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Resumen
Gracias al rápido crecimiento de Internet y la proliferación de tabletas y teléfonos in-
teligentes, las plataformas de medios sociales como Facebook y YouTube se han vuelto
de gran relevancia. La gente comparte todo tipo de contenido en dichas plataformas,
lo que lleva a una enorme cantidad de datos que requieren procesamiento. Las em-
presas están tratando de utilizar esta plétora de datos a su favor mediante el desarrollo
de sistemas automatizados para varias aplicaciones. Una aplicación de este tipo es la
retroalimentación automatizada de los clientes, acumulada en las reseñas de los usuar-
ios, donde el problema fundamental es la minería de los sentimientos de los usuarios
asociados con un producto o servicio en particular. Resolver un problema tan complejo
de una gran cantidad de datos requiere sistemas de análisis de sentimientos eficientes y
eficaces.

En esta tesis tratamos específicamente del análisis de sentimientos en videos, donde
la información está disponible en tres modalidades: audio, video y texto, de ahí el análi-
sis de sentimiento multimodal. Uno de los mayores desafíos del análisis de sentimiento
multimodal es la fusión de las modalidades. Presentamos dos nuevos métodos de fusión
de múltiples modalidades: la fusión de forma jerárquica utilizando perceptrones, y el
empleo del mecanismo de atención. Con ambos métodos obtuvimos mejoras sobre la
fusión basada en concatenación simple.

En la literatura, la mayoría de las publicaciones consideran que los enunciados en
un video son independientes entre sí. En realidad, esto no es del todo cierto, ya que
los enunciados circundantes pueden proporcionar contexto a un enunciado dado. Mod-
elamos esta influencia entre los enunciados utilizando la LSTM (memoria a corto plazo
larga, por sus signos en inglés: long short-term memory), que es un tipo especial de red
neuronal recurrente. Esto mejora muy considerablemente el rendimiento de clasificación
de sentimientos en comparación con el mejor método existente del estado del arte. Tam-
bién agregamos la red de atención en la parte superior de la LSTM, que mejora aún más
el rendimiento gracias a la amplificación de la información relevante.

Además presentamos un enfoque basado en la red neuronal profunda para la de-
tección de la personalidad a partir de datos textuales, específicamente ensayos. Uti-
lizamos una combinación de características extraídas automáticamente y características
construidas manualmente. Además, demostramos que la eliminación de las oraciones
emocionalmente neutrales mejora aún más el rendimiento. Observamos una mejora del
desempeño sobre el estado del arte para todos los rasgos de personalidad.
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Abstract
Due to the rapid growth of internet and proliferation of smartphones and tablets, social-
media platforms like Facebook and YouTube have risen to great relevance. People share
all sorts of contents in such platforms, leading to huge amount of data requiring process-
ing. Companies are trying use these plethora of data to their advantage by developing
automated systems for several applications. One such application is automated cus-
tomer feedback gathering from user reviews, where the fundamental problem is to mine
user sentiment associated with a particular product or service. Solving such a complex
problem from a huge amount of data requires efficient and effective sentiment analysis
systems.

In this thesis, we specifically deal with the sentiment analysis of videos, where in-
formation is available in three modalities: audio, video, and text, hence multimodal
sentiment analysis. One of the biggest challenge of multimodal sentiment analysis is
modality fusion. We present two novel methods of fusion multiple modalities: fusing
in a hierarchical fashion using perceptrons and employing attention mechanism. We
obtained improvement over simple concatenation based fusion for both of the methods.

In literature, most of the works consider utterances in a video to be independent of
each other. In reality, this is not quite true, since the surrounding utterances can provide
context to a given utterance. We model such inter-utterance influence using Long Short-
Term Memory (LSTM), which is a special kind of recurrent neural network. This greatly
improves sentiment classification performance over state-of-the-art method. We also
added attention network on top of LSTM, which further improves the performance due
to the amplification of relevant information.

We also present a deep network based approach for personality detection from tex-
tual data, specifically essays. We use a combination of automatically extracted features
and hand-crafted features. Also, elimination of emotionally-neutral sentences further
improves performance. We observe improved performance over the state-of-the-art for
all of the personality traits.
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Chapter 1

Introduction

In this chapter, we first introduce the reader to the problems we strive to address in
this thesis. We also discuss necessary background to understand the problem and its
relevance in our daily life. Then, we present our solution in an abstract fashion with its
novelty. Finally, we discuss the contributions of this work to the scientific community.
In the last section of this chapter we discuss the structure of the subsequent chapters.

1.1 Background
Since the beginning of this millennium, Internet has become backbone of our society in
several aspects. Modern society heavily relies on Internet for many fundamental tasks,
such as communication, finance, education, entertainment etc. Due to the rise of e-
commerce websites like Amazon, people are able purchase necessary items by the push
of a button, without even leaving their home. Even groceries are supplied to the resi-
dences in some small towns.

In recent years, social media platforms like Facebook, YouTube have risen to high
relevance due to proliferation of smartphones and tablets. Nowadays, people tend to
share their views on food, movies, music, politics, newly released products in such social
media platforms either as posts or in form of videos.

This huge amount of openly available data has many critical uses if can be processed
properly. For example, recommender systems can suggest users products they might be
interested in based on their previous purchases and their thoughts on those purchases.
Since, opinion of one person can influence others in social media, effective marketing
strategy can be devised based on connectivity among people in social media and their
influence among each other.

Making use of such a huge amount of data calls for large infrastructure and proper
research and development. Large enterprises are investing a large capital in social-media
mining and receiving even larger return in terms of revenue. This makes social-media
mining a very attractive and active field of research.

In this thesis we deal with select few problems of social-media mining. In the next
subsection (Section 1.2) we discuss those problems.

We primarily propose deep neural network based solutions due to their successful ap-
plication in various machine learning related tasks, such as image classification, machine



2 Chapter 1. Introduction

translation. In Chapter 2, we discuss various neural networks on which our solutions
rely.

1.2 Problem
In this thesis, we primarily deal with Multimodal Sentiment Analysis. Also, in the later
part we deal with Personality Detection from text, which is quite similar to sentiment
analysis in essence.

1.2.1 Multimodal Sentiment Classification
1.2.1.1 Sentiment Analysis

In sentiment analysis, the task is to assign appropriate sentiment polarity to a given
text, which could be a sentence, or utterance, or a document. Usually, three sentiment
polarities are considered: positive, negative, and neutral. Table 1.1 shows examples of
different sentiments in text. However, in the presented work we only considered positive

TABLE 1.1: Different Sentiment Polarities

Polarity Attribute(s) Example
Positive Happy, Satisfied The display is gorgeous.
Negative Unhappy, Angry The phone is too bulky.
Neutral Non-emotional It is powered by an Intel Core i5 processor.

and negative polarities. Also, we perform sentiment classification in utterance (spoken
sentence) level.

1.2.1.2 Sentiment Analysis with Multiple Modalities

Videos usually consist of three different information channels, which are audio, video,
and text (in form of speech). These channels are also called modalities. Hence, assigning
sentiment polarity to such videos is called Multimodal Sentiment Analysis.

Text modality usually contains a lot of sentimental information. However, visual
modality may provide additional information, not captured in textual modality. Such
information could be facial expression, subtle muscle movements (such as frown, grin
etc.). Audio modality provides relevant information to the sentiment classification in
form of pitch, change in tone etc.

In Chapters 3,4,5, we present different ways to perform multimodal sentiment clas-
sification.

1.2.2 Personality Detection from Text
Personality detection is very similar in essence to sentiment analysis. Here, the job is
to detect personality traits extroversion, neuroticism, agreeableness, conscientiousness,
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and openness from a given text. In Chapter 6 we present a method for automatic per-
sonality detection form text, specifically from essay. Although, we planned to perform
this task on multimodal data, due to unavailability of multimodal dataset for personality
detection we chose to perform this task on textual data only.

1.3 Relevance
In this section, we discuss the relevance of the problem we tackle in thesis in our society
and daily life.

1.3.1 Multimodal Sentiment Analysis
With the increasing availability of smartphones and tablets people tend to share their
opinions on various topics on social-media platforms in form of video reviews, particu-
larly on the newly released products. They share what works about the product, which
features are gimmick, which features need polish etc. Big product-based companies are
very much interested in user reception, as it helps them decide their future course regard-
ing their products. For example, if a company launches a new smartphone in the market
which has a general negative consensus about its battery life, the company will want to
improve its battery life in the future iterations.

Recommender systems can take advantage of the users’ experience with their past
purchases to make more accurate and relevant recommendations.

Sentiment analysis can be very helpful in risk management, where the companies
can form their risk management strategy based on the user reception of their products.

There can be numerous applications of Multimodal Sentiment Analysis beyond the
ones mentioned above, only bound by our imagination.

1.3.2 Personality Detection
Personality detection has several practical applications. Recommender systems can
make recommendations of products based on users’ personality. Also, it can used used
in mental health diagnosis. In forensics, it can be helpful in psychological profiling. The
companies can hire employees based on their personalities, rejecting unsuitable candi-
dates.

1.4 Novelty

1.4.1 Multimodal Sentiment Analysis
One of the main challenges in multimodal sentiment analysis is the fusion of multiple
modalities. The traditional method for modality fusion has been concatenation of the
feature vectors from different modalities. However, it can lead to redundancy of features
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in multimodal feature vectors, which can lead to reduced performance of the classifica-
tion process. In Chapter 3, we discuss a method which merges different modalities in
a hierarchical fashion , leading to filtration of noisy features and improved performance
over concatenation method. Also, in Chapter 5 we employ attention mechanism for fea-
ture fusion and modeling inter-utterance dependency which leads to better performance
against concatenation method.

Majority of the recent works considers utterances in a video independent of each
other, which is not accurate, since meaning of one utterance can influence the meaning
of other utterances. It is specially valid in case of sarcasm. Our approach models inter-
utterance dependencies, which enables better sentiment classification as demonstrated
in Chapters 4, 5.

1.4.2 Personality Detection from Text
For personality detection from essay type text, we employed a distinctive network archi-
tecture, where it finds sentence representations from word embeddings and later merges
them to document level representation. Additionally, we filtered out emotionally-neutral
sentences from the text based on an emotion-lexicon, which led to improved perfor-
mance.

1.5 Contributions
The contributions of this thesis are as follows:

• Improved Feature Fusion. Development of two different more effective feature
fusion methods opposed to regular concatenation based fusion methods;

• Inter-Utterance Dependency. Modeling of inter-utterance dependency in the net-
work architecture, leading to better sentiment classification;

• Hierarchical Document Modeling. Improved automatic personality detection
from text using hierarchical document modeling technique and elimination of
emotionally-neutral sentences from documents.

1.6 Structure of This Document
This chapter serves as an introduction to the problems we address in this thesis. Chap-
ter 2 provides the reader with theoretical background necessary to understand the content
of this thesis. Chapter 3 discusses a novel multimodal fusion method. Chapter 4 explains
the method to model inter-utterance dependency, which yields improved performance in
sentiment analysis. Chapter 5 improves upon the model discussed in Chapter 4 by the
use of attention mechanism. Chapter 6 deals with personality detection from text, where
it uses deep networks to achieve state of the art results. Finally, Chapter 7 concludes
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this thesis by discussing contribution in more detailed fashion, along with mentioning
the publications and planned future work.
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Chapter 2

Theoretical Framework

In this chapter, we briefly explain different methods, tools, measures which are widely
used in the work described. We describe Multi-Layer Perceptron (MLP), Support Vector
Machine (SVM) as classifiers. Next, several types of neural networks, such as Convolu-
tional Neural Networks (CNN), Recurrent Neural Networks (RNN), are described along
with word2vec vectors [1], followed by different evaluation measures.

2.1 Classification Techniques

2.1.1 Perceptron
In simplest form of classification, data-points of two different labels are to be separated
using a hyperplane. Single-Layer Perceptron (SLP) performs exactly that task.

FIGURE 2.1: Linearly separable data classified by a hyperplane
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Figure 2.1 shows two possible straight lines (hyperplane in 2D) separating two classes
of data-points. We generalize the equation of hyperplane for n dimensions, as

wᵀ.x+ b = 0, (2.1)

where w is a vector with n dimensions and b is a scalar. We tune the parameter w and
b of Equation (2.1) to obtain a hyperplane that linearly separates data-points x, i.e. the
decision-function can be defined as

f(x) =

{
1 if wᵀ.x+ b > 0

0 otherwise.
(2.2)

To tune the aforementioned parameters, we use the following steps:

1. Initialize the weights w and b with small random value close to zero.

2. For each sample xj in the training set perform

w(t+ 1) = w(t) + (yj − ŷj(t))xj (2.3)
b(t+ 1) = b(t) + (yj − ŷj(t))xj (2.4)

3. We repeat step 2 as long as the error value 1
s

∑s
j=1 |yj − ŷj|, where s = number of

samples, is greater than some predefined threshold.

2.1.2 Logistic Regression / Single-Layer Perceptron
The issue with this simple perceptron is that it cannot separate data-points which are
not linearly separable, as depicted in Figure 2.2. To introduce non-linearity we plug a
sigmoid function (σ) to the output of wᵀ.x+ b, where

σ(x) =
1

1 + exp(−x)
. (2.5)

Figure 2.3 depicts the shape of Sigmoid function.
So, we redefine the decision-function as

f(x) =

{
1 if σ(wᵀx+ b) > 0.5

0 otherwise.
(2.6)

Since, sigmoid always returns values in (0, 1), the output can be assumed as probability.
That is, σ(wᵀx+b) is the probability of sample x belonging to class 1 and 1−σ(wᵀx+b)
for class 0. We need to maximize the probability of each sample belonging to their
respective expected class. Following this, we can define the total probability for all the
samples as

P =
s∏
j=1

[yjP(xj) + (1− yj)(1− P(xj))], (2.7)
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FIGURE 2.2: Linearly non-separable data

where P(x) = σ(wᵀx + b) and yj is the expected label of sample j. Our objective is
to maximize the value of P . To achieve so, we use Stochastic Gradient Descent (SGD).
However, we need to transform this maximization problem to minimization problem.

P contains O(s) number of products, which is computationally expensive. So, we
apply log function on P as follows:

logP =
s∑
j=1

log [yjP(xj) + (1− yj)(1− P(xj))] (2.8)

Since, for a sample j exactly one of yj and 1 − yj will be zero and the other one, the
following can be said:

logP =
s∑
j=1

[yj logP(xj) + (1− yj) log (1− P(xj))] (2.9)

Now, we negate logP to convert the problem to minimization problem. Also, we
normalize the value by dividing the quantity with s. Finally, we get our objective func-
tion

J = −1

s

s∑
j=1

[yj logP(xj) + (1− yj) log (1− P(xj))] (2.10)

Function J is called log-loss or binary cross-entropy. We now apply SGD or one of its
variants to minimize J .
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FIGURE 2.3: Sigmoid function (σ)

2.1.3 Multi-Layer Perceptron
Logistic regression is capable of separating almost linearly separable data-points. How-
ever, there are certain arrangements of data-points that cannot be classified even with
logistic regression. For example, Figure 2.4 shows four points with two classes (XOR
function), which cannot separated using a single straight-line (even with logistic-curve).
Clearly, it requires two straight-lines to make the classification.

To solve this, we employ multiple perceptrons. We plug two perceptrons (Hidden
Layer) with the input layer. Each perceptron stands for a straight-line. Then we feed the
output of those two perceptrons to another perceptron, which is the output output layer.
This network is depicted in Figure 2.4.

The design of XOR network is quite trivial, since we are aware of the arrangement
of data-points. However, in practice it is very hard to gauge the distribution of data-
points over vector space, often impossible because of the dimensionality of input. So,
usually the networks are built with higher number of perceptrons (or nodes in network
terminology) and tuned based on the performance of the network. We perform the tuning
of parameters using SGD or one of its variants, as discussed in the next subsection 2.4.1.

2.1.4 Support Vector Machine (SVM)
2.1.4.1 Linearly Separable, Binary Classification

The simplest form of classification is, the classification of linearly separable data-points
with two labels. The diagram below, shows an example of such a dataset.
The goal is to find a hyperplane (also known as decision boundary) of the form wᵀx+b =
0, which separates data-points of two different classes (blue and red).

We can label any point above the decision boundary with 1 and points below with
−1. The advantage of this labeling scheme is, the decision function can be concisely
written as f(x) = sign(wᵀx+ b), since wᵀx+ b > 0 for all points above the hyperplane
and wᵀx+ b < 0 for all points below.
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FIGURE 2.4: XOR function: Linearly non-separable

Now, you might notice that, there is a gap between the decision boundary and the
nearest point(s) (also known as support vectors) of either of the classes. We need to
choose the hyperplane in such a way that, the gap is maximized. Such a hyperplane is
called Maximal Marginal Hyperplane (MMH). The idea is to keep the classes as far as
possible from the decision boundary to minimize classification error.

Let, wᵀx + b = 1 be a hyperplane, such that all points on and above it belong to
class +1. Similarly, wᵀx+ b = −1 be a hyperplane, such that all points on and below it
belong to class -1. So, we can check if a data-point xi, labeled yi(= +1 or -1), has been
correctly classified by verifying if yi(wᵀxi + b) ≥ 1.

Hyperplanes wᵀx+ b = 1 and wᵀx+ b = −1 are parallel, since they have the same
normal vector given by w. So, we need to maximize the distance between the given
hyperplanes.

The distance between the hyperplanes can be given by
|(b− 1)− (b+ 1)|

||w||
=

2

||w||
.

Hence, the objective is to maximize
2

||w||
. It is equivalent to minimizing

||w||
2

=
√
wᵀw

2
. Again, it is equivalent to minimizing

wᵀw

2
.
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FIGURE 2.5: Multi-Layer Perceptron for XOR function

FIGURE 2.6: Example of linearly separable data

Finally, the optimization problem can be summarized as:

minw,b
wᵀw

2
subject to yi(wᵀxi + b) ≥ 1, for all i = 1, 2 . . . ,m.

2.1.4.2 Soft-Margin extension

Now, consider that the data-points are not completely linearly separable. In such case,
we need to allow some data-points to lie on the other side of the decision boundary.
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We introduce slack variables ζi ≥ 0 for all xi and rewrite the problem as follows:

minw,b,ζ
wᵀw

2
+ C

m∑
i=1

ζi

subject to yi(wᵀxi + b) ≥ 1− ζi, ζi ≥ 0 for all i = 1, 2 . . . ,m.

Slack variables allow the quantity yi(w
ᵀxi + b) to be less than one; meaning xi lies

on the other side of the decision boundary. However, we penalize such occurrences by
adding slack variables to the objective function.

2.1.4.3 Non-Linear Decision Boundary

The data-points xi may not be linearly separable in the original space. However, if we
map the data-points to a higher dimensional space, it might be linearly separable in that
new space.

We use a mapping function φ to map the data-points. Hence, we rewrite the opti-
mization problem as follows:

minw,b,ζ
wᵀw

2
+ C

m∑
i=1

ζi

subject to yi(wᵀφ(xi) + b) ≥ 1− ζi, ζi ≥ 0 for all i = 1, 2 . . . ,m.

Example of a mapping function:

φ : R2 7→ R3

(x1, x2)→ (z1, z2, z3) := (x21,
√
2x1x2, x

2
2)

FIGURE 2.7: Polynomial Mapping
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2.1.4.4 Formulation as a Lagrangian Optimization

We can use Lagrangian Multiplier to incorporate the constraints.
Now, ζi ≥ 1−yi(wᵀφ(xi)+b). So, in order for ζi to be near zero, 1−yi(wᵀφ(xi)+b)

has to be as close to zero as possible.
We can capture this condition by adding the following to the objective function:

maxαi≥0αi[1 − yi(wᵀφ(xi) + b)]. If yi(wᵀφ(xi) + b ≥ 1, then αi becomes zero; since
1 − yi(w

ᵀφ(xi) + b) becomes negative . Otherwise, αi → ∞. In this way, we are
penalizing misclassified points, since maxαi≥0αi[1−yi(wᵀφ(xi)+ b)] becomes positive
and huge .

So, we rewrite the objective function as:

minw,b[
wᵀw

2
+

m∑
i=1

maxαi≥0αi[1− yi(wᵀφ(xi) + b)]].

To allow soft-margin, we limit the value of αi to lie within [0, C].
Now, we can rewrite the formulation as below:

minw,b[
wᵀw

2
+

m∑
i=1

maxαi≥0αi[1− yi(wᵀφ(xi) + b)]]

=minw,b[maxα≥0[
wᵀw

2
+

m∑
i=1

αi[1− yi(wᵀφ(xi) + b)]]]

=minw,b[maxα≥0J(w, b, α)], where J(w, b, α) =
wᵀw

2
+

m∑
i=1

αi[1− yi(wᵀφ(xi) + b)]

=maxα≥0[minw,bJ(w, b, α)]

So, now we minimize J with respect to w, b and then maximize the result with
respect to α.

Now, we set ∂J
∂w

= 0, and find w =
∑

i αiyiφ(xi). Again, setting ∂J
∂b

= 0, we get the
relation

∑
i αiyi = 0.

After, substitution of the above mentioned values and relation, we get:

minw,bJ(w, b, α) =
∑
i

αi −
1

2

∑
i,j

αiαjyiyjφ(xi)
ᵀφ(xj).

Thus, finally, the dual problem is:

maxα≥0[
∑
i

αi −
1

2

∑
i,j

αiαjyiyjφ(xi)
ᵀφ(xj)]

Subject to
∑
i

αiyi = 0, 0 ≤ αi ≤ C
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2.1.4.5 Kernel Trick

Since, we are mapping the data-points to a very high-dimensional space, calculating the
term φ(xi)

ᵀφ(xj) may become intractable. However, we can avoid the dot-product by
introducing special kernel functions, which evaluates the dot-product by operating on
the original lower-dimension.

For example, let φ : R3 7→ R10, where:

φ(x) = (1,
√
2x1,
√
2x2,
√
2x3, x

2
1, x

2
2, x

2
3,
√
2x1x2,

√
2x2x3,

√
2x1x3)

Now, we can use kernel function K(xi,xj) = φ(xi)
ᵀφ(xj) = (1 + xi

ᵀxj)
2.

So, we can rewrite the dual problem as:

maxα≥0[
∑
i

αi −
1

2

∑
i,j

αiαjyiyjK(xi,xj)]

Subject to
∑
i

αiyi = 0, 0 ≤ αi ≤ C

2.1.4.6 Decision Function

We learn the parameters α and b using Lagrangian Optimization. Then, we classify a test
instance x, by calculating f(x) = sign(wᵀφ(x) + b). We substitute w =

∑
i αiyiφ(xi)

and get f(x) = sign(
∑

i αiyiφ(xi)
ᵀφ(x) + b) = sign(

∑
i αiyiK(xi,x) + b).

2.1.5 Other Classification Techniques
There are other classification techniques which are out of the scope of this thesis. For
example, Naive Bayes, Random Forest, Decision Tree etc.

2.2 Text Representations

2.2.1 Word2vec Embeddings
Mikolov et al. (2013) [1] revolutionized deep-learning in NLP with Word2vec word
embeddings. Word2vec maps words to vectors in such a way that the words retains
relative meaning and relationship among themselves in the vectors space. Word2vec
has two models, namely Continuous-Bag-of-Words (CBOW) and SkipGram. CBOW
model predicts the missing word, given its surrounding k words. This collection of k
words is called context. On the other hand, SkipGram model does the opposite thing,
it predicts the surrounding words given a single word. In the following subsections, we
discuss the problem with regular one-hot representation (Bag of Words) of words and
aforementioned two models.



2.2. Text Representations 15

2.2.1.1 Problem with Bag of Words (BOW)

The major problem with Bag of Words is dimensionality. The words are represented by
vectors of the size of the vocabulary, which is huge. Moreover, it does not capture the
relationship among the words.

FIGURE 2.8: Words in 2D projection of word2vec vector space: seman-
tically similar words are closer

Word2vec vectors are trained to have much smaller dimensionality (Google word2vec
vectors are of size 300) and similar words are closer in vector space. Figure 2.8 takes
2D projection of word2vec vector space. In this figure it is visible that similar words are
clustered together.

Also, Figure 2.9 shows that depicts that pairs of words having similar relationship
between have same distance in vector space.

2.2.1.2 Continuous Bag of Words (CBOW)

Figure 2.10 shows the basic CBOW, where the input layer accepts the one-hot represen-
tation of context words (w(t− 2), w(t− 1), w(t+ 1), w(t+ 2)).

Let us assume a single hidden layer neural network with V neurons in the input and
output layer and N number of neurons in the hidden layer. The layers are fully connected
and input to the network is the context word represented as a one-hot vector. The layers
are connected by weight matrix WV×N and W

′
N×V respectively. Here, each word is

finally represented as two learnt vectors Vc and Vw, representing their roles as context
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FIGURE 2.9: Vector differences between words

and target words respectively. Given an input one-hot vector x, the hidden layer can be
calculated as follows

h = WTx = W(k,.)

Thus this kth row of W represents the output vector Vc for the input vector x. Also for
each output unit let,

yi = softmax(ui)

where,u = W
′T
h

Thus,
ui = W

′

(.,i)h

The kth column of matrix W
′ therefore represents the output vector Vw.

Overall,

P(
wi

c
) = yi =

eui∑V
i=1 e

ui

where,ui = VT
wi
Vc

The parameters θ = {Vw,Vc} are learnt by defining the objective function as the
log-likelihood,

l(θ) =
∑

w∈Vocabulary

log(P(
w

c
))

=
∑

w∈Vocabulary

log(
eV

T
wVc∑V

i=1 e
VT

wi
Vc

)

Finding the gradient,

∂l(θ)

∂Vw

= Vc −
eV

T
wVcVc∑

w′∈Vocab ew
′TVc
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FIGURE 2.10: CBOW: Continuous bag of words model

≡ ∂l(θ)

∂Vw

= Vc(1−P(
w

c
)

After this, updating of weights is done using Gradient Descent:

Vnew
w = Vold

w − η∂l(θ)
∂Vw

Similarly doing for Vc.
In the General Model, all the one-hot vectors of context words are taken as input

simultaneously, i.e,
h = WT(x1 + x2 + ...+ xc).

Negative Sampling It is observable here that in the formula mentioned above, the
normalization factor iterates over the whole vocabulary for each update. This is therefore
intractable when the vocabulary is very large. To overcome this, a different approach is
taken where the task considers pairs of target and context words and breaks down to
classify where this pair belongs to the corpus or not (wrt. window size restrictions).

Classification Problem Let, D → Set of all (w,c) pair of words in the corpus. and,
D

′ → Set of all (w,c) pair of words not in the corpus.
P(z == 1|(w, c)) is the probability that a pair is in D

Therefore,

P(z == 1|(w, c)) = 1

1+ e−VT
c Vw
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P(z == 0|(w, c)) = e−V
T
c Vw

1+ e−VT
c Vw

now,

P(z|(w, c)) =
( 1

1+ e−VT
c Vw

)z( e−V
T
c Vw

1+ e−VT
c Vw

)1−z
Hence the Likelihood can be defined as,

L(θ) =
∏

(w,c)∈D∪D′

P (z|(w, c))

Defining the log-likelihood as the objective function to minimize:

l(θ) =
∑

(w,c)∈D∪D′

zlog(
1

1+ e−VT
c Vw

)

+(1− z)log(
1

1+ eVT
c Vw

)

l(θ) =
∑

(w,c)∈D

log(
1

1+ e−VT
c Vw

) +
∑

(w,c)∈D′

log(
1

1+ eVT
c Vw

)

From this we can find the respective gradients and perform the required updates
using Gradient Descent. The computational complexity in the above model is no more
intractable.

Although Word2Vec and similar counterparts like GloVe [2] are very efficient in
capturing semantic details of words in their vector space representations, they are not
very efficient in the task of sentimental analysis. This is mainly due to the fact that
these embeddings sometimes cluster semantically similar words which have opposing
sentiment polarity. Thus the downstream model used for the sentiment analysis task
would not be able to identify this contrasting polarities leading to poor performance.
Many solutions to this problem have been proposed based on the modification of the
original C&W model by Collobert et al. [3]. This is an open field which high scope of
improvement in the said task.

2.2.1.3 SkipGram

Unlike CBOW, in SkipGram model the network predicts the context from given word,
i.e. predict w(t− 2), w(t− 1), w(t+ 1), w(t+ 2) from w(t) as shown in Figure 2.11.

2.3 Neural Network Architectures
In this section, we discuss different useful network architectures, which are used in the
works presented in this thesis. In the subsequent subsections, we discuss CNN, RNN,
LSTM networks.



2.3. Neural Network Architectures 19

FIGURE 2.11: SkipGram model

2.3.1 Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN) are a variant of feed-forward neural networks
inspired by biology. In CNN, the arrangement of neurons is influenced by visual cortex
of animals. Visual cortex is composed of complex arrangement of cells. These cells are
sensitive to sub-regions in the visual field, called receptive field. These receptive fields
cover the whole visual field and act as local filters over the visual input space. In CNN,
this concept of spatially local correlation is exploited.

2.3.1.1 Convolution

CNN extracts features from images by repeated application of convolution filter on sub-
regions over the whole image, as depicted in Figure 2.12. The output matrix obtained
from convolution filter is called feature map. From a single image multiple such feature
maps can be obtained using convolution filters having different parameter sets. So, k-th
feature map can be represented by fk, where

fkij = ReLU((W k ∗ x)ij + bk), (2.11)

ReLU(x) = max(0, x). (2.12)

Here, W k is the weight and bk is the bias of convolutional filter, i and j are row and
column position of a neuron in feature map. ReLU is called Rectified Linear Unit,
widely used in deep networks, introduces non-linearity. All the feature maps produced
can be represented as in Figure 2.13.
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FIGURE 2.12: Feature Map derived from original image

FIGURE 2.13: Feature Maps extracted from feature maps of previous
layer

2.3.1.2 Max Pooling

Max pooling is an important part of CNN networks. It basically downscales the feature
maps which reduces computation in the higher layers. Also, less important features are
eliminated. Similar to convolution filter max pool operator applies to a certain window
of neurons over the feature maps and keeps only the maximum value from each window.
This creates downscaled feature maps.

2.3.1.3 Classification

The output of max pooling operation is flattened to a vector which is used as feature
vector for the image. This vector is fed to MLP for final classification. Figure 2.14
depicts a full scale CNN for image classification.
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FIGURE 2.14: Full CNN for image classification

2.3.1.4 Applications of CNN in NLP

In NLP CNN is applied in a different way. CNN is usually employed in finding the sen-
tence representation from word embeddings (Word embeddings are discussed in Sec-
tion 2.2.1). Word embeddings are arranged in a column to create a matrix which is
similar to an image. The height of the convolution filter is analogous to n-gram, i.e.,
filter with height n extracts n-gram features. Then we apply max pooling to the output
feature maps and flatten the output to obtain sentence representation. If needed, multiple
n-gram features can be used in a single network. Chapter 6 discusses a nice application
of CNN in NLP.

2.3.2 3D Convolutional Neural Network (3D-CNN)
3D-CNN is 3D extension of regular 2D-CNN (Section 2.3.1). Here, the convolution
operation is performed on a series of frames. Figure 2.15 depicts the architecture of a
simple 3D-CNN network with 3D-Maxpooling and a classifier at the end.

Let V ∈ Rc×f×h×w be a video, where c = number of channels in an image (e.g.,
c = 3 for RGB images), f = number of frames, h = height of the frames, and w = width
of the frames. Again, we consider the 3D convolutional filter F ∈ Rfm×c×fl×fh×fw,
where fm = number of feature maps, c = number of channels, fd = number of frames
(in other words depth of the filter), fh = height of the filter, and fw = width of the filter.
Similar to 2D-CNN, F slides across video V and generates output

C ∈ Rfm×c×(f−fd+1)×(h−fh+1)×(w−fw+1).

Next, we apply max pooling to C to select only relevant features. The pooling will be
applied only to the last three dimensions of the array C.

2.3.3 Recurrent Neural Network (RNN)
Recurrent Neural Networks (RNN) are a class of neural networks where the connection
among the neurons forms at least one directed cycle.

RNNs make use for sequential information. This property is very useful in NLP,
since sentences are a sequence of words and documents are that of sentences. RNNs
are called recurrent because it performs the same set of operations for every element



22 Chapter 2. Theoretical Framework

FIGURE 2.15: 3D-CNN

in a sequence. RNNs have the ability to memorize the information it has seen before
in the sequence. However, in practice they can look back only a few steps, hence not
very effective to model long term dependencies. Also it suffers from vanishing gradient
problem. To overcome this limitation, a specially designed RNN called Long Short-
Term Memory (LSTM) is used in most of the application, which is far less susceptible
to these issues. We discuss LSTM in Section 2.3.4.

FIGURE 2.16: Recurrent Neural Network (RNN)

Figure 2.16 describes a simple RNN architecture being unfolded into a full network.
Here, W , U , and V are network parameters. In this network, xt is the input at time-step
t, which could be word embedding such as word2vec or one-hot representation; st is
hidden state at time-step t:

st = N (U xt +W st−1), (2.13)
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where N is non-linearity such as ReLU or tanh, the initial state s−1 being usually
initialized to zero; ot is the output at step t:

ot = softmax(V st), (2.14)

which is the probability of the input belonging to a particular class.

FIGURE 2.17: RNN for machine translation

Figure 2.17 shows an RNN for translating German to English.

2.3.4 Long Short-Term Memory (LSTM)
Long Short-Term Memory (LSTM) [4] is specially designed RNN which is less prone to
vanishing gradient problem. Also, it is better capable of modeling long distance depen-
dencies in a sequence. These features make it really useful for NLP applications where
sentences and documents are sequential by nature.

LSTM is designed in such a way that it only memorizes relevant part of the sequence
which it has seen so far. This behavior is enabled by the usage of gates in the network,
which decides what to keep in the memory based on current input and hidden state.
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FIGURE 2.18: Long Short-Term Memory (LSTM)

Figure 2.18 shows the basic architecture of an LSTM cell. The same repeats over
different time-steps. We describe the governing equations of LSTM below:

it = σ(Wi xt + Ui ht−1 + bi), (2.15)
ot = σ(Wo xt + Uo ht−1 + bo), (2.16)
ft = σ(Wf xt + Uf ht−1 + bf ), (2.17)
Cin = tanh(Wc xt + Uc ht−1 + bc), (2.18)
Ct = it ∗ Cin + ft ∗ Ct−1, (2.19)
ht = ot ∗ tanh(Ct), (2.20)

where it = input gate at time-step t, ot = output gate at time-step t, ft = forget gate
at time-step t, Cin = candidate state value at time-step t, Ct = cell state at time-step t
(memory), ht = hidden output of LSTM cell at time-step t. The gate values are depen-
dent on the current input and output of previous cell. It means, that it considers previous
information along with current one to make decision about that to keep in the memory
and what to forget. In equation (2.19), new cell memory is formed by forgetting some
part of current memory and incorporating some part of new input xt. In equation (2.20),
LSTM cell outputs part of the new memory as output. The output of final cell is usually
taken as the final output, which represents the whole sequence.

In some applications, a variant of LSTM is used called peephole LSTM. The dif-
ference is the gates are function of the cell value of previous cell rather than output of
previous cell.

2.4 Training Neural Networks
In this section, we discuss the algorithms for training neural networks in supervised
scenario.
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2.4.1 Stochastic Gradient Descent (SGD)
Stochastic Gradient Descent (SGD) is a optimization method that minimizes a differ-
entiable objective function by iteratively updating the parameters by a fraction of its
gradients until a state of saturation is reached. Figure 2.19 depicts the gradual descent to
the absolute minima for a convex function. Algorithm 1 summarizes SGD.

FIGURE 2.19: Gradient Descent for a convex function

Algorithm 1 Stochastic Gradient Descent algorithm
1: procedure SGD(J , w, η, ε). J = Objective function which is a function of w, η =

learning rate, ε = change tolerance
2: Initialize parameters w with random values close to zero
3: repeat
4: w(t) = w(t−1) − η∇J(w(t−1))
5: until |J (t) − J (t−1)| < ε . J (t) = value of J after iteration t
6: return w

The values of hyper-parameters, which are η and ε, are to be supplied by the user. ε
should be quite small, like 0.0001. η (or learning-rate) should chosen very carefully to
a small value like 0.001 and should redefine through many SGD executions. Too small
learning-rate will lead to prolonged optimization time, even may not converge in realistic
amount of time. Too large η will lead to oscillation of J , in other words the minima can
be missed through-out the iterations.

In this section, we left out the back-propagation algorithm, which is the procedure to
calculate gradient for neural networks.
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2.5 Model Validation Techniques
Cross Validation Cross-validation is a technique to evaluate predictive models by par-
titioning the original sample into a training set to train the model, and a test set to evaluate
it.

In k-fold cross-validation, the original sample is randomly partitioned into k equal
size subsamples. Of the k subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining k-1 subsamples are used as training data.
The cross-validation process is then repeated k times (the folds), with each of the k
subsamples used exactly once as the validation data. The k results from the folds can
then be averaged (or otherwise combined) to produce a single estimation. The advantage
of this method is that all observations are used for both training and validation, and each
observation is used for validation exactly once.

For classification problems, one typically uses stratified k-fold cross-validation, in
which the folds are selected so that each fold contains roughly the same proportions of
class labels.

Bootstrapping Bootstrap aggregating, also called bagging, is a machine learning en-
semble meta-algorithm designed to improve the stability and accuracy of machine learn-
ing algorithms used in statistical classification and regression. It also reduces variance
and helps to avoid over fitting. Although it is usually applied to decision tree methods, it
can be used with any type of method. Bagging is a special case of the model averaging
approach.

Bootstrapping is the practice of estimating properties of an estimator (such as its vari-
ance) by measuring those properties when sampling from an approximating distribution.
One standard choice for an approximating distribution is the empirical distribution func-
tion of the observed data. In the case where a set of observations can be assumed to be
from an independent and identically distributed population, this can be implemented by
constructing a number of re-samples with replacement, of the observed dataset (and of
equal size to the observed dataset).

2.6 Model Evaluation Techniques
In this section we describe some of the model evaluation techniques to calculate the
quality of the regression and classification models.

2.6.1 Evaluating Regression Quality
Mean Squared Error Validation Techniques In Machine Learning, the Mean Squared
Error (MSE) or mean squared deviation (MSD) of an estimator measures the average of
the squares of the errors or deviations, that is, the difference between the estimator and
what is estimated. MSE is a risk function, corresponding to the expected value of the
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squared error loss or quadratic loss. The difference occurs because of randomness or be-
cause the estimator doesn’t account for information that could produce a more accurate
estimate.If Ŷ is a vector of n predictions, and Y is the vector of observed values corre-
sponding to the inputs to the function which generated the predictions, then the MSE of
the predictor can be estimated by

MSE =
1

n

n∑
i=1

(Ŷi − Yi)2

I.e., the MSE is the mean (
1

n

n∑
i=1

) of the square of the errors ((Ŷi − Yi)2). This is an

easily computable quantity for a particular sample (and hence is sample-dependent).

2.6.2 Evaluating Classification Techniques
Precision Precision and recall in information retrieval are defined in terms of retrieved
documents i.e., assuming that a search query is made on a search engine, the docu-
ments retrieved are used to define precision. Therefore in terms of retrieved docu-
ments,precision is the fraction of retrieved documents that are relevant to the query.
The formula used for precision is :- precision = |(RelaventDocuments)∩(RetrievedDocuments)|

|(RetrievedDocuments)|

Recall Recall in information retrieval is the fraction of the documents that are relevant
to the query that are successfully retrieved. The formula is :-

Recall =
|(RelaventDocuments) ∩ (RetrievedDocuments)|

|(RelaventDocuments)|

F-Score A measure that combines precision and recall is the harmonic mean of preci-
sion and recall is called the F-Score. The formula :-

FScore =
Precision.Recall

Precision+Recall

Accuracy is a weighted arithmetic mean of Precision and Inverse Precision (weighted
by Bias) as well as a weighted arithmetic mean of Recall and Inverse Recall. Accuracy
is given by the below formula:-

Accuracy =

∑
TruePositive+

∑
TrueNegative

TotalPopulation



28

Chapter 3

Multimodal Sentiment Analysis with
Hierarchical Fusion

3.1 Introduction
Internet is easily available to all people since the dawn of this millennium. This has
resulted in the rise of numerous social media platforms, such as YouTube, Facebook,
Instagram etc., where people share their opinions on all kinds of topics in the form of
posts, images and videos. Proliferation of smartphones and tablets has greatly boosted
content sharing. Since recently, people increasingly share their opinions on newly re-
leased product or on other topics in form of video reviews or comments. This is an
excellent opportunity for large companies to capitalize on by extracting user sentiment,
suggestions, and complaints on their products from these video reviews.

Videos convey information through three channels: audio, video and text (in form of
speech). Mining opinion from this plethora of multimodal data calls for a solid multi-
modal sentiment analysis technology. One of the major problems faced in multimodal
sentiment analysis is the fusion of features pertaining to different modalities. The ma-
jority of the recent works in multimodal sentiment analysis have simply concatenated
the feature vectors for different modalities. However, this does not take into considera-
tion that different modalities may carry conflicting information. We hypothesize that the
method presented in this chapter deals with this issue better, and present experimental
evidence showing improvement over simple concatenation of feature vectors.

In our method, we first transform the feature vectors of the three modalities to have
the same dimensionality. We assume that these transformed vectors contain abstract fea-
tures representing the attributes relevant to sentiment classification. Next, we compare
and combine each bimodal combination of these abstract features using fully-connected
layers of a neural network. This results in fused bimodal feature vectors. Finally, we
combine these bimodal vectors into a trimodal vector using, again, fully-connected lay-
ers. We show that the feature vector obtained in this manner is more useful for the
sentiment classification task.



3.2. Related Work 29

3.2 Related Work
As to text-based sentiment analysis methods, they can be classified into two major
classes: knowledge-based and statistics-based methods [5]. These groups of methods
have significantly different approaches and vary in importance with time. Knowledge-
based systems were more widely used in the past, while recently, statistics-based systems
have dominated overwhelmingly; especially, supervised statistical methods [6], [7] has
played a major role.

As to other modalities, Ekman [8] in the early 1970s showed through extensive stud-
ies that facial expressions provide sufficient clues for emotion detection. Recent stud-
ies [9] have started to focus also on acoustic features such as pitch, intensity of utterance,
bandwidth, duration etc.

In the field of emotion recognition, early works by De Silva et al. [10] and Chen
et al. [11] showed that fusion of audio and visual systems, creating a bimodal signal,
yielded a higher accuracy than any unimodal system. Such fusion has been analyzed at
both feature level [12] and decision level [13].

Although there is much work done on audio-visual fusion for emotion recognition,
exploring contribution of text along with audio and visual modalities in multimodal emo-
tion detection has been little explored. Wollmer et al. [14] and Rozgic et al. [15] fused
information from audio, visual and textual modalities to extract emotion and sentiment.
Metallinou et al. [16] and Eyben et al. [17] fused audio and textual modalities for emo-
tion recognition. Both approaches relied on a feature-level fusion. Wu et al. [18] fused
audio and textual clues at decision level. The current state of the art, set forth by Poria
et al. [19], uses CNN to extract features from the modalities and then employs multiple-
kernel learning (MKL) for sentiment analysis and emotion recognition.

3.3 Our Method
Our method for polarity detection consists in the following. First, we use a feature
extraction method for each modality: audio, video, and text. Then, we fuse the features
from the three modalities into a unified vector space. Finally, we train a classifier on
such multimodal feature vector. In the sequel we describe each step.

3.3.1 Unimodal Feature Extraction
In this section, we discuss the method of feature extraction for three different modalities:
audio, video, and text.

3.3.1.1 Textual Feature Extraction

The source of textual modality is the transcription of the spoken words. To extract fea-
tures from the textual modality, we use a deep convolutional neural network (CNN) [20].
First, we represent each utterance as a concatenation of vectors of the constituent words,
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which in our experiments were the publicly available 300-dimensional word2vec vec-
tors trained on 100 billion words from Google News [1].

The convolution kernels are thus applied to these concatenated word vectors instead
of individual words. Each utterance is wrapped in a window of 50 words, which serves
as the input to the CNN. The CNN has two convolutional layers; the first layer has two
kernels of size 3 and 4, with 50 feature maps each, and the second layer has a kernel of
size 2 with 100 feature maps.

The convolution layers are interleaved with max-pooling layers of window 2 × 2.
This is followed by a fully-connected layer of size 500 and softmax output. We use
rectified linear unit (ReLU) [21] as the activation function. The activation values of
the fully-connected layer are taken as the features of utterances for text modality. The
convolution of the CNN over the utterance learns abstract representations of the phrases
equipped with implicit semantic information, which with each successive layer spans
over increasing number of words and ultimately the entire utterance.

3.3.1.2 Audio Feature Extraction

Audio features are extracted at 30 Hz frame-rate with a sliding window of 100 ms. To
compute the features, we use openSMILE [22], an open-source software that automat-
ically extracts audio features such as pitch and voice intensity. Voice normalization is
performed and voice intensity is thresholded to identify samples with and without voice.
Z-standardization is used to perform voice normalization. Both of these tasks were per-
formed using openSMILE.

The features extracted by openSMILE consist of several Low Level Descriptors
(LLD) and statistical functionals of them. Some of the functionals are amplitude mean,
arithmetic mean, root quadratic mean, standard deviation, flatness, skewness, kurtosis,
quartiles, inter-quartile ranges, linear regression slope etc. Specifically, we use "IS13-
ComParE" configuration file in openSMILE. Taking into account all functionals of each
LLD, we obtained 6372 features.

3.3.1.3 Visual Feature Extraction

We use 3D-CNN to obtain visual features from the video. We hypothesize that 3D-CNN
will not only be able to learn relevant features from each frame, but will also be able to
learn the changes among given number of consecutive frames.

In the past, 3D-CNN has been successfully applied to object classification on 3D
data [23]. Its ability to achieve state-of-the-art results motivated us to use it.

Let vid ∈ Rc×f×h×w be a video, where c = number of channels in an image (in our
case c = 3, since we consider only RGB images), f = number of frames, h = height of
the frames, and w = width of the frames. Again, we consider the 3D convolutional filter
filt ∈ Rfm×c×fl×fh×fw, where fm = number of feature maps, c = number of channels,
fd = number of frames (in other words depth of the filter), fh = height of the filter, and
fw = width of the filter. Similar to 2D-CNN, filt slides across video vid and generates
output convout ∈ Rfm×c×(f−fd+1)×(h−fh+1)×(w−fw+1). Next, we apply max pooling to
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convout to select only relevant features. The pooling will be applied only to the last
three dimensions of the array convout.

In our experiments, we obtained best results with 32 feature maps (fm) with the
filter-size of 5× 5× 5 (or fd× fh× fw). In other words, the dimension of the filter is
32×3×5×5×5 (or fm× c×fd×fh×fw). Subsequently, we apply max pooling on
the output of convolution operation, with window-size being 3× 3× 3. This is followed
by a dense layer of size 300 and softmax. The activations of this dense layer are finally
used as the video features for each utterance.

3.3.2 Hierarchical Multimodal Fusion
In this section, the mechanism to fuse the unimodal features vectors:

• fa ∈ Rda (acoustic feature),

• fv ∈ Rdv (visual feature),

• ft ∈ Rdt (textual feature)

obtained in section 3.3.1 into a single multimodal feature vector is described.
The unimodal features may have different dimensionalities, i.e. da 6= dv 6= dt.

So, we map them to the same dimensionality, say dm (we obtained best results with
dm = 250), using fully-connected layer as follows:

ga = tanh(Wafa + ba), (3.1)
gv = tanh(Wvfv + bv), (3.2)
gt = tanh(Wtft + bt), (3.3)

where Wa ∈ Rdm×da , ba ∈ Rdm , Wv ∈ Rdm×dv , bv ∈ Rdm , Wt ∈ Rdm×dt , and bt ∈ Rdm .
We can represent the mapping for each dimension as

gx = (cx1 , c
x
2 , c

x
3 , · · · , cxdm), (3.4)

where x ∈ {v, a, t} and cxl are scalars for all l = 1, 2, · · · , dm. We can see these values
cxl as more abstract feature values derived from fundamental feature values (which are
the components of fa, fv, and ft). For example, an abstract feature can be the angriness
of a speaker in a video. We can infer the degree of angriness from visual features (fv;
facial muscle movements), acoustic features (fa; pitch, raised voice etc.), or textual
features (ft; the language, choice of words etc.). Therefore, the degree of angriness can
be represented by cxl where x = a, v, t and l is some fixed integer between 1 and dm.

Now, the evaluation of abstract feature values from all the modalities may not have
the same merit or may even contradict each other. So, we need the network to make
comparison among the feature values derived from different modalities to make a more
refined evaluation of the degree of anger. To achieve so, we take each bimodal combi-
nation (which are audio-video, audio-text, and video-text) at a time and compare-and-
combine each of their respective abstract feature values (i.e. cvl with ctl , c

v
l with cal , and
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cal with ctl) using fully-connected layers as follows:

ival = tanh(wval .[c
v
l , c

a
l ]

ᵀ + bval ), (3.5)
iatl = tanh(watl .[c

a
l , c

t
l ]
ᵀ + batl ), (3.6)

ivtl = tanh(wvtl .[c
v
l , c

t
l ]
ᵀ + bvtl ), (3.7)

where wval ∈ R2, bval is scalar, watl ∈ R2, batl is scalar, wvtl ∈ R2, and bvtl is scalar, for l =
1, 2, · · · , dm. We hypothesize that it will enable the network to compare the decisions
from each modality against the others and help achieve a better fusion of modalities.

Bimodal fusion Equations (3.5) to (3.7) are used for bimodal fusion. The bimodal
fused features for video-audio, audio-text, video-text are defined as

F va = (iva1 , i
va
2 , · · · , ivadm), (3.8)

F at = (iat1 , i
at
2 , · · · , iatdm), (3.9)

F vt = (ivt1 , i
vt
2 , · · · , ivtdm) (3.10)

respectively.

Trimodal fusion We combine all three modalities using fully-connected layers as fol-
lows:

zl = tanh(wl.[i
va
l , i

at
l , i

vt
l ]

ᵀ + bl), (3.11)

where wl ∈ R3 and bl is a scalar for all l = 1, 2, · · · , dm. So, we define the fused features
as

F avt = (z0, z2, · · · , zdm). (3.12)3.3.3 Classification
In order to perform classification, we feed the fused features F to a softmax layer with
C = 2 outputs. The classifier can be described as follows:

P = softmax(WsoftmaxF
q + bsoftmax ), (3.13)

ŷ = argmax
j

(P [j]), (3.14)

where Wsoftmax ∈ RC×dm , bsoftmax ∈ RC , P ∈ RC , j = class value (0 or 1), q =
va, at, vt, avt, and ŷ = estimated class value.
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FIGURE 3.1: Hierarchical Fusion

3.3.4 Training
We employ categorical cross-entropy as loss function (J) for training,

J = − 1

N

N∑
i=1

C−1∑
j=0

yij logPi[j], (3.15)

where N = number of samples, i = index of a sample, j = class value, and

yij =

{
1, if expected class value of sample i is j
0, otherwise.

AdaDelta [24] is used as optimizer due to its ability to adapt learning rate for each
parameter individually. We train the network for 300-500 epochs, where we optimize
the parameter set θ = {Wa,Wv,Wt, ba, bv, bt, w

va
1 , w

va
2 , · · · , wvadm , w

at
1 , w

at
2 , · · · , watdm ,

wvt1 , w
vt
2 , · · · , wvtdm , b

va
1 , b

va
2 , · · · , bvadm , b

at
1 , b

at
2 , · · · , batdm , b

vt
1 , b

vt
2 , · · · , bvtdm , w1, w2, · · · ,

wdm , b1, b2, · · · , bdm ,Wsoftmax , bsoftmax}. Algorithm 2 summarizes the proposed method.
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Algorithm 2 Proposed Algorithm
1: procedure TRAINANDTESTMODEL(U , V ) . U = train set, V = test set
2: Unimodal feature extraction:
3: for i:[1,N] do . extract baseline features
4: xai ← AudioFeatures(ui)
5: xvi ← V ideoFeatures(ui)
6: xti ← TextFeatures(ui)

7: Multimodal Fusion:
8: Dimensionality equalization:
9: ga ←MapToSpace(xa)

10: gv ←MapToSpace(xv)
11: gt ←MapToSpace(xt)
12: Bimodal fusion:
13: f va ← BimodalFusion(gv, ga)
14: fat ← BimodalFusion(ga, gt)
15: f vt ← BimodalFusion(gv, gt)
16: Trimodal fusion:
17: F avt ← TrimodalFusion(f va, fat, f vt)
18: Train the above network for xa, xv, and xt.
19: TestModel(V )
20: return F avt

21: procedure TESTMODEL(V )
22: Similar to training phase, V is passed through the learnt models to get the fea-

tures and classification outputs. Section 3.3.4 mentions the trainable parameters (θ).
23: procedure TRIMODALFUSION(f z1 , f z2 , f z3) . for modality combination z1, z2,

and z3, where z1 6= z2 6= z3
24: for i:[1,dm] do
25: Fi ← tanh(wi.[f

z1
i , f

z2
i , f

z3
i ]ᵀ + bi)

26: F ← (F1, F2, · · · , Fdm)
27: return F
28: procedure BIMODALFUSION(gz1 , gz2) . for modality z1 and z2, where z1 6= z2
29: for i:[1,dm] do
30: f z1z2i ← tanh(wz1z2i .[gz1i , g

z2
i ]ᵀ + bz1z2i )

31: f z1z2 ← (f z1z21 , f z1z22 , · · · , f z1z2dm
)

32: return f z1z2

33: procedure MAPTOSPACE(xz) . for modality z
34: gz ← tanh(Wzx

z + bz)
35: return gz
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TABLE 3.1: Accuracy for Different Combinations of Modalities; bold
font signifies best accuracy for the corresponding feature-set and modal-

ity/modalities, where T = text, V = video, and A = audio

Modality
Combination

Poria et al. (2015) feature-set Our feature-set
Poria et al. (2015) Our method Early fusion Our method

T – – 75%
V – – 55.31%
A – – 56.91%

T+V 73.2% 74.4% 77.13% 77.79%
T+A 73.2% 74.15% 77.13% 77.26%
A+V 55.7% 57.5% 56.52% 56.78%

A+V+T 73.55% 74.6% 76.99% 77.92%

3.4 Experimental Results

3.4.1 Dataset Used
Most research-works in multimodal sentiment analysis are performed on datasets where
train and test splits may share certain speakers. Since, each individual has an unique way
of expressing emotions and sentiments, finding generic and person-independent features
for sentiment analysis is crucial.

CMU-MOSI CMU-MOSI dataset [25] is rich in sentimental expressions, where 89
people review various topics in English. The videos are segmented into utterances where
each utterance is annotated with scores between−3 (strongly negative) and +3 (strongly
positive) by five annotators. We took the average of these five annotations as the sen-
timent polarity and considered only two classes (positive and negative). Given every
individual’s unique way of expressing sentiments, real world applications should be
able to model generic person independent features and be robust to person variance.
To this end, we perform person-independent experiments to emulate unseen conditions.
Our train/test splits of the dataset are completely disjoint with respect to speakers. The
train/validation set consists of the first 62 individuals in the dataset. The test set contains
opinionated videos by rest of the 31 speakers. In particular, 1447 and 752 utterances are
used for training and test, respectively.

3.4.2 Baselines
We consider the following strong baselines for comparison against the proposed method.

Poria et al. (2015). We have implemented and compared our method with the current
state-of-the-art approach, proposed by Poria et al. [19]. In their approach, they extracted
visual features using CLM-Z, audio features using openSMILE, and textual features
using CNN. Multiple Kernel Learning (MKL) was then applied to the features obtained



36 Chapter 3. Multimodal Sentiment Analysis with Hierarchical Fusion

from concatenation of the unimodal features. However, they did not conduct speaker
independent experiments.

Poria et al. (2015) In order to perform a fair comparison with Poria et al. (2015), we
employ the proposed fusion method on the features extracted by Poria et al. (2015).

Early-fusion. We extract unimodal features (Section 3.3.1) and simply concatenate
them to produce multimodal features. Followed by Support Vector Machine (SVM)
being applied on this feature vector for the final sentiment classification.

3.4.3 Results and Discussion
The results of our experiments are presented in Table 3.1. We evaluated our model with
two feature-sets: the feature-set used in Poria et al. (2015) [19] and the set of unimodal
features discussed in Section 3.3.1.

Our model outperformed Poria et al. (2015), which employed MKL, for all bimodal
and trimodal scenarios by a margin of 1-1.8%. This leads us to present two observations
– firstly the features used in Poria et al. (2015) is inferior to the features extracted in
our approach and secondly our proposed hierarchical fusion method is better than their
fusion method.

It is already established in the literature [19], [26] that multimodal analysis outper-
forms unimodal analysis. We also observe the same trend in our experiments where
trimodal and bimodal classifiers outperform unimodal classifiers. The textual modality
performed best among others with a higher unimodal classification accuracy of 75%. Al-
though other modalities contribute to improve the performance of multimodal classifiers,
that contribution is little in compare to the textual modality.

On the other hand, we compared our model with early-fusion (Section 3.4.2) for
aforementioned feature-sets (Section 3.3.1). The proposed fusion mechanism surpassed
early-fusion for all combination of modalities in a consistent fashion. This supports
our hypothesis that the proposed hierarchical fusion method captures the inter-relation
among the modalities and produce better performance vector than early-fusion. Text is
the strongest individual modality, and we observe that text-modality paired with remain-
ing two modalities results in consistent performance improvement.

Overall, the results give a strong indication that the comparison among the abstract
feature values dampens the effect of less important modalities, which was our hypoth-
esis. For example, we can notice that for early fusion T+V and T+A both yield the
same performance. However, with our method text with video performs better than text
with audio, which is more aligned with our expectations, since facial muscle movements
usually carry more emotional nuances than voice.
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3.5 Conclusions
There are only a few research-works performed on multimodal fusion strategy. A novel
and comprehensive fusion strategy is presented in this chapter. Our method outper-
formed widely used early-fusion in two different instances. In the future, we plan
to apply this method with Long Short-Term Memory (LSTM), which considers inter-
utterance dependencies.
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Chapter 4

Contextual Multimodal Sentiment
Analysis

4.1 Introduction
Emotion recognition and sentiment analysis have become a new trend in social media,
helping users to automatically extract the opinions expressed in user-generated content,
especially videos. Thanks to the high availability of computers and smartphones, and
the rapid rise of social media, consumers tend to record their reviews and opinions about
products or films and upload them on social media platforms, such as YouTube or Face-
book. Such videos often contain comparisons, which can aid prospective buyers make
an informed decision.

The primary advantage of analyzing videos over text is the surplus of behavioral cues
present in vocal and visual modalities. The vocal modulations and facial expressions in
the visual data, along with textual data, provide important cues to better identify affective
states of the opinion holder. Thus, a combination of text and video data helps to create a
better emotion and sentiment analysis model [27].

Recently, a number of approaches to multimodal sentiment analysis, producing inter-
esting results, have been proposed [14], [19], [26]. However, there are major issues that
remain unaddressed, such as the role of speaker-dependent versus speaker-independent
models, the impact of each modality across the dataset, and generalization ability of a
multimodal sentiment classifier. Leaving these issues unaddressed has presented diffi-
culties in effective comparison of different multimodal sentiment analysis methods.

An utterance is a unit of speech bound by breathes or pauses. Utterance-level sen-
timent analysis focuses on tagging every utterance of a video with a sentiment label
(instead of assigning a unique label to the whole video). In particular, utterance-level
sentiment analysis is useful to understand the sentiment dynamics of different aspects
of the topics covered by the speaker throughout his/her speech. The true meaning of an
utterance is relative to its surrounding utterances.

In this chapter, we consider such surrounding utterances to be the context, as the
consideration of temporal relation and dependency among utterances is key in human-
human communication. For example, the MOSI dataset [25] contains a video, in which
a girl reviews the movie ‘Green Hornet’. At one point, she says “The Green Hornet did
something similar”. Normally, doing something similar, i.e., monotonous or repetitive
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might be perceived as negative. However, the nearby utterances “It engages the audience
more”, “they took a new spin on it”, “and I just loved it” indicate a positive context.

In this chapter, we discard the oversimplifying hypothesis on the independence of
utterances and develop a framework based on Long Short-Term Memory (LSTM) to
extract utterance features that also consider surrounding utterances.

Our model enables consecutive utterances to share information, thus providing con-
textual information in the classification process. Experimental results show that the
proposed framework has outperformed the state of the art on benchmark datasets by
5 − 10%. The chapter is organized as follows: Section 4.2 provides a brief literature
review on multimodal sentiment analysis; Section 4.3 describes the proposed method in
detail; experimental results and discussion are shown in Section 4.4; finally, Section 4.5
concludes the chapter.

4.2 Related Work
Text-based sentiment analysis systems can be broadly categorized into knowledge-based
and statistics-based systems [5]. While the use of knowledge bases was initially more
popular for the identification of emotions and polarity in text, sentiment analysis re-
searchers have recently been using statistics-based approaches, with a special focus on
supervised statistical methods [6], [7].

In 1970, Ekman [8] carried out extensive studies on facial expressions which showed
that universal facial expressions are able to provide sufficient clues to detect emotions.
Recent studies on speech-based emotion analysis [9] have focused on identifying rel-
evant acoustic features, such as fundamental frequency (pitch), intensity of utterance,
bandwidth, and duration.

As for fusing audio and visual modalities for emotion recognition, two of the early
works were done by De Silva et al. [10] and Chen et al. [11]. Both works showed that
a bimodal system yielded a higher accuracy than any unimodal system. More recent
research on audio-visual fusion for emotion recognition has been conducted at either
feature level [12] or decision level [13].

While there are many research papers on audio-visual fusion for emotion recognition,
only a few have been devoted to multimodal emotion or sentiment analysis using textual
clues along with visual and audio modalities. Wollmer et al. [14] and Rozgic et al. [15],
[28] fused information from audio, visual, and textual modalities to extract emotion and
sentiment. Metallinou et al. [16] and Eyben et al. [17] fused audio and textual modalities
for emotion recognition. Both approaches relied on a feature-level fusion. Wu et al. [18]
fused audio and textual clues at decision level.

4.3 Our Method
In this work, we propose a LSTM network that takes as input all utterances in a video
and extracts contextual unimodal and multimodal features by modeling the dependencies
among the input utterances. Below, we propose an overview of the method -



40 Chapter 4. Contextual Multimodal Sentiment Analysis

1. Context-Independent Unimodal Utterance-Level Feature Extraction
First, the unimodal features are extracted without considering the contextual infor-
mation of the utterances (Section 4.3.1). Table 4.1 presents the feature extraction
methods used for each modality.

2. Contextual Unimodal and Multimodal Classification
The context-independent unimodal features (from Step 1) are then fed into a LSTM
network (termed contextual LSTM) that allows consecutive utterances in a video
to share semantic information in the feature extraction process (which provides
context-dependent unimodal and multimodal classification of the utterances). We
experimentally show that this proposed framework improves the performance of
utterance-level sentiment classification over traditional frameworks.

Videos, comprising of its constituent utterances, serve as the input. We represent the
dataset as U:

U =

 u1,1 u1,2 u1,3 ... u1,L1

u2,1 u2,2 u2,3 ... u2,L2

. . . ... .
uM,1 uM,2 uM,3 ... uM,LM

 .
Here, ui,j denotes the jth utterance of the ith video and L = [L1, L2, ..., LM ] repre-

sents the number of utterances per video in the dataset set.

4.3.1 Context-Independent Unimodal Features Extraction
Initially, the unimodal features are extracted from each utterance separately, i.e., we do
not consider the contextual relation and dependency among the utterances (Table 4.1).
Below, we explain the textual, audio, and visual feature extraction methods.

4.3.1.1 Textual Feature Extraction

For feature extraction from textual data, we use a convolutional neural network (CNN).
The idea behind convolution is to take the dot product of a vector of k weights, wk,

known as kernel vector, with each k-gram in the sentence s(t) to obtain another sequence
of features c(t) = (c1(t), c2(t), . . . , cL(t)):

cj = wTk · xi:i+k−1.

We then apply a max pooling operation over the feature map and take the maximum
value ĉ(t) = max{c(t)} as the feature corresponding to this particular kernel vector. We
use varying kernel vectors and window sizes to obtain multiple features.

The process of extracting textual features is as follows -
First, we represent each sentence as the concatenation of vectors of the constituent

words. These vectors are the publicly available 300-dimensional word2vec vectors
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trained on 100 billion words from Google News [1]. The convolution kernels are thus
applied to these word vectors instead of individual words. Each sentence is wrapped to
a window of 50 words which serves as the input to the CNN.

The CNN has two convolutional layers - the first layer having a kernel size of 3 and 4,
with 50 feature maps each and a kernel size 2 with 100 feature maps for the second. The
convolution layers are interleaved with pooling layers of dimension 2. We use ReLU as
the activation function. The convolution of the CNN over the sentence learns abstract
representations of the phrases equipped with implicit semantic information, which with
each successive layer spans over increasing number of words and ultimately the entire
sentence.

TABLE 4.1: Methods for extracting context independent baseline features
from different modalities.

Modality Model

Text
text-CNN: Deep Convolutional Neural

Network with word embeddings

Video
3d-CNN: 3-dimensional CNNs employed on

utterances of the videos

Audio
openSMILE: Extracts low level audio
descriptors from the audio modality

4.3.1.2 Audio Feature Extraction

Audio features are extracted in 30 Hz frame-rate; we use a sliding window of 100 ms.
To compute the features, we use the open-source software openSMILE [22] which auto-
matically extracts pitch and voice intensity. Voice normalization is performed and voice
intensity is thresholded to identify samples with and without voice. Z-standardization is
used to perform voice normalization.

The features extracted by openSMILE consist of several low-level descriptors (LLD)
and their statistical functionals. Some of the functionals are amplitude mean, arithmetic
mean, root quadratic mean, etc. Taking into account all functionals of each LLD, we
obtained 6373 features.

4.3.1.3 Visual Feature Extraction

We use 3D-CNN to obtain visual features from the video. We hypothesize that 3D-CNN
will not only be able to learn relevant features from each frame, but will also be able to
learn the changes among given number of consecutive frames.

In the past, 3D-CNN has been successfully applied to object classification on 3D
data [23]. Its ability to achieve state-of-the-art results motivated us to use it.

Let vid ∈ Rc×f×h×w be a video, where c = number of channels in an image (in our
case c = 3, since we consider only RGB images), f = number of frames, h = height of
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the frames, and w = width of the frames. Again, we consider the 3D convolutional filter
filt ∈ Rfm×c×fl×fh×fw, where fm = number of feature maps, c = number of channels,
fd = number of frames (in other words depth of the filter), fh = height of the filter, and
fw = width of the filter. Similar to 2D-CNN, filt slides across video vid and generates
output convout ∈ Rfm×c×(f−fd+1)×(h−fh+1)×(w−fw+1). Next, we apply max pooling to
convout to select only relevant features. The pooling will be applied only to the last
three dimensions of the array convout.

In our experiments, we obtained best results with 32 feature maps (fm) with the
filter-size of 5× 5× 5 (or fd× fh× fw). In other words, the dimension of the filter is
32×3×5×5×5 (or fm× c×fd×fh×fw). Subsequently, we apply max pooling on
the output of convolution operation, with window-size being 3× 3× 3. This is followed
by a dense layer of size 300 and softmax. The activations of this dense layer are finally
used as the video features for each utterance.

4.3.2 Context-Dependent Unimodal Feature Extraction
We hypothesize that, within a video, there is a high probability of utterance relatedness
with respect to their sentimental and emotional clues. Since most videos tend to be
about a single topic, the utterances within each video are correlated, e.g., due to the
development of the speaker’s idea, co-references, etc. This calls for a model which
takes into account such inter-dependencies and the effect these might have on the current
utterance. To capture this flow of informational triggers across utterances, we use a
LSTM-based recurrent network scheme [29].

4.3.2.1 Long Short-Term Memory (LSTM)

LSTM is a kind of recurrent neural network (RNN), an extension of conventional feed-
forward neural network. Specifically, LSTM cells are capable of modeling long-range
dependencies, which other traditional RNNs fail to do given the vanishing gradient issue.
Each LSTM cell consists of an input gate i, an output gate o, and a forget gate f , which
enables it to remember the error during the error propagation. Current research [30]
indicates the benefit of using such networks to incorporate contextual information in the
classification process.

In our case, the LSTM network serves the purpose of context-dependent feature ex-
traction by modeling relations among utterances. We term our architecture ‘contextual
LSTM’. We propose several architectural variants of it later in the chapter.

4.3.2.2 Contextual LSTM Architecture

Let unimodal features have dimension k, each utterance is thus represented by a feature
vector xi,t ∈ Rk, where t represents the tth utterance of the video i. For a video, we
collect the vectors for all the utterances in it, to get Xi = [xi,1,xi,2, ...,xi,Li

] ∈ RLi×k,
where Li represents the number of utterances in the video. This matrix Xi serves as the
input to the LSTM. Figure 4.1 demonstrates the functioning of this LSTM module.
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FIGURE 4.1: Contextual LSTM network: input features are passed
through an unidirectional LSTM layer, followed by a dense layer and then
a softmax layer. Categorical cross entropy loss is taken for training. The

dense layer activations serve as the output features.

In the procedure getLstmFeatures(Xi) of Algorithm 3, each of these utterance xi,t is
passed through a LSTM cell using the equations mentioned in line 32 to 37. The output
of the LSTM cell hi,t is then fed into a dense layer and finally into a softmax layer
(line 38 to 39). The activations of the dense layer zi,t are used as the context-dependent
features of contextual LSTM.

4.3.2.3 Training

The training of the LSTM network is performed using categorical cross entropy on each
utterance’s softmax output per video, i.e.,

loss =
1

N

N∑
n=1

C∑
c=1

yn,c log2( ˆyn,c),

where N = total number of utterances in a video, yn,c = original output of class c, and
ˆyn,c = predicted output.
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A dropout layer between the LSTM cell and dense layer is introduced to check over-
fitting. As the videos do not have same the number of utterances, padding is introduced
to serve as neutral utterances. To avoid the proliferation of noise within the network,
masking is done on these padded utterances to eliminate their effect in the network. Pa-
rameter tuning is done on the train set by splitting it into train and validation components
with 80/20% split. RMSprop has been used as the optimizer which is known to resolve
Adagrad’s radically diminishing learning rates [31]. After feeding the train set to the
network, the test set is passed through it to generate their context-dependent features.

Different Network Architectures We consider the following variants of the contex-
tual LSTM architecture in our experiments -

sc-LSTM This variant of the contextual LSTM architecture consists of unidirec-
tional LSTM cells. As this is the simple variant of the contextual LSTM, we termed it
as simple contextual LSTM (sc-LSTM)

h-LSTM We also test on an architecture where the dense layer after the LSTM cell
is omitted. Thus, the output of the LSTM cell hi,t provides our context-dependent fea-
tures and the softmax layer provides the classification. We call this architecture hidden
LSTM (h-LSTM).

bc-LSTM Bi-directional LSTMs are two unidirectional LSTMs stacked together
having opposite directions. Thus, an utterance can get information from other utterances
occurring before and after itself in the video. We replaced the regular LSTM with a
bi-directional LSTM and named the resulting architecture as bi-directional contextual
LSTM (bc-LSTM). The training process of this architecture is similar to sc-LSTM.

uni-SVM In this setting, we first obtain the unimodal features as explained in Sec-
tion 4.3.1, concatenate them and then send to a SVM for the final classification. It should
be noted that using a Gated Recurrent Unit (GRU) instead of LSTM did not improve the
performance.

4.3.3 Context-Dependent Multimodal Fusion
We accomplish multimodal fusion in two different ways as explained below -

4.3.3.1 Non-Hierarchical Framework

In non-hierarchical framework, we concatenate context-independent unimodal features
(from Section 4.3.1) and feed that into the contextual LSTM networks, i.e., sc-LSTM,
bc-LSTM, and h-LSTM.
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FIGURE 4.2: Hierarchical architecture for extracting context-dependent
multimodal utterance features. LSTM module has been described in Fig-

ure 4.1.

4.3.3.2 Hierarchical Framework

Contextual unimodal features, taken as input, can further improve performance of the
multimodal fusion framework explained in Section 4.3.3.1. To accomplish this, we pro-
pose a hierarchical deep network which comprises of two levels –

Level-1. context-independent unimodal features (from 4.3.1) are fed to the proposed
LSTM network (Section 4.3.2.2) to get context-sensitive unimodal feature representa-
tions for each utterance. Individual LSTM networks are used for each modality.

Level-2. consists of a contextual LSTM network similar to Level-1 but independent
in training and computation. Output from each LSTM network in Level-1 are concate-
nated and fed into this LSTM network, thus providing an inherent fusion scheme - the
prime objective of this level (Fig 4.2). The performance of the second level banks on
the quality of the features from the previous level, with better features aiding the fusion



46 Chapter 4. Contextual Multimodal Sentiment Analysis

Algorithm 3 Proposed Architecture
1: procedure TRAINARCHITECTURE( U, V)
2: Train context-independent models with U
3: for i:[1,M] do . extract baseline features
4: for j:[1,Li] do
5: xi,j ← TextFeatures(ui,j)
6: x

′
i,j ← V ideoFeatures(ui,j)

7: x”i,j ← AudioFeatures(ui,j)

8: Unimodal:
9: Train LSTM at Level-1 with X,X

′
andX”.

10: for i:[1,M] do . unimodal features
11: Zi ← getLSTMFeatures(Xi)
12: Z

′
i ← getLSTMFeatures(X

′
i)

13: Z”
i ← getLSTMFeatures(X”

i )

14: Multimodal:
15: for i:[1,M] do
16: for j:[1,Li] do
17: if Non-hierarchical fusion then
18: x∗i,j ← (xi,j ||x

′
i,j ||x”i,j) . concatenation

19: else
20: if Hierarchical fusion then
21: x∗i,j ← (zi,j ||z

′
i,j ||z”i,j) . concatenation

22: Train LSTM at Level-2 with X∗.
23: for i:[1,M] do . multimodal features
24: Z∗i ← getLSTMFeatures(X∗i )

25: testArchitecture( V)
26: return Z∗

27: procedure TESTARCHITECTURE( V)
28: Similar to training phase. V is passed through the learnt models to get the features and

classification outputs. Table 4.2 shows the trainable parameters.

29: procedure GETLSTMFEATURES(Xi) . for ith video
30: Zi ← φ
31: for t:[1,Li] do . Table 4.2 provides notation
32: it ← σ(Wi∆xi,t + Pi.ht−1 + bi)

33: C̃t ← tanh(Wcxi,t + Pcht−1 + bc)
34: ft ← σ(Wfxt + Pfht−1 + bf )

35: Ct ← it ∗ C̃t + ft ∗ Ct−1
36: ot ← σ(Woxt + Poht−1 + VoCt + bo)
37: ht ← ot ∗ tanh(Ct) . output of lstm cell
38: zt ← ReLU(Wzht + bz) . dense layer
39: prediction← softmax(Wsftzt + bsft)
40: Zi ← Zi ∪ zt
41: return Zi
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process. Algorithm 3 describes the overall computation for utterance classification. For
the hierarchical framework, we train Level 1 and Level 2 successively but separately.

TABLE 4.2: Summary of notations used in Algorithm 3. Note: d: di-
mension of hidden unit; k: dimension of input vectors to LSTM layer;

c: number of classes.

Weight Bias
Wi,Wf ,Wc,Wo ∈ Rd×k bi, bf , bc, bo ∈ Rd
Pi, Pf , Pc, PoVo ∈ Rd×d bz ∈ Rm

Wz ∈ Rm×d bsft ∈ Rc
Wsft ∈ Rc×m

4.4 Experimental Results

4.4.1 Dataset Used
Most of the research in multimodal sentiment analysis is performed on datasets with
speaker overlap in train and test splits.

Because each individual has a unique way of expressing emotions and sentiments,
finding generic, person-independent features for sentimental analysis is very tricky. In
real-world applications, the model should be robust to person variance but it is very
difficult to come up with a generalized model from the behavior of a limited number of
individuals To this end, we perform person-independent experiments to emulate unseen
conditions. Our train/test splits of the datasets are completely disjoint with respect to
speakers.

While testing, our models have to classify emotions and sentiments from utterances
by speakers they have never seen before.

IEMOCAP: The IEMOCAP contains the acts of 10 speakers in a two way conversa-
tion segmented into utterances. The database contains the following categorical labels:
anger, happiness, sadness, neutral, excitement, frustration, fear, surprise, and other, but
we take only the first four so as to compare with the state of the art [15] and other au-
thors. Videos by the first 8 speakers are considered in the train set. The train/test split
details are provided in table 4.3.

MOSI: The MOSI dataset is a dataset rich in sentimental expressions where 93 per-
sons review topics in English. It contains positive and negative classes as its sentiment
labels. The train/validation set comprises of the first 62 individuals in the dataset.
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MOUD: This dataset contains product review videos provided by around 55 persons.
The reviews are in Spanish (we use Google Translate API1 to get the english transcripts).
The utterances are labeled to be either positive, negative or neutral. However, we drop
the neutral label to maintain consistency with previous work. The first 59 videos are
considered in the train/val set.

Table 4.3 provides information regarding train/test split of all the datasets. In these
splits it is ensured that 1) No two utterances from the train and test splits belong to the
same video. 2) The train/test splits have no speaker overlap. This provides the speaker-
independent setting.

Table 4.3 also provides cross dataset split details where the complete datasets of
MOSI and MOUD are used for training and testing respectively. The proposed model
being used on reviews from different languages allows us to analyze its robustness and
generalizability.

TABLE 4.3: Utterance; Person-Independent Train/Test split details of
each dataset (≈ 70/30 % split). Note: X→Y represents train: X and test:
Y; Validation sets are extracted from the shuffled train sets using 80/20 %

train/val ratio.

Dataset
Train Test

uttrnce video uttrnce video
IEMOCAP 4290 120 1208 31

MOSI 1447 62 752 31
MOUD 322 59 115 20

MOSI→MOUD 2199 93 437 79

It should be noted that the datasets’ individual configuration and splits are same
throughout all the experiments (i.e., context-independent unimodal feature extraction,
LSTM-based context-dependent unimodal and multimodal feature extraction and classi-
fication).

4.4.2 Performance of Different Models and Comparison
In this section, we present unimodal and multimodal sentiment analysis performance of
different LSTM network variants as explained in Section 4.3.2.3 and comparison with
the state of the art.

Hierarchical vs Non-hierarchical Fusion Framework - As expected, trained con-
textual unimodal features help the hierarchical fusion framework to outperform the non-
hierarchical framework. Table 4.4 demonstrates this by comparing both hierarchical and
non-hierarchical framework using the bc-LSTM network. Due to this fact, we provide
all further analysis and results using the hierarchical framework. Non-hierarchical model
outperforms the performance of the baseline uni-SVM. This further leads us to conclude

1http://translate.google.com

http://translate.google.com
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that it is the context-sensitive learning paradigm which plays the key role in improving
performance over the baseline.

Comparison among Network Variants - It is to be noted that both sc-LSTM and bc-
LSTM perform quite well on the multimodal emotion recognition and sentiment analysis
datasets. Since, bc-LSTM has access to both the preceding and following information of
the utterance sequence, it performs consistently better on all the datasets over sc-LSTM.

The usefulness of the dense layer in improving the performance is prominent from
the experimental results as shown in Table 4.4. The performance improvement is in the
range of 0.3% to 1.5% on MOSI and MOUD datasets. On the IEMOCAP dataset, the
performance improvement of bc-LSTM and sc-LSTM over h-LSTM is in the range of
1% to 5%.

TABLE 4.4: Comparison of models mentioned in Section 4.3.2.3. The
table reports the accuracy of classification. Note: non-hier ← Non-
hierarchical bc-lstm. For remaining fusion hierarchical fusion framework

is used (Section 4.3.3.2)

Modality
MOSI MOUD IEMOCAP
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T 75.5 77.4 77.6 78.1 49.5 50.1 51.3 52.1 65.5 68.9 71.4 73.6
V 53.1 55.2 55.6 55.8 46.3 48.0 48.2 48.5 47.0 52.0 52.6 53.2
A 58.5 59.6 59.9 60.3 51.5 56.3 57.5 59.9 52.9 54.4 55.2 57.1

T + V 76.7 78.9 79.9 80.2 78.5 50.2 50.6 51.3 52.2 50.9 68.5 70.3 72.3 75.4 73.2
T + A 75.8 78.3 78.8 79.3 78.2 53.1 56.9 57.4 60.4 55.5 70.1 74.1 75.2 75.6 74.5
V + A 58.6 61.5 61.8 62.1 60.3 62.8 62.9 64.4 65.3 64.2 67.6 67.8 68.2 68.9 67.3

T + V + A 77.9 78.1 78.6 80.3 78.1 66.1 66.4 67.3 68.1 67.0 72.5 73.3 74.2 76.1 73.5

Comparison with the Baseline and state of the art - Every LSTM network variant
has outperformed the baseline uni-SVM on all the datasets by the margin of 2% to 5%(see
Table 4.4). These results prove our initial hypothesis that modeling the contextual de-
pendencies among utterances, which uni-SVM cannot do, improves the classification.
The higher performance improvement on the IEMOCAP dataset indicates the neces-
sity of modeling long-range dependencies among the utterances as continuous emotion
recognition is a multiclass sequential problem where a person doesnt frequently change
emotions [32].

We have implemented and compared with the current state-of-the-art approach pro-
posed by Poria et al. [19]. In their method, they extracted features from each modality
and fed to a multiple kernel learning (MKL) classifier. However, they did not conduct the
experiment in speaker-independent manner and also did not consider the contextual re-
lation among the utterances. Experimental results in Table 4.5 shows that the proposed
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TABLE 4.5: Accuracy % on textual (T), visual (V), audio (A) modality
and comparison with the state of the art. For fusion, hierarchical fusion

framework was used (Section 4.3.3.2)

Modality Sentiment (%) Emotion on IEMOCAP (%)
MOSI MOUD angry happy sad neutral

T 78.12 52.17 76.07 78.97 76.23 67.44
V 55.80 48.58 53.15 58.15 55.49 51.26
A 60.31 59.99 58.37 60.45 61.35 52.31

T + V 80.22 52.23 77.24 78.99 78.35 68.15
T + A 79.33 60.39 77.15 79.10 78.10 69.14
V + A 62.17 65.36 68.21 71.97 70.35 62.37

A + V + T 80.30 68.11 77.98 79.31 78.30 69.92
State-of 73.551 63.251 73.10 2 72.402 61.902 58.102

-the-art
1by [19],2by [15]

method has outperformed Poria et al. [19] by a significant margin. For the emotion
recognition task, we have compared our method with the current state of the art [15],
who extracted features in a similar fashion to [19] did. However, for fusion they used
SVM trees.

4.4.3 Importance of the Modalities
As expected, in all kinds of experiments, bimodal and trimodal models have outper-
formed unimodal models. Overall, audio modality has performed better than visual on
all the datasets. On MOSI and IEMOCAP datasets, textual classifier achieves the best
performance over other unimodal classifiers. On IEMOCAP dataset, the unimodal and
multimodal classifiers obtained poor performance to classify neutral utterances. Textual
modality, combined with non-textual modes boosts the performance in IEMOCAP by a
large margin. However, the margin is less in the other datasets.

On the MOUD dataset, textual modality performs worse than audio modality due to
the noise introduced in translating Spanish utterances to English. Using Spanish word
vectors2 in text-CNN results in an improvement of 10% . Nonetheless, we report re-
sults using these translated utterances as opposed to utterances trained on Spanish word
vectors, in order to make fair comparison with [19].

4.4.4 Generalization of the Models
To test the generalizability of the models, we have trained our framework on complete
MOSI dataset and tested on MOUD dataset (Table 4.6). The performance was poor
for audio and textual modality as the MOUD dataset is in Spanish while the model is

2http://crscardellino.me/SBWCE
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TABLE 4.6: Cross-dataset comparison (classification accuracy).

Modality MOSI→MOUD
uni-SVM h-LSTM sc-LSTM bc-LSTM

T 46.5% 46.5% 46.6% 46.9%
V 43.3% 45.5% 48.3% 49.6%
A 42.9% 46.0% 46.4% 47.2%

T + V 49.8% 49.8% 49.8% 49.8%
T + A 50.4% 50.9% 51.1% 51.3%
V + A 46.0% 47.1% 49.3% 49.6%

T + V + A 51.1% 52.2% 52.5% 52.7%

trained on MOSI dataset which is in English language. However, notably visual modal-
ity performs better than other two modalities in this experiment which signifies that in
cross-lingual scenarios facial expressions carry more generalized, robust information
than audio and textual modalities. We could not carry out the similar experiment for
emotion recognition as no other utterance-level dataset apart from the IEMOCAP was
available at the time of our experiments.

4.4.5 Qualitative Analysis
In some cases the predictions of the proposed method are wrong given the difficulty in
recognizing the face and noisy audio signal in the utterances. Also, cases where the
sentiment is very weak and non contextual, the proposed approach shows some bias
towards its surrounding utterances which further leads to wrong predictions. This can
be solved by developing a context aware attention mechanism. In order to have a bet-
ter understanding on roles of modalities for overall classification, we also have done
some qualitative analysis. For example, this utterance - "who doesn’t have any presence
or greatness at all.", was classified as positive by the audio classifier (“doesn’t" was
spoken normally by the speaker, but “presence and greatness at all" was spoken with
enthusiasm). However, textual modality caught the negation induced by “doesn’t" and
classified correctly. In another utterance “amazing special effects" as there was no jest
of enthusiasm in speaker’s voice and face audio-visual classifier failed to identify the
positivity of this utterance. On the other textual classifier correctly detected the polarity
as positive.

On the other hand, textual classifier classified this sentence - “that like to see comic
book characters treated responsibly" as positive, possibly because of the presence of
positive phrases such as “like to see", “responsibly". However, the high pitch of anger
in the person’s voice and the frowning face helps identify this to be a negative utterance.

4.5 Conclusions
Contextual relationship among the utterances is mostly ignored in the literature. In this
chapter, we developed a LSTM-based network to extract contextual features from the
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utterances of a video for multimodal sentiment analysis. The proposed method has out-
performed the state of the art and showed significant performance improvement over the
baseline. As a part of the future work, we plan to propose LSTM attention model to
determine importance of the utterances and contribution of modalities in the sentiment
classification.
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Chapter 5

Contextual Multimodal Sentiment
Analysis with Attention Mechanism

5.1 Introduction
With increasing and cheaper accessibility of smartphones and computers, resulting rapid
growth of social media, people now tend to share their opinions about various topics
on the social media platforms. Every day, a huge amount of these opinions are being
shared in the form of videos on platforms like Facebook, YouTube, Vimeo. A video
usually consists of three different information channels, also called modalities: visual
(represents facial expressions and body gestures), audio (represents speech), and textual
(represents spoken words). The need of mining opinions from such a large quantity of
videos calls for multimodal sentiment analysis, a popular field of research [19].

An utterance is a segment of speech bounded by breaths or pauses. A review video
often contains multiple utterances. The goal of utterance-level sentiment analysis is to
label each utterance by its sentiment label. Utterance-level sentiment analysis facilitates
us to understand the sentiment dynamics of the reviewer on multiple aspects of the re-
view. Recently a number of approaches have been proposed in the field of multimodal
sentiment analysis [14], [15], [19], [25], [26]. These approaches consider each utter-
ances as independent entities, and thus ignore the relationship and dependencies among
the utterances in a video. However, in a video, the utterances maintain a sequence and
can be highly correlated due to the development of speaker’s idea, co-reference etc. In
particular, in classification of an utterance in a video, other utterances can provide useful
contextual information. For example, in one video, the reviewer of the movie X-MEN
Origin says: "Now the title of the movie basically says it all" which can carry both posi-
tive and negative sense. This ambiguity is resolved by other sentences in the video, like:
“That like to see comic book characters treated Responsibly!“ and “Nothing Special”,
which indicate the disappointment in the reviewer towards the film and the target utter-
ance. However, modeling such contextual relationship may not be enough. Identifying
relevant and important information from the pool of utterances is necessary in order to
make a model more robust and accurate. Thanks to attention mechanism, we propose
an attention based Long Term Memory Network (LSTM) network which not only mod-
els the contextual relationship among the utterances, but also prioritizes more relevant
utterances for classifying the target utterance.
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It is already established in the literature [19], [26] that multimodal analysis outper-
forms unimodal analysis. However, the contribution of individual modality in the mul-
timodal fusion has not been a major focus of the recent works. It is important to assess
how a multimodal model dynamically determines the contribution of each modality in
the decision making. Such a feat is difficult to achieve using simple concatenation based
fusion methods as proposed in the literature [19]. In this work, we propose attention
based fusion (also called AT-Fusion) network which dynamically determines and ampli-
fies the modalities with major contribution for the sentiment classification. It is done by
applying attention mechanism. Experimental results show that the proposed framework
outperforms the state of the art on benchmark datasets by 6 − 8%. Below, we describe
the major contributions of this chapter:

• We propose a deep attention based LSTM (CAT-LSTM) network to model the
contextual relationship among utterances and prioritize the important contextual
information for classification.

• We also introduce an attention based fusion mechanism called AT-Fusion, which
amplifies the higher quality and informative modalities during fusion in multi-
modal classification.

• The experimental results indicate that our proposed method is able to over the
performance of the state of the art and other baseline models.

This chapter is organized as follows: Section 5.2 provides a brief literature review on
multimodal sentiment analysis; Section 5.3 describes the proposed method in detail; Ex-
perimental results and discussion are shown in Section 5.4; finally, Section 4.5 concludes
the chapter.

5.2 Related Work
Recent works in text based sentiment analysis focus on developing and employing deep
learning techniques such as Convolutional Neural Network (CNN) [33], Recursive Neu-
ral Tensor Network (RNTN) [7], Long Short Term Memory [34]. So far, these have
shown significant improvement over the knowledge based approaches in sentiment anal-
ysis [5].

Since, sentiment analysis and emotion recognition are often treated as closely re-
lated problems, in this section we cover the existing works in both of these fields. Ear-
lier works on facial expressions and emotion recognition were mainly attributed towards
identifying facial characteristic points (FCP) and use them as features for emotion recog-
nition [8]. To extract the acoustic features from speech data for emotion recognition and
other tasks, Eyben et al. [35] developed a feature extraction toolkit called openSMILE.
With the advancement of deep learning, Deep Belief Network (DBN) [36], CNN [37],
LSTM are being used to automatically extract both audio and visual features for emotion
recognition and sentiment analysis.
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Two of the early works in audio-visual emotion recognition have been conducted
by Chen et al. [11] and De Silva et al. [10]. Both of these approaches show that bi-
modal classifier performs better than unimodal in emotion recognition. More recently
the approaches by Kessous et al. [12] and Schuller et al. [13] have fused audio and visual
information in both feature and decision level. They have confirmed that audio modality
is a better performer than visual modality.

Although, there are many research works conducted on audio-visual emotion recog-
nition, only a few number of those works have been carried out using textual with visual
and audio modalities. Poria et al. [19], [37] used CNN to extract features from the
modalities and then employed Multiple Kernel Learning (MKL) for sentiment analysis
and emotion recognition. Wollmer et al. [14] and Rozgic et al. [15], [28] fused audio,
visual, and textual information in feature level. All of these approaches confirm that
multimodal classifiers perform better than unimodal classifiers. As for fusing audio and
textual clues, Metallinou et al. [16] and Eyben et al. [17] fused audio and textual modal-
ities in feature level. On the other hand, Wu et al. [18] fused audio and textual cues at
decision level.

5.3 Our Method
In the following subsections, we first discuss the problem definition, followed by the
explanation of the proposed approach.

5.3.1 Problem Definition
Let us consider a video Vj = [uj,1 uj,2 uj,3, ..., uj,i...uj,Lj

] where uj,i is the ith utterance
in video vj and Lj is the number utterances in the video. The goal of this approach is
to label each utterance uj,i by the sentiment expressed by the speaker of the utterance.
We claim that in order to classify utterance uj,i, the other utterances in the video, i.e.,
[uj,k | ∀k ≤ Lj, k 6= i], serve as its context and can provide key information in the
classification.

5.3.2 Overview of the Approach
The overview of the proposed approach is as follows:

1. Unimodal feature extraction - We first extract the utterance-level unimodal fea-
tures from the respective unimodal classifiers. This phase does not consider the
contextual relationship among the utterances.

2. AT-Fusion – Multimodal fusion using attention mechanism - In this step, the
utterance-level unimodal features, extracted in Step 1, are fused using an attention
network, called AT-Fusion, and the resulting output is used in the next step for
sentiment classification.
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3. CAT-LSTM – Attention based LSTM model for sentiment classification - CAT-
LSTM is an attention based LSTM network which accepts the features (output of
Step 2) of a sequence of utterances per video and generates a new representation
of those utterances based on the surrounding utterances.

5.3.3 Unimodal Feature Extraction
In this step we extract unimodal features using dedicated unimodal feature extractors.
The utterances are treated independently in this process.

5.3.3.1 Textual Features Extraction

We use a Convolutional Neural Network (CNN) for textual feature extraction. The CNN
takes utterances represented as a matrix of Google word2vec [1] vectors; word2vec
covers 87% of the vocabulary of MOSI dataset, the missing vectors are initialized ran-
domly. The convolution filters are then applied to this matrix of word vectors.

The CNN has two convolutional layers; the first layer has two kernels of size 3 and
4, with 50 feature maps each and the second layer has a kernel of size 2 with 100 feature
maps. The convolution layers are interleaved with max-pooling layers of window 2× 2.
This is followed by a fully connected layer of size 500 and softmax output. We use
ReLU as the activation function. The activation values of the fully-connected layer are
taken as the features of utterances for text modality.
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5.3.3.2 Audio Feature Extraction

Audio features are extracted with 30 Hz frame-rate and a sliding window of 100 ms
using openSMILE toolkit. In order to identify samples with and without voice, voice
normalization is performed using Z-standardization technique. The features extracted by
openSMILE consist of several low-level descriptors (LLD) e.g., MFCC, voice intensity,
pitch, and their statisticals, e.g., mean, root quadratic mean.

5.3.3.3 Visual Feature Extraction

There are various choices of deep networks specialized for image/video classification,
e.g., cascaded CNN layers, recurrent networks such as RNN, LSTM, GRU. We chose
3D-CNN due to its proven ability to learn image representations (like 2D-CNN), along
with the changes among the sequence of images (frames) in a video [23], [38].

Let V ∈ Rc×f×h×w represents an utterance video, where c = number of channels
in an image (in our experiments c = 3, since the constituent images are RGB), f =
number of frames, h = height of each frame,and w = width of each frame. We ap-
ply 3D convolutional filter F to video V , where F ∈ Rfm×c×fd×fh×fw , fm = num-
ber of feature maps, c = number of channels, fd = number of frames, fh = height of
the filter, and fw = width of the filter (we chose F ∈ R32×3×5×5×5). Following the
philosophy of 2D-CNN, 3D-CNN slides filter F across video V and produces output
cvout ∈ Rfm×c×(f−fd+1)×(h−fh+1)×(w−fw+1). To discard irrelevant features we apply
max-pooling of window 3 × 3 × 3 on cvout. Output of pooling layer is fed to fully-
connected layer of size 300, followed by a softmax layer for classification. The activa-
tions of the fully-connected layer is used as the features of video V .

5.3.4 AT-Fusion: Attention Based Network for Multimodal Fusion
Attention mechanism was first introduced in image classification [39] to focus on the
most important parts of an object relevant to the classification, improving the perfor-
mance of the deep neural networks. Attention mechanism has been successfully em-
ployed in NLP tasks, such as machine translation [40], sentiment analysis [41], summa-
rization [42]. Since, not all modalities are equally relevant in classification of sentiment,
we introduce an attention network, named as AT-Fusion, which takes input from audio,
visual, and textual modalities and results an attention score for each modality.

We equalize the dimensions of the feature vectors of all three modalities prior to
feeding them into attention network. This is done using a fully-connected layer of size
d. Let B = [Ba, Bv, Bt] be the feature set after dimensionality equalization to size d,
where Ba = acoustic features, Bv = visual features, and Bt = textual features; following
B ∈ Rd×3. The attention weight vector αfuse and the fused multimodal feature vector F
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are computed as follows :

PF = tanh(WF .B) (5.1)

αfuse = softmax(wTF .PF ) (5.2)

F = B.αTfuse (5.3)

Here, WF ∈ Rd×d, wF ∈ Rd, αTfuse ∈ R3, and F ∈ Rd. We then feed the output F to the
CAT-LSTM (Section 5.3.5.1, Figure 5.1) for final multimodal sentiment classification of
the utterance.

5.3.5 Classifier: Context-Dependent Sentiment Classification
A speaker usually tries to gradually develop his/her idea and opinion about a product in
the review, which makes the utterances in a video sequential, temporally and contextu-
ally dependent. This phenomena motivates us to model inter-utterance relationship. To
accomplish so, we use an LSTM layer, in combination with attention mechanism to am-
plify the important contextual evidences for sentiment classification of target utterance.

5.3.5.1 Our CAT-LSTM

LSTM [4] is a specialized Recurrent Neural Network (RNN), which models long range
dependencies in a sequence. Specifically, LSTM solves the vanishing gradient problem
of conventional RNN while modeling long range dependencies. Current research [30]
indicates the benefit of using such networks to incorporate contextual information in
classification process.

Let, x ∈ Rd×M be input to the LSTM network, where M is the number of utterances
in a video. The matrix x can be represented as x = [x1, x2, ..., xt, ...xM ], where xt ∈ Rd

for t = 0 to M .
Each cell in LSTM can be computed as follows:

X =

[
ht−1
xt

]
(5.4)

ft = σ(Wf .X + bf ) (5.5)
it = σ(Wi.X + bi) (5.6)
ot = σ(Wo.X + bo) (5.7)

ct = ft � ct−1 + it � tanh(Wc.X + bc) (5.8)
ht = ot � tanh(ct) (5.9)

where Wi,Wf ,Wo ∈ Rd×2d and bi, bf , bo ∈ Rd are parameters to be learned during the
training. σ is the sigmoid function and � is element-wise multiplication. The output of
this LSTM layer is represented as H ∈ Rd×M , where H = [h1, h2, ..., ht, ..., hM
] and hi ∈ Rd.
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We feed the sequence of M utterance-level features (fused features F , obtained in
equation (5.3) or unimodal features) to LSTM and obtain contextually aware utterance
representations H .

Attention Network All surrounding utterances are not equally relevant in sentiment
classification of the target utterance. In order to amplify the contribution of context-rich
utterances, we use an attention network.

LetAt denote the tth Attention network for utterance represented by ht. The attention
mechanism of At produces an attention vector αt and a weighted hidden representation
rt as follows:

Pt = tanh(Wh[t].H) (5.10)

αt = softmax(w[t]T .Pt) (5.11)

rt = H.αTt (5.12)

where, Pt ∈ Rd×M , αt ∈ RM , rt ∈ Rd. And, Wh ∈ RM×d×d, w ∈ RM×d are projection
parameters withWh[t] and w[t] being used by the tth attention model. Finally, the LSTM
representation for tth utterance is modified as:

h∗t = tanh(Wp[t].rt +Wx[t].ht) (5.13)

Similar to the results obtained by Rocktäschel et al. [43], addition of the term
Wx[t].ht to Wp[t].rt gives better result in the experiments carried out. Here, h∗t ∈ Rd and
Wp,Wx ∈ RM×d×d are weights to be learned while training.

In some experiments (e.g. Section 5.3.6.2) we use the output h∗t as contextual fea-
tures for further processing.

Classification Finally each modified LSTM cell output h∗t is sent into a softmax layer
for sentiment classification.

Zt = softmax((h∗t )
T .Wsoft[t] + bsoft[t]) (5.14)

ŷt = argmax
j

(Zt[j]), ∀j ∈ class (5.15)

where, Zt ∈ Rydim,Wsoft ∈ RM×d×ydim, bsoft ∈ RM×ydim, ydim = number of
classes, and ŷt is the predicted class.

5.3.6 Training
5.3.6.1 Unimodal Classification

In our work, we perform classification on two types of data – unimodal and multimodal.
To classify the unimodal input, the extracted unimodal features (Section 5.3.3) are sent
to the CAT-LSTM network as inputs.
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5.3.6.2 Multimodal Classification

For multimodal classification, the extracted unimodal features are first fed to the AT-
Fusion to produce fused multimodal features. Then these features are fed to the CAT-
LSTM network for the sentiment classification. We call this multimodal sentiment clas-
sification model as Contextual Attentive Fusion LSTM, i.e., CATF-LSTM. The CATF-
LSTM is shown in Figure 5.1 Multimodal classification be accomplished using two dif-
ferent frameworks:

Single-Level Framework In single-level framework, we fuse context-independent uni-
modal features as explained in Section 5.3.4 and feed those to CATF-LSTM network for
multimodal fusion and classification.

Multi Level Framework Contextual unimodal features can further improve perfor-
mance of the multimodal fusion framework explained in Section 5.3.6.2. In this fu-
sion scheme, we first send context-independent unimodal features extracted from every
modality to CAT-LSTM network. The contextual features yielded from the CAT-LSTM
network are then fed to the CATF-LSTM network for the fusion and final classification.

Both the unimodal and multimodal classifiers are trained in an end-to-end manner
using back propagation, with objective function being log-loss:

loss = −
∑
i

∑
j

log(Zt[y
j
i ]) + λ||θ||2 (5.16)

where, y = target class, Zt = predicted distribution of jth utterance from video Vi s.t.
i ∈ [0, N ] and j ∈ [0, Li]. λ is the L2 regularization term and θ is the parameter set θ =
{Wi, bi,Wf , bf ,Wo, bo,WF , wF ,Wh, w,Wp,Wx,Wsoft, bsoft}.

In our experiments, we pad videos with dummy utterances to enable batch process-
ing. Hence, we also use bit-masks to mitigate proliferation of noise in the network.
The network is typically trained for 500 − 700 epochs with an early-stopping patience
of 20 epochs. As optimizer, we use AdaGrad [31] which is known to have improved
robustness over SGD, given its ability to adapt the learning rate based on the parameters.

5.4 Experimental Results
In this section we present the experimental results on different network variants in con-
trast with various baselines.

5.4.1 Dataset Used
Since each individual has an unique way of expressing sentiments, finding generic and
person-independent features for sentimental analysis is very tricky. In real-world ap-
plications, the model should be robust to person variance. However, it is very difficult
to construct a generalized model from the behavior of a limited number of individuals.
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To this end, we perform person-independent experiments to emulate unseen conditions.
Our train/test splits of the dataset are completely disjoint with respect to speakers.

MOSI Dataset Zadeh et al. [25] constructed a multimodal sentiment analysis dataset
called Multimodal Opinion-Level Sentiment Intensity (MOSI), consisting 2199 opinion-
ated utterances, 93 videos by 89 speakers. The videos address a large array of topics,
such as movies, books, and products. Videos were crawled from YouTube and seg-
mented into utterances. Each of the 2199 utterances were labeled with its sentiment
label, i.e. positive and negative. The train set comprises of the first 62 individuals in the
dataset. So, the test set comprises of 31 videos by 27 speakers. In particular, we use
1447 utterances in the training and 752 utterances to test the models.

5.4.2 Different Models and Network Architectures
We have carried out experiments with both unidirectional and bi-directional LSTM with
the later giving 0.3-0.7% better performance in all kinds of experiments. As this is an
expected and non-critical outcome, we present all the results below using bi-directional
LSTM variant. Additionally, we consider the following models in our experiments:

Poria et al. (2015) : We have implemented and compared our method with the
current state of the art approach, proposed by Poria et al. [19]. In their approach, they
extracted visual features using CLM-Z, audio features using openSMILE, and textual
features using CNN. Multiple Kernel Learning (MKL) was then applied on the features
obtained from the concatenation of the unimodal features. However, they did not conduct
the speaker independent experiments.

Poria et al. (2016) : Extended approach over [19] which introduces a CNN-RNN
feature extractor to extract visual features. We reimplemented their approach in our
experiments.

Unimodal-SVM : We extract unimodal features (Section 5.3.3) and concatenate
them to produce multimodal features. Followed by SVM being applied on this feature
vector for the final sentiment classification.

Simple-LSTM : In this configuration, the extracted unimodal and multimodal fea-
tures of the utterances are fed to an LSTM. In particular, this LSTM has no attention
mechanism.

CAT-LSTM : This is the simple contextual attention based LSTM framework as
described in Section 5.3.5.1. For multimodal setting, it accepts input generated by ap-
pending unimodal features.

CATF-LSTM : This model is used for multimodal classification. As explained in
Section 5.3.6, it consists of AT-Fusion and CAT-LSTM, where the output of AT-Fusion
is fed to CAT-LSTM.

ATS-Fusion : In this variant, instead of feeding the output of AT-Fusion to the cells
of CAT-LSTM, we feed to softmax classifiers. The utterances are treated independently
in this case.
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Poria et al. (2015) + Our best model : In order to perform a fair comparison with
Poria et al. (2015), we feed the features extracted by their method to our best performing
model.

Poria et al. (2016) + Our best model : This model is similar to the model Poria et
al. (2015) + Our best model, except it uses the features extraction process from Poria et
al. (2016).

5.4.3 Single-Level vs Multilevel Framework :
Multilevel framework outperforms single-level framework in our experiments given the
presence of contextual unimodal features (see Table 5.2). Hence, for brevity, apart from
Table 5.2, we present only the results of multilevel framework.

5.4.4 Performance of AT-Fusion
AT-Fusion employs attention mechanism to fuse multiple modalities. In order to assess
the effectiveness of AT-Fusion, we compare it with a simple fusion technique where the
feature vectors from different modalities are appended and fed to the sentiment classifier,
i.e. CAT-LSTM. Table 5.2 presents the performance of CATF-LSTM: which utilizes
AT-Fusion for feature fusion followed by CAT-LSTM for sentiment classification. Given
AT-Fusion’s ability to amplify the contribution of the important modalities during fusion,
it unsurprisingly outperforms the simple fusion method. It should be noted that AT-
Fusion can be integrated with the other network variants, i.e. Simple-LSTM (Table
5.3). Table 5.3 also shows that AT-Fusion with softmax output i.e., ATS-Fusion which
outperforms the unimodal-SVM, thanks to the superiority of the AT-Fusion over simple
feature append based fusion.

5.4.5 Comparison of the Models
Comparison with the state of the art : As shown in the Table 5.1, the proposed
approach has outperformed the state of the art [19], [37] by 4.5%-6%. We use the same
set of textual and audio features used in [19], [37]. Notably, apart from using a different
fusion mechanism, our method also uses a different visual feature extraction method. On
the MOSI dataset, the proposed visual feature extraction method has outperformed the
CLM-Z (used in [19]) and CNN-RNN (proposed by [37]). When we employ our best
classifier, i.e. CATF-LSTM, on the features extracted by [19] and [37], performance
of those methods have improved. Using CATF-LSTM, we obtained better results than
both of the state of the art results for audio-visual, visual-textual. According to [19],
[37] trimodal classifier outperforms all unimodal and bimodal classifiers. Hence, we
compare our proposed method with those works in the trimodal experiment. From these
experimental results (Table 5.1), it is evident that the proposed contextual attention based
LSTM network and fusion methodology are the key to outperform the state of the art.
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(A) The visualization of the attention scores
of unimodal CAT-LSTM and trimodal CATF-

LSTM.

(B) Visualization of the attention weights of
the AT-Fusion network in trimodal CATF-

LSTM.

FIGURE 5.2: Target utterance for classification - U4 : You never know whats gonna happen.
The input utterances are - U1 : This is the most engaging endeavor yet. U2 : And he puts them in
very strange and unusual characters. U3 : Umm what really need about this movie is the chemical
brothers did the soundtracks whats pulse pounding the entire way through. U4 : You never know
whats gonna happen. U5 : Theres all these colorful characters. U6 : Now it isn’t a great fantastic tell
everybody about that kind of movie. U7 : But I think its one of those movies thats so unique. U8 :
Its colourful. U9 : Its in you face. U10 : And something that I can’t find anything else to compare it

to.

TABLE 5.1: Comparison of state-of-the-art on multimodal classification
with our network: CATF-LSTM. Metric used: macro-fscore. A=Audio;

V=Visual; T=Textual.

Models A+V+T
Poria et al. (2015) 73.55%
Poria et al. (2016) 75.13%
Poria et al. (2015)+ CATF-LSTM 79.40%
Poria et al. (2016) + CATF-LSTM 80.25%

unimodal-SVM : Our unimodal-SVM model yields comparable performance with the
state of the art. However, simple-LSTM outperforms unimodal-SVM in all the exper-
iments (Table 5.1) as the latter is incapable of grasping the context information while
classifying an utterance.

CAT-LSTM vs Simple-LSTM : From Table 5.3, we can see that CAT-LSTM out-
performs Simple-LSTM by 0.6-1.1% in unimodal experiments; 0.2-1% in bimodal ex-
periments, and 0.9% in trimodal experiment. This again confirms that even though both
of the networks have access to contextual information, CAT-LSTM outperforms Simple-
LSTM because of its attention capability to capture the important contexts. As expected,
CATF-LSTM further improves the performance of CAT-LSTM.
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TABLE 5.2: Comparison between single-level and multi level fusion
mentioned in Section 5.3.6.2 using CAT-LSTM network. Feat Ap-
pend=Unimodal features are appended and sent to CAT-LSTM. AT-
Fusion is used with CAT-LSTM network. The table reports the macro-

fscore of classification. A=Audio; V=Visual; T=Textual.

Modality
Single-Level Multi Level

Feat Append AT-Fusion Feat Append AT-Fusion

A+V 61.0 61.6 62.4 62.9
A+T 78.5 79.2 79.5 80.1
V+T 78.3 78.3 79.6 79.9

A+V+T 78.9 79.3 81.0 81.3

TABLE 5.3: Comparison of models mentioned in Section 5.4.2. The table
reports the macro-fscore of classification. Note: feat-append=fusion by
concatenating unimodal features. Multilevel framework is employed (See

Section 5.3.6.2). A=Audio; V=Visual; T=Textual.

Modalities
Sentiment, on MOSI

Uni-SVM Simple-LSTM CAT-LSTM
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A 58.1 59.5 - 60.1 - -
V 53.4 54.9 - 55.5 - -
T 75.5 77.2 - 79.1 - -
A + V 58.6 61.4 61.8 62.4 62.9 59.1
A + T 75.8 78.5 79.1 79.5 80.1 76.3
V + T 76.7 78.7 79.1 79.6 79.9 77.5
A + V + T 77.9 80.1 80.6 81.0 81.3 78.3

5.4.6 Importance of the Modalities :
As expected, bimodal classifiers dominate unimodal classifiers and trimodal classifiers
perform the best among all. Across modalities, textual modality performs better than
the other two, thus indicating the need for better feature extraction for audio and video
modalities.

5.4.7 Qualitative Analysis and Case Studies
In this section we provide analysis and interesting observations on the learned attention
parameters for both contextual attention (CAT-Fusion) and attention fusion (AT-Fusion).
Below we enlist some of these observations:

The need for considering context dependency (see Section 5.1) is primal for utter-
ance classification. The utterance: Whoever wrote this isn’t the writer definitely. has the
sentiment expressed implicitly and hence baseline unimodal-SVM and state of the art
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fail to classify it correctly 1. Information from neighboring utterances, like: 1) And the
dialogue threw me off ; 2) The whole movie had a really dry dialogue etc. indicate the
negative context for the utterance. Such contextual relationships are prevalent through-
out the dataset.

Considering the movie review utterance: You never know whats gonna happen., the
sentence doesn’t provide explicit sentiment cues. In such cases, our context attention
network attends to relevant utterances throughout the video to find contextual depen-
dencies. Figure 5.2a shows the attention weights across the video for this mentioned
utterance. While audio and visual provide decent attention vectors, text modality pro-
vides improved attention. It can be clearly seen that utterances like U10, U1 (Figure 5.2a)
are the most relevant ones, which, multimodal attention has been able to capture, thus
proving its effectiveness. Interestingly, in this case the most important utterance U10 is
located far from the target utterance U4, proving the effectiveness of LSTM in model-
ing long distance sequence. Figure 5.2b shows the contribution of each modality for
the multimodal classification. Rightly, text has been given the highest weight by the
attention fusion network, followed by audio and visual.

Although the context dependency among utterances can be modeled in a simple
LSTM network, there are often cases where utterances with complementary contexts
are sparsely distributed across the video. In such situations, neighboring irrelevant ut-
terances may provide negative bias for the utterance to be classified. Our model, CAT-
LSTM provides an attention framework which focuses only on the relevant utterances
throughout the video, thus bypassing the unrelated ones. For an example, in one of the
videos, the first utterance: I am gonna give the reasons why I like him, has its answers
from the 7th utterance onwards, with the intermediate utterances being irrelevant. In
such situations, CAT-LSTM performs better than simple-LSTM model.

The effectiveness of the attention based fusion (AT-Fusion) network can also be seen
in multiple cases. In one such instance, when a person while reviewing a movie, speaks
the utterance: Sigh it probably would have helped if I went with someone, loud back-
ground noises affect the quality of the audio modality. In simple feature append based
fusion models e.g., unimodal-SVM, this utterance is misclassified given the high noise
presents in the fusion caused by the audio modality. However, the multimodal attention
based fusion network (CATF-LSTM) correctly attends the video and text modality giv-
ing negligible attention on audio modality. This trend is also observed in many other
cases.

We finally observe that in some cases textual CAT-LSTM classifier performs better
than trimodal CATF-classifier because of the presence of noise in the audio modality and
specially when the speaker does not look directly at the camera while speaking.

5.5 Conclusions
In multimodal sentiment analysis literature, utterances in a video are mostly considered
independently. We discard this oversimplified assumption of utterance dependence by

1RNTN classifies it as neutral. It can be seen here http://nlp.stanford.edu:8080/sentiment/rntnDemo.html
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modeling relevant contextual information obtained from the other utterances in a video
while classifying one target utterance. The proposed framework outperforms the state of
the art and strong baselines.
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Chapter 6

Personality Detection from Text using
CNN

6.1 Introduction
Personality is a combination of behavior, emotion, motivation, and thought pattern char-
acteristic of an individual [44]. Our personality has great impact on our lives. Our life
choices, well-being, health, and numerous other preferences are affected by our person-
ality.

Automatic detection of personality traits of a person has many important practical
applications. In recommender systems, the products and services recommended to a
person should be those that have been positively evaluated by other users with a similar
personality type. In mental health diagnosis, certain diagnoses correlate with certain
personality traits. In forensics, knowing personality traits helps reducing the circle of
suspects. In human resources management, personality traits affect one’s suitability for
certain jobs, etc.

Personality is typically formally described in terms of the Big Five [45] personality
traits, which are five binary (yes / no) values:

• Extroversion (EXT): Is the person outgoing, talkative, energetic vs. reserved, soli-
tary?

• Neuroticism (NEU): Is the person sensitive, nervous vs. secure, confident?

• Agreeableness (AGR): Is the person trustworthy, straightforward, generous, mod-
est vs. unreliable, complicated, meager, boastful?

• Conscientiousness (CON): Is the person efficient, organized vs. sloppy, careless?

• Openness (OPN): Is the person inventive, curious vs. dogmatic, cautious?

Texts often reflect various aspects of the author’s personality. In this chapter, we
present a method to extract personality traits from stream-of-consciousness essays (we
experimented with Pennebaker and King’s essay dataset 1) using Convolutional Neural
Network (CNN). We trained five different networks, all having the same architecture,

1http://mypersonality.org/wiki/doku.php?id=wcpr13

http://mypersonality.org/wiki/doku.php?id=wcpr13
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for the five personality traits. Each network was a binary classifier that predicted the
corresponding trait to be positive or negative.

For this, we developed a novel document representation technique based on a CNN
features extractor. Namely, we fed the sentences of the essays to convolution filters to
obtain sentence representation in the form of n-gram feature vectors. Each individual
essay was represented by aggregating the representations of its sentences. We concate-
nated the obtained vectors with the Mairesse features [46], which were extracted from
the texts directly at the pre-processing stage; this improved performance of the method.
Discarding emotionally neutral input sentences from the essays further improved the
results.

For final classification, we fed this document representation into a fully-connected
neural network with one hidden layer. The obtained results outperformed the current
state of the art.

The chapter is organized as follows. In Section 6.2, we briefly discuss the previous
work in the field. In Section 6.3, we give an overview of our method. In Section 6.3.1, we
describe our network architecture. In Section 6.4, we discuss the experimental settings
and obtained results. Finally, Section 6.5 concludes the chapter.

6.2 Previous Work
The Big Five, also known as Five Factor Model (FFM), is the most widely accepted
model of personality. Initially, it was developed by several independent groups of
researchers. However, it was advanced by Ernest Tupes and Raymond Christal [47]; J.M.
Digman [45] made further advancements, and later perfected by Lewis Goldberg [48].

Some of the earlier work on automated personality detection from plain text was
done by Pennebaker and King [49], who compiled the essay dataset used in our exper-
iments 1. For this, they collected consciousness-stream essays, written by volunteers
in controlled environment, and then asked the authors of the essays to define their own
Big Five personality traits. They used Liguistic Inquiry and Word Count (LIWC) fea-
tures [50] to determine correlation between the essay and personality.

Mairesse et al. [46] used, in addition to LIWC, other features, such as imageability,
to improve the performance. Mohammad et al. [51] performed a thorough study on
this essays dataset, as well as the MyPersonality Facebook status dataset, by applying
different combination of feature sets to outperform Mairesse’s results, which they called
the Mairesse baseline.

Recently, Liu et al. [52] developed a language-independent and compositional model
for personality trait recognition for short tweets.

On the other hand, deep convolutional networks have been successfully used for
related tasks such as sentiment analysis [53], opinion mining [54], and multimodal emo-
tion recognition [37].
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6.3 Our Method
Our method includes input data pre-processing and filtering, feature extraction, and clas-
sification. We use two types of features: (a) a fixed number of document-level stylistic
features, and (b) per-word semantic features, which form a variable-length sentence rep-
resentation, which in turn forms a variable-length part of document representation.

Pre-processing Pre-processing includes sentence splitting as well as data cleaning and
unification, such as reduction to lowercase.

Document-level feature extraction As the document-level stylistic features, in our
experiments we used the Mairesse baseline feature set, which includes such global fea-
tures as the word count and average sentence length.

Filtering Some sentences in an essay may not carry any personality clues. There are
two reasons to ignore such sentences in semantic feature extraction: first, they represent
noise that reduces the performance of the classifier; secondly, removing those sentences
considerably reduces the size of the input and thus the training time, without negatively
affecting the results. So, we remove such sentences before the next step.

Word-level feature extraction We represent individual words by word embedding
in a continuous vector space; specifically, we experimented with the wor2vec embed-
dings [55]. This gives a variable-length feature set for the document: the document
is represented as a variable number of sentences, which are represented as a variable
number of fixed-length word feature vectors.

Classification For classification, we use a deep CNN. Its initial layers process the text
in a hierarchical manner. Each word is represented in the input as a fixed-length feature
vector using word2vec, while sentences are represented as a variable number of word
vectors. At some layer, this variable-length representation is reduced to fixed-length
representation of each sentence, which is a kind of sentence embedding in a continuous
vector space. At that level, documents are represented as a variable number of such
fixed-length sentence embeddings. Finally, at a deeper layer this variable-length docu-
ment representation is reduced to a fixed-length document embedding. This fixed-length
feature vector is then concatenated with the document-level features, given a fixed-length
document representation, which is then used for final classification.

When aggregating word vectors into sentence vectors, we use convolution to form
word n-gram features. However, when aggregating sentence vectors into the document
vector, we do not use convolution to form sentence n-gram features. We did try this
arrangement; however, the network did not converge in 75 epochs, so we left this exper-
iment to our future work.
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6.3.1 Network Architecture
We train five separate neural classifiers, all having the same architecture, for five different
personality traits: EXT, NEU, AGR, CON, and OPN.

The processing flow in our network consists of three main steps:

1. Word vectorization: We use fixed-length word2vec word embeddings as input
data;

2. Sentence vectorization: From sequences of words in each sentence to fixed-length
sentence vectors;

3. Document vectorization: From the sequence of sentence vectors to the document
vector;

4. Classification: From the document vector to the classification result (yes / no).

Accordingly, the network consists of seven layers:

1. Input layer (word vectors);

Sentence vectorization:

2. Convolution layer;

3. Max pooling layer;

Document vectorization:

4. 1-max pooling layer;

5. Concatenation layer;

Classification:

6. Linear layer with Sigmoid activation;

7. Two-neuron softmax output layer.

Figure 6.1 depicts the end-to-end network for two sentences. In the following subsec-
tions, we discuss these steps and layers in detail.

6.3.1.1 Input

We represent the dataset as a set of documents: each document d is a sequence of sen-
tences; each sentence si is a sequence of words, and each word wj is a real-valued vector
of fixed length known as word embedding; in our experiments we used Google’s pre-
trained word2vec embeddings [55].

Thus, our input layer is a 4-dimensional real-valued array from RD×S×W×E , where
D is the number of documents in the dataset, S is the maximum number of sentences
in a document across all documents, W is the maximum number of words in a sentence
across all documents, and E is the length of word embeddings.

In implementation, to force all documents to contain the same number of sentences,
we padded shorter documents by dummy sentences. Similarly, we padded shorter sen-
tences by dummy words.
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6.3.1.2 Aggregating Word Vectors into Sentence Vectors

We use three convolutional filters to extract unigram, bigram, and trigram features from
each sentence. After max pooling, the sentence representation is a concatenation of the
feature vectors obtained from these three convolutional filters.

Convolution In order to extract the n-gram features, we apply convolutional filter of
size n × E on each sentence s ∈ RW×E . We use 200 n-gram feature maps for each
n = 1, 2, 3. So, for each n, our convolutional filter applied on the matrix s is F conv

n ∈
R200×n×E . We add a bias Bconv

n ∈ R200 to the output of the filter, which gives, for a
given sentence, three feature maps FMn ∈ R200×(W−n+1)×1, n = 1, 2, 3. To introduce
non-linearity, we apply ReLU (Rectified Linear Unit) function to the feature maps FMn.

Max pooling Then, we apply max pooling to each feature map FMn, to further down-
sample it to a feature map DFMn ∈ R200×1×1, which we flatten to obtain feature-vector
of size 200.

Finally, we concatenate the vectors obtained for the three types of n-gram to obtain
a vector s ∈ R600 representing the sentence.

Convolution and max pooling are applied to each sentence in the document. The
network parameters are shared between all sentences of the document. In particular,
while we pad all sentences to a common size with dummy words, there is no need to pad
all documents to a common size with dummy sentences.

6.3.1.3 Aggregating Sentence Vectors into Document Vector

After processing individual sentences, document representation is a variable-sized con-
catenation of all its sentence vectors.

1-max pooling: We assume that the document has some feature if at least one of its
sentences has this feature. Each sentence is represented as a 600-dimensional vector.
To obtain the document representation, for each of these 600 features we take the maxi-
mum across all the sentences of the document. This gives a 600-dimensional real-valued
representation of the whole document: d network ∈ R600.

6.3.1.4 Adding Document-Level Features to Document Vector

Mairesse et al. [46] developed a document-level feature set for personality detection.
It consist of the LIWC features [49], Medical Research Council (MRC) features [56],
utterance-type features, and prosodic features, such as word count, average number of
words per sentence, total number of pronouns, past tense verbs, present tense verbs,
and future tense verbs in the document, total number of letters, phonemes, syllables,
questions, and assertions in the document, etc., 84 features in total.

Then we concatenated those 84 features dMairesse with the document representation
d network described in the previous section. This gave the final 684-dimensional document
representation: d = (d network, dMairesse) ∈ R684. We also use the feature set dMairesse as
one of baselines in our evaluation.
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6.3.1.5 Classification

For final classification, we use a two-layer perceptron consisting of a fully-connected
layer of size 200 and the final softmax layer of size two, representing the yes and no
classes.

Fully-connected layer We multiply the document d ∈ R684 by a matrixW fc ∈ R684×200

and add a bias Bfc ∈ R200 to obtain the representation d fc ∈ R200. Introducing non-
linearity with Sigmoid activation improved the results:

d fc = σ(dW fc +Bfc),

where
σ(x) =

1

1 + exp(−x)
.

We have also experimented with ReLU and tanh as activation functions, but they yielded
lower results.

Softmax output We use softmax function to determine the probability of the document
to belong to the class yes and no. For this, we build a vector

(xyes, xno) = d fc W sm +Bsm,

where W sm ∈ R200×2 and the bias Bsm ∈ R2, and calculate the class probabilities as

P (i | network parameters) =
exp(xi)

exp(xyes) + exp(xno)

for i ∈ {yes, no}.

6.3.2 Training
We use Negative Log Likelihood as the objective function for training. We randomly
initialize the network parameters F conv

1 , F conv
2 , F conv

3 , Bconv
1 , Bconv

2 , Bconv
3 , W fc, Bfc, W sm,

Bsm. We use Stochastic Gradient Descent (SGD) with Adadelta [24] update rules to tune
the network parameters in order to minimize the error defined as Negative Log Likeli-
hood. In our experiments, after 50 epochs the network converged, with 98% training
accuracy.

6.4 Experimental Results

6.4.1 Dataset Used
We used Pennebaker and King’s consciousness-stream essay dataset [49]. It contains
2468 essays written by anonymized authors, tagged with their personality traits: EXT,
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NEU, AGR, CON, and OPN. We removed one essay from the dataset, which only con-
tained the text “Err:508”; so we experimented with the remaining 2467 essays.

6.4.2 Experimental Setting
In all of our experiments, we used 10-fold cross-validation to evaluate the trained net-
work.

Pre-processing We split the text into a sequence of sentences by the period and ques-
tion mark characters. The we split each sentence into words by whitespace characters.
We reduced all letters to lowercase and removed all characters other than ASCII letters,
digits, exclamation mark, and single and double ASCII quotation marks.

Some essays in the dataset contain no periods, or some periods are missing. This
resulted in absurdly long sentences. To handle such cases, we split each obtained “sen-
tence” that was longer than 150 words into “sentences” of 20 words each (except the last
piece that could happen to be shorter).

Extracting document-level features We used the 2 [46] library to extract the 84 Mairesse
features from each document.

Sentence filtering We assumed that a relevant sentence would have at least one emo-
tionally charged word. After extracting the document-level features but before extract-
ing the word2vec features, we discarded all sentences that had no emotionally charged
words.

We used the NRC Emotion Lexicon3 [57], [58] to obtain emotionally charged words.
This lexicon contains 14182 words tagged with ten attributes: anger, anticipation, dis-
gust, fear, joy, negative, positive, sadness, surprise, and trust. We considered a word
to be emotionally charged if it had at least one of these attributes; there are 6468 such
words in lexicon (the majority of the words in this lexicon have no attributes).

So, if a sentence contained none of the 6468 words, we removed it before extracting
the word2vec features from the text. In our dataset, all essays contained at least one
emotionally-charged word.

We have also experimented with not removing any sentences and randomly removing
half of each essay’s sentences. Randomly removing half of the sentences improved the
results as compared with no filtering at all; we do not have a plausible explanation of
this fact. Removing emotionally-neutral sentences as described above further improved
the results. Filtering also improved the training time by 33.3%.

2http://farm2.user.srcf.net/research/personality/recognizer.html
3http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm

http://farm2.user.srcf.net/research/personality/recognizer.html
http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm
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Extracting word-level features We used the word2vec4 embeddings [55] to convert
words into 300-dimensional vectors. If a word was not found in the list, then we assigned
all 300 coordinates randomly with a uniform distribution in [−0.25, 0.25].

Word n-gram baseline As a baseline feature set, we used 30,000 features: 10,000
most frequent word unigrams, bigrams, and trigrams in our dataset. We used the Scikit-
learn library [59] to extract these features from the documents.

Classification We experimented with three classification settings. In the variant marked
MLP in Table 6.1, we used the network shown in Figure 6.1, which is a multiple-layer
perceptron (MLP) with one hidden layer, trained together with the CNN. In the variant
marked SVM in the table, we first trained the network shown in Figure 6.1 and then used
the document vectors d to train a polynomial SVM of degree 3. In the variant marked
sMLP in the table, in a similar manner we used the vectors d to train a standalone MLP
(50 epochs) with the same configuration as the last two layers in Figure 6.1. Also, we
experimented with a variation of sMLP, where we fed the output of hidden layer to the
standalone MLP, marked by sMLP (Hi). For baseline experiments not involving the use
of CNN, we used only a linear SVM.

6.4.3 Results and Discussion
Table 6.1 shows the obtained results. Using n-grams showed no improvement over the
majority baseline: the classifier rejected all n-grams. Applying filtering and adding
the document-level (Mairesse) features proved to be beneficial. In fact the CNN alone
without the document-level features underperformed the Mairesse baseline; we attribute
this to insufficient training data: our training corpus was only 1.9 million running words.

Contrary to our expectations, applying SVM to the document representation d built
with the CNN did not improve the results. Rather surprisingly, applying a standalone
MLP to d did improve the results. We cannot attribute this to the fact that the system
was thus received additional 50 epochs of training, since the network used to build the
document representation d has converged in its 50 epochs of initial training.

Increasing the window size for convolution filters did not seem to consistently im-
prove the results; while the best result for the NEU trait was obtained with 2-, 3-, and
4-grams, even for this trait the sizes 1, 2, and 3 outperformed the current state of the art.

We have also tried a number of configurations not shown Table 6.1, as well as some
variations of the network architecture. In particular, in addition to using convolution
filters to obtain vector representation of each sentence, we tried using convolution filters
to obtain document vector d from the sequence of sentence vectors si. However, training
did not converge after 75 epochs; so we used 1-Max pool layer on the array of sentence
vectors to obtain a the document vector.

4https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
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6.5 Conclusions
We have presented a novel document representation technique based on CNN and have
demonstrated its effectiveness on the personality detection task. A distinctive feature of
our network architecture is per-sentence processing with later merging individual sen-
tence vectors into the document representation. In addition, we introduced a document
representation based on both CNN-based n-gram features and document-level stylistic
features. Yet another contribution is the filtering out emotionally-neutral sentences.

Even without hand-crafted Mairesse features, our CNN outperformed the state of the
art on the OPN trait and showed competitive results for other traits. Merging our CNN-
generated features with the document-level Mairesse features allowed us to outperform
the state of the art on all but one traits, with the result obtained for the latter trait being
practically equal to the current state of the art.

In the future, we plan to incorporate more features and pre-processing. We plan to
apply the Long Short-Term Memory (LSTM) recurrent network to build both the sen-
tence vector from a sequence of word vectors and the document vector from a sequence
of sentence vectors. In addition, we plan to apply our document representation to other
emotion-related tasks such as sentiment analysis [60] or mood classification [61].
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Chapter 7

Conclusions

In this chapter, we conclude this thesis with summarizing our contributions, listing our
publications derived from this thesis, and discussing our future research plans.

7.1 Contributions
In this thesis, we developed novel techniques for sentiment analysis and opinion min-
ing that outperform the existing approaches, introduced novel machine-learning models
and deep learning architectures required for these techniques, and implemented a set of
software modules for the application and evaluation of these techniques.

Opinion mining and sentiment analysis are booming research and application areas
that have recently attracted much attention from industry, government, and academia.
They have numerous applications in economy, security, and healthcare, to name only a
few.

Methodological Contributions
The main methodological contributions of this thesis consist in the development of novel
method for opinion mining and sentiment analysis applications as follows:

• Multimodal Sentiment Analysis. We developed a range of novel techniques for
multimodal sentiment analysis—a task that consists in determining, from a video
clip showing a person giving his or her opinion on some subject, whether the per-
son’s opinion is positive or negative, or whether he or she experiences positive or
negative emotions while speaking. Specifically, our techniques include the follow-
ing improvements:

– Correct modeling of the text as a hierarchy of structures: words, sentences,
paragraphs, etc. Before, in machine-learning applications text was usually
modeled as a plain sequence of words or characters with no structure.

– Taking into account the context of each utterance. Current published state-
of-the-art methods classify the utterances separately, completely losing their
relationship with the previous discourse.
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– Modeling of attention in natural language communication for applications of
machine-learning techniques.

We have provided empirical evidence for that each of these techniques signifi-
cantly improves the accuracy of detection of sentiment and emotions in multi-
modal data.

• Personality Detection from Text. We developed a novel technique for detection
of five personality traits from the standard five-factor model corresponding to the
author of a given text. This is an important part of author profiling task, required
for numerous applications of opinion mining such as recommender systems.

Theoretical Contributions
The main theoretical contributions of this thesis consist in introduction of novel machine-
learning techniques and deep learning architectures as follows:

• Improved Feature Fusion. We proposed two different feature fusion methods
more effective than current published state-of-the-art concatenation-based fusion
methods:

– Hierarchical Fusion. We developed a novel fusion mechanism that fuses
features from different modalities in a hierarchical manner. For bimodal sce-
nario, it fuses two feature vectors using a series of perceptrons. In case of
trimodal fusion, it first fuses all bimodal combinations and the merges all
three combinations using a series of perceptrons. This filters out redundant
features. Also, it is capable of prioritizing a specific modality for a specific
feature.
Paper currently under review.

– Attention-Based Fusion. We introduced the use of attention mechanism to
fuse feature vectors from different modalities into an unified vector space.
This method is capable of amplifying important modalities, while impeding
less informative modalities.
Paper currently under review.

• Inter-Utterance Dependency. We applied the Long Short-Term Memory (LSTM)
deep learning architecture to model inter-utterance dependencies in text, speech,
or video stream. We have shown that this captures the context of a particular ut-
terance, leading to more accurate sentiment polarity assignment of the utterance.
Inclusion of attention mechanism on top of LSTM amplifies more important utter-
ances which are relevant to the context.

Paper accepted for ACL 2017, the largest and most prestigious international con-
ference on Natural Language Processing.
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• Hierarchical Document Modeling. We applied the Convolutional Neural Net-
work (CNN) deep learning architecture to model the sentences in the text and then
merged them using 1-max-pooling. Also, we introduced a technique based on fil-
tering out emotionally-neutral sentences using an emotion lexicon, which further
improved performance.

Paper published in a JCR-indexed journal, impact factor 3.532.

Technical Contributions
We used Theano [62] to implement the discussed neural network architec-
tures. The implementation of Personality Detection algorithm (discussed in Chap-
ter 6) is shared in the following link: https://github.com/SenticNet/
personality-detection. The implementations for rest of the methods will be
released upon acceptance of their corresponding papers.

7.2 Publications

Published or Accepted
1. N. Majumder, S. Poria, A. Gelbukh, and E. Cambria, “Deep learning based doc-

ument modeling for personality detection from text”, IEEE Intelligent Systems,
vol. 32, no. 2, pp. 74–79, 2017.

JCR impact factor 2015: 3.532.

2. S. Poria, D. Hazarika, N. Majumder, A. Zadeh, L.-P. Morency, and E. Cambria,
“Modeling Contextual Relationships Among Utterances for Multimodal Senti-
ment Analysis”, in ACL, 2017.

ACL is the largest and most prestigious conference of Natural Language Pro-
cessing.
Acceptance rate 2016: 28%.

Under Evaluation
Due to double blind review policies of the corresponding journals and conferences, we
cannot disclose here the specific titles and author lists of the submitted papers; we will
only specify the general topics of the currently submitted papers.

3. Paper on application of LSTM to aspect-based sentiment analysis: application of
the techniques developed in Chapter 4; submitted.

4. Paper on application of attention mechanism to multimodal sentiment analysis:
results of Chapter 5; submitted.

https://github.com/SenticNet/personality-detection
https://github.com/SenticNet/personality-detection
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5. Paper on application of hierarchical fusion mechanism to multimodal sentiment
analysis: results of Chapter 3; submitted.

6. Paper on application of modified LSTM architecture to multimodal sentiment
analysis: results of Chapters 4 and 5; submitted.

7. Paper on application of hierarchical fusion mechanism and LSTM to multimodal
deception detection: results of Chapter 3; submitted.

7.3 Future Work
In the future, we plan to apply our hierarchical fusion (Chapter 3) with LSTM. Partic-
ularly, we want to replace AT-Fusion (Section 5.3.4) with hierarchical fusion in CATF-
LSTM in Figure 5.1. Also, we plan to improve the features for audio and video modali-
ties, since both of them contributes very little to the classification process. We also want
to apply LSTM for personality detection which will build both sentence representation
and document representation. We mean to include a social media component to senti-
ment analysis. It will help extract sentiment of a specific demographic about a particular
topic.
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