that addressed
this problems: GRU and LSTM.

Long Short-Term Memory

In this section we briefly describe one of the most popular RNN architectures
known as Long Short-Term Memory (LSTM). It follows the same principles
as the basic RNN changing the definition of the cell as shown in Figure 2.5.2.
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Figure 2.4: Basic RNN cell

Figure 2.5: LSTM cell
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Its activations, states, and outputs are defined as:

Γ<t>f = σ(Wf [a
<t−1>, x<t>] + bf )

Γ<t>u = σ(Wu[a
<t−1>, x<t>] + bu)

c̃<t> = tanh(WC [a<t−1>, x<t>] + bC)

c<t> = Γ<t>f ◦ c<t−1> + Γ<t>u ◦ c̃<t>

Γ<t>o = σ(Wo[a
<t−1>, x<t>] + bo)

a<t> = Γ<t>o ◦ tanh(c<t>),

(2.12)

where ◦ is the element-wise multiplication.
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2.6 Our Approach to Text Alignment at PAN

We describe our approach in the paper Adaptive Algorithm for Plagiarism
Detection: The Best-performing Approach at PAN 2014 Text Alignment
Competition [71], using the three steps model: seeding, extension, and filter-
ing. Before going through these steps, we pre-process the documents taking
the following actions:

• sentence splitting and tokenization,

• removing all tokens (“words”) that do not start with a letter or digit,

• reducing all letters to lowercase,

• applying stemming,

• joining short sentences (shorter than minsentlen = 3 words) with the
next one (if the new joint “sentence” was still short, we join it with the
next one, etc.).

In the subsequent sections, we describe our processes of seeding, extension,
and filtering.

2.6.1 Seeding

Given a suspicious document and a source document, the task of the seeding
stage is to construct a large set S of similar short passages called seeds. Each
seed is a pair that consists of a small fragment of the suspicious document
and a small fragment of the source document that are in some sense similar.
In our case, the fragments to form the pairs were sentences, which may be
joined as described above. Constructing these pairs required to measure the
similarity between sentence vectors, for which we had to choose a weighting
scheme.

To compute the similarity between two sentences, we represented indi-
vidual sentences with a tf-idf vector space model (VSM), as if each sentence
were, in the terminology of VSM, a separate “document,” and all sentences
in the pair of the original document formed a “document collection.” The
idf measure calculated in this way is called isf measure (inverse sentence fre-
quency) to emphasize that it is calculated over sentences as units and not
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documents:

tf (t, s) = f (t, s) ,

isf (t,D) = log
|D|

|{s ∈ D : t ∈ s}|
,

w (t, s) = tf (t, s)× isf (t,D) ,

where for term frequency tf(t, s) we simply used the number of occurrences
f(t, s) of the term t in the sentence s; D is the set of all sentences in both
given documents, and w(t, s) is the final weight of a term t of the sentence s
in our VSM representation.

After we defined the weighting scheme and transformed all sentences into
vectors in both documents, we compared each sentence in the suspicious
document to each sentence in the source document.

Now, we construct the desired set S as

S = {(i, j) | cos (suspi, srcj) > mincos ∧ dice (suspi, srcj) > mindice} ,

where the two sentences are represented as vectors, cos is the cosine similarity,
dice is the Dice coefficient:

cos (suspi, srcj) =
suspi · srcj
|suspi| × |srcj|

,

dice (suspi, srcj) =
2 |δ (suspi) ∩ δ (srcj)|
|δ (suspi)|+ |δ (srcj)|

,

δ(x) is the set of non-zero coordinates of a vector x, |∗| is the Euclidean
length of a vector or the cardinality of a set, respectively, and mincos and
mindice are some thresholds determined experimentally.

2.6.2 Extension

Given the set of seeds S, defined as the pairs (i, j) of similar sentences, the
task of the extension stage is to form larger text fragments that are similar
between two documents. For this, the sentences i are joint into maximal con-
tiguous fragments of the suspicious document, and sentences j into maximal
contiguous fragments of the source document, so that those large fragments
be still similar.

We divide the extension process into two steps: (1) clustering and (2)
validation. In the clustering step, we create text fragments grouping seeds
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that are not separated by more than a gap number of sentences. In our
implementation, an easier way to proceed is to sort and cluster the set of seeds
by i (left or suspicious document) such that in− in+1 ≤ susp gap. Then, for
each of the resulting clusters, sort and cluster by j using a src gap threshold
(right or source document), and thereby alternate by i and j until no new
clusters are formed. Each cluster should have at least minsize seeds or will be
discarded. Since we use the parameters susp gap and src gap to cluster seeds
into larger text fragments, some sentences in these fragments may have no
similarity to any of the sentences in the corresponding fragment. Therefore
to avoid adding to much noise in the clustering step we validate that the
similarity between the text fragments of the remaining clusters exceeds some
threshold. If the similarity is less than the given threshold, we apply the
extension stage using susp gap−1 and src gap−1 for this particular cluster.
We will reduce the gaps at most to a min susp gap and min src gap values,
respectively. If the any of the minimum values is reached and the validation
condition is not met, then the cluster is discarded.

A text fragment is defined as the collection of all the sentences among
the seeds of a particular cluster. Given a cluster integrated by seeds of the
form (i, j), then the text fragment in the suspicious document Fsusp is the
collection of all the sentences from the smallest i to the largest i in the
cluster. Similarly, the corresponding text fragment in the source document
Fsrc is the collection of all the sentences from the smallest j to the largest j
in the cluster.

We measured the similarity between text fragments Fsusp and Fsrc com-
puting the cosine between their vectors:

similarity (Fsusp, Fsrc) = cos

 ∑
v∈Fsusp

v,
∑
v∈Fsrc

v

 , (2.13)

where the vector representation of the fragments is done adding together the
vectors corresponding to all sentences of Fsusp and Fsrc respectively.

For details of our method, see Algorithm 1. The variable side indicates
by which side the pairs are clustered: +1 means clustering by sentences of
the suspicious document (i) and −1, by sentences of the source document (j).
In the algorithm, we generalize the thresholds as maxgap and minsize but
in the implementation, there are separate thresholds for each document, and
they are used depending in which side we are clustering. The output of the
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Algorithm 1: Extension algorithm

const minsize, minsim
Function extension(seeds,maxgap)

1 clusters← clustering(seeds,maxgap,+1)
2 clusters← validation(clus,maxgap)
3 return clusters

Function clustering(seeds,maxgap, side)
1 clusters← clusters of seeds such that in each cluster, side-hand

sentences form in the document fragments with at most
maxgap-sentence gaps

2 discard all c ∈ clusters such that |c| < minsize
3 if |clusters| ≤ 1 then
4 return clusters

else
5 result← ∅
6 foreach c ∈ clusters do
7 result← result ∪ clustering(c,maxgap,−side)
8 return result

Function validation(clusters,maxgap)
1 result← ∅
2 foreach c ∈ clusters do
3 if similarity(Fsusp(c), Fsrc(c)) < th val then
4 if maxgap > min maxgap then
5 result← result ∪ extension(c,maxgap− 1)

else
6 result← result ∪ { c }
7 return result

Extension stage is a set of pairs of similar text fragments {(Fsusp, Fsrc) , . . . }
taken from the resulting clusters.

2.6.3 Filtering

Given the set {(Fsusp, Fsrc) , . . . } of plagiarism cases, the task of the filtering
stage is to improve precision (at the expense of recall) by removing some
“bad” plagiarism cases. We did the filtering in two stages: first, we resolved
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overlapping fragments; then, we removed too short fragments (in what follows
we only refer to fragments that represent plagiarism cases, not to arbitrary
fragments of the documents).

Resolving overlapping cases.

We call two plagiarism cases
(
F

′
susp, F

′
src

)
and

(
F

′′
susp, F

′′
src

)
overlapping if the

fragments F
′
susp and F

′′
susp share (in the suspicious document) at least one

sentence. We assume that the same source fragment can be used several times
in a suspicious document, but not vice versa: each sentence can be plagiarized
from only one source and thus can only belong to one plagiarism case. To
simplify things, instead of re-assigning only the overlapping parts, we simply
discarded whole cases that overlapped with other cases. Specifically, we used
the following algorithm:

1. While exists a case P (“pivot”) that overlaps with some other case

(a) Denote Ψ (P ) be the set of cases Q 6= P overlapping with P

(b) For each Q ∈ Ψ (P ), compute the quality qQ (P ) and qP (Q);
see (2.14)

(c) Find the maximum value among all obtained qy (x)

(d) Discard all cases in Ψ (P ) ∪ {P} except the found x

In our implementation, at the first step, we always used the first case from
the beginning of the suspicious document. We compute the quality function
qy (x) of the case x on an overlapping case y as follows. The overlapping cases
x =

(
F x
susp, F

x
src

)
and y =

(
F y
susp, F

y
src

)
are pairs of corresponding fragments.

Let O = F x
susp∩F y

susp be the overlap and N = F x
susp/O be the non-overlapping

part. Then the quality

qy (x) = simFx
src

(O) +
(
1− simFx

src
(O)
)
× simFx

src
(N) , (2.14)

where sim is a non-symmetric similarity of a fragment Fsusp (in the suspicious
document) to a reference fragment Fsrc (in the source document):

simFsrc (Fsusp) =
1

|Fsusp|
∑

s∈Fsusp

max
r∈Fsrc

(cos (s, r)) .

Formula (2.14) combines the similarity of the overlapping part and the
non-overlapping part of the suspicious fragment to the source counterpart.
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Table 2.4: Our results on PAN 2013 training and test corpus

Obfuscation
PAN 2013 training corpus

Plagdet Recall Precision Granul.
None 0.8938 0.9782 0.8228 1.0000
Random 0.8886 0.8581 0.9213 1.0000
Translation 0.8839 0.8902 0.8777 1.0000
Summary 0.5772 0.4247 0.9941 1.0434
Entire 0.8773 0.8799 0.8774 1.0021

Obfuscation
PAN 2013 test corpus

Plagdet Recall Precision Granul.
None 0.9003 0.9785 0.8336 1.0000
Random 0.8841 0.8606 0.9101 1.0008
Translation 0.8865 0.8895 0.8846 1.0008
Summary 0.5607 0.4127 0.9991 1.0588
Entire 0.8781 0.8790 0.8816 1.0034

Removing small cases.

We also discard the plagiarism cases that relate small fragments: if either
suspicious or source fragment of a case has a length in characters less than
minplaglen, then the case is discarded.

2.6.4 Results

Potthast et al. introduced the evaluation framework for plagiarism detec-
tion on this specific task in [64]. The evaluation framework refers to the
Precision, Recall, Granularity and Plagdet measures. We trained our sys-
tem using the corpus provided for the PAN 2014 competition (pan13-text-
alignment-training-corpus-2013-01-21). We also evaluated our model on the
test corpus of PAN 2013 (pan13-text-alignment-test-corpus2-2013-01-21) in
order to compare our approach with existing approaches. Table 2.4 shows
our results on the training corpus of PAN 2014, which was the same as the
training corpus of PAN 2013, and on the test corpus of PAN 2013. Table 2.5
compares our results using the cumulative Plagdet measure with those of the
systems submitted to PAN 2013. The columns show the system results on
each sub-corpus built using different types of obfuscation.

We experimented with each one of our improvements separately and veri-
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Table 2.5: Comparative results according to the Plagdet measure on PAN
2013 test corpus. Performance of the systems was published in [63]

Team Entire corpus None Random Translation Summary
Sanchez-Perez 0.8781 0.9003 0.8841 0.8865 0.5607
Torrejón 0.8222 0.9258 0.7471 0.8511 0.3413
Kong 0.8189 0.8274 0.8228 0.8518 0.4339
Suchomel 0.7448 0.8176 0.7527 0.6754 0.6101
Saremi 0.6991 0.8496 0.6566 0.7090 0.1111
Shrestha 0.6955 0.8936 0.6671 0.6271 0.1186
Palkovskii 0.6152 0.8243 0.4995 0.6069 0.0994
Nourian 0.5771 0.9013 0.3507 0.4386 0.1153
Baseline 0.4219 0.9340 0.0712 0.1063 0.0446
Gillam 0.4005 0.8588 0.0419 0.0122 0.0021
Jayapal 0.2708 0.3878 0.1814 0.1818 0.0594

fied that they do boost the cumulative Plagdet measure. Both, the use of the
tf-isf measure and our recursive extension algorithm, considerably improved
recall without a noticeable detriment to precision. On the other hand, reso-
lution of overlapping cases improved precision without considerably affecting
recall. Finally, the dynamic adjustment of the gap size improved Plagdet
on the summary sub-corpus by 35% without considerably affecting other
corpora.

We participate in the Text Alignment task of the PAN 2014 Lab outper-
forming all 10 participants as shown in Table 2.6. The official results showed
that recall is the measure where we excel but need to improve the precision of
the model by identifying and adjusting to other types of obfuscation rather
than just the summary obfuscation. Regarding the system runtime, even our
goal is not aiming at efficiency, out software performed at an average level.
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Table 2.6: PAN 2014 official results reported in [62] using TIRA [23]
Team PlagDet Recall Precision Granularity Runtime
Sanchez-Perez 0.8781 0.8790 0.8816 1.0034 00:25:35
Oberreuter 0.8693 0.8577 0.8859 1.0036 00:05:31
Palkovskii 0.8680 0.8263 0.9222 1.0058 01:10:04
Glinos 0.8593 0.7933 0.9625 1.0169 00:23:13
Shrestha 0.8440 0.8378 0.8590 1.0070 69:51:15
R. Torrejón 0.8295 0.7690 0.9042 1.0027 00:00:42
Gross 0.8264 0.7662 0.9327 1.0251 00:03:00
Kong 0.8216 0.8074 0.8400 1.0030 00:05:26
Abnar 0.6722 0.6116 0.7733 1.0224 01:27:00
Alvi 0.6595 0.5506 0.9337 1.0711 00:04:57
Baseline 0.4219 0.3422 0.9293 1.2747 00:30:30
Gillam 0.2830 0.1684 0.8863 1.0000 00:00:55
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3.1 Plagiarism Detection

Plagiarism detection, and more generally, text reuse detection, has become a
hot research topic given the increasing amount of information being produced
as the result of easy access to the Web, large databases and telecommuni-
cation in general, which poses a serious problem for publishers, researchers,
and educational institutions [44]. Plagiarism detection techniques are also
useful in applications such as content authoring systems, which offer fast and
simple means for adding and editing content and where avoiding content du-
plication is desired [4]. Hence, detecting text reuse has become imperative
in such contexts.

Two main forms of detecting plagiarism exist, intrinsic and external. The
former refers to, given a suspicious document, identifying text passages in
it which deviate in its style from the remainder of the document. The later
stands for, given a suspicious document and a (vast) collection of potential
sources, finding text passages in the collection that are highly similar to text
passages in the suspicious document.

Figure 3.1 shows the generic retrieval process to detect external plagia-
rism. The process is divided into three basic steps, which are typically imple-
mented in most plagiarism detectors. First, source retrieval, which identifies
a small set of candidate source documents that are likely sources for pla-
giarism regarding the suspicious document. Second, text alignment, where
each candidate source document is compared to the suspicious document, ex-
tracting all passages of text that are highly similar. Third, knowledge-based
post-processing, where the extracted passage pairs are cleaned, filtered and
possibly visualized for later inspection [62].

3.1.1 Source Retrieval

Source retrieval is the initial phase in the process of plagiarism detection
where, from a vast collection of documents, like an encyclopedia or the entire
web, we constrain the collection to a smaller set of documents. Then we are
going to take a closer look to decipher if plagiarism occurred by finding the
exact passages that were plagiarized. Then, the source retrieval task turns
into an information retrieval one where we are looking for potential sources
of the suspicious document.

Concretely, PAN organizers define source retrieval as given a suspicious
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Figure 3.1: Generic retrieval process to detect plagiarism [81]

document and a web search engine, retrieve all source documents from which
text has been reused while minimizing retrieval costs. The cost-effectiveness
of plagiarism detectors in this task is important since using existing search
engines is perhaps the only feasible way for researchers as well as small and
medium-sized businesses to implement detection against the web, whereas
search companies charge considerable fees for automatic usage [63].

3.1.2 Text Alignment

The text alignment task consists in identifying contiguous passages of reused
text given a pair of documents. Most of the text alignment models follow
a three-step approach: seeding, extension, and filtering [62]. The first step
consists in finding relations (so-called “seeds”) between features extracted
from the documents. At this stage, it is important to determine which type
of features to extract and what kind of relation to search. For example, the
features could be word n-grams with several implementations like Context
n-grams [56,69,76,82], Context skip n-gram [69], Stop words n-grams [76,82]
and Named Entity n-grams [76]. In our approach, we extracted sentences
and compared them in a Vector Space Model (VSM) using the cosine simi-
larity alike [32]. We also used the Dice coefficient as in [33] given that this
measure favors an equal vocabulary distribution employed in the passages to
be compared.
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Figure 3.2: Clusters obtained after the extension step. The fragments of text
(ranges of sentences) corresponding to cluster 2 are shown

Taking into account only the seeds extracted, some passages that do not
show high similarity but are part of a plagiarism case could be missed. This
behavior is due to the presence of noise, and also because a specific type of
feature or similarity measure does not necessarily identify all possible types
of obfuscation techniques.1

Accordingly, the extension step consists in joining these seeds into larger
fragments. This is the core of a text alignment model. The basic idea here
is to cluster together nearby seeds. A plagiarism case then is defined by the
edges of a cluster: if we draw a rectangle around the cluster, the plagiarism
case is the fragment of text in the suspicious document and its corresponding
counterpart in the source document, as shown in Figure 3.2. Defining a
cluster by its edges and not as a set of seeds, allows for small gaps in the
range of seeds, which can be part of the plagiarism case even if the seeding
process did not detect them; for example, see cluster 1 in the figure.

However, the greater the distance allowed between seeds in a cluster, the
greater the probability of including passages that do not belong to the pla-
giarism case. Measuring the quality of a plagiarism case includes computing

1Obfuscation techniques refers to the changes done to the plagiarized passages like
sentence reordering, changing words with synonyms, using summaries, among others.
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the similarity between the two fragments of text. Thus, the challenge for
an extension algorithm is to find a balance between the dispersion in clus-
ters and the similarity of the fragments of text these clusters correlates. A
problem that arises in the search for this balance in our approach is that the
sentences do not necessarily have the same length, so a distance suitable for
one cluster is not necessarily good for another cluster given the resulting sim-
ilarity between the fragments of text. Therefore, balancing should be done
for each cluster independently after the initial iteration of clustering is done.

Another significant problem when building an extension method is to de-
termine what type of measure of distance should we use, and this is not a
trivial problem. From the dots in Figure 3.2, it is expected to have clusters
such as those represented, which relate a fragment of text in the suspicious
document with a fragment of text in the source document. However, a Eu-
clidean distance clustering algorithm as in [56] will fail to detect cluster 2,
because two of its points are far from the rest of the group using this dis-
tance. These seeds in cluster 2 represent just a reordering of sentences: for
instance, changing the last sentence in the source document to the first one in
the suspicious document. Another way to compute distance could be using a
function that returns the minimum distance in either dimension. This would
result in accurate detection of cluster 2, but also would join clusters 2 and 5,
because they are close by on the source document axis. Given that the two
measures mentioned above compute the distance taking into account both
dimensions at the same time, we used a method that computes the distance
in one dimension at a time, alternating between them until no more division
is needed. Several participants used algorithms in this direction taking into
consideration the distance in characters [33,69,76,82] or sentences [32].

The final step in the text alignment task is responsible for filtering out
those clusters that do not meet certain criteria. Usually, this includes re-
moving too short plagiarism cases or treating overlapping cases. The main
problem we found using the PAN 2013 training corpus was that some plagia-
rism cases are contained inside larger cases in any of the two sides. To solve
this problem, we introduced a measure of quality that compares overlapped
cases, to decide which one to keep and which one to discard.

Finally, given that the three-step model for text alignment uses many
parameters, it is impossible to find one optimal setting for all types of obfus-
cation. Therefore, the model should be adaptive; it should use heuristics to
decide which type of obfuscation it is dealing with in a given document and
choose the corresponding settings optimized for each type of obfuscation.
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Table 3.1: Main ideas used in the systems participating in PAN 2012 and
2013

Stage Method [32] [69] [82] [76] [56] [33] Our

Preprocessing

Special character removal + – – – – – +
Number removal – – – – + – –
Stopword removal + + – – – – –
Case folding + + + + + – +
Stemming + + – – + – +

Seeding

Bag of words + – – – – + +
Context n-grams – + + + + – –
Context skip n-grams – + – – – – –
Stop word n-grams – – + + – – –
Named entity n-grams – – – + – – –

Extension

Bilateral Alternating Sorting + – – – – – –
Distance between seeds + + + + – + +
Euclidean distance clusters – – – – + – –
Multi-feature extension – + – + – – –

Filtering

Passage similarity + – – – – – +
Small passage removal – + + – + – +
Overlapping removal – – + + – – +
Nearby passage joining – – – + – – –

Table 3.1 summarizes the main ideas employed by the systems partici-
pating in PAN 2012 and 2013 [21, 32, 33, 56, 69, 76, 82], classified by the four
main stages of a typical alignment process as suggested in [63].

3.1.3 PAN Shared Tasks

PAN is a conjunction of shared tasks that have been evolving since 2009
and that they divide into broad categories. In the 2013–2014 editions, they
divided it into Authorship, Originality, and Trust. Since 2009, several tasks
has surged and ended as part of their life cycle. Plagiarism detection has
been an important field at PAN evolving with time. First, from 2009 to 2011
they organized the Intrinsic and External Plagiarism Detection tasks. Then,
these tasks evolved to Source Retrieval and Text Alignment from 2012 to
2015. The scope of our work is the Text Alignment task from 2013 to 2015.
In Figure 3.3 we highlight the task we proposed an approach that ranked
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Figure 3.3: Our participation at PAN 2014

1st and that we describe in the section Our Approach to Text Alignment at
PAN.

3.1.4 PAN Text Alignment Corpus

PAN workshops have developed several corpora for the text alignment task
since its creation in 2009 [65]. These resources have evolved till the 2014
corpus where the life cycle of the text alignment task ended. The results we
reported in the State-of-the-Art section were obtained by using this particular
corpus. The generation process and structure of the corpus was detailed
at [63]. Below, we summarize the main parts of this process.

They constructed the corpus in eight steps:

1. Documents. They used web documents obtained from the ClueWeb
2009 corpus distributed into 145 topics.

2. Pre-Processing. They converted the HTML documents to plain text,
extracting the main text sections using the BoilerPipe model and adding
some constraints regarding the number of words.

3. Withheld Documents. For each topic, they withheld one document in
order no to be used for plagiarism.
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4. Source Set Formation. Sets of source documents are generated by ran-
domly selecting a topic and documents within this topic. Cosine simi-
larity between the documents in a set is validated to be above a certain
threshold to avoid unintended duplication between pairs of documents,
which in turn may mislead text alignment algorithms.

5. Withheld Source Sets. For each topic, an additional source set was
created but ensuring that no sentence of a source document has a du-
plicate sentence in the withheld document of that topic (chosen in Step
3). They consider a duplicate if the cosine similarity is above 0.9.

6. Passage Extraction. For a given source set created in Step 4, they
extract passages ensuring that: there are not duplicate passages, there
are not adjacent passages, and that there is at least a passage per
document.

7. Obfuscation. Every passage from the previous step is obfuscated follow-
ing four strategies: no obfuscation, random obfuscation, cyclic transla-
tion, and summary obfuscation. Below, we describe these strategies.

8. Suspicious Document Generation. A suspicious document is generated
by randomly concatenating an (obfuscated) passage set.

In the end, the corpus consists of pairs of suspicious and source docu-
ments in an XML format as shown in the following example:

<document r e f e r e n c e=” su sp i c i ou s−document00006 . txt ”>
<f e a t u r e name=” p lag i a r i sm ”

ob fu s ca t i on=”random”
o b f u s c a t i o n d e g r e e=” 0.4672857029362325 ”
s o u r c e l e n g t h=”402”
s o u r c e o f f s e t=”1084”
s o u r c e r e f e r e n c e=” source−document00560 . txt ”
t h i s l e n g t h=”269”
t h i s o f f s e t=”1412”
type=” a r t i f i c i a l ”

/>
. . .
</document>
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3.1.5 Evaluation Metrics

The lack of an evaluation metric drove the organizers of PAN in the context of
their benchmarking workshop [61, 65] to propose the following metrics [64],
which have been in use since 2009 and became the baseline in plagiarism
detection.

Let dplg denote a document that contains plagiarism. A plagiarism case
in dplg is a 4-tuple s =< splg, dplg, ssrc, dsrc >, where splg is a plagiarized
passage in dplg, and ssrc is its original counterpart in some source document
dsrc. Likewise, a plagiarism detection for document dplg is denoted as r =<
rplg, dplg, rsrc, d

′
src >; r associates an allegedly plagiarized passage rplg in

dplg with a passage rsrc in d′src. It is said that rdetectss iff rplg ∩ splg¬φ,
rsrc∩ ssrc¬φ, and d′src = dsrc. With regard to a plagiarized document dplg,
it is assumed that different plagiarized passages of dplg do not intersect; with
regard to detections for dplg, no such restriction applies. Finally, S and R
denote sets of plagiarism cases and detections.

While the above 4-tuples resemble an intuitive view of plagiarism detec-
tion the authors resort to an equivalent, more concise view to simplify the
subsequent notations: a document d is represented as a set of references to
its characters d = (1, d), ..., (|d|, d), where (i, d) refers to the i− th character
in d. A plagiarism case s can then be represented as s = splg ∪ ssrc, where
splg ⊆ dplg and ssrc ⊆ dsrc. The characters referred to in splg and ssrc form
the passages splg and ssrc. Likewise, a detection r can be represented as
r = rplg ∪ rsrc. It follows that rdetectss iff rplg ∩ splg¬φ and rsrc∩ ssrc¬φ.
Based on these representations, the precision and recall of R under S are
defined as follows:

prec (S,R) =
1

|R|
∑
r∈R

∣∣⋃
s∈S (s u r)

∣∣
|r|

(3.1)

rec (S,R) =
1

|S|
∑
s∈S

∣∣⋃
r∈R (s u r)

∣∣
|s|

(3.2)

where

s u r =

{
s ∩ r if r detects s,

0 otherwise.

Besides precision and recall, there is another concept that characterizes
the power of a detection algorithm, namely, whether a plagiarism case s ∈ S
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is detected as a whole or in several pieces. The latter can be observed in
today’s commercial plagiarism detectors, and the user is left to combine
these pieces to a consistent approximation of s. Ideally, an algorithm should
report detections R in a one-to-one manner to the true cases S. To capture
this characteristic we define the detection granularity of R under S:

gran (S,R) =
1

|SR|
∑
s∈SR

|Rs| , (3.3)

where SR ⊆ S are cases detected by detections in R, and Rs ⊆ R are the
detections of a given s:

SR = {s|s ∈ S ∧ ∃r ∈ R : r detects s} ,
Rs = {r|r ∈ R ∧ r detects s} .

The domain of gran(S,R) is [1, |R|], with 1 indicating the desired one-
to-one correspondence and |R| showing the worst case, where a single s ∈ S
is detected over and over again.

Precision, recall, and granularity allow for a partial ordering among pla-
giarism detection algorithms. To obtain an absolute order, they must be
combined to define an overall score:

plagdet (S,R) =
Fα

log2 (1 + gran (S,R))
, (3.4)

where Fα denotes the Fα-Measure, i.e., the weighted harmonic mean of preci-
sion and recall. The authors suggest using α = 1 (precision and recall equally
weighted) since there is currently no indication that either of the two is more
important. We take the logarithm of the granularity to decrease its impact
on the overall score.

In Figure 3.4 is shown a document as a character sequence, either the
suspicious or source document, that helps understand the rationale of the
metrics proposed by Potthast et al.
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Figure 3.4: A document as character sequence, including plagiarized sections
S and detections R returned by a plagiarism detection algorithm
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3.2 Paraphrase Identification

According to Merriam-Webster dictionary, paraphrase is a restatement of a
text, passage, or work giving the meaning in another form. Similarly, Bhagat
et al. Bhagat and Hovy [8] define paraphrase as sentences or phrases that
convey the same meaning using different wording.

Paraphrase identification is the task of determining whether two sentences
have essentially the same meaning. This task has been shown to play a major
role in many natural language applications, including text summarization,
question answering, machine translation, natural language generation, and
plagiarism detection. For example, detecting paraphrase sentences would
help a text summarization system to avoid adding redundant information [2].

3.2.1 Typology

One reason why paraphrase recognition systems have been difficult to build
is that paraphrases are hard to define. Although the strict interpretation of
the term “paraphrase” is quite narrow because it requires exactly identical
meaning, in linguistics literature paraphrases are most often characterized
by an approximate equivalence of meaning across sentences or phrases [8].

To give some structure to the process of paraphrase recognition, several
typologies have been proposed depending on the field of study. These ty-
pologies have significant differences in nature, whether they are focused on
discourse analysis, linguistics, or computational linguistics. Cedeño et al. [5]
classified the typologies created by several authors according to its field of
study. In Table 3.2 we summarize their analysis.

From this analysis, Cedeño et al. [5] proposed the typology presented
in Figure 3.5. Their paraphrase typology attempts to capture the general
linguistic phenomena of paraphrasing, rather than presenting a long, fine-
grained, and inevitably incomplete list of concrete mechanisms. In this sense,
it also attempts to be comprehensive of paraphrasing as a whole. It was con-
trasted with, and sometimes inspired by state-of-the-art paraphrase typolo-
gies to cover the phenomena described in them; and it was used to annotate
(i) the plagiarism paraphrases in the P4P corpus, (ii) 3,900 paraphrases from
the news domain in the Microsoft Research Paraphrase Corpus (MSRP) [15],
and (iii) 1,000 relational paraphrases (i.e., paraphrases expressing a relation
between two entities) extracted from the Wikipedia-based Relational Para-
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Table 3.2: Typologies classified according to their field of study
Field of
study

Description Authors

Discourse
analysis

Reformulation mechanisms or com-
municative intention behind para-
phrase

Gülich [24]
& Cheung
[12]

Linguistic
analysis

Concrete theoretical frameworks, as
the case of Meaning-Text Theory

Mel’čuk
[46] &
Milićević
[50]

Linguistic
analysis

Transformations and diathesis alter-
nations focusing on on lexical and
syntactic phenomena

Chomsky
[13] & Har-
ris [25] &
Levin [37]

Linguistic-
related
fields

Editing Faigley
and
Witte [16]

phrase Acquisition corpus (WRPA). P4P and MSRP are English corpora,
whereas WRPA is a Spanish one. The success in the annotation of such
diverse corpora with their paraphrase typology guarantees its adequacy for
general paraphrasing, not only in English.

3.2.2 Corpora

P4P

Cedeño et al. introduced the P4P corpus in their work Plagiarism Meets
Paraphrasing: Insights for the Next Generation in Automatic Plagiarism
Detection [5]. The corpus was built using cases of simulated plagiarism
in the PAN-PC-10 corpus. Here, simulated stands for those cases created
by humans paraphrasing small documents, and were generated through the
crowdsourcing Internet marketplace Amazon Mechanical Turk. The cases
selected should contain 50 words or less, resulting in 847 paraphrase pairs
meeting this condition.

After tokenization of the working corpus, the annotation was performed
by, on the one hand, tagging the paraphrase phenomena present in each
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Figure 3.5: Paraphrase typology
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source/plagiarism pair with their tag set (each pair contains multiple para-
phrase phenomena). The tag set the authors proposed is described in the
Section 2.3.1 (Typology) and shown in Figure 3.5. On the other hand, indi-
cating the scope of each of these tags (the range of the fragment affected by
each paraphrase phenomenon). Their tag set consists of 20 paraphrase types
plus identical and non-paraphrase tags. Identical refers to those text frag-
ments of the source/plagiarism pairs that are exact copies; non-paraphrase
refers to fragments of the source/target pairs that are not semantically re-
lated. The reason for adding these two tags was to see how they perform in
comparison to the actual paraphrase cases [5].

Regarding the scope, they do not annotate strings but linguistic units
(words, phrases, clauses, and sentences). The scope affects the annotation
task differently regarding the classes [5].

For the classes morpholexicon-based changes, semantics-based changes,
and miscellaneous changes, only the linguistic unit(s) affected by the trigger
change is (are) tagged. As some of these changes entail other changes, two
different attributes were provided. LOCAL, which stands for those cases in
which the trigger change does not entail any other change in the sentence;
and GLOBAL, which means those cases in which the trigger change does
entail other changes in the sentence [5].

For the class structure-based changes, the whole linguistic unit suffering
the syntactic or discourse reorganization is tagged. Moreover, most structure-
based changes have a key element that gives rise to the change and distin-
guishes it from others. This key element is also tagged [5].

Paraphrase type frequencies and total and average lengths are shown in
Figure 3.6. Same-polarity substitutions represent the most frequent para-
phrase type. At a considerable distance, the second most common type is
addition/deletion. The authors suppose that the way paraphrases were col-
lected in PAN-PC-10 corpus had a major impact on these results. They
were created manually, asking people to simulate plagiarizing by re-writing a
collection of text fragments–that is, they were originated in a reformulation
framework, where a conscious reformulating intention by a speaker exists.
Their hypothesis is that the most frequent paraphrase types in the P4P cor-
pus correspond to the paraphrase mechanisms most accessible to humans
when asked to reformulate or plagiarize. Same-polarity substitutions and
addition/deletion are mechanisms that are relatively simple to apply to a
text by humans: changing one lexical unit for its synonym (understanding
synonymy in a general sense) and deleting a text fragment, respectively [5].
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Figure 3.6: Absolute and relative frequencies of the paraphrase phenomena
occurring within the 847 source–plagiarism pairs in the P4P corpus
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Table 3.3: MSRP distribution
positives negatives total

train 2753 1323 4076
test 1147 578 1725
total 3900 1901 5801

Microsoft Research Paraphrase Corpus

The Microsoft Research Paraphrase Corpus (MSRP) is widely used in the
Paraphrase Recognition/Identification task, being the baseline to compare
different algorithms. The corpus contains 5801 pairs of sentences which have
been extracted from news sources on the web, along with human annotations
indicating whether each pair captures a paraphrase/semantic equivalence re-
lationship [66] [15]. An example pair tagged as a paraphrase or “semantically
equivalent” is:

• Amrozi accused his brother, whom he called “the witness”, of deliber-
ately distorting his evidence.

• Referring to him as only “the witness”, Amrozi accused his brother of
deliberately distorting his evidence.

The corpus is divided into training and test dataset with a certain dis-
tribution of positive (paraphrase) and negative (non-paraphrase) pairs, as
shown in Table 3.3.

The authors, interested in identifying more complex paraphrase relation-
ships, restricted the dataset to a minimum word-based Levenshtein distance
of 8. This constraint helped avoid the most trivial sorts of paraphrase, such
as sentence pairs differing only a single word.

Each pair of sentences was examined by two human annotators who were
asked to give a binary judgment as to whether the two sentences could be
considered “semantically equivalent”, while a 3rd judge was used to resolve
disagreements. The methodology followed for the annotation process was:
Rater 1 scored all 5801 sentences. Rater 2 scored 3533 sentences, and Rater
3 scored 2268 sentences. For the sentences where Rater 1 and 2 did not agree
with the judgment, Rater 3 gave a final judgment, while Rater 2 gave the
final judgment on sentences where Rater 1 and Rater 3 did not agree. The
inter-rater agreement is shown in Table 3.4.
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Table 3.4: MSRP interrater agreement
Scored Agreements Percentage

Raters 1 & 2 3533 2904 82.20%
Raters 1 & 3 2268 1921 84.70%

Paraphrase Database

The first version (1.0) of the Paraphrase Database (PPDB) [20] contained two
large datasets containing millions of paraphrases for the English and Spanish
language. In the following version (2.0) [19], they included several other
languages. The database was automatically extracted following Bannard
and Callison-Burch [3] intuition that two English strings that translate to
the same foreign string can be assumed to have the same meaning. For this
purpose, they used several parallel corpora. We focus on the English dataset
of last version [58] which is divided in different sizes and options. There are
three options:

• Lexical: single word to single word

• Phrasal: multiword to single/multiword

• Syntactic: paraphrase rules containing non-terminal symbols

There are also different available sizes (S, M, L, XL, XXL, XXXL) ranging
from 550MG to 17 GB. There are other considerations and combinations that
can be downloaded from the authors site2.

The corpus is distributed as plain text files where each line is one para-
phrase in the format:

LHS ||| PHRASE ||| PARAPHRASE ||| (FEATURE=VALUE )* |||
ALIGNMENT ||| ENTAILMENT,

where LHS is the constituent and FEATURES is a list with values such as
estimated paraphrase and entailment probabilities.

2algo, 14/05/2018
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3.2.3 Distributional Approaches

Most recent approaches are leaning towards distributional models. Most
of these models obey a well defined general structure. First, a distribu-
tional word representation (word embeddings) followed by a compositional
model to generate phrase representations, and finally, a similarity layer to
compare both phrase representations. There are several adaptations inside
these general steps regarding the way they interact with each other. In
some approaches the models are trained end-to-end over the same dataset
from computing the embeddings, the compositional model and similarity
score between the pair of sentences. Other variations include using word
embeddings trained on large datasets, training the compositional model in a
different and bigger dataset to our particular task, jointly training the em-
beddings and compositional model, among others. The models trained on
different datasets aim to apply transfer learning to the task of paraphrase
identification and just fine-tune the previously learned parameters.

3.2.4 Word Representation

Word representation, specifically distributional models, assume that words
that occur in similar contexts have similar meanings. The aim then is to
construct a word space where these words are represented as similar vectors.
Some approaches rely on co-occurrence count matrices using a given corpus.
Recent approaches however, show a shift towards neural network models
were the word space is optimized in a prediction task. These models aim to
maximize the probability of observing a word in a given context or vice-versa.
We can also find combinations of both of these models.

Mitchell & Lapata

Mitchell & Lapata [52] proposed a simple distributional semantic space. They
represent target words in an M -dimensional space where M are the most fre-
quent non-stopword terms in the British National Corpus (BNC). Then, they
compute co-occurrence counts within a context window in either direction of
the target words. Equations (3.5) and (3.6), extracted from Blacoe & Lap-
ata analysis [9], detail this method. The vectors dimensions will be given by
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ctxttop =
{
w

(top)
1 , ..., w

(top)
M

}
and the co-ocurrence count will be:

coCountw[j] =

nBNC∑
i=1

ni∑
t=1

∣∣∣{k ∈ [t− 5; t+ 5]|w(i)
t = w,w

(i)
k = w

(top)
j

}∣∣∣ , (3.5)

for w ∈ V ocBNC and j = 1, ...,M . Then, each word representation is given
by:

wdV ec(rp)w [j] =
p(w

(top)
j |w)

p(w
(top)
j )

=
coCountw[j]

freqw
× totalCount

freq
w

(top)
j

, (3.6)

for j = 1, ...,M , where totalCount is the total number of words in the BNC.

In recent years, several authors have embraced the use of neural language
models to address the task of paraphrase identification. Some of the most
populars being the language model proposed by Collobert & Weston [14],
the skip-gram & CBOW models (word2vec) by Mikolov et al. [49], and the
GloVe model by Pennington et al. [59].

Collobert & Weston

Collobert & Weston convert the unsupervised learning task of computing
word embeddings to a binary classification task. Given a fixed-size window
and the middle word in as the positive samples they generate the negative
samples by replacing the middle word at random. This way they enforce
semantic coherence. The objective function of the model is a ranking-type
cost: ∑

s∈S

∑
w∈D

max(0, 1− f(s) + f(sw)), (3.7)

where S is the set of windows, D is the dictionary of words, and f(·) rep-
resents their Neural Network (NN) model consisting of a convolution, max
Pooling, and fully-connected NN layers, where the last layer returns a single
output.

One implementation available in GitHub3 concatenates all the embed-
dings of the fixed-size window and use a two fully-connected layers NN. In
this implementation the only generate a 100 negative samples per positive one
and not using the entire vocabulary which would require a lot of processing.

3https://github.com/klb3713/cw_word_embedding

https://github.com/klb3713/cw_word_embedding
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Figure 3.7: CBOW and Skip-gram models [48]

Word2vec

Mikolov et al. [48] proposed two architectures as part of their word2vec
model. Both are based on the neural probabilistic model proposed by Bengio
et al. [6], which consist of input (one-hot word representations), projection
(vectorial word representations), hidden and output layers.

The first of their architectures is the Continuous Bag of Words (CBOW)
where they propose a log-linear classifier to predict the middle word given a
set of context words. They remove the hidden layer from the neural language
model and average the word vectors of the given context after the projection
layer. Since the use average the order of the context words does not matter,
hence the name bag of words (BOW). Continuous BOW comes from the fact
they use continuous distributed representation of the context.

The second architecture is the Continuous Skip-gram (Skip-gram). They
maximize the classification of a word based on another word in the context.
The target word is the input of the log-linear classifier and predicts words
from the context.

Figure 3.7, extracted from their article, provides a better understanding
of the models rationale.

The authors have performed subsequent experiments and made further
improvements that can be found in their follow up work [49]. Additionally,
there is a popular implementation of these models in the gensim Python
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module [67]. There are also some pre-trained word vectors freely available in
the Internet4.

Global Vectors (GloVe)

Global Vectors (GloVe) was proposed by Pennington et al. [59] which is a
method based on word-word co-occurrence counts extracted from a given
corpus. The idea is to count the number of times a word j occurs in the
context of word i. This allows to compute a probability given by the co-
occurrence count of j and i divided by the frequency of target word j. They
compute probability ratios of two target words to a set of probe words k
instead of just single probabilities. They introduce a weighted least squares
regression model that takes into account the frequency of co-occurrences.

There is an official release implementation of this approach together with
some pre-trained word embeddings using different dimensions and corpora5.

Cheng & Kartsaklis

Cheng & Kartsaklis [11] compute the embeddings jointly with the composi-
tional model. They extend Collobert & Weston’s model (CW) to be aware
of syntax. To achieve this goal, beside generating a set of negative examples
where the middle word in the fixed-size window is replaced by a random
word (retaining semantic), they also generate a second set of negative ex-
amples where the context of the middle word have been randomly shuffled
(retaining syntax). They replace the NN model used in CW’s with a recur-
rent neural network (RNN) or a recursive neural network (RecNN), and a
fully-connected layer to their output. They also extend their model to disam-
biguate the embeddings. They follow the multi-sense model of Neelakantan
et al. [54] assigning a fixed number n of senses to each word and using a
gated architecture to select one of them.

Others

When creating a NN-based approach for paraphrase identification or sim-
ilar tasks, which requires a compositional model, the embedding layer is

4urlhttps://code.google.com/archive/p/word2vec/
5https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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implemented as a lookup table, usually, initialized with pre-trained embed-
dings and with the option of further tune them on the specific task. Sev-
eral approaches use this technique. Yin & Schütze [87] initialize its embed-
dings with those provided by Turian et al. [83] (based on Collobert & We-
ston [14]) and then further tune them. He et al. [26] concatenates three em-
beddings: pre-trained 300-dim GloVe [59], 25-dim PARAGRAM [85] which
were trained using the Paraphrase Database (PPDB) [20], and a 200-dim
word2vec model [49] trained with (word, POS tags) on Xinhua News Agency
corpus. Wang et al. [84] and Shen et al. [75] use the pre-trained word2vec
embeddings provided by Mikolov [49]. Socher et al. [79] use Collobert and
Weston’s embeddings [14].

3.2.5 Compositional Model

Compositional models aim to compute phrase representations from individual
words. There is a wide range of approaches for compositionality applied to
paraphrase identification, from simple element-wise vector operators such as
addition and multiplication [9] to complex deep learning models [11, 26,75].

Ji & Eisenstein

Ji & Eisenstein [28] do not use distributional representations of words. In-
stead, they start by computing the Bag of Words (BOW) representation
of the sentences using term-frequency as the weighting scheme. Then, they
reweight each word in the vocabulary by computing its probability of appear-
ing in both sentences of the pair and being a paraphrase sample. They use
two Bernoulli (Equations (3.8)(3.9)) distributions and the Kullback-Leiber
divergence (Equation (3.10)) to perform the reweighting. They update the
BOW values with these probabilities. Finally, they compute a dimensionally-
reduced latent representation of the sentences using nonnegative matrix fac-
torization.

pk = P (w
(1)
ik |w

(2)
ik = 1, ri = 1), (3.8)

is the probability that sentence w
(1)
i contains feature k, given that k appears

in w
(2)
i and the two sentences are labeled as paraphrases, ri = 1.

qk = P (w
(1)
ik |w

(2)
ik = 1, ri = 0), (3.9)
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is the probability that sentence w
(1)
i contains feature k, given that k appears

in w
(2)
i and the two sentences are labeled as not paraphrases, ri = 0.

KL(pk||qk) =
∑
x

pk(x)log
pk(x)

qk(x)
, (3.10)

is the Kullback-Leibler divergence which measures the discriminability of
feature k.

Cheng & Kartsaklis

As mentioned in previous section, Cheng & Kartsaklis [11] train the word
embeddings and the compositional model in the same step in an unsupervised
way. The use a recurrent or recursive neural network (they experiment with
both architectures) with a fully connected layer after each time step to score
the linguistic plausibility of the computed phrase representations.

Yoon Kim

Yoon Kim [31] propose a model based on Convolutional Neural Networks for
sentence classification where he applies a variety of convolutional filters using
different kernel sizes in parallel, followed by a Max pooling layer, and a fully
connected layer applied to the concatenation of the pooling outputs. The
kernel sizes are given by the n-grams being extracted and the dimensions of
the embeddings (eg. (1, 300), (2, 300)and(3, 300)), which can be viewed as a
”temporal” convolution as it convolve over regions of the phrase.

He et al.

He et al. [26] propose a combination of convolution filters and pooling meth-
ods to extract features from a sentence. Specifically, they proposed two types
of filters, one based on Kim’s work which they call holistic filters. The other,
based on applying independent convolutions for each dimension of the em-
beddings which the call per-dimension filters. They combine the convolution
operations with max, min, and mean pooling layers independently, i.e. a
convolution for each pooling operation.
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Wang et al.

Wang et al. [84] starts by representing each sequence of words in a sequence
of embeddings using the pre-trained word2vec values. Then, given a sen-
tence pair, they decompose each word representation into a two-components
vector, “similar” s+ and “dissimilar” s− components. After this, they apply
a two-channel CNN operation to compose both components into a feature
vector. Unlike previous authors they compute the sentence representations
by taking into account both sentences from the pair and hence their model
is dependent on the specific task of paraphrase identification. To perform
the decomposition of a given word si, they compute the cosine similarity ai,j
between the given word and all words of the other sentence T = {t0, ..., tm}.
Then, select the word that returns the highest value together with a context
given a fixed-size window. They compute a semantic matching vector ŝi for
si in the following way:

ŝi =

k+w∑
j=k−w

ai,jtj

k+w∑
j=k−w

ai,j

, (3.11)

where k is the position of the most similar term between of T to si, ai,j is
the cosine similarity, and w is the size of the window.

Given the word representation si and computed the semantic matching
vector ŝi, the authors experimented with three decomposition functions. For
simplicity we describe only the two best-performing functions.

Linear : This decomposition function assigns a bigger proportion of the
original vector if the similarity with its semantic matching vector is higher.
It is defined as:

α = cos(si, ŝi) (3.12)

s+i = αsi (3.13)

s−i = (1− α)si (3.14)

Orthogonal : Decomposes a vector in the geometric space. It is defined
as: {

s+i = si·ŝi
ŝi·ŝi ŝi parallel

s−i = si − s+i perpendicular
(3.15)
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Socher et al.

Socher et al. [79] use a recursive autoencoder (RAE) applied to a given parse
tree. The parent representations of the tree are computed from the chil-
dren using a standard neural network layer. To asses the quality of these
vectors representations they use another matrix to decode their vectors in a
reconstruction layer and compute the Euclidean distance between the orig-
inal input and its reconstruction. They also use an extended version called
unfolding recursive autoencoder where the try to reconstruct all intermediate
nodes of the tree.

Shen et al.

Shen et al. [75] uses a bidirectional LSTM with outputs in each time step
to compute the representations of each sentence. The bidirectional LSTM
consist on applying the recurrent network in both directions of the sentence
(left-to-right and vice versa) and concatenating both outputs.

Yin & Schütze

Yin & Schütze [87] proposed an architecture based on convolutional, averag-
ing and max-pooling layers following the model of Kalchbrenner et al. [30].
The procedure goes as: wide convolution, averaging, dynamic k-max pool-
ing, wide convolution, averaging and k-max pooling. The rational of their
model is obtain a multigranular sentence representation at four different lev-
els: word (word embeddings), short ngram (first averaging layer), long ngram
(second averaging layer), and sentence (output of last k-max pooling layer).
Given a sequence of tokens Si, a wide convolution consist in convolve a weight
matrix M ∈ Rd×m over the sequence representation Si ∈ Rd×|Si| generating a
matrix C ∈ Rd×(|Si|+m−1). Note that in this type of convolution the sequence
need to be padded to achieve the desire dimensions in the resulting matrix.
Also, they do not add any bias term of activation function. The averag-
ing layer consist in computing the mean between odd and even rows of the
embeddings, add the bias weights and apply tanh activation function. The
averaging layer generates a matrix A ∈ R d

2
×(|Si|+m−1). The k-max pooling is

a generalization of the max-pooling over time operation. It returns the top-k
values in the temporal dimension. This layer ensures a fixed-size output.
The dynamic k-max pooling returns the top-kdy values where kdy depends
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on the length of the sequence Si.

kdy = max(ktop, |Si|/2 + 1) (3.16)

Blacoe & Lapata

Blacoe & Lapata [9] experimented with simple compositional models consist-
ing of addition and multiplication of the word representations in a sequence.

3.2.6 Similarity Layer

The similarity layer compares the sentences representations in a way it can be
feed to a classifier to resolve a particular task. Given a pair of sentences the
paraphrase identification task consist in assign a value of 1 if both sentences
convey the same meaning.

Ji & Eisenstein [28] compute a sample vector by concatenating the element-
wise sum and absolute difference of both sentences. In addition to the sample
vector, they use a set of hand-engineered features to capture fine-grained sim-
ilarity between sentences.

Cheng & Kartsaklis [11] use a Siamese architecture where the composi-
tional model weights are shared to compute the sentences representations.
Given the sentence vectors f(s1) and f(s2), they experimented with two cost
functions, the L2 norm and the cosine similarity. The L2 norm is defined as:

Ef =

{
1
2
‖f(s1)− f(s2)‖22 , ify = 1

1
2

max(0,m− ‖f(s1)− f(s2)‖2)2, o.w.
(3.17)

where m stands for the margin hyper-parameter chosen in advance. The
cosine similarity cost is defined as:

Ef =
1

2
(y − σ(wd+ b))2, (3.18)

where d is the cosine similarity between both sentences, w and b are the
scaling and shifting parameters to be optimized, σ is the sigmoid function.

Keeping in mind that their compositional model returns features for the
combinations of holistic filters with max, min, mean pooling functions; and
per-dimension filters with max and min pooling functions, He et al. [26] pro-
posed two algorithms that compare features from certain “regions”. Both



3.2. PARAPHRASE IDENTIFICATION 73

algorithms compared features from the same pooling function only. The
first algorithm is applied only over the holistic filters. They compute two
measures: the cosine similarity and the euclidean distance. The operations
are applied over the concatenation of all convolutional kernel sizes and for
each filter independently. The second algorithm can be divide in two parts.
In the first part all kernel sizes of the holistic filters between the sentences
are compared, in the second part for each kernel size and each filter of the
per-dimension filters are compared. For this algorithm they compute three
measures: the cosine similarity, the euclidean distance and the sum of ab-
solute distance. After applying both algorithms they concatenate all the
features and feed them to a two-layer traditional neural network with a soft-
max layer as final output to compute the similarity score of both sentences.
See the authors paper for a detail description of their methods.

Wang et al. [84] concatenates the two sentence representations and apply
a linear function with a sigmoid in the output to constrain the similarity
within the range [0, 1].

In the work of Socher et al. [79], given the representation of each word
and phrases for the nodes of the parse tree, they compute the Euclidean
distances between all word and phrase vectors of the two sentences generating
a similarity matrix S. Considering the sentence lengths as n and m, and since
the parse tree is binary then S ∈ R(2n−1)×(2m−1). They propose a dynamic
pooling method to transform S into Spooled ∈ Rnp×np . Each value of Spooled
is the minimum of each rectangular region formed by splitting the original
matrix S into a grid of 2n−1

np
by 2m−1

np
regions. The feed the resulting fixed-size

matrix to a standard softmax classifier.
Given their compositional architecture, Yin & Schütze [87] extract fea-

ture matrices by computing similarity between the two sentences on multiple
levels, specifically what they call: unigram, short ngram, long ngram and
sentence. They use the euclidean distance to compute the similarity defined
as:

F̂ ij
l = exp

(
−||S1,l

:,i − S
2,l
:,j ||2

2β

)
, (3.19)

where −||S1,l
:,i − S

2,l
:,j ||2 is the Euclidean distance between the representation

of the ith item of S1 and jth item of S2 on level l. They set β = 2.
As the matrices dimensions vary according to the sentence lengths they

propose a dynamic pooling for feature matrices based on the method of
Socher et al. [79]. Then, all fixed-size resulting matrices are concatenated
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and fed to a logistic regression classifier.
For comparing the two sentence representations, Shen et al. [75] pro-

pose an architecture which they name Gated Relevance Network (GRN).
They incorporate a bilinear model and a single layer network through a gate
mechanism. Given that their compositional model is based on a bidirectional
LSTM that returns a representation for each time step, the bilinear model is
defined as:

s(hxi , hyi) = hTxiMhyi , (3.20)

where M ∈ Rd×d is a matrix to be learned and d is the dimension of the
output of each time step of the LSTM. The single layer network is applied
on the concatenation of the representations as:

s(hxi , hyi) = uTf

(
W

[
hxi
hyj

]
+ b

)
, (3.21)

where f is the non-linear activation function, W ∈ Rk×2d and b ∈ Rk are the
trainable weights. Then the definition of the GRN is:

s(hxi , hyi) = uT
(
g � hTxiM

[1:r]hyi + (1− g)� f
(
W

[
hxi
hyj

]
+ b

))
(3.22)

where the gate g is defined as:

g = σ

(
Wg

[
hxi
hyj

]
+ bg

)
, (3.23)

The output of the GRN is a matrix with dimensions determined by the
input sequence lengths. The next step they take is applying a max-pooling
layer of non-overlapping regions. Given that they pad all the sequences of
the dataset to a maxlength size, applying GRN and max-pooling operations
result in a fixed-size output. The next step is feeding that output to a fully-
connected layer.

Blacoe & Lapata [9], experimented with some combinations of the sen-
tence representations plus some hand-engineered features. These features
are fed to a liblinear classifier. The features are: either the concatenation or
subtraction of both vectors, a vector encoding which words appear in each
sentence (sparse vector where the dimensions are the vocabulary of MSRP
corpus), the cosine similarity, the length of both sentences, and the unigram
overlap.
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4.1 Text Alignment Improvements

4.1.1 Adaptive Behavior

At the PAN competition, the methods are evaluated on a corpus that con-
tains plagiarism cases created using four different types of obfuscation: none,
random, translation, and summary. In the training dataset, we have the op-
tion to test our approaches in sub-corpus divided according to the type of
obfuscation used to create the plagiarism cases. We observed that the op-
timal parameters of our method are different to detect such diverse types
of obfuscated plagiarism cases. Therefore, we introduced three alternative
paths and decided which output to use according to the type of obfuscation
we are likely dealing with in each specific document pair.

The final set up of our approach is shown in Figure 4.1. After initial
preprocessing and seeding steps, we follow two separate paths with different
maxgap values: one value (maxgap summary) that we found to be best for
the summary obfuscation sub-corpus and one that was best for the other
three corpora (maxgap). After we obtain the plagiarism cases using these
two different settings, we applied a verbatim detector method to the non-
summary approach resulting in three possible results. We named these results
as verbatim plagiarism cases (cases V), summary plagiarism cases (cases S),
and regular plagiarism cases (cases O).

Verbatim Detector

The verbatim detection method is based on the Longest Common Substring
(LCS) algorithm. We modify the LCS algorithm to use words instead of
characters and to find every single common sequence of words above a certain
threshold measured in characters (th verbatim).

Output Selector

The decision of which of the three outputs (cases V, cases S and cases O)
report as the final result of our approach follows a decision cascade where the
verbatim plagiarism cases have priority, them summary and finally regular
cases. All three possible outputs are mutually exclusive.

If there is at least one verbatim case, the pair of documents is considered
as a non-obfuscated pair, and the verbatim output is reported. If none ver-
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Figure 4.1: Diagram of the final approach
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Table 4.1: Parameters settings
Parameter Value Parameter Value
minsentlen 3 maxgap summary 24
th cos 0.30 maxgap least 0
th dice 0.33 minsize 1
th validation 0.34 minplaglen 150
maxgap 4 th verbatim 256

batim cases were reported, we decide whether cases S are likely to represent
summary obfuscation or not. To judge this, we compare the relative length of
the suggested suspicious fragments to the source fragments. Specifically, the
decision is made based on the variables srclen and susplen, which correspond
to the total length of all passages, in characters, in the source document and
the suspicious document, respectively. When susplen is much smaller than
srclen, then we are likely dealing with summary obfuscation. If both, verba-
tim and summary cases where discarded then the reported output is regular
plagiarism cases.

In table Table 4.1 we show the final setting of the parameters used in our
system.

4.1.2 Results

We trained our system using the corpus provided for PAN 2014 competition
and using the performance measures introduced in [64]. We compared this
approach to our previous one in all of the sub-corpus and measurements. We
tested our system in the PAN 2014 training corpus using the TIRA plat-
form [23]. As observed in Table 4.2 the performance in the none obfuscated
sub-corpus was increased dramatically because of the new verbatim detec-
tor. We also observed an increased in the summary sub-corpus because of
the new parameters settings. These improvements came without affecting
significantly the other sub-corpus and hence, the final result was increased
as well.

The results showed that recall is the measure where we excel but need
to improve the precision of the model by identifying and adjusting to other
types of obfuscation rather than just summary and verbatim obfuscation.
Regarding the system runtime, even our goal is not aiming at efficiency, our
software performed at an average level.
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Table 4.2: Comparison between our result from PAN2015 and PAN2014
approaches on PAN 2014 training corpus

Obfuscation
PAN 2015 approach

Plagdet Recall Precision Granul.
None 0.9812 0.9761 0.9933 1.0048
Random 0.8847 0.8699 0.8999 1.0000
Translation 0.8792 0.9128 0.8481 1.0000
Summary 0.6304 0.4862 0.9739 1.0404
Entire 0.9025 0.8937 0.9164 1.0036

Obfuscation
PAN 2014 approach

Plagdet Recall Precision Granul.
None 0.8938 0.9782 0.8228 1.0000
Random 0.8886 0.8581 0.9213 1.0000
Translation 0.8839 0.8902 0.8777 1.0000
Summary 0.5772 0.4247 0.9941 1.0434
Entire 0.8773 0.8799 0.8774 1.0021

In Table 4.3 we present a comparison between our approach and 2014
participants showing a remarkable improvement.
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Table 4.3: Our approach compared to the PAN 2014 Official results reported
in [62]

Team PlagDet Recall Precision Granularity Runtime
Sanchez-Perez15 0.9010 0.8957 0.9125 1.0046 –
Sanchez-Perez14 0.8781 0.8790 0.8816 1.0034 00:25:35
Oberreuter 0.8693 0.8577 0.8859 1.0036 00:05:31
Palkovskii 0.8680 0.8263 0.9222 1.0058 01:10:04
Glinos 0.8593 0.7933 0.9625 1.0169 00:23:13
Shrestha 0.8440 0.8378 0.8590 1.0070 69:51:15
R. Torrejón 0.8295 0.7690 0.9042 1.0027 00:00:42
Gross 0.8264 0.7662 0.9327 1.0251 00:03:00
Kong 0.8216 0.8074 0.8400 1.0030 00:05:26
Abnar 0.6722 0.6116 0.7733 1.0224 01:27:00
Alvi 0.6595 0.5506 0.9337 1.0711 00:04:57
Baseline 0.4219 0.3422 0.9293 1.2747 00:30:30
Gillam 0.2830 0.1684 0.8863 1.0000 00:00:55
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4.2 Genetic-Based Parameter Tuning

In the majority of works on plagiarism detection, the parameters of the pro-
posed models are determined through brute force [70, 73] or by the author’s
domain knowledge [32]. Brute force approaches attempt to test all combi-
nations of parameters at once, which is unfeasible if the approach has an
extensive set of parameters. The majority of plagiarism detection algorithms
apply brute force approaches for smaller subsets of parameters, disregarding
plenty of parameter combinations. On the other hand, the parameter set-
ting based on the author’s knowledge does not take into account unknown
information contained in the data.

There are still few research works that use meta-heuristic based on genetic
algorithms for plagiarism detection. Lange and Mancoridis [34] introduced
a genetic algorithm for source code plagiarism detection. They defined 18
source code metrics to characterize a developer style and identified the op-
timal combination of these metrics using a genetic algorithm. The nearest
neighbor classifier was used to determine if a piece of code was written by
a particular developer. The cited research paper reports that the system is
capable of identifying the true author of a source code with 55% of accuracy.
However, the main contribution of the paper is the reduction of the search
time of the optimal metrics set from weeks to hours by using the genetic
algorithm instead of a greedy search.

Bouronara et al. [10] presented an approach for automatic plagiarism
detection in the world of mail service based on a machine learning tool and
genetic algorithms. Their first approach is based on character n-gram for
the representation of the texts and tf-idf as weighting scheme to calculate
the importance of a term in the corpus and a combination of two machine
learning methods (C4.5 and KNN algorithms). Then, they simulated a meta-
heuristic method based on genetic algorithms with some variations of the
hyper-parameters. The method based on genetic algorithms improved their
initial results by 8.1% in the F-measure score.

Our previews research works [71, 73] introduced a plagiarism detection
system that extracts sentences and compares them in a Vector Space Model
(VSM) using the cosine similarity alike [32]. It also uses the Dice coefficient
as in [33] given that this measure favors an equal vocabulary distribution
employed in the passages to be compared. For the extension step, our al-
gorithm clusters together nearby seeds. A plagiarism case is defined by the
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edges of a cluster and not as a set of seeds, this allows for small gaps in the
range of seeds, which can be part of the plagiarism case even if the seeding
process did not detect them. When filtering overlapped cases, we proposed
a measure of quality to decide which one to keep and which one to discard.

In this work, we introduce a genetic algorithm to optimize our plagia-
rism detection system [71], tailoring to specific kinds of obfuscation. This
optimization allows us to approximate the optimal parameter setting, taking
into consideration all the parameters at once. We also seek to reduce time
by finding the optimal parameter for our plagiarism detection method. But,
unlike Lange and Mancoridis’ work [34], our search space is bigger, in the
range of 24 trillion (because we are not representing the metrics as binary
genes).

We only focus on the seeding and extension components which are the
core of our system and where the parameters being optimized are used.

4.2.1 Parameter Tuning

With the objective of optimizing the parameters of our plagiarism detection
system in mind, we implemented a genetic algorithm using the basic opera-
tions with the settings that we think best fitted our needs. The parameters
we tried to optimize are described in Table 4.4. Our implementation of the
genetic algorithm starts with a randomly generated population, then applies
a fitness function to every individual and finally through the crossover and
mutation genetic operators produces a new population. We used the elitist
selection when constructing a new population allowing the two best indi-
viduals to carry over to the next generation, unaltered; and thus, ensuring
that the solution quality of the genetic algorithm does not decrease from
one generation to the next. The rest of the population is generated through
crossover and mutation. We stop iterating when the maximum number of
generations is reached.

4.2.2 Search Space

During the construction of our plagiarism detection system, we extensively
experimented with several parameter settings. The results, joined with knowl-
edge of the plagiarism detection field and datasets available, led us to estab-
lish certain ranges for each parameter, that we think comprised the best re-
sults and might generalize our plagiarism detection model to other datasets.



4.2. GENETIC-BASED PARAMETER TUNING 83

Table 4.4: Plagiarism detection system parameters being optimized
Parameter Description

1 th cos Threshold for the cosine similarity during
seeding.

2 th dice Threshold for the dice coefficient during seed-
ing.

3 th val Threshold for cosine similarity during valida-
tion.

4 src size Min amount of sentences in source fragment.
5 src gap Max gap between sentences in source frag-

ment.
6 src gap summary src gap for the summary detection method.
7 min src gap Min value src gap can take after several iter-

ations.
8 susp size Min amount of sentences in suspicious frag-

ment.
9 susp gap Max gap between sentences in suspicious

fragment.
10 susp gap summary susp gap for the summary detection method.
11 min susp gap Min value susp gap can take after several it-

erations.
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In Table 4.5 we show these domains which define the search space for the
genetic algorithm and represents 24,761,352,699,900 possible combinations.

Table 4.5: Gene’s domains

Parameter
Domain

Min Max Step
th cos 0.20 0.50 0.01
th dice 0.20 0.50 0.01
th val 0.20 0.50 0.01
src size 1 3 1
src gap 0 30 1
src gap summary 0 30 1
min src gap 0 9 1
susp size 1 3 1
susp gap 0 30 1
susp gap summary 0 30 1
min susp gap 0 9 1

4.2.3 Crossover

There are many ways the crossover operator may be applied depending on
the application and nature of the parameters being optimized [53]. Some of
the most well-known operators are:

• Single-point crossover: A single crossover position is chosen at random,
and the parts of two parents after the crossover position are exchanged
to form two offspring.

• Two-point crossover: Two positions are chosen at random, and the
segments between them are exchanged.

• Uniform crossover: The exchange happens at each gene position with
a probability p.

Single-point and two-point crossovers cannot represent certain schemes,
and genes’ ordering is relevant for them. Given that our parameters (genes)
lack a natural ordering, we used the uniform crossover in our experiments.
The probability p of selecting a gene from a parent is randomly assigned
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every time the crossover operator is called. We only use two parents which
are selected given their fitness function value wi = f(xi). Given a population
of n individuals x1, x2, . . . , xn the probability to select an individual xi for
crossover is defined as

T =
n∑
j=1

wj, (4.1)

p(xi) =
wi
T
. (4.2)

An efficient algorithm to implement the crossover parents selection is
given at Algorithm 2.

Algorithm 2: Crossover parents selection

1 T ←
n∑
j=1

wj

2 r ← rand(0, T )
3 for i← 1, . . . , n do
4 if r < wi then
5 return xi
6 r ← r − wi
7 return xn

This implementation represents a different equation,

p(xi) = (1− pi−1)
(

f(xi)

T − f(xi−1)

)
, (4.3)

which is equivalent to (4.2) and we define as Theorem 1. This theorem can
be easily proofed using mathematical induction.

Theorem 1. The probability of selecting an individual xi (4.2) and its im-
plementation (4.3) are equivalent.

f(xi)

T
= (1− pi−1)

(
f(xi)

T − f(xi−1)

)
. (4.4)
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Proof. For x0 = 0, assume f(x0) = 0. Consider the base case i = 1; then

f(x1)

T
= (1− 0)

(
f(x1)

T − 0

)
=
f(x1)

T
;

thus the conclusion holds for i = 1. By the inductive hypothesis, assume
that the conclusion holds for all values of i up to some k, k ≥ 1, and consider
i = k + 1. Then

f(xk+1)

T
= (1− pk)

f(xk+1)

T − f(xk)
(4.5)

=

(
1− f(xk)

T

)
f(xk+1)

T − f(xk)
(4.6)

= ������
T − f(xk)

T

f(xk+1)

������
T − f(xk)

(4.7)

=
f(xk+1)

T
, (4.8)

where (4.6) holds by the inductive hypothesis.

4.2.4 Mutation

We apply the mutation operator to each gene in every individual in the new
population, except for those individuals that moved to the next generation
through elitism selection. The mutation depends on a certain rate and when
happening it changes the value of a parameter by randomly selecting one of
the possible values for that particular parameter.

4.2.5 Fitness Function

The fitness function of the genetic algorithms consists of two parts. At first,
we run our plagiarism detection model explained before, and then we com-
pute the plagdet metric that returns a value between 0 and 1. The organizers
of PAN introduced this metric in the context of their benchmarking work-
shop [61, 65], which have been in use since 2009 and became the baseline in
plagiarism detection evaluation.
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Figure 4.2: System components

4.2.6 Improving the Running Time

PAN 2014 organizers provided an on-line experimentation platform called
TIRA [22] where participants were able to submit their systems. In the plat-
form, authors were provided a virtual machine with 1 processor and 4 GB of
RAM memory. The running time of our system reported at [62] was of ap-
prox. 25 min, something that makes using the system as the fitness function
in the genetic algorithm unfeasible. Therefore, we proposed some modifica-
tions to the system focusing on the main components of the implementation
and its running time as shown in Figure 4.2. Ellipsis stands for the rest of
the system we are not worried about its running time. The running time
information was obtained using Python’s profiler module.

First, we extract the Tokenize module from the genetic algorithm which
includes all the documents’ preprocessing and load all the document BOW
representations into memory. Besides Tokenize, the most time-consuming
module is Seeding, which has a complexity of O(n2) where n is the number
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Figure 4.3: Implementation of the genetic algorithm

of sentences in each document. To reduce this running time we compute the
seeds for each pair of documents only once using the lowest values of th cos
and th dice outside the genetic algorithm and load the results into memory.
Then, for each call to the fitness function, that calls our plagiarism detection
model, we filter the seeds using the new th cos and th dice thresholds. We
call this process Seeds filtering, and the complexity is also O(n2) for the
worst case. However, the worst case is extremely unlikely because given two
documents d1 and d2, all sentences in d1 should be similar to the rest of its
sentences and all sentences in d2, and vice-versa.

The diagram of the genetic algorithm is shown in Figure 4.3. During
our experiments, we called the fitness function 40,000 times when using the
entire corpus and 20,000 times for each of the four sub-corpus.

4.2.7 Experimental Setting

Defined the genetic algorithm operators and the plagiarism detector opti-
mizations, we established some hyper-parameters as shown in Table 4.6. The
individual size is the amount of parameters being optimized, and it is fixed.
The population size and number of generations were chosen according to the
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Table 4.6: Genetic algorithm’s hyper-parameters
Number of generations 1000
Population size 20
Individual size 11
Uniform crossover ratio p 0 ≤ p ≤ 1
Mutation rate 0.1

amount of time we had to run tests using two computers with four proces-
sors each one. The uniform crossover ratio may have values between 0 and
1, raising the issue of not having the crossover at all for values close to 0 or
1, with a 2

18
≈ 0.18 probability of happening given the individual size used.

In future work, we plan to use a different crossover ratio, although this issue
did not affect negatively the results given the number of generations and the
speed of convergence for this particular application and dataset. The mu-
tation rate was chosen at 0.1, which is a rather large value. This rate was
chosen because of the size of each individual, the non-binary representation,
and the elitism selection; meaning that at least one gene is changed for every
individual. We also have a huge searching space, and we keep the quality of
the solution by passing the best individuals to the next generation unaltered.

For our experiments, we used the PAN 2014 training corpus which is
divided in five sub-corpus given the type of obfuscation used to generate
each plagiarism case. We present a brief definition of each obfuscation type
while a detailed description can be found at [63]. It is important to point
out that plagiarism cases are corresponding text fragments which are small
parts of a given pair of suspicious and source document, meaning we need to
find then in a given context and it is not a classification task.

• No plagiarism: There are no plagiarism cases in this sub-corpus.

• None: Plagiarized fragments are a verbatim copy of the source.

• Random: Plagiarized fragments are a randomly obfuscated version of
the source.

• Translation: Plagiarized fragments are generated by translating a
source fragment through several languages and using different machine
translators returning to the initial language.
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• Summary: Plagiarized fragments are human-generated summaries of
the sources.

The corpus composition is shown in Table 4.7 where Pairs represents the
document pairs to be compared, Pairs w/ PC the pairs of documents with
at least one plagiarism case and PC the plagiarism cases in the sub-corpus.

Table 4.7: PAN 2014 training corpus distribution
Sub-corpus Pairs Pairs w/ PC PC
No-plagiarism 1000 0 0
None 1000 1000 1252
Random 1000 1000 1267
Translation 1000 1000 1250
Summary 1185 238 238
Entire corpus 5185 3238 4007

Intuitively, each type of obfuscation has different properties. Hence,
proposing an algorithm capable of generalizing for each type of plagiarism
with a fixed set of parameters is nearly impossible. In our previous ap-
proaches, we tried to address this issue. In PAN 2014 [71] we ran our model
twice with different gap parameters, one with (src gap, susp gap) and the
other with larger parameters (src gap summary, susp gap summary). The
aim was to detect between the summary sub-corpus and the rest, where the
ratio of the size of the plagiarized fragment and the corresponding source was
a lot great in this sub-corpus. In [72], we incorporated a longest common sub-
string method that ran over the results of our model and helped to improve
the precision of our approach in the none sub-corpus dramatically, without
hindering the performance of the others. The main idea of this work is to
optimize the parameters of the basic model for each one of the sup-corpus,
something that could be used later in conjunction with a rule-based [72] or
machine learning classifier [43] to improve the performance of the plagiarism
detection model.

4.2.8 Results and Discussion

Figure 4.4 shows the best individuals over all generations. We can see that
all of the sub-corpus converges quickly to a stable optimal value around
the 100th generation. This behavior reflects two things: first, our model
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Figure 4.4: Best individual’s fitness value by generation

generalizes well for the dataset at hand giving good results for a broad range
of parameter values, mostly due to the robustness of the extension algorithm
that adjusts some of the parameters dynamically. Second, the fact that the
plagiarism cases are generated automatically for the majority of the cases
and inserted randomly in a suspicious document increases the probabilities
that the surrounding contexts to the plagiarism case are entirely unrelated,
like a white box on a black background, allowing simple BOW models to
detect the plagiarism cases easily.

The benefit of using a genetic algorithm to optimize the parameters of
our model is that allows us to explore several regions of the immense search
space taking into account all the parameters at once, something unfeasible to
perform using a brute force approach. In Figure 4.5 and Figure 4.6 we plot
the distribution of the parameters used as input to our plagiarism detection
system as part of the fitness function, i.e. all the parameter values that
were tested throughout the 1000 generations. The results show how the
parameters converge to certain optimal values depending on the sub-corpus
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Figure 4.5: Similarity thresholds value’s distribution

being used. This convergence happens due to the elitism and the crossover
parents selection that keeps the parameter values close to a local optimum.

A deeper analysis of Figures 4.5 and 4.6 shows that for the None sub-
corpus the threshold th cos and th dice, controlling the seeding component,
converge to higher values while the th val does not approach an specific value.
This is something to expect given that the plagiarism cases in the None sub-
corpus are verbatim copies of the sources and hence the similarity of their
sentences is close to 1. Likewise, the susp gap and src gap tends to have
the minimum value because consecutive sentences in plagiarized fragments
have exact matches in the source. It is expected to get better results in this
sub-corpus; however, the majority of the undetected cases or noise were due
to sentence-splitting errors because of missing ending points, that in turn is
caused by the random position where a plagiarized fragment was inserted in
a suspicious document when generating this sub-corpus.

The Random and Translation sub-corps results behave similarly given
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Figure 4.6: Extension parameters value’s distribution
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that both types of obfuscation simulate paraphrase by changing words with
synonyms, sentence reordering or cyclic translation. The similarity measures
used in our model does not capture semantic equivalences found in para-
phrased sentences, so it relies on lower similarity thresholds for the seeding
stage and bigger validation threshold for the extension. An intuitive idea
to improve the results for these plagiarism cases is using semantic similarity
measures. However, an important note about these two sub-corpus is that
in the case of randomly generated cases, the degree of obfuscation varies
from a few random changes to a whole lot of them, generating text frag-
ments without any sense to a human. Likewise, plagiarism cases generated
through cyclic translation varies from using a pair of extensively translated
languages to an abundance of unrelated pairs of languages and naive machine
translation approaches, again producing meaningless text fragments.

Finally, in the Summary sub-corpus the results reflect the expected be-
havior of the parameters, where the similarity thresholds are close to the
minimum values while the gaps between the source seeds are considerably
larger than the suspicious counterpart. The low threshold values suggest
that we should use summary detection methods for this kind of obfuscation
instead of the traditional cosine similarity and dice coefficient. The difference
between the src gap and susp gap reflects the nature of a summary, which is
smaller that the original text.

Besides running the genetic algorithm for each sub-corpus, we also opti-
mized the parameters of our model with and without the summary heuristic
and longest common substring method over the entire corpus (Genetic All &
Genetic Simpler respectively). These experiments show some improvements
over our previous parameter setting. In Table 4.8 we present the parame-
ters used at PAN and the final parameters configurations resulting from the
genetic algorithm for each one of the experiments.

Given the final parameters, we compare the results of each experiment in
Table 4.9 by running our plagiarism detection system over the PAN 2014 test
corpus. Values with (*) were obtained by gathering the results of running
our model over each sub-corpus individually knowing a priori the type of
obfuscation and what parameter setting to use. To get these results, we
should have had a classifier capable of determining the type of obfuscation
in a pair of documents and using the corresponding parameter setting.

When optimizing over the entire corpus (Genetic All & Genetic Simpler),
we improved the results, even slightly, of our previous implementations (PAN
All & PAN Simpler), which were already the best-performing methods in the



4.2. GENETIC-BASED PARAMETER TUNING 95

Table 4.8: Final parameters

Parameter PAN
Genetic

Simpler All None Random Translation Summary
th cos 0.30 0.33 0.30 0.48 0.26 0.28 0.20
th dice 0.33 0.39 0.31 0.46 0.25 0.33 0.23
th val 0.34 0.22 0.34 0.45 0.33 0.33 0.26
src size 1 1 1 1 1 1 1
src gap 4 19 3 0 2 2 30
src gap summary 24 - 29 - - - -
min src gap 0 9 3 0 1 2 8
susp size 1 1 1 1 1 1 3
susp gap 4 4 3 0 2 2 4
susp gap summary 24 - 28 - - - -
min susp gap 0 0 3 0 1 2 2

Table 4.9: Plagiarism detection results using the final parameters over PAN
2014 test corpus

None Random Translation Summary Entire
PAN All 0.9854 0.8846 0.8751 0.6329 0.9010
Genetic All 0.9859 0.8841 0.8764 0.6493 0.9021
Genetic 0.9421 0.8921 0.8940 0.8192 0.9041∗

Genetic + LCS 0.9732 0.8757 0.8936 0.8173 0.9085∗

PAN Simpler 0.9010 0.8912 0.8868 0.3108 0.8687
Genetic Simpler 0.8960 0.8751 0.8763 0.6261 0.8733

PAN 2014 Text Alignment corpus [62].
As expected, specific obfuscation type optimization gave better results

than those obtained with the fixed set of parameters, except for the None
sub-corpus which performed better in the approaches that use the Longest
Common Substring (LCS) method. Hence, we also added the results of
using the parameters of the genetic algorithm with the LCS method, which
outperformed the rest of the experiments.
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5.1 Basic Approach

Our first approach to paraphrase recognition is applying different techniques
used in plagiarism detection to asses its effectiveness in the task. We evaluate
this first approach in the P4P corpus which is tagged following the typology
presented in section 3.2.1. For the experiments, we proposed several sets of
settings depending on the pre-processing steps, the features extracted, the
weighting scheme, and the similarity measure.

We decided to use term frequency as weighting scheme and cosine measure
to compute the similarity between pair of sentences in the P4P+N corpus.
The P4P+N corpus is an addition of 2539 non-plagiarism cases to the regular
P4P corpus. It is important to note that given that the dataset is unbalanced
toward the negative cases, with just 847 positives paraphrase, the F1 measure
is biased toward precision.

We experimented selecting words as features (Table 5.1) with combina-
tions of stemming and two ways of removing stop words:

1. 50 most frequent stop words (rem. 50 sw) in BNC corpus,

2. All the words reported in Brown corpus (rem. all sw).

We also experimented with the following features: unsorted and sorted n-
grams (5.2 and 5.3), stop words n-grams 5.4, and skip n-grams 5.5. However,
to avoid cluttering this section with too many results we just show the results
of the without the combinations of preprocessing steps.

We can appreciate that commonly used approaches to plagiarism detec-
tion do not work in paraphrase recognition. The results show that the best
approach is using the basic bag of words model and a threshold of 0.25 in the
cosine similarity when classifying a case as plagiarism/paraphrase. For that
specific instance, precision is 0.876 and recall 0.855. For the other results,
the trade-off between precision and recall change dramatically with one of
the measurements rapidly going towards 0 or 1. For this basic approach we
do not perform any experiment on the MSRPC, instead we move to more
elaborate models based on Knowledge bases.
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Table 5.1: F1-score for selected features: words
cos threshold 1 2 3 4 5 6

stemming X X X
rem. 50 sw X X
rem. all sw X X

0 0.393 0.488 0.508 0.393 0.517 0.543
5 0.396 0.600 0.606 0.396 0.648 0.657
10 0.403 0.715 0.706 0.403 0.762 0.755
15 0.421 0.795 0.790 0.421 0.821 0.825
20 0.449 0.850 0.835 0.449 0.858 0.845
25 0.487 0.865 0.858 0.485 0.861 0.847
30 0.546 0.855 0.847 0.544 0.836 0.833
35 0.614 0.829 0.824 0.609 0.801 0.794
40 0.693 0.786 0.788 0.686 0.749 0.746
45 0.759 0.735 0.734 0.748 0.697 0.691
50 0.800 0.682 0.678 0.783 0.624 0.628
55 0.788 0.608 0.609 0.771 0.546 0.548
60 0.738 0.521 0.523 0.708 0.468 0.457
65 0.658 0.418 0.440 0.633 0.369 0.380

........

Table 5.2: F1-score for unsorted n-grams with n = 1...7.
F1 1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram
0 0.488 0.798 0.685 0.524 0.393 0.308 0.238
5 0.600 0.783 0.587 0.431 0.314 0.235 0.182
10 0.715 0.740 0.493 0.346 0.255 0.192 0.161
15 0.795 0.677 0.427 0.293 0.206 0.159 0.138
20 0.850 0.611 0.353 0.225 0.172 0.136 0.115
25 0.865 0.531 0.288 0.198 0.136 0.117 0.097
30 0.855 0.462 0.240 0.159 0.117 0.1 0.075
35 0.829 0.394 0.198 0.130 0.102 0.070 0.059
40 0.786 0.307 0.161 0.106 0.084 0.059 0.050
45 0.735 0.259 0.128 0.093 0.063 0.052 0.045
50 0.682 0.202 0.104 0.066 0.052 0.040 0.033

........
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Table 5.3: Sorted n-grams with n = 1...7
F1 1-gram 2-gram 3-gram 4-gram 5-gram 6-gram 7-gram
0 0.488 0.799 0.710 0.560 0.435 0.351 0.272
5 0.600 0.801 0.616 0.462 0.333 0.263 0.212
10 0.715 0.755 0.523 0.381 0.272 0.208 0.172
15 0.795 0.697 0.447 0.307 0.219 0.170 0.145
20 0.850 0.627 0.380 0.238 0.176 0.145 0.126
25 0.865 0.549 0.304 0.212 0.153 0.121 0.106
30 0.855 0.483 0.252 0.172 0.128 0.104 0.082
35 0.829 0.411 0.210 0.136 0.104 0.077 0.061
40 0.786 0.316 0.168 0.113 0.088 0.064 0.052
45 0.735 0.265 0.136 0.093 0.068 0.052 0.045
50 0.682 0.212 0.110 0.066 0.052 0.040 0.033

........

Table 5.4: Stop word n-grams with n = 6...11
F1 sw6-gram sw7-gram sw8-gram sw9-gram sw10-gram sw11-gram
0 0.367 0.318 0.251 0.203 0.181 0.153
5 0.335 0.271 0.226 0.191 0.171 0.146
10 0.292 0.241 0.205 0.181 0.159 0.138
15 0.260 0.222 0.191 0.167 0.151 0.125
20 0.224 0.205 0.177 0.161 0.138 0.119
25 0.201 0.183 0.167 0.142 0.127 0.114
30 0.187 0.175 0.148 0.134 0.127 0.110
35 0.169 0.155 0.140 0.125 0.117 0.104
40 0.159 0.148 0.134 0.117 0.110 0.099
45 0.148 0.140 0.125 0.115 0.106 0.097
50 0.134 0.127 0.117 0.108 0.104 0.086

........
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Table 5.5: Skip n-grams with n = 3...7
F1 3-gram 4-gram 5-gram 6-gram 7-gram
0 0.725 0.558 0.422 0.315 0.233
5 0.609 0.436 0.316 0.229 0.180
10 0.504 0.348 0.242 0.186 0.159
15 0.440 0.270 0.198 0.157 0.141
20 0.363 0.229 0.163 0.143 0.113
25 0.283 0.186 0.147 0.119 0.088
30 0.233 0.157 0.117 0.088 0.068
35 0.188 0.128 0.091 0.068 0.064
40 0.157 0.102 0.073 0.061 0.050
45 0.119 0.077 0.061 0.052 0.045
50 0.095 0.066 0.052 0.045 0.036

........
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5.2 Knowledge-Based Model

There are some models that extend the capabilities of the vector space model
and cosine metric from just computing lexical similarity. Specifically, there
are some approaches to paraphrase identification that use Knowledge bases to
compute semantic similarity add citations Rada, Eisenstein. We propose
some experiments using combinations of these models and adding a new
metric called Softcosine proposed by Grigori et al [77].

We conducted a series of experiments for several combination of param-
eters grouped by some of the following areas:

• Preprocessing parameters

– Removing stopwords

– Removing punctuation

• Feature extraction parameters

– Features extracted: [tokens, lemmas, stems, lemmas+pos]

– Weighting scheme: [tf, binary (bin)]

• WordNet parameters

– Features used to retrieve the synsets: [tokens, lemmas, lemmas+pos]

– Synsets selection. There are two possible strategies when comput-
ing the similarity between two features:

∗ (1) We compute the similarity only between the first synset
of each term

∗ (n) We take the maximum similarity resulting of comparing
all the synsets in both terms

– WordNet similarity metric

∗ (path): Path

∗ (lch): Leacock & Chodorow [35]

∗ (wup): Wu & Palmer [86]

∗ (res): Resnik [68]

∗ (jcn): Jiang & Conrath [29]

∗ (lin): Lin [38]
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– Information content. Some WordNet similarity metrics uses In-
formation Content extracted from a given corpus:

∗ (bnc07): 2007 British National Corpus

∗ (bnc00): NLTK 2000 British National Corpus

∗ (brown): NTLK Brown corpus

∗ (semcor): NTLK Semcor corpus

– WordNet normalization: Some WordNet similarity metrics gives
values outside the range [0,1]

– Terms similarity threshold: We set to zero all term-term similarity
values below this threshold

• Sentence similarity parameters

• Text similarity metric: We use three type of computing the similar-
ity between two text fragments: [mihalcea [47], stevenson [17], softco-
sine [77]]

• Text similarity threshold: Everything above this threshold is consider
a case of paraphrase

In Table5.2 and Table5.2 we present the best results for each text and
WordNet similarity metrics, sorted by accuracy and f1-score respectively. We
omit the preprocessing steps from the table because we get the best results
without removing stopwords and eliminating punctuation symbols.

Given the results on the training dataset, we use these configurations to
predict the performance in the test dataset as shown in Table5.2.
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Table 5.6: Best accuracies for all possible combinations in training dataset
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lemma tf lemma n lin bnc07 0.50 mihalcea 0.70 0.741 0.819
stem tf token n path 0.50 mihalcea 0.60 0.739 0.821

lemma tf lemma n res brown X 0.00 mihalcea 0.65 0.737 0.817
stem bin token n lin bnc00 0.75 softcosine 0.65 0.736 0.813
stem tf token n jcn brown X 0.50 mihalcea 0.55 0.735 0.824
token tf lemma n lch X 0.00 mihalcea 0.70 0.735 0.821
stem bin token n jcn semcor X 0.00 stevenson 0.55 0.734 0.826
stem bin token n path 0.50 softcosine 0.60 0.734 0.817
token bin token 1 lin semcor 0.75 stevenson 0.55 0.733 0.824
stem tf token n wup 0.75 mihalcea 0.65 0.733 0.821
stem bin token 1 res bnc07 X 0.25 softcosine 0.55 0.733 0.823
stem bin token 1 path 0.50 stevenson 0.55 0.733 0.821
token bin token 1 jcn brown X 0.00 softcosine 0.55 0.732 0.819
lemma bin lemmapos n lch X 0.75 softcosine 0.55 0.732 0.820
stem bin token 1 lch X 0.75 stevenson 0.55 0.732 0.819
stem bin lemmapos 1 wup 0.75 softcosine 0.55 0.730 0.819

lemma bin lemma n res brown X 0.75 stevenson 0.55 0.730 0.816
stem bin lemmapos 1 wup 0.75 stevenson 0.55 0.727 0.818
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Table 5.7: Best f1-scores for all possible combinations in training dataset
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stem bin lemmapos 1 res semcor X 0.00 mihalcea 0.55 0.733 0.828
stem tf lemma 1 lin bnc00 0.50 mihalcea 0.55 0.733 0.828
stem bin token 1 lin semcor 0.75 stevenson 0.55 0.733 0.825
stem bin lemma 1 lin bnc00 0.50 softcosine 0.55 0.729 0.825
stem tf lemma 1 path 0.00 mihalcea 0.55 0.728 0.826
stem bin lemma n res brown X 0.75 stevenson 0.50 0.727 0.825
stem bin lemma n jcn bnc07 X 0.00 softcosine 0.50 0.726 0.826
stem bin lemmapos 1 res bnc07 X 0.25 softcosine 0.50 0.726 0.826
stem tf lemma n jcn bnc07 X 0.75 mihalcea 0.50 0.725 0.826
token tf lemma n lch X 0.75 mihalcea 0.50 0.725 0.825
stem bin token n jcn semcor X 0.25 stevenson 0.50 0.724 0.826
stem bin token n path 0.75 softcosine 0.50 0.723 0.825
stem bin lemmapos 1 wup 0.75 mihalcea 0.50 0.722 0.824
stem bin token n lch X 0.75 softcosine 0.50 0.722 0.825
stem bin token n path 0.75 stevenson 0.50 0.722 0.825
stem bin lemmapos 1 wup 0.75 softcosine 0.50 0.720 0.822
stem bin lemma n lch X 0.75 stevenson 0.50 0.720 0.824
stem bin lemmapos 1 wup 0.75 stevenson 0.50 0.716 0.821
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Table 5.8: Accuracy and F1-score using best combinations on training
dataset and evaluated on test dataset

Text sim. WordNet metric Accuracy F1-score
stevenson path 0.743 0.826
mihalcea jcn 0.741 0.826
stevenson lch 0.739 0.823
softcosine path 0.738 0.817
mihalcea path 0.737 0.818
stevenson jcn 0.736 0.824
softcosine jcn 0.736 0.819
softcosine wup 0.736 0.821
softcosine res 0.735 0.824
softcosine lch 0.735 0.821
stevenson res 0.734 0.818
mihalcea res 0.733 0.813
stevenson wup 0.732 0.820
mihalcea wup 0.730 0.815
stevenson lin 0.729 0.820
softcosine lin 0.726 0.803
mihalcea lch 0.725 0.812
mihalcea lin 0.724 0.803

Table 5.9: Comparison of our experiments against the reported results
Method WordNet Metric Accuracy F1-score

Mihalcea [47] jcn 69.3 79.0
Mihalcea [47] lch 69.5 79.0
Mihalcea [47] Combined 70.3 81.3
Our mihalcea jcn 74.1 82.6

Fernando & Stevenson [17] jcn 74.1 82.4
Our stevenson jcn 73.6 82.4
Our stevenson path 74.3 82.6
Our softcosine path 73.8 81.7
Our softcosine jcn 73.6 81.9
Our softcosine wup 73.6 82.1
Our softcosine res 73.5 82.4
Our softcosine lch 73.5 82.1



106 CHAPTER 5. PARAPHRASE RECOGNITION

5.3 Distributional Models

In this section we analyzed some approaches in depth, trying to replicate their
results. Specifically, we focus on three paraphrase identification models: He
et al. [26], Wang et al. [84], and Shen et al. [75]. We also experimented
with Kim’s compositional model [31]. The advantages of the paraphrase
identification task is that most of the approaches report their results on the
Microsoft Research Paraphrase Corpus (MSRPC), which have become the
benchmark dataset for this task.

We will describe in more details the selected approaches providing infor-
mation about the implementations and challenges presented.

5.3.1 Preprocessing and Embeddings Transformation

Given that none of the selected approaches mentioned how they preprocess
the corpus, we experimented with two methods: 1) using the implementation
of Kim [31]1 which have been used in several deep learning approaches for a
wide range of applications, and 2) another proposed by us trying to minimize
the amount of errors of the tokenizer.

Preprocessing methods play an important role when testing the models
on the MSRPC. This dataset is consider small and it is prone to tokeniza-
tion errors due to the large number of unnormalized textual citations. The
result of the preprocessing step greatly influence the transformation of word
embeddings and the number of unknown tokens not found in the pre-trained
embeddings and that have to be randomly initialized.

The most popular pre-trained embeddings available, like word2vec or
GloVe, were trained without applying much preprocessing to the data. To
reduce the number of unknown words we search for the original token, if not
present we look for the token with the first letter capitalized (only when lower
casing the text), and finally the lower/upper cased token accordingly. We
call this method Advance lookup (Adv. lookup), otherwise Simple lookup
(Smp. lookup).

In table Table 5.10 and 5.11, we show some statistics about the number
of unknown words when computing the embedding matrix of the MSRPC
dataset. We experiment with four pre-trained embeddings, lower casing, and
the embeddings retrieving method.

1https://github.com/yoonkim/CNN_sentence

https://github.com/yoonkim/CNN_sentence
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Table 5.10: Number of unknown words using Kim’s preprocessing script
lower nolower

Adv. lookup Smp. lookup Adv. lookup Smp. lookup
Vocab Size 15802 15802 17523 17523
Word2vec 1215 (8%) 3364 (21%) 1253 (7%) 1260 (7%)

GloVe 504 (3%) 1104 (7%) 488 (3%) 494 (3%)
Paragram25 1844 (12%) 1844 (12%) 1868 (11%) 7248 (41%)
Paragram300 467 (3%) 467 (3%) 476 (3%) 6821 (39%)

Table 5.11: Number of unknown words using our preprocessing script
lower nolower

Adv. lookup Smp. lookup Adv. lookup Smp. lookup
Vocab Size 15671 15671 17387 17387
Word2vec 1086 (7%) 3233 (21%) 1116 (6%) 1122 (6%)

GloVe 374 (2%) 965 (6%) 349 (2%) 357 (2%)
Paragram25 1701 (11%) 1701 (11%) 1718 (10%) 7124 (41%)
Paragram300 353 (2%) 353 (2%) 355 (2%) 6700 (39%)

5.3.2 Multi-Perspective Sentence Similarity Modeling
with CNN

He et al. [26] provide an implementation using Torch and Lua2. However,
there are some differences with regard to their paper given that this im-
plementation represents their follow up work presented in [27]. They only
use GloVe embeddings and provide scripts to run their algorithm on two of
the three tasks they mention in their paper, two SemEval semantic relat-
edness tasks [1, 42], but not the paraphrase identification task. It is impor-
tant to note that they only use the ∞ kernel size for holistic convolutions.
Another difference between the original paper and the available implemen-
tation, which is not stated in the follow up paper, is that they only use a
two-dimensional convolution filter as the per-dimension convolution instead
of embeddingsdim independent filters.

We implemented this approach using Keras3 and ran the experiments us-
ing GPU’s which considerably sped up the process. In their paper the authors

2https://github.com/hohoCode/textSimilarityConvNet
3https://keras.io/

https://github.com/hohoCode/textSimilarityConvNet
https://keras.io/


108 CHAPTER 5. PARAPHRASE RECOGNITION

do not specify a preprocessing step and in their implementation they expect a
preprocessed and tokenized dataset. Hence, we selected the kim preprocess-
ing method without lowering case, and with our “Advance lookup” method.
As shown previously in Table5.10 and 5.11, this combination consistently
returns the fewer unknown tokens for the selected pre-trained embeddings.

Given that we do not have access to the corpus they used for training
the POS embeddings, we compare our implementation results against those
reported in their ablation study without these embeddings.

The main difference between our approach and their implementation is
the use of padding. We pad all the sequences to the same length in order to
use Keras tensors. This action may have some consequences when applying
the pooling operators.

Results and Analysis

One of the main piece of information missing in their paper is a comparison
between the training accuracy and validation accuracy that allow us to study
the bias-variance tradeoff. We assume training such a complex model on the
MSRPC alone with result in overfitting. In Figure5.1 we can appreciate
that the training accuracy steadily increases while the validation accuracy
fluctuates almost randomly. We also observe this behavior in Figure5.2 repre-
senting the loss being optimized, in this particular experiment: cross-entropy
with stocastic gradient descent (SGD) and learning rate of 0.001.

Using a different optimizer like Adam, allows the model to converge faster
although is does not solve the overfitting problem as shown in Figure5.3 and
Figure5.4. More experiments are needed to fine tuned the hyper-parameters.
However, we think more efforts should be devoted to train these models on
large datasets first.

Additionally, we slightly modified their implementation to run on the
MSRP corpus and be able to compare the results of both implementations.
In Table5.3.2 we show some details of the implementations and the settings
reported in their paper.

Using He’s implementation we obtain the predictions for each epoch. Us-
ing the predictions we can compute the metrics of the dev dataset to compare
to our implementation. In Figure5.5 we observe both approaches behave sim-
ilarly which shows that our implementation works similar to the provided by
the authors. However, running their code in 4 CPU threads (they did not use
GPU) took ≈ 20 hours, while our approach ran in 6 minutes on one Nvidia
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Figure 5.1: He’s model. Train vs. Dev accuracy using SGD optimizer
(lr=0.01)

Table 5.12: Differences between implementations and described model
Our impl. He’s impl. He’s model

Embeddings GloVe GloVe GloVe, W2V, paragram
Embeddings dim 300 300 300+200+25=525
Trainable emb. Yes No Yes
Loss Cross-entropy KL Divergence Hinge
Optimizer Adam SGD SGD
Learning rate 0.001 0.01 0.01
Regularization 10−4 10−4 10−4

Hidden units 150 150 250
Parameters 9,503,912 9,503,912 38,841,827
Padding Yes No No
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Figure 5.2: He’s model. Train vs. Dev cross-entropy loss using SGD opti-
mizer (lr=0.01)
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Figure 5.3: He’s model. Train vs. Dev accuracy using Adam optimizer
(lr=0.001)
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Figure 5.4: He’s model. Train vs. Dev cross-entropy loss using Adam opti-
mizer (lr=0.001)
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Figure 5.5: Comparison of accuracies and f1-score of ours and He’s imple-
mentation

GeForce GTX 1080.

We attribute the poor performance to the small size of the MSRPC,
which has only 5800 samples. To put into perspective the complexity of the
model to the size of the corpus, in the next section we compute the number
of parameters being optimized in the model. Given the following settings
(Table5.3.2): Then, the number of parameters of the compositional model is

Table 5.13: Experimental settings
Embeddings dim (d) 300
Kernel sizes (W ) {1,2,3}
Holistic filters (fa) 300
Per-dim. filters (fb) 20
Holistic pool op. (Pa) {max,min,mean}
Per-dim. pool op. (Pb) {max,min}
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given by the following equations:

pholistic = |Pa|fa
∑
w∈W

(wd+ 1) (5.1)

pperdim = |Pb|fb
∑
w∈W

(wd+ 1) (5.2)

pperdim′ = |Pb|fb
∑
w∈W

(w + 1) (5.3)

total = pholistic + gperdim (5.4)

total′ = pholistic + gperdim′ . (5.5)

The values of pperdim′ and total′ stand for the new variation of He’s model
where they only use one filter for the per dimension convolution instead of
embeddingdim independent filters. For our particular example,

pholistic = 1, 622, 700

pperdim = 108, 000

pperdim′ = 360

total = 1, 730, 700

total′ = 1, 623, 060

The output shape of the compositional model are two tensors of shape
(|Pa|, |W |+1, fa) and (|Pb|, |W |, d, fb), corresponding to the holistic and per-
dimension filters respectively.

In the similarity layer, He’s algorithms uses two set of vectorial metrics:
cosine similarity (scalar) and euclidean distance (scalar); and the previous
ones plus the absolute distance (d-dim vector). The output shape of the
similarity layer before the last section of fully connected layers is given by
(i.e. concatenating all the region comparisons):

s = 2 · |Pa| · fa (5.6)

+ (2 + d) · |Pa| · (|W |+ 1)2 (5.7)

+ (2 + d) · |Pb| · |W | · fb, (5.8)

where 5.6 represents the algorithm 1 comparing holistic filter outputs, 5.7
the algorithm 2 comparing holistic filters, and 5.8 the algorithm 2 comparing
per-dimension filters.
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Table 5.14: Gensim word2vec model’s parameters
Training model Skip-gram
Embeddings size 200
Min term frequency 5
Window size 5

Following our example, s = 52, 536. Knowing this value, we can compute
the number of parameters optimized in the fully connected layer. Assuming
a two-layer NN with h = 150 hidden units and two output classes, then the
number of parameters of this stage is sh + 3h + 2 = 7, 880, 852. Finally,
the number of parameters of the last variation of He’s model is: 1, 623, 060 +
7, 880, 852 = 9, 503, 912. This value is extremely large compared to the 5, 800
samples in the MSRP corpus.

5.3.3 Sentence Similarity Learning by Lexical Decom-
position and Composition

Wang et al. [84], similar to other approaches, uses pre-trained embeddings.
Specifically, they use the 300-dim word2vec embeddings provided by Google.
The next step is decomposing each word vector in a sentence pair in a similar
and dissimilar component. This process is based on the cosine similarity be-
tween the two sequences of embeddings (representing the sentence pair). The
decomposition occurs as explained in the compositional model section using
the provided formulas. This part of their model do not train any parameters,
is only until the compositional part where they use Kim’s model [31] adapted
to two channel inputs.

The authors do not provide any implementation of their model, however,
there is an implementation available on GitHub by the user mcrisc using
Tensorflow4. The implementation is modulated in parts that need to be ran
independently and it is evaluated on trec-qa task only.

Similarly to our implementation of He’s model, we use Keras and Numpy,
reusing parts of our method, specifically the preprocessing and data prepa-
ration modules. This approach to the problem allow us to compare several
models under the same circumstances.

The decomposition module is inspired by the available implementation

4urlhttps://github.com/mcrisc/lexdecomp
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Figure 5.6: Train vs. Dev cross-entropy loss

but improving on the running time by taking advantage of Numpy broad-
casting property although irrelevant compared to the training time of the
compositional and similarity layers. The composition module is our adapta-
tion of Kim’s model to multichannel inputs. There are several implementa-
tions available for Kim’s approach that served as guidance for our code.

Results and Analysis

In Figure5.6 the dev loss increases contrarily to the train loss that rapidly
decreases almost to zero. Similarly, in Figure5.7 the huge gap and the dif-
ferent behavior of train and dev accuracy presents a clear case of overfitting.
The stability of the dev accuracy is a product of the first stage of Wang’s
model where the semantic similarity is computed without learning any pa-
rameter. Also, it shows that none of the parameters or features learned in
the composition model during training is relevant to the dev dataset, and in
conclusion to the paraphrase identification task.
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Figure 5.7: Train vs. Dev accuracy

5.3.4 Bidirectional LSTM with Gated Relevance Net-
work

Shen et al. [75] provide a detailed description of their model including sev-
eral hyperparameters. However, the authors do not provide an open source
implementation.

The model starts with pre-trained word2vec embeddings, the sequences
of vectors are composed to sentence representations using a bidirectional
LSTM with outputs in each time step. Their main contribution is in the
similarity layer where they propose a gated relevance network consisting of
a bilinear tensor product, a traditional two-layer neural network joined by a
gate mechanism.

As there are not available implementations of this model, we implemented
the gated relevance network as a Keras custom layer and generated units test
validating the forward pass output against a step-by-step numpy implemen-
tation.
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Figure 5.8: Train vs. Dev cross-entropy loss

Results and Analysis

Similarly to other previously evaluated models that were trained only on the
MSRP corpus, the classification is done almost random. As can been seen
in Figure5.8 and Figure5.9 the features learned during training are irrelevant
to the dev dataset. We assume it is due to features like numbers of specific
combination of words that happen in the training set that separate the para-
phrase classes but are not present in the dev/test set, for instance, certain
numbers, named entities, topic specific words, etc.
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Figure 5.9: Train vs. Dev accuracy
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6.1 Conclusions

In this thesis, we addressed the plagiarism detection tasks focused on para-
phrase identification. Our strategy to achieve this objective was treating both
tasks of plagiarism detection and paraphrase identification, independently.

We proposed new adaptations to our previous state-of-the-art model for
plagiarism detection to handle a variety of obfuscation types. We conducted a
series of experiments to evaluate the impact of each proposed method outper-
forming our existing work. We also designed a novel genetic-based model for
parameter tuning using non-binary representation where each individual is a
possible configuration of our system. With this model we were able to find an
optimal set of parameters for our plagiarism detection model with handling
the huge search space. We improved the performance further, specifically in
the summary obfuscation type.

In the paraphrase identification task we studied two lines of research.
First, we worked with knowledge-base approaches using the WordNet on-
tology. In this regard, we proposed several experimental settings testing
combinations of four group of techniques: preprocessing, feature extraction,
WordNet related processes, and sentence similarity models. We were able to
replicate and outperform methods that used similar techniques but lacked a
full description.

The last part of this thesis focused on distributional approaches to para-
phrase identification. In that section we made evident the need for more
detailed approaches, better training of the models, reproducibility. We also
made publicly available our three implementations of the studied models. All
of them, are programmed in the same language and using one of the most
popular deep learning frameworks (Keras). In one of the cases we decreased
the running time 200 times. In another case, our implementation is the first
public available one. Also, our systems are the only ones that are designed
to be tested on the MSRP dataset without doing any modification.
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6.2 Future Work

One of the directions of future work is integrating paraphrase identification
into a plagiarism detection system and use our proposed genetic algorithm
to optimize the hyper-parameters of the deep learning model. Regarding
paraphrase identification, it is relevant to train the state-of-the-art models
on larger datasets and apply transfer learning to the specific task at hand.
Another possible direction to explore is combining neural networks models
with knowledge bases methods to reduce the need of comprehensive datasets
that cover all possible scenario.

We will also evaluate combinations of proposed models and study in de-
tail their classification errors. It is important to analyze the impact and
constrains introduced by implementing deep learning models using differ-
ent tools, like padding when using Keras on mini-batches of variable sizes.
Another future work needed, although not a scientific contribution, is imple-
menting more models of the state-of-the-art and making them available as
open source code.
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