
Instituto Politécnico Nacional

Centro de Investigación en Computación

T E S I S

Fake News Spreaders Profiling and Fake News
Detection in Social Media

para obtener el grado de:

Maestría en Ciencias de la Computación

presenta:

Ing. Sergio Arturo Damian Sandoval

Directores de tesis:

Dr. Francisco Hiram Calvo Castro
Dr. Alexander Gelbukh

Ciudad de México

Junio 2021



Página 1 de 1 

INSTITUTO POLITÉCNICO NACIONAL 
SECRETARÍA DE INVESTIGACIÓN Y POSGRADO 

ACTA DE REVISIÓN DE TESIS 

En la Ciudad de                       siendo las               horas del día          del mes de 
del                se reunieron los miembros de la Comisión Revisora de la Tesis, designada por el Colegio de 

Profesores de Posgrado del:                                                                           para examinar la tesis titulada: 
                                                                                                                         

del (la) alumno (a): 

Número de registro: 

Aspirante del Programa Académico de Posgrado: 

Una vez que se realizó un análisis de similitud de texto, utilizando el software antiplagio, se encontró que el 
trabajo de tesis tiene     7 % de similitud. Se adjunta reporte de software utilizado. 

Después que esta Comisión revisó exhaustivamente el contenido, estructura, intención y ubicación de los 
textos de la tesis identificados como coincidentes con otros documentos, concluyó que en el presente 
trabajo SI       NO       SE CONSTITUYE UN POSIBLE PLAGIO. 

JUSTIFICACIÓN DE LA CONCLUSIÓN: (Por ejemplo, el % de similitud se localiza en metodologías adecuadamente referidas a fuente original) 
Las coincidencias son mínimas en relación con el resto del texto. Éstas corresponden a menciones 
específicas de materiales y métodos en los que esta tesis se basa._________________________________ 

**Es responsabilidad del alumno como autor de la tesis la verificación antiplagio, y del Director o Directores de tesis el análisis del % 
de similitud para establecer el riesgo o la existencia de un posible plagio. 

Finalmente, y posterior a la lectura, revisión individual, así como el análisis e intercambio de opiniones, los 
miembros de la Comisión manifestaron APROBAR       NO APROBAR      la tesis, en virtud de los motivos 
siguientes: 
Muestra un método novedoso para seleccionar características, y demuestra su efectividad en una tarea 
de identificación de perfiles que propagan noticias falsas. También hace un análisis de cuáles son las 
características de dichos perfiles. 

COMISIÓN REVISORA DE TESIS 

Dr. Francisco Hiram Calvo Castro 
 Director de tesis 

Dr. Grigori Sidorov Dr. Carlos Alberto Duchanoy Martínez 

Dr. Alexander Gelbukh 
2o.  Director de Tesis 

Dr. Ildar Batyrshin Dra. Gina Gallegos García 

Dr. Marco Antonio Moreno Ibarra 
PRESIDENTE DEL COLEGIO DE 

PROFESORES 

Apellido 
Paterno: DAMIAN Apellido 

Materno: SANDOVAL Nombre (s): SERGIO ARTURO 

B 1 9 0 3 9 4 

SIP-14 
REP 2017 

 

México 12:00 17 

2021 
Centro de Investigación en Computación

“Fake News Spreaders Profiling and Fake News Detection in Social Media” 

Maestría en Ciencias de la Computación 

X 

mayo 

 X

 





Resumen

Actualmente, Internet se ha convertido en la fuente principal de information debido a su
velocidad de divulgar noticias. Pero el incremento de la divulgación de desinformación
en los medios sociales también se ha incrementado durante estos años, teniendo un alto
impacto en la sociedad. Uno de los principales tipos de desinformación son las noticias
falsas, las cuales son consideradas como textos que contienen información incorrecta acerca
de algún hecho, pretendiendo cambiar la opinión de los usuarios acerca del tema.

El presente trabajo busca desarrollar una solución a este problema, abordando dos
tareas relacionadas entre sí: Detectar noticias falsas en artículos y detectar posibles cuentas
de usuario que divulgan noticias falsas, de forma que se tengan diferentes alternativas para
evitar el consumo de este tipo de información. Este trabajo propone analizar clasificadores
de aprendizaje máquina, los cuales a través de N-gramas y características estadísticas
descriptivas, se pueda seleccionar el mejor clasificador que cumpla el objetivo. Además
se considera usar herramientas de Inteligencia Artificial Explicable (XIA), para entender
el tipo de características que son relevantes para el problema, en diferentes corpus. Este
trabajo se enfoca en los lenguajes de inglés y español, con la intención de prevenir el
consumo de noticias falsas en dos de los lenguajes más hablados del mundo.

La solution propuesta supera los resultados encontrados en el estado del arte (aquellos
que usan el mismo corpus), con una exactitud media del 0.7825 para la detección de
divulgadores de noticias falsas para ambos lenguajes y además es una alternativa para la
detección de noticias falsas, concluyendo esto último cuando se comparan los resultados
con el estado del arte que aborda esa perspectiva del problema.
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Abstract

Nowadays, Internet has become the main information source due to its fast way of spreading
news. But, the rise of misinformation spreading in social media has also been increased
during recent years, having a huge impact in society. One of the main type of misinformation
is fake news. Fake news are considered to have incorrect information about a fact,
pretending to change the user’s opinion about the topic.

The present work attempts to develop a solution to this problem, addressing to tasks:
to detect fake news from articles, and to detect possible fake news spreaders accounts,
in order to have different alternatives to avoid the consume of this kind of information.
This work proposes to analyze machine learning classifiers and through word n-grams and
statistical features, select the best classifier that can accomplish the objective. In addition,
the use of Explainable Artificial Intelligence methods (XIA) are considered, to understand
what kind of features are relevant to the problem in different corpus. This work focuses
in English and Spanish languages, with the intention to prevent the consume of fake news
in two of the most spoken languages in the world.

The solution surpasses the State of the Art results (using the same corpora), with a
mean accuracy of 0.7825 for fake news spreaders detection in both languages and it is a
good alternative for fake news detection, concluding this when the work is compared with
the State of the Art that manages this perspective of the problem.
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1 Introduction

The rise of social media has given the opportunity to users to publish and share content
online in a very fast way. This easiness of publishing content has led to an increase in
the amount of misinformation that is shared among users [2]. In fact, the propagation
of fake news has been proven to be faster than real news and is causing several negative
consequences in several areas of society such as economics, politics, medicine, culture, etc
[3]. Information consumers usually do not detect or prevent sharing false information
because no fact-checking systems are usually applied in social media and tend to be
manipulated for, most of the time, strategic reasons. Or just they are not concerned
of receiving this type of information from relatives and friends. One example of this
manipulation is when an American citizen irrupted in a restaurant with a gun. He argued
that place usually committed infant abuse managed by president ex-candidate Hillary
Clinton. Of course this information was false, but the bad habit of no further research
drove to a critical situation [4].

Understanding whether an article or a post is related with fake news content can be
a complex task. Actually, fact-checking experts categorize fake information in multiple
groups, according to the content type. Another problem is the time when the article was
written. Some information could be truth last year but today is uncertain or fake. For
example, the debate about if planet Pluto is a planet or not. Changes in society can affect
the durability of a solution that aims to help with the problem.

But there are some other characteristics that do not change at all when time goes
by. An author is used to redact with a certain vocabulary, expressions and/or sentiments
when share information. All of these characteristics can be detected as a pattern that
could help to determine if a new article or post is related with misinformation; hence, this
work focuses in two main classification tasks: First, given a set of texts, to identify word
patterns that are related with fake news. Second, given a set of texts per a certain amount
of users, to determine if the user is prone to share false information. Having this mind, it
is important to define the focus of this work and some general definitions that are relevant
to comprehend this work’s panorama.

1.1 Author Profiling

Author Profiling is the analysis of features and patterns that can be related to a group of
people in order to classify them according to specific categories. Considering this definition,
this work pretends to analyze and identify user’s write-style and content-based features
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in order to divide users in two groups: those who spread fake news and those who do
not. One important aspect to mention is that human users can have multiple profiles or
accounts in social media. Also, multiple human users can share a single account, so, this
work classifies user accounts instead of individual human user’s profiles.

1.2 Misinformation and Fake News

According to [5], misinformation is every false statement that can manipulate people hiding
true facts. There are many concepts associated with misinformation, such as rumor,
spam, disinformation and fake news. We can find various examples of every kind of
misinformation in websites, and works that focus on one or some of this concepts. To
define what this work examines, the following definitions are considered:

1. Fake news is a news article that intentionally misleads the readers, and it is actually
false.

2. Misinformation can be broadly used to treat information as false information.

3. Disinformation is a piece of inaccurate information that is spread intentionally to
mislead people.

This work defines "Fake news" as all text content that misleads readers or information that
is inaccurate. Articles, posts or texts that contain some information related to identified
fake news are considered fake news as well. On the other hand, articles, posts or texts
that warn about fake news are considered real news. In addition, from this section to the
rest of this work, texts are referred to articles, posts, messages or any other kind of written
information in social media.

1.3 Fake News Spreaders

It usually cannot be assumed that a single human user is the only one who manages an
account or a profile in social media. In fact, users can share multiple accounts or even have
multiple accounts for many reasons. Therefore, this work defines a fake news spreader as
a user account in a social media platform that has posted at least one text related to fake
news (intentionally or unintentionally) and with any other intention that clarifies it. This
can be processed retrieving a certain amount of posts for an specific user and examining
if the texts are related with fake news using fact-checking websites or by expert’s opinions
about the topic.

1.4 Problem Statement

Understanding whether a text is fake or not is a very challenging task for users who in
their majority are not experts [2]. Due to general social media users are not used to
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investigate through reliable sources the information they consume, they tend to increase
the misinformation sharing through society in an intentional or an unintentional way.

With this in mind, this work considers the following analysis:
Accounts that do not spread fake news may have a set of different characteristics

compared to accounts that tend to share fake news. As a hypothesis, they may use
different linguistic patterns when they share posts compared to fake news spreaders. This
can be considered as a binary classification task because it does not matter how many fake
texts an account has shared, the objective is to be able to determine if a text is fake and
by this, determine if an account shared fake content.

1.5 Thesis Focus

The present work considers the following hypothesis: user accounts that spread misinfor-
mation through social media have stylistic or content-based features that are different
from accounts that do not tend to share fake content and therefore, can be detected using
Artificial Intelligence and Natural Language Processing tools in order to classify them
correctly. The present work focuses on English and Spanish texts, with an individual
process treatment. Some solution approaches than can be found in the State of the Art
consider additional features such as social media metadata, images, etc., however, a deep
study of such features is out of the scope of this work.

1.6 General Objective

The general objective of this work is to propose a solution approach that can detect fake
news and fake news spreaders in social media using machine learning tools and to interpret
the fake news phenomenon through this solution in order to prevent this kind of behavior.

1.7 Specific Objectives

In order to accomplish our general objective, the present thesis aims to achieve the following
specific objectives:

1. To analyze the State of the Art methods and solutions

2. To analyze and experiment with different text based features

3. To examine feature selection tools

4. To propose a stacking ensemble model attempting to combine the different characte-
ristics that multiple classifiers have and produce a solution approach

5. To interpret results obtained by the solution proposal using Explainable Artificial
Intelligence (XAI)

6. To compare results with the State of the Art
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1.8 Expected Contributions

The expected contributions of this work are the following:

1. To examine and propose interpreting tools as feature selection methods

2. To compare different feature sets in English and Spanish corpora

3. To compare results for different machine learning algorithms

4. To interpret results, and explain the model’s behavior

1.9 System Specifications

The solution approach was developed in the Google Colaboratory platform, using Python
3.7 and machine learning, and natural language processing libraries: Scikit-learn, NLTK.
SHAP and LIME are considered for model’s interpretations.

1.10 Thesis Outline

The present work is organized as follows:
Chapter 2 focuses on the technical definitions that are part of the present work.
Chapter 3 presents the State of the Art of the problem.
Chapter 4 describes the steps followed in order to build the solution approach of this
work.
Chapter 5 presents the results obtained by developing the solution in multiple corpora
and how the final models are built.
Chapter 6 analyzes the final models using test datasets, presents the interpretation for
every model and compare results with the state of the art.
Chapter 7 expresses the final conclusions and future work.



2 Theoretical Framework

2.1 Text Representations for Machine Learning

Machine learning algorithms are mostly fed only with numerical representations, hence
there are some text transformations that are commonly used for this kind of tasks. This
chapter describes the concepts and definitions of methods and techniques used by the
present work.

2.1.1 N-Grams

Tokenization is the process of dividing the text in subsets of characters. N-grams is one way
that tokenization can be applied and it is the procedure of splitting text into consecutive
tokens, (tokens are small representations of text that represent a concept in a context,
such as words, ideas, etc.) usually using spaces or punctuation signs as the token dividers.
The n in n-grams represents the number of consecutive tokens that are joined and can be
interpreted as a single one. N-grams can be built from word and characters and they can
be combined in order to get better performance. N-grams can contribute to analyze the
text and transform it in a numerical representation that can be processed with a machine
learning algorithm. Depending of the problem, some n-grams are going to be relevant,
and others may cause noise to the problem. The n-grams analyzed in this work are the
following:

Word Unigrams

Unigrams are usually the main n-grams because any other n-gram can be constructed from
them. In English and Spanish language, space is the character that splits words and it
is usually the most common splitting character when building unigrams. An example is
presented in Figure 2.1.

Figure 2.1: Example of unigrams
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Word Bigrams

Bigrams consists on a pair of consecutive unigrams found in a text. It pretends to correlate
unigrams and start making general ideas about the context of the work. One disadvantage
is the huge dimensionality they can add to the problem. An example is presented in Figure
2.2.

Figure 2.2: Example of bigrams

Word Skipgrams

Skipgrams can be of size two and further. They are defined as n-grams that appear in
a certain number of gaps. Gaps are sequence n-grams that are skipped. An example of
some types of skipgrams are presented in Figure 2.3.

Figure 2.3: Example of 2-skipgrams using 2 and 2,3 gaps

When working with character n-grams it is difficult to interpret why certain features
are important and why others does not, for this reason, they were not considered for this
work.

2.1.2 TF-IDF

The concept TF-IDF stands for term frequency-inverse document frequency. This concept
helps to understand how important a word is to a given document in a corpus. TF-IDF
has two parts: Term Frequency and Inverse Document Frequency. The term frequency
indicates the frequency of each of the words present in the document or dataset [6]. Thus,
its definition is given as follows:

TF (t) =
Number of times term t appears in a document

Total number of terms in the document
(2.1)
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IDF define some weighing down of the frequent terms while scaling up the rare ones,
which decides the importance of each word [6]. We will achieve this with the following
definition:

IDF (t) = log10(
Total number of documents

Number of documents with term t in them
) (2.2)

So, the calculation of TF-IDF is given as follows:

TF-IDF = TF (t) · IDF (t) (2.3)

2.2 Feature Engineering

One of the most popular techniques in machine learning is Feature Engineering. It consists
in looking for additional features which can be calculated and discovered through experts
in the area. The feature engineering process can be described as follows [7]:

1. Brainstorm about which features are relevant

2. Decide what features might improve the model performance

3. Create new features

4. Determine if the new features add to the model performance; if not, drop them

5. Go back to Step 1 until the performance of the model meets its designer’s expectations

2.3 Feature Selection

It is common for a few features to be responsible for the majority of the information signal
and the rest of the features are just mostly noise. It is important to lower the amount of
input features for a variety of reasons including [7]:

1. Reducing the multi collinearity of the input features will make the machine learning
model parameters easier to interpret

2. Reducing the time required to run the model and the amount of storage

3. The smaller number of input features a model requires, the easier it is to explain it

4. As the model has more features to describe the target, it might be able to describe
the data more precisely, but it will not generalize with new data points, so the model
will overfit the data. This is known as the curse of dimensionality.
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Although there are many feature selection methods that can be found in literature, this
work experiments with model interpretation methods (see Section 2.5) as feature selectors.
There are three strategies for feature selection, and this work focuses on the one called
Iterative Feature Selection. In this strategy, a series of models are built, with varying
numbers of features. There are two basic methods: starting with no features and adding
features one by one until some stopping criterion is reached, or starting with all features
and removing features one by one until some stopping criterion is reached. Because a series
of models are built, these methods are much more computationally expensive than other
strategies but tend to be more precisely, depending on the problem [8].

2.4 Machine Learning Algorithms

The tasks that are analyzed in this work are treated as classification problems, so the
following concepts of machine learning algorithms are treated as classifiers from this
chapter to the rest of this work.

2.4.1 Logistic Regression

Logistic regression (LR) consists in finding the best-fit parameters to a nonlinear function
called the sigmoid which is highly suitable for binary problems. It uses optimization
methods such as gradient ascent or in a more efficient way, the stochastic gradient ascent.
Some advantages of having stochastic gradient ascent as the optimization algorithm is that
it can learn from new data through multiple batches and iterations [9]. Sigmoid function
is presented in the next equation, its output is between 0 and 1 and it can be interpreted
as a probablity value.

σ(x) =
1

1 + e−x
(2.4)

2.4.2 Support Vector Machine

A Support Vector Machine (SVM) as a classifier, generates a binary decision (that is
why they are called "machines"). They have good generalization error because they can
generalize what they have learned. Support vector machines try to maximize margin by
solving a quadratic optimization problem. They use Kernel methods that map data (which
is usually nonlinear data) to a higher dimension where it can solve a linear problem. The
radial-bias function is a popular kernel method that measures the distance between two
vectors [9].

2.4.3 Naive Bayes

A Naive Bayes classifiers is a linear classifier that is known for being simple yet very
efficient. The probabilistic model of naive Bayes classifiers is based on Bayes’ theorem,
and the adjective naive comes from the assumption that the features in a dataset are
mutually independent. In practice, the independence assumption is often violated, but
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naive Bayes classifiers still tend to perform very well under this unrealistic assumption.
Especially for small sample sizes, naive Bayes classifiers can outperform the more powerful
alternatives [10].

2.4.4 K Nearest Neighbors

K-Nearest Neighbors (KNN) as a supervised classification method can make predictions
calculating the distance of the input to the k-nearest training data inputs and evaluating
which class is the most common among them. There are many distance metrics that can
be used, and for example, when working with text representations euclidean distance can
be useful.

The main advantage of such a memory-based approach is that the classifier immediately
adapts as we collect new training data. However, the downside is that the computational
complexity for classifying new samples grows linearly with the number of samples in the
training dataset in the worst-case scenario [11].

2.4.5 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a classification algorithm, but during training it
learns the most discriminative axes between the classes, and these axes can then be used
to define a hyperplane onto which to project the data. The benefit is that the projection
will keep classes as far apart as possible, so LDA is also a good technique to reduce
dimensionality before running another classification algorithm such as an SVM classifier
[12].

2.4.6 Ensemble Algorithms

When working with multiple machine learning algorithms, it comes the idea of which one
is better to use. This task usually is very expensive due to the multiple trainings that
must be done. Other idea is to try to combine multiple classifiers in order to get better
results. In this technique, the algorithms that are going to be combined are called weak
learners. This kind of algorithms can be grouped in three types: Bagging, Boosting and
Stacking.

Bagging

Bagging is a technique where the data is processed with multiple homogeneous weak
learners (Multiple copies of the same classifier but with different hyperparameters) in
parallel and combines their learning following a deterministic rule such as majority vote.
One advanced bagging algorithm is Random Forest [12].

Boosting

Boosting process the data using homogeneous weak learners also, but they learns sequentially
(a learner depends on the previous ones results). Every consecutive learner focuses on what
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the previous ones could not learn. The result is the combination of a weighted sum of all
learners. The algorithm this work focuses on is one of the the most popular ones, called
AdaBoost.

Stacking

Stacking often considers heterogeneous weak learners (Different types of classifiers) that
can learn in parallel from the data and the final prediction is produced using a meta-model
with the output of all the weak learners. This work is focusing on building a stacking
ensemble model, combining the results of multiple machine learning algorithms.

2.4.7 Random Forest

Random Forest works as an ensemble of Decision Tree models and uses a votation system
to generate predictions. As a bagging model, it can analyze different feature subsets
per weak learner and improve the result by this method. The Random Forest algorithm
introduces extra randomness when growing trees; instead of searching for the very best
feature when splitting a node, it searches for the best feature among a random subset of
features. This results in a greater tree diversity, which (once again) trades a higher bias
for a lower variance, generally yielding an overall better model [12].

2.4.8 AdaBoost

Adaptive Boosting (AdaBoost) is a boosting algorithm that trains its ensemble classifiers
in sequence. The new predictor corrects its predecessor paying attention to the training
instances that the predecessor underfitted [12]. By default, AdaBoost is an ensemble of
Decision Tree classifiers, but in this work, Random Forest is selected as the base classifier.

2.4.9 Multi-Layer Perceptron

A Multiplayer Perceptron (MLP) is composed of one (passthrough) input layer, one or
more layers of threshold logic units (TLUs), called hidden layers, and one final layer
of TLUs called the output layer. TLU is a function that inputs an array of weighted
quantities, sums them, and if this sum meets or surpasses some threshold, outputs a
quantity. The layers close to the input layer are usually called the lower layers, and the
ones close to the outputs are usually called the upper layers. Every layer except the
output layer includes a bias neuron and is fully connected to the next layer. When an
ANN contains a deep stack of hidden layers, it is called a deep neural network (DNN).
The field of Deep Learning studies DNNs, and more generally models containing deep
stacks of computations. However, many people talk about Deep Learning whenever neural
networks are involved (even shallow ones) [12].
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2.5 Explainable Artificial Intelligence (XAI)

When working with a huge data amount and a black box model to solve a problem or get
a solution for a task, interpretation can be important. If humans cannot interpret how
the model works, it could affect some important decisions excluding or including irrelevant
information. For example, if a model predicts when a interviewer can be hired or not,
it can consider irrelevant information, like gender, skills not considered to the position,
age, etc. As it can be observed, ignoring how the problem is solved can present additional
problems in real life. Explainable Artificial Intelligence (XAI) is a collection of methods
which are capable of interpret predictions of any kind of machine learning model. This is
why they are called model-agnostic methods [13].

2.5.1 LIME

LIME is short for Local Interpretable Model-Agnostic Explanations. Local refers to local
fidelity, which means the explanation has to really reflect the behaviour of the classifier
"around" the instance being predicted. This explanation is useless unless it is interpretable
- that is, unless a human can make sense of it. LIME is able to explain any model without
needing to ’peak’ into it, so it is model-agnostic.

Some classifiers use representations that are not intuitive to users at all (e.g. word
embeddings). LIME explains those classifiers in terms of interpretable representations
(words), even if that is not the representation actually used by the classifier. In order to
figure out what parts of the interpretable input are contributing to the prediction, LIME
perturbs the input around its neighborhood and see how the model’s predictions behave.
Then it weights these perturbed data points by their proximity to the original example and
learn an interpretable model on those and the associated predictions. For example, if a
user tries to explain the prediction for the sentence "I hate this movie", LIME will perturb
the sentence and get predictions on sentences such as "I hate movie", "I this movie", "I
movie", "I hate", etc. Even if the original classifier takes many more words into account
globally, it is reasonable to expect that around this example only the word "hate" will be
relevant [14].

2.5.2 SHAP

SHAP values (an acronym from SHapley Additive exPlanations) are based on Shapley
values, a concept coming from game theory. In this case, the features represent the players
which need to contribute to an outcome (the prediction of the model). What SHAP does
is quantifying the contribution that each feature brings to the prediction made by the
model. To determine the importance of a single feature, SHAP values are based on the
idea that the outcome of each possible combination of features should be considered. This
corresponds to each possible combination of f features, where f represents a possible subset
of features [15].

For example, a model says a bank shouldn’t loan someone money, and the bank is
legally required to explain the basis for each loan rejection, in this case, SHAP values



CHAPTER 2. THEORETICAL FRAMEWORK 12

interpret the impact of having a certain value for a given feature in comparison to the
prediction the model would make if that feature took some baseline value.

SHAP values do this in a way that guarantees a nice property. In general, SHAP
decompose a prediction with the following equation:

sum(SHAP values for all features) = prediction for team− prediction for baseline values
(2.5)

Due to the complexity of calculating 2n times a classifier in order to get an interpretation
of the results, SHAP library contains functions to calculate approximations for the SHAP
values for some types of machine learning algorithms: linear based algorithms and tree
based algorithms. Algorithms such as K-Nearest Neighbors and Support Vector Machines
do not have an efficient method to calculate the SHAP values, but LIME can evaluate
them because it does not have to consider all features.



3 State of the Art

The study of fake news detection and fake news user spreaders detection has been a
complex task through recent years. Many possible solutions with different characteristics
can be found and most of them produces accurate predictions and results. This chapter
presents some solution approaches found in the State of the Art. Moreover, this chapter
describes the case study this work is focused on and the proposed solutions with which
this work is compared.

3.1 Fake News and Fake News User Spreaders

Most user spreaders tend to hide their intentions and lie using an specific vocabulary and
phrases. Although they have this in consideration, some patterns cannot be hidden, due
to author habits or even the way that information is expressed [16]. They often catch the
public by using sensationalism, or by using expressions that can captive user’s attention.
In [17], these kind of features are linguistic ones, and can be classified as follows:

Data Representation

Perhaps the simplest method of text representation is bag of words. Individual words or
n-grams frequencies are aggregated and analyzed.

Deep Syntax

This analysis is implemented in this kind of works through Probability Context Free
Grammars (PCFG). Sentences are transformed to a set of rewrite rules to describe syntax
structure, for example noun and verb phrases.

Semantic Analysis

Although restricted to the domain of application, the intuition is that a deceptive writer
with no experience with an event, person or object may include contradictions or omission
of facts present in profiles on similar topics.

13
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3.2 Text Preprocessing and Representation

Text processing usually consists of the following steps: remove stop words, spaces, punctua-
tion and lemmatize/stemming the text [18], then select an appropriate representation that
can be used in a machine learning algorithm. One of the most common text representations
used for these tasks is TF-IDF. The reason can be observed in [19] where through several
experiments using multiple datasets, they observed TF-IDF has stronger consistency and
can give better and more efficient results in these tasks than a more advanced representation,
such as word embeddings. Although we can find multiple works which use TF-IDF
transformations with n-grams such as [20, 21, 22, 23], there are some works which have a
different approach to these tasks. Some other representations found in recent works are
the use of statistical features [19, 24], Part of speech Tagging (POS Tag) [25], sentimental
detection approaches [26], metadata from social media and user accounts (when working
with user profiling) [21], BERT [27], and even a combination of multiple features like in
[28], where embeddings, emotions, and stylometry techniques are joined in a single text
representation.

3.3 Machine Learning Solutions

Table 3.1 shows a list of machine learning and deep learning classifiers found in recent
state of the art. In this work, 18 solution approaches were analyzed, being 12 machine
learning approaches [18, 29, 30, 24, 20, 31, 32, 22, 33, 34, 35, 23, 36] and 6 deep learning
approaches [37, 38, 39, 28, 40, 41]. It can be observed that SVM and LR are preferred
by researchers due to its easiness to implement and they can obtain competitive results in
these tasks.

Table 3.1: List of machine learning classifiers and their number of works that experimented with
them

Classifier Number of works

Support Vector Machine 6
Logistic Regression 5
Naive Bayes 3
Random Forest 1
XGBoost 2
LSTM 5
Bi-LSTM 2

3.4 Case study

This work focuses in corpora developed for two recent fake news detection events: first,
PAN@CLEF 2020 event has a task for fake news user spreaders profiling, where all
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participants worked with an English corpus and a Spanish corpus using NLP and machine
learning techniques (see Section 4.1.1); and second, FakeDes@Iberlef 2021 is an event which
fake news posted in multiple Spanish websites have to be detected (see Section 4.1.2). By
the time this work is developed, FakeDes@Iberlef 2021 is in process, hence no participant
solution approaches are described in this work yet.

3.4.1 Proposed Solutions at PAN@CLEF 2020

The winner was selected measuring the mean accuracy for both corpora. The conclusion
of the event was a tie of an ensemble model and the use of a fine-tunned SVM solution.
In [31], the ensemble model proposes the use of N-grams with the combination of LR, RF,
SVM, and XGBoost. On the other hand, in [23], the single use of word n-grams with
an SVM was enough to get the best results of the event. Some other approaches which
worked with N-grams and TF-IDF used machine learning classifiers, mainly SVM and LR
are described in [22, 35, 36]. Surprisingly, deep learning approaches did not reach the top
10 best solution proposals and it confirmed TF-IDF can solve this task in a better way
as mentioned in [42]. Transformers were not used by any of the participants, but other
kinds of deep learning architectures like LSTMs variations such as LSTM with Universal
Sentence Encoder [41] and LSTM with attention [40] took part in the event. Table 3.2
shows the top 30 best solutions for the task at the event.

Table 3.2: Top 20 results obtained at PAN@CLEF 2020 Event expressed in the overview [1].
Some papers were not trackable so some classifiers are not described

Participant Classifier EN
Accuracy

ES
Accuracy

Mean
Accuracy

bolonyai20 [31] Ensemble 0.750 0.805 0.7775
pizarro20 [23] SVM 0.735 0.820 0.7775
koloski20 LR 0.715 0.795 0.7550
deborjavalero20 0.730 0.780 0.7550
vogel20 SVM 0.725 0.785 0.7550
higueraporras20 0.725 0.775 0.7500
tarela20 0.725 0.775 0.7500
babaei20 MLP 0.725 0.765 0.7450
staykovski20 0.705 0.775 0.7400
hashemi20 RF 0.695 0.785 0.7400
estevecasademunt20 0.710 0.765 0.7375
castellanospellecer20 0.710 0.760 0.7350
shrestha20 SVM 0.710 0.755 0.7325
espinosagonzales20 SVM 0.690 0.760 0.7250
ikae20 Similarity 0.725 0.725 0.7250
morenosandoval20 RF 0.715 0.730 0.7225
majumder20 LSTM 0.640 0.800 0.7200



4 Solution Proposal Description

As discussed before, this work focuses on two main tasks to research: to detect fake news
in social media such as websites and to detect fake news user spreaders. This tasks are
pretending to be solved following the event’s rules that consider working with content-based
features only. Other features and metadata such as attached images, account profile, and
so on, are out of the scope for the analysis and experiments related to this work. Since the
text is the main source of information to solve these tasks, this work proposes a system that
can detect fake news through word n-grams, TF-IDF frequencies and statistical features.

The following sections of this chapter describe the corpora used and the process of the
solution proposal development.

4.1 Corpora Description

The corpora considered in this work was selected from two events, where each one is
focusing in each task of this work respectively. The first one is the corpus generated at the
PAN@CLEF 2020 event, which was created to detect fake news user spreaders in English
and Spanish languages; and the second one is the corpus generated at the FakeDes@Iberlef
2021 event which was created to detect fake news in the Spanish language in news websites.

4.1.1 PAN@CLEF corpus

This corpus was created by experts and members of the PAN@CLEF 2020 event extracting
Spanish and English posts from multiple user accounts that have shared or written texts
related to fake news in Twitter respectively. These posts were analyzed using fact-checking
websites such as Snopes and Politifact. Thus, they selected additional user accounts that
have not shared content related to fake news as they could figure out about it. The last
part was to select a set of posts for each user account (One hundred posts per user).
Finally, two class balanced corpora (each language has its own corpus) were created and
tagged according to the following rules:

1. Fake news user accounts spreaders are labeled as 1

2. Real news user accounts spreaders are labeled as 0

3. A fake news user account is defined as an account that spreads posts (or even a single
one) that are related to fake news

16
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Some additional characteristics of this corpus that are important to mention are described
in table 4.1:

Table 4.1: Characteristics of PAN@CLEF 2020 Corpus

Characteristic Description

Language(s) English and Spanish
Number of user accounts 500 user accounts per language
Number of posts per user 100 messages per user account
Train and Test Splitting 60% training 40% testing

4.1.2 FakeDes@Iberlef 2021 Corpus

This corpus was created by organizers of the FakeDes@Iberlef 2021 event retrieving news
articles from dedicated Spanish websites (either those that spread fake news and also true
news). Thus, these texts have larger size than the previous corpora. Another difference
is that this corpus is already split in train and development data. This corpus was also
tagged using the labels "Fake" and "True" for each input. Some additional characteristics
are described in Table 4.2.

Table 4.2: Characteristics of FakeDes@Iberlef 2020 Corpus

Characteristic Description

Language(s) Spanish
Number of news for training 676
Number of news for development 295
Number of news for testing 572

4.2 Model description

The solution approach is the analysis of N-gram and statistical frequencies for each corpus
using machine learning algorithms in an ensemble model. Through preprocessing and
feature selection methods, the solution attempts to solve both tasks described previously
in the introduction of this chapter. The diagram 4.1 represents the general steps of the
solution approach which are described in the following subsections.

Figure 4.1: Main steps of the proposal solution
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4.2.1 Text Preprocessing

When working with PAN@CLEF corpus, texts are concatenated per user account. Also,
all characters and symbols that are not related to the English or Spanish language are
deleted. Then, multiple versions of the preprocessed data are created. The following lists
describes the data versions created for each corpus:

PAN@CLEF Corpus

1. Version 1: All words are converted into lowercase. Twitter entities are tagged through
tags as listed in table 4.3.

2. Version 2: Same as version 1, but punctuation is removed.

3. Version 3: Same as version 1, but numbers are tagged as "zznumberzz" and punctua-
tion is removed.

FakeDes Corpus

1. Version 1: All words are converted into lowercase. Numbers’ tag is changed to
"zznumberzz".

2. Version 2: Same as version 1, but punctuation is removed.

Table 4.3: Characteristics of PAN@CLEF 2020 Corpus

Twitter Entity Tag

User’s mention zzuserzz
URL zzurlzz
Hashtag zzhashzz
RT (Retweet) zzrtzz

The process of tokenization is similar for all corpora. Word unigrams, bigrams and
skipgrams are considered as features in this work. Stop words selected are those n-grams
which appear in only one document and those which have the same number of appearances
in both classes. Thus, if token A appears in 3 fake documents and 3 real documents, then
it is considered as stop word. This is done in order to reduce the dimensionality of the
data and to have more contextual interpretations. The skipgrams are built with size two,
using one, two, three, and four gaps. These three n-gram types are examined individually,
therefore three different models of each classifier are created.

Another preprocessing step is to extract statistical features from the texts and feed an
individual machine learning algorithm using them. This contribution is evaluated at the
same level of the other models in the final ensemble solution approach. The statistical
features are described in Section 5.2. Figure 4.2 presents a brief summary about this part
of the solution development.
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Figure 4.2: Representation of the Text Preprocessing step

4.2.2 Hyperparameter Selection

Each tokenized dataset version is transformed in a TF-IDF matrix, looking for the best
n-gram frequencies that can achieve the highest accuracy during the training process for
each classifier. In the case of PAN@CLEF corpora, no development data is provided, so
each model is evaluated in a 3-repeated 5-fold cross-validation method. In the case of
FakeDes corpus, the development data is provided. In this step, some hyperparameters
of each machine learning model are evaluated and the model with the highest accuracy is
selected. Figure 4.3 is a diagram that describes this process.

Figure 4.3: Representation of the Hyperparameter Selection Process

4.2.3 Feature Selection

When working with a huge amount of features or a high dimensionality feature dataset, it
can be difficult to work and to interpret the obtained results. Feature selection techniques
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provide a way to manage this problem and bring some other benefits, such as avoiding
overfitting, decreasing the model training time, and improving the model’s interpretation.
The technique considered in this work is the use of SHAP and LIME, which not only
are used to interpret model results but can also be a way to select the best features that
contribute to the best solution. Figure 4.4 is a diagram representation of this process.

Figure 4.4: Representation of the Feature Selection Process

As mentioned before, the SHAP technique considers the contribution of each feature
in the final prediction, that is, each feature has a different SHAP value in each prediction
the model works out. The value can be either positive or negative, and its absolute value
represents the degree of contribution the feature has in the model solution. In order to
work with SHAP as a feature selector, all calculated absolute values in a prediction set
are aggregated and they are sorted in decreasing order. Once this sorting is obtained,
the selection of the features is represented as an optimal k number of features, where k
is determined by training the model with different numbers of features and by examining
the following aspects:

1. When the model achieves its maximum mean accuracy when predicting results for a
dataset.

2. If there are multiple subsets when the model achieves its maximum accuracy, the
subset with the minimum number of features is selected.

3. Some other alternatives of optimal number of features are selecting: (i) the maximum
number of features when training data reaches its maximum accuracy result; (ii) the
second subset with the minimum number of features, or (iii) a certain percentage
amount of features.

4.2.4 Ensemble Algorithm

The main algorithm is an ensemble solution approach, using multiple classifiers that
contribute to the final solution. The selected algorithms are: Logistic Regression (LR),
Random Forest (RF), Support Vector Machines (SVM), AdaBoost (Ada), Multilayer
Perceptron (MLP), Linear Discriminant Analysis (LDA), Naive Bayes (NB), K-Nearest
Neighbors (KNN), and Logistic Regression for the statistical features dataset.
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Once the feature selection is done for every machine learning model, the next step
is to combine their predictions when testing the complete system. All machine learning
models can retrieve a probabilistic value according to this binary classification problem,
and in this way, their results can be submitted to a voting scheme. The two voting
schemes that this project evaluates are soft voting (where the mean of all probabilities
is calculated to get the final result) and hard voting (counting each binary value and
the major is going to be the final result). It is a stacking ensemble approach which
is conformed by a Bagging ensemble model (Random Forest) and a Boosting ensemble
model (AdaBoost). The representation of the Random Forest classifier is described in
Figure 4.5, the AdaBoost classifier is described in Figure 4.6 and the ensemble model
in Figure 4.7. The ensemble model considers 8 different classifiers trained with different
n-gram combinations: unigrams, bigrams, skipgrams, unigrams and bigrams, unigrams and
skipgrams and unigrams, bigrams and skipgrams, having a total of 49 classifiers considering
the Logistic Regression classifier with statistical features.

Figure 4.5: Representation of the Random Forest Classifier

Figure 4.6: Representation of the AdaBoost Classifier

4.2.5 Solution Interpretation

The last part is to interpret the results based on how the model is working by their feature
contributions. A top of the most relevant features per each model is examined and, in
addition, it is possible to evaluate which models are the most relevant for the final results.
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Figure 4.7: Representation of the Ensemble Solution

With this, it is possible to conclude what the model learned from the features and it is
able to establish a set of rules the model detected aiming to explain the system to general
users.

4.2.6 Evaluation Metrics

The evaluation metrics considered to analyze this work are the Accuracy and F1 Score,
due to the fact that they are used in the previous events described in previous sections. By
this means it is possible to compare results with the competitors of the events and make
some conclusions about the performance of this approach.



5 Solution Development

This chapter presents the characteristics and results obtained during the process of building
the final solution approaches for each corpus when applying the processes mentioned in
the last chapter. All classifiers are evaluated individually, and a classifier per n-gram type
is created. Finally, combined-features classifiers are created and evaluated.

5.1 Fake News Spreaders Profiling - English

5.1.1 Text Preprocessing

The solution for this task is developed using the English corpus from PAN@CLEF 2020
event. Table 5.1 presents an example for every dataset version created. This work considers
as a hypotesis that having multiple dataset versions can improve the final results due to
each classifier can focus on different features obtained from different sources.

Table 5.1: Corpus Processing for English PAN@CLEF 2020

Dataset Version Transformed text

Original BUSTED: Hillary Clinton Got $145, 920, 412 Richer Thanks
To Russia... #URL#

Version 1 busted : hillary clinton got $145, 920, 412 richer thanks to
russia . . . zzurlzz

Version 2 busted hillary clinton got 145 920 412 richer thanks to russia
zzurlzz

Version 3 busted hillary clinton got zznumberzz zznumberzz zznumberzz
richer thanks to russia zzurlzz

5.2 Statistical Features

In addition to the frequency features creation, a descriptive statistical features dataset is
created. This statistical features are also based on the frequency of specific words and
symbols. The following list enumerates all features used for this dataset:

1. Character count and standard deviation

23
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2. Word count and standard deviation

3. Word count with size less than 5 characters

4. Punctuation count and standard deviation

5. Number count and standard deviation

6. Twitter entities count and standard deviation

7. Emoji count and standard deviation

8. Uppercase letters count and standard deviation

9. Lexical diversity (a ratio of how many different words the account uses)

5.2.1 Hyperparameter Selection

The hyperparameter selection is done with a 3-repeated 5-fold cross-validation method
in order to get more accurate results when training every classifier. Customized stop
words described in the previous chapter are excluded. Some algorithms have elevated
computational cost when using all features for training, so some features are excluded
based on their TF-IDF value using min_df and max_df parameters. Table 5.2 and Table
5.3 shows the best hyperparameters and dataset version found for each classifier.

Table 5.2: Best hyperparameters found for English PAN@CLEF classifiers, including dataset
version and the min_df and max_df parameters for TF-IDF. AdaBoost Classifiers are ensembles
of Random Forest with standard hyperparameters. - Part 1/2

Classifier N-gram
Type

version min max Classifier
hyperparameters

LR unigrams 1 1 1.0 C=1000
LR bigrams 3 1 1.0 C=1
LR skipgrams 1 1 1.0 C=1000
RF unigrams 1 1 1.0 n_estimators=200,

max_features=1.0
RF bigrams 1 1 1.0 n_estimators=200,

max_features=0.5
RF skipgrams 1 3 1.0 n_estimators=200,

max_features=0.5
SVM unigrams 3 1 1.0 C=100
SVM bigrams 3 1 1.0 C=1
SVM skipgrams 1 1 1.0 C=100
AdaBoost unigrams 3 1 1.0 learning_rate=0.1
AdaBoost bigrams 1 1 1.0 learning_rate=0.01
AdaBoost skipgrams 3 3 1.0 learning_rate=0.01
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Table 5.3: Best hyperparameters found for English PAN@CLEF classifiers, including dataset
version and the min_df and max_df parameters for TF-IDF. Statistical LR is the classifier which
works with statistical features only, so no N-gram is required. - Part 2/2

Classifier N-gram
Type

version min max Classifier
hyperparameters

MLP unigrams 2 1 1.0 hidden_layer_sizes=(200),
activation=logistic

MLP bigrams 3 1 1.0 hidden_layer_sizes=(200),
activation=logistic

MLP skipgrams 3 1 1.0 hidden_layer_sizes=(200),
activation=logistic

Naive Bayes unigrams 2 1 1.0 alpha=1
Naive Bayes bigrams 3 1 1.0 alpha=1
Naive Bayes skipgrams 1 1 1.0 alpha=0
KNN unigrams 3 1 1.0 p=2, n_neighbors=3
KNN bigrams 2 1 1.0 p=2, n_neighbors=13
KNN skipgrams 2 2 1.0 p=2, n_neighbors=9
LDA unigrams 3 1 1.0 n_components=None
LDA bigrams 3 1 1.0 n_components=None
LDA skipgrams 1 2 1.0 n_components=None
Statistical
LR

34 features C=1

5.2.2 Feature Selection

The process of feature selection proposed is the following:

1. Evaluate the classifier for each k -fold using SHAP or LIME

2. Get the absolute contribution value per feature, adding the absolute value obtained
for each input from validation data and sort them in decreasing order

3. Filter features with the lowest value of contribution. A value of zero means the
feature is not relevant for the classifier and it can be removed. The standard threshold
value used in this part of the work is 0.01

4. For each k -fold, select k sorted features that were remained from previous step and
train a new classifier

5. Get the accuracy and repeat the previous step until all features were explored

6. Analyze the results and select the best subset of features. It is determined with the
maximum accuracy found

7. Join all subsets of features found in order to get the best features set for the classifier
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Some classifiers have elevated computational cost to evalute SHAP values. LIME is a
less expensive method although is less accurate than SHAP, but can give similar results.
Due to this reason SVM, NN, and KNN are evaluated using LIME. To see further details
about the feature selection behaviour, see Appendix A. The step 4 of the previous process
is complex since there is no optimal threshold that can be applied in order to get the best
features. This work explores several heuristics which are described in the following list:

1. The minimum subset of features where the maximum accuracy is found (min)

2. The maximum subset of features where the maximum accuracy is found (max)

3. The second minimum subset of features where the maximum accuracy is found (sec)

4. The subset of features where the train dataset achieves its maximum accuracy score
(acc)

5. Some percentage of the top features, which are from 10% to 60% of them

Figure 5.1 represents an example of accuracy behavior when selecting k most important
features, sorted with SHAP or LIME method. In this case, the selection is applied per
k -fold where previous rules are applied. For the first k -fold, the heuristics are applied
when the model reaches the highest accuracy (0.7). Thus, min rule selects 2900 features,
max and sec rule select 3480 features, and acc selects 1740 features.

Figure 5.1: Accuracy per subset of relevant Features for Logistic Regression using bigrams

Table 5.4 shows the results obtained when training with different k number of relevant
features. Each classifier selects its best feature set based on the mean accuracy value when
training their different N-gram variations.

The best k value is found according to the highest mean accuracy value found per
classifier. Table 5.5 and Table 5.6 describes the number of features selected per classifier
according to their best feature set. Classifiers which have combinations of features are
developed once their individual N-gram features are selected. This is considered as a
joined combination of features.
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Table 5.4: Mean Accuracy per k feature selection proposal

Feature
Set

LR SVM RF AdaBoost MLP LDA NB KNN

min 0.8661 0.9188 0.7133 0.6961 0.9366 0.9088 0.9116 0.7966
sec 0.8683 0.9019 0.7088 0.6938 0.9308 0.9044 0.9138 0.7969
max 0.8638 0.8827 0.7096 0.6931 0.9283 0.8972 0.9140 0.7962
acc 0.8730 0.9069 0.7158 0.7037 0.9402 0.8869 0.9148 0.8086
10% 0.8745 0.9202 0.7162 0.7098 0.9447 0.8848 0.8994 0.8140
20% 0.8743 0.9253 0.7148 0.7123 0.9474 0.8862 0.8948 0.8156
30% 0.8742 0.9262 0.7137 0.7126 0.9492 0.8877 0.8955 0.8173
40% 0.8738 0.9240 0.7129 0.7139 0.9500 0.8894 0.8968 0.8186
50% 0.8733 0.9193 0.7118 0.7127 0.9504 0.8889 0.8990 0.8193
60% 0.8724 0.9124 0.7099 0.7115 0.9503 0.8875 0.9010 0.8197

Table 5.5: Feature Selection for English PAN@CLEF corpus - Part 1/2

Classifier N-gram Type Features Selected
features

Percentage

LR unigrams 30,479 1,630 5.35%
LR bigrams 192,640 3,504 1.82%
LR skipgrams 714,657 14,386 2.01%
LR unigrams+bigrams 223,119 5,134 2.30%
LR unigrams+skipgrams 745,136 16,016 2.15%
LR unigrams+bigrams+skipgrams 937,776 19,520 2.08%
SVM unigrams 29,915 5,541 18.52%
SVM bigrams 192,640 11,671 6.06%
SVM skipgrams 714,657 6,912 0.97%
SVM unigrams+bigrams 222,555 17,212 7.73%
SVM unigrams+skipgrams 744,572 12,453 1.67%
SVM unigrams+bigrams+skipgrams 937,212 24,124 2.57%
RF unigrams 30,479 1,999 6.56%
RF bigrams 205,964 5,421 2.63%
RF skipgrams 66,256 7,969 12.03%
RF unigrams+bigrams 236,443 7,420 3.14%
RF unigrams+skipgrams 96,735 9,968 10.30%
RF unigrams+bigrams+skipgrams 302,699 15,389 5.08%
AdaBoost unigrams 29,915 4,931 16.48%
AdaBoost bigrams 205,964 12,616 6.13%
AdaBoost skipgrams 53,106 14,416 27.15%
AdaBoost unigrams+bigrams 235,879 17,547 7.44%
AdaBoost unigrams+skipgrams 83,021 19,347 23.30%
AdaBoost unigrams+bigrams+skipgrams 288,985 31,963 11.06%
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Table 5.6: Feature Selection for English PAN@CLEF corpus - Part 2/2

Classifier N-gram Type Features Selected
features

Percentage

MLP unigrams 30,447 8,880 29.17%
MLP bigrams 192,640 18,295 9.50%
MLP skipgrams 657,830 28,271 4.30%
MLP unigrams+bigrams 223,087 27,175 12.18%
MLP unigrams+skipgrams 688,277 37,151 5.40%
MLP unigrams+bigrams+skipgrams 880,917 55,446 6.29%
LDA unigrams 29,915 6,764 22.61%
LDA bigrams 192,640 17,412 9.04%
LDA skipgrams 137,437 73,266 53.31%
LDA unigrams+bigrams 222,555 24,176 10.86%
LDA unigrams+skipgrams 167,352 80,030 47.82%
LDA unigrams+bigrams+skipgrams 359,992 97,442 27.07%
NB unigrams 30,447 11,402 37.45%
NB bigrams 192,640 22,387 11.62%
NB skipgrams 714,657 28,165 3.94%
NB unigrams+bigrams 223,087 33,789 15.15%
NB unigrams+skipgrams 745,104 39,567 5.31%
NB unigrams+bigrams+skipgrams 937,744 61,954 6.61%
KNN unigrams 29,915 9,741 32.56%
KNN bigrams 198,455 21,094 10.63%
KNN skipgrams 116,154 79,736 68.65%
KNN unigrams+bigrams 228,370 30,835 13.50%
KNN unigrams+skipgrams 146,069 89,477 61.26%
KNN unigrams+bigrams+skipgrams 344,524 110,571 32.09%

5.2.3 Trained Classifiers

Table 5.7 shows the results of the training step of each classifier. Since unigrams usually get
the best results of the n-grams used, they are combined with the others in order to obtain
additional classifiers that can be used for the final ensemble algorithm. The ensemble
algorithm is created using all classifiers described in the table mentioned. According to
this results, NB classifier with unigrams+skipgrams gets the best mean accuracy result of
0.9900. RF and AdaBoost get the worst mean accuracy results of 0.7500.
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Table 5.7: Accuracy of Train dataset (cross-validation average) for English PAN@CLEF corpus
obtained by selecting the best k features according to Table 5.4

Features LR SVM RF AdaBoost MLP LDA NB KNN

unigrams 0.8766 0.9533 0.7200 0.7000 0.9766 0.8600 0.7633 0.7533
bigrams 0.8000 0.9133 0.6766 0.6933 0.9666 0.9666 0.8200 0.8033
skipgrams 0.9166 0.8833 0.7033 0.7166 0.9033 0.8933 0.9566 0.8233
uni+bi 0.8933 0.9533 0.7200 0.7433 0.9766 0.9333 0.9866 0.8433
uni+ skip 0.8933 0.9466 0.7500 0.7500 0.9400 0.8933 0.9900 0.8533
uni + bi +
skip

0.9033 0.9400 0.7366 0.7366 0.9566 0.9066 0.9866 0.8600

5.3 Fake News Spreaders Profiling - Spanish

Due to the solution approach for this corpus is very similar to the previous one, this
section describes the results obtained from the development of this solution approach and
the changes that are relevant to explain.

5.3.1 Text Preprocessing

Table 5.8 presents the dataset versions for this corpus. In this part, Spanish accents
are considered, and the corpus considers the "n" character instead of the "ñ" character.
For the statistical feature set, accent counting and its standard deviation calculation are
included.

Table 5.8: Corpus Processing for Spanish PAN@CLEF corpus

Dataset Version Transformed text

Original Qué 20 amigos significan el mundo para ti? #URL#

Version 1 qué 20 amigos significan el mundo para ti ? zzurlzz

Version 2 qué 20 amigos significan el mundo para ti zzurlzz

Version 3 qué zznumberzz amigos significan el mundo para ti zzurlzz

5.3.2 Hyperparameter Selection

Table 5.9 and Table 5.10 shows the best hyperparameters found for each classifier and the
dataset version.
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Table 5.9: Best hyperparameters found for Spanish PAN@CLEF classifiers, including dataset
version and the min_df and max_df parameters for TF-IDF. - Part 1/2

Classifier N-gram
Type

version min max Classifier
hyperparameters

LR unigrams 3 1 1.0 C=1000
LR bigrams 3 1 1.0 C=1000
LR skipgrams 2 1 1.0 C=1000
RF unigrams 1 1 1.0 n_estimators=200,

max_features=1.0
RF bigrams 1 1 1.0 n_estimators=200,

max_features=0.5
RF skipgrams 1 2 1.0 n_estimators=200,

max_features=1.0
SVM unigrams 2 1 1.0 C=1
SVM bigrams 3 1 1.0 C=100
SVM skipgrams 2 2 1.0 C=100
AdaBoost unigrams 2 1 1.0 learning_rate=1
AdaBoost bigrams 3 1 1.0 learning_rate=1
AdaBoost skipgrams 1 3 1.0 learning_rate=1

Table 5.10: Best hyperparameters found for Spanish PAN@CLEF classifiers, including dataset
version and the min_df and max_df parameters for TF-IDF. Statistical LR is the classifier which
works with statistical features only, so no N-gram is required. - Part 2/2

Classifier N-gram
Type

version min max Classifier
hyperparameters

MLP unigrams 2 1 1.0 hidden_layer_sizes=(200,),
activation=logistic

MLP bigrams 3 1 1.0 hidden_layer_sizes=(200,
100), activation=logistic

MLP skipgrams 3 1 1.0 hidden_layer_sizes=(200,),
activation=logistic

Naive Bayes unigrams 3 1 1.0 alpha=0.1
Naive Bayes bigrams 1 1 1.0 alpha=0.1
Naive Bayes skipgrams 1 1 1.0 alpha=0.1
KNN unigrams 2 1 1.0 p=2, n_neighbors=13
KNN bigrams 1 3 1.0 p=2, n_neighbors=5
KNN skipgrams 2 2 1.0 p=2, n_neighbors=9
LDA unigrams 3 1 1.0 n_components=None
LDA bigrams 3 2 1.0 n_components=None
LDA skipgrams 2 2 1.0 n_components=None
Statistical
LR

36 features C=1
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5.3.3 Feature Selection

Table 5.11 shows the train accuracy results when k features are selected using SHAP or
LIME as a feature selection method. The operation for selecting k value is the same as
the English corpus section.

Table 5.11: Mean Accuracy per feature selection proposal

Feature
Set

LR SVM RF AdaBoost MLP LDA NB KNN

min 0.9100 0.9116 0.7650 0.7622 0.9672 0.8072 0.9155 0.8583
sec 0.9119 0.9058 0.7650 0.7641 0.9641 0.8130 0.9216 0.8591
max 0.9100 0.9033 0.7653 0.7655 0.9640 0.8153 0.9288 0.8587
acc 0.9187 0.9256 0.7693 0.7663 0.9708 0.8019 0.9316 0.8656
10% 0.9218 0.9356 0.7708 0.7648 0.9725 0.7923 0.9041 0.8720
20% 0.9233 0.9375 0.7712 0.7633 0.9723 0.7879 0.8944 0.8762
30% 0.9241 0.9361 0.7717 0.7616 0.9714 0.7868 0.8936 0.8770
40% 0.9235 0.9342 0.7709 0.7602 0.9704 0.7865 0.8960 0.8769
50% 0.9228 0.9322 0.7708 0.7596 0.9700 0.7867 0.8990 0.8762
60% 0.9220 0.9303 0.7700 0.7580 0.9697 0.7885 0.9022 0.8756

Table 5.12 and Table 5.13 describes the number of features selected per classifier.
Classifiers with joined features are developed once their individual N-gram features are
selected.

Table 5.12: Feature Selection for Spanish PAN@CLEF corpus - Part 1/2

Classifier N-gram Type Features Selected
features

Percentage

LR unigrams 41,593 5,478 13.17%
LR bigrams 214,690 14,772 6.88%
LR skipgrams 781,801 47,809 6.12%
LR unigrams+bigrams 256,283 20,250 7.90%
LR unigrams+skipgrams 823,394 53,287 6.47%
LR unigrams+bigrams+skipgrams 1,038,084 68,059 6.56%
SVM unigrams 42,317 4,574 10.81%
SVM bigrams 214,690 9,393 4.38%
SVM skipgrams 133,340 11,538 8.65%
SVM unigrams+bigrams 257,007 13,967 5.43%
SVM unigrams+skipgrams 175,657 16,112 9.17%
SVM unigrams+bigrams+skipgrams 390,347 25,505 6.53%
RF unigrams 42,350 6,081 14.36%
RF bigrams 231,833 14,252 6.15%
RF skipgrams 152,619 17,809 11.67%
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Table 5.13: Feature Selection for Spanish PAN@CLEF corpus - Part 2/2

Classifier N-gram Type Features Selected
features

Percentage

RF unigrams+bigrams 274,183 20,333 7.42%
RF unigrams+skipgrams 194,969 23,890 12.25%
RF unigrams+bigrams+skipgrams 426,802 38,142 8.94%
AdaBoost unigrams 42,317 2,917 6.89%
AdaBoost bigrams 214,690 4,808 2.24%
AdaBoost skipgrams 77,238 173 0.22%
AdaBoost unigrams+bigrams 257,007 7,725 3.01%
AdaBoost unigrams+skipgrams 119,555 3,090 2.58%
AdaBoost unigrams+bigrams+skipgrams 334,245 7,898 2.36%
MLP unigrams 42,317 2,773 6.55%
MLP bigrams 214,690 5,389 2.51%
MLP skipgrams 757,327 6,907 0.91%
MLP unigrams+bigrams 257,007 8,162 3.18%
MLP unigrams+skipgrams 799,644 9,680 1.21%
MLP unigrams+bigrams+skipgrams 1,014,334 15,069 1.49%
LDA unigrams 41,593 11,373 27.34%
LDA bigrams 45,321 16,074 35.47%
LDA skipgrams 133,340 59,934 44.95%
LDA unigrams+bigrams 86,914 27,447 31.58%
LDA unigrams+skipgrams 174,933 71,307 40.76%
LDA unigrams+bigrams+skipgrams 220,254 87,381 39.67%
NB unigrams 41,593 12,886 30.98%
NB bigrams 231,833 34,266 14.78%
NB skipgrams 828,484 109,578 13.23%
NB unigrams+bigrams 273,426 47,152 17.24%
NB unigrams+skipgrams 870,077 122,464 14.08%
NB unigrams+bigrams+skipgrams 1,101,910 156,730 14.22%
KNN unigrams 42,317 7,830 18.50%
KNN bigrams 27,073 9,920 36.64%
KNN skipgrams 131,632 96,477 73.29%
KNN unigrams+bigrams 69,390 17,750 25.58%
KNN unigrams+skipgrams 173,949 104,307 59.96%
KNN unigrams+bigrams+skipgrams 201,022 114,227 56.82%

5.3.4 Trained Classifiers

Table 5.14 shows the results the accuracy obtained by feature selection for every classifier.
As the previous section, additional classifiers are trained using combinations of n-gram
features. As it is seen, MLP gets the best accuracy results among all others.
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Table 5.14: Mean Train Accuracy per Classifier for Spanish PAN@CLEF corpus

Features LR SVM RF AdaBoost MLP LDA NB KNN

unigrams 0.9200 0.9800 0.7666 0.7500 1.0000 0.8000 0.8733 0.8900
bigrams 0.9300 0.9333 0.7700 0.7633 0.9800 0.8566 0.9000 0.8166
skipgrams 0.9266 0.8766 0.7600 0.7933 0.9033 0.8166 0.8666 0.9200
uni + bi 0.9300 0.9700 0.7733 0.7600 0.9966 0.8366 1.0000 0.8666
uni + skip 0.9300 0.9633 0.7866 0.7766 1.0000 0.8033 1.0000 0.9133
uni+bi+skip 0.9366 0.9566 0.7933 0.7700 0.9966 0.8066 1.0000 0.8866

5.4 Fake News Detection - Spanish

The solution approach for this corpus is very similar to the PAN@CLEF Spanish corpus,
only a few details are changed. This section describes the results obtained from the
development of this solution approach and the changes that are relevant to explain.

5.4.1 Text Preprocessing

Table 5.15 presents the differences of some posts according to the version used for this
corpus. This corpus contains the headline and the body of the news articles and are
concatenated during this step. There are only two dataset versions since numbers are
already tagged.

Table 5.15: Dataset versions for FakeDes@Iberlef 2021

Dataset Version Transformed text

Original el Chocolate Abuelita, el cual existe desde *NUMBER*,
teniendo como imagen a dona Sara García desde *NUMBER*

Version 1 el chocolate abuelita , el cual existe desde zznumberzz ,
teniendo como imagen a dona sara garcía desde zznumberzz

Version 2 el chocolate abuelita el cual existe desde zznumberzz teniendo
como imagen a dona sara garcía desde zznumberzz

5.4.2 Hyperparameter Selection

Table 5.16 and Table 5.17 shows the best hyperparameters found for each classifier and the
dataset version. This selection is done with a 3-repeated 5-fold cross-validation method
in order to get more accurate results when training every classifier. Some algorithms have
elevated computation cost when using all features for training, so TF-IDF restriccions such
as min_df and max_df were required. Since this corpus is not related with Twitter, some
statistical features are removed. The following list describes the 11 features considered for
the statistical classifier:
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1. Number of words

2. Number of characters

3. Number of punctuation characters

4. Number of "zznumberzz"

5. Number of dot characters

6. Number of comma characters

7. Number of quotes

8. Number of line spaces

9. Number of accents

10. Number of uppercase letters

11. Lexical Diversity

Table 5.16: Best hyperparameters found for FakeDes@Iberlef 2021 classifiers, including dataset
version and the min_df and max_df parameters for TF-IDF. - Part 1/2

Classifier N-gram
Type

version min max Classifier
hyperparameters

LR unigrams 1 1 1.0 C=100
LR bigrams 1 1 1.0 C=1000
LR skipgrams 1 1 1.0 C=1000
RF unigrams 2 1 1.0 n_estimators=200,

max_features=1.0
RF bigrams 1 1 1.0 n_estimators=200,

max_features=1.0
RF skipgrams 1 2 1.0 n_estimators=200,

max_features=0.5
SVM unigrams 1 1 1.0 C=100
SVM bigrams 1 1 1.0 C=1
SVM skipgrams 3 3 1.0 C=1
AdaBoost unigrams 1 1 1.0 learning_rate=0.1
AdaBoost bigrams 1 1 1.0 learning_rate=0.01
AdaBoost skipgrams 1 3 1.0 learning_rate=0.01
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Table 5.17: Best hyperparameters found for FakeDes@Iberlef 2021 classifiers, including dataset
version and the min_df and max_df parameters for TF-IDF. Statistical LR is the classifier which
works with statistical features only, so no N-gram is required. - Part 2/2

Classifier N-gram
Type

version min max Classifier
hyperparameters

MLP unigrams 1 1 1.0 hidden_layer_sizes=(200),
activation=logistic

MLP bigrams 2 1 1.0 hidden_layer_sizes=(200,
100), activation=logistic

MLP skipgrams 2 1 1.0 hidden_layer_sizes=(200,100),
activation=logistic

Naive Bayes unigrams 1 1 1.0 alpha=0.1
Naive Bayes bigrams 1 1 1.0 alpha=0.1
Naive Bayes skipgrams 2 1 1.0 alpha=0.1
KNN unigrams 1 1 1.0 p=2, n_neighbors=13
KNN bigrams 1 1 1.0 p=2, n_neighbors=11
KNN skipgrams 2 2 1.0 p=2, n_neighbors=11
LDA unigrams 2 1 1.0 n_components=None
LDA bigrams 1 1 1.0 n_components=None
LDA skipgrams 1 1 1.0 n_components=None
Statistical
LR

11 features C=1

5.4.3 Feature Selection

Table 5.18 shows the difference of features size when using SHAP as a feature selection
method. The process of selection is the following:

1. Evaluate the classifier for each k -fold using SHAP

2. Get the absolute SHAP value per feature, adding the absolute value obtained for
each input from validation data and sort them in decreasing order

3. Filter features with the lowest value of contribution. A value of zero means the
feature is not relevant for the classifier and it can be removed. The standard threshold
value used in this part of the work is 0.01

4. For each k -fold, select k sorted features that were remained from previous step and
train a new classifier

5. Get the accuracy and repeat the previous step until all features were explored

6. Analyze the results and select the best subset of features. It is determined with the
maximum accuracy found

7. Join all subsets of features found in order to get the best features for the classifier
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The step 4 of the previous process is complex since there is no optimal threshold that
can be applied in order to get the best features. This work explores several heuristics
which are described in the following list:

1. The minimum subset of features where the maximum accuracy is found

2. The maximum subset of features where the maximum accuracy is found

3. The second minimum subset of features where the maximum accuracy is found

4. The subset of features where the train dataset achieves its maximum accuracy score

5. Some percentage of features, which are from 10% to 60% of the features

Table 5.18: Mean Accuracy per feature selection proposal

Feature
Set

LR RF SVM AdaBoost MLP LDA NB KNN

min 0.8158 0.8129 0.7468 0.7740 0.8067 0.7604 0.7898 0.7282
sec 0.8149 0.8127 0.7468 0.7740 0.8067 0.7604 0.7898 0.7282
max 0.8141 0.8126 0.7468 0.7740 0.8067 0.7604 0.7898 0.7282
acc 0.8100 0.8053 0.7524 0.7759 0.7985 0.7507 0.7865 0.7100
10% 0.8120 0.8025 0.7544 0.7753 0.7949 0.7481 0.7838 0.6892
20% 0.8122 0.8041 0.7548 0.7754 0.7938 0.7464 0.7807 0.6641
30% 0.8129 0.8043 0.7555 0.7732 0.7928 0.7468 0.7782 0.6448
40% 0.8139 0.8044 0.7557 0.7730 0.7925 0.7474 0.7773 0.6455
50% 0.8142 0.8052 0.7546 0.7731 0.7925 0.7488 0.7762 0.6465
60% 0.8141 0.8062 0.7524 0.7725 0.7928 0.7498 0.7754 0.6487

5.4.4 Trained Classifiers

Table 5.21 shows the results of the training step of each classifier. Since unigrams get the
best results of the n-grams used, they are combined with the others in order to obtain a
new classifier that can be used for the final ensemble algorithm. The ensemble algorithm
is created using the predicted results of each classifier.
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Table 5.19: Feature Selection for FakeDes@Iberlef 2021 corpus - Part 1/2

Classifier N-gram Type Features Selected
features

Percentage

LR unigrams 24,408 4,590 18.81%
LR bigrams 126,829 8,704 6.86%
LR skipgrams 537,084 21,528 4.01%
LR unigrams+bigrams 151,237 13,294 8.79%
LR unigrams+skipgrams 561,492 26,118 4.65%
LR unigrams+bigrams+skipgrams 688,321 34,822 5.06%
SVM unigrams 24,408 5,544 22.71%
SVM bigrams 126,829 14,420 11.37%
SVM skipgrams 44,120 22,600 51.22%
SVM unigrams+bigrams 151,237 19,964 13.20%
SVM unigrams+skipgrams 68,528 28,144 41.07%
SVM unigrams+bigrams+skipgrams 195,357 42,564 21.79%
RF unigrams 24,384 31 0.13%
RF bigrams 126,829 2,702 2.13%
RF skipgrams 88,557 2,619 2.96%
RF unigrams+bigrams 151,213 2,733 1.81%
RF unigrams+skipgrams 112,941 2,650 2.35%
RF unigrams+bigrams+skipgrams 239,770 5,352 2.23%
AdaBoost unigrams 24,408 308 1.26%
AdaBoost bigrams 126,829 1,500 1.18%
AdaBoost skipgrams 44,120 2,260 5.12%
AdaBoost unigrams+bigrams 151,237 1,808 1.20%
AdaBoost unigrams+skipgrams 68,528 2,568 3.75%
AdaBoost unigrams+bigrams+skipgrams 195,357 4,068 2.08%
MLP unigrams 24,408 6,160 25.24%
MLP bigrams 126,902 12,600 9.93%
MLP skipgrams 533,510 22,500 4.22%
MLP unigrams+bigrams 151,310 18,760 12.40%
MLP unigrams+skipgrams 557,918 28,660 5.14%
MLP unigrams+bigrams+skipgrams 684,820 41,260 6.02%
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Table 5.20: Feature Selection for FakeDes@Iberlef 2021 corpus - Part 2/2

Classifier N-gram Type Features Selected
features

Percentage

LDA unigrams 24,384 3,289 13.49%
LDA bigrams 126,829 5,120 4.04%
LDA skipgrams 537,084 4,968 0.92%
LDA unigrams+bigrams 151,213 8,409 5.56%
LDA unigrams+skipgrams 561,468 8,257 1.47%
LDA unigrams+bigrams+skipgrams 688,297 13,377 1.94%
NB unigrams 24,408 4,845 19.85%
NB bigrams 126,829 8,096 6.38%
NB skipgrams 533,510 14,272 2.68%
NB unigrams+bigrams 151,237 12,941 8.56%
NB unigrams+skipgrams 557,918 19,117 3.43%
NB unigrams+bigrams+skipgrams 684,747 27,213 3.97%
KNN unigrams 24,408 6,160 25.24%
KNN bigrams 126,829 4,326 3.41%
KNN skipgrams 79,262 42,168 53.20%
KNN unigrams+bigrams 151,237 10,486 6.93%
KNN unigrams+skipgrams 103,670 6,166 5.95%
KNN unigrams+bigrams+skipgrams 230,499 10,492 4.55%

Table 5.21: Accuracy of Train dataset for FakeDes@Iberlef 2021 corpus

Features LR SVM RF AdaBoost MLP LDA NB KNN

unigrams 0.8067 0.7966 0.7491 0.7728 0.8000 0.7593 0.7762 0.7762
bigrams 0.8203 0.8271 0.7186 0.7898 0.8135 0.7288 0.8033 0.7559
skipgrams 0.8033 0.8033 0.7491 0.7457 0.7932 0.7661 0.7627 0.4813
uni + bi 0.8135 0.8135 0.7627 0.7966 0.8237 0.7457 0.8135 0.7898
uni + skip 0.8237 0.8169 0.7864 0.7796 0.8033 0.7864 0.7796 0.7762
uni+bi+skip 0.8271 0.8203 0.7796 0.8067 0.8067 0.7762 0.8033 0.7898



6 Results and Interpretations

6.1 Fake News Spreaders Profiling - English

6.1.1 Results

Table 6.1 and Table 6.2 show the accuracy obtained for all individual classifiers. SVM
classifier with unigrams and bigrams and LR with unigrams get the best results, with an
accuracy of 0.745. Table 6.3 presents the results of the final ensemble model when working
with a LR meta classifier, and the use of majority voting, including soft and hard voting.
When working as a majority hard voting classifier, the model reaches its best accuracy
result of 0.730, which is lower than the best individual classifier result.

Table 6.1: Accuracy of Test dataset for English PAN@CLEF classifiers - Part 1/2

Classifier N-gram Type Feature Selection Accuracy

LR unigram SHAP 0.745
LR uni-bigram SHAP 0.745
SVM uni-bigram LIME 0.745
SVM uni-skipgram LIME 0.740
LR uni-bi-skipgram SHAP 0.735
SVM uni-bi-skipgram LIME 0.735
AdaBoost uni-bi-skipgram SHAP 0.735
RF uni-skipgram SHAP 0.730
RF uni-bigram SHAP 0.725
LR uni-skipgram SHAP 0.720
SVM bigram LIME 0.720
RF bigram SHAP 0.715
RF uni-bi-skipgram SHAP 0.715
MLP unigram LIME 0.715
MLP uni-bigram LIME 0.715
MLP uni-bi-skipgram LIME 0.715
SVM unigram LIME 0.710
AdaBoost unigram SHAP 0.710

39
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Table 6.2: Accuracy of Test dataset for English PAN@CLEF classifiers - Part 2/2

Classifier N-gram Type Feature Selection Accuracy

MLP uni-skipgram LIME 0.710
LDA unigram SHAP 0.710
LDA uni-bi-skipgram SHAP 0.710
Naive Bayes bigram SHAP 0.710
LR skipgram SHAP 0.705
RF unigram SHAP 0.705
LDA uni-skipgram SHAP 0.705
LR bigram SHAP 0.700
RF skipgram SHAP 0.700
SVM skipgram LIME 0.700
LDA skipgram SHAP 0.700
AdaBoost uni-skipgram SHAP 0.695
MLP bigram LIME 0.695
LDA bigram SHAP 0.695
LDA uni-bigram SHAP 0.695
Naive Bayes uni-bigram SHAP 0.695
Naive Bayes unigram SHAP 0.690
AdaBoost skipgram SHAP 0.685
MLP skipgram LIME 0.685
AdaBoost bigram SHAP 0.680
AdaBoost uni-bigram SHAP 0.675
Naive Bayes uni-bi-skipgram SHAP 0.665
KNN uni-skipgram LIME 0.660
KNN skipgram LIME 0.655
KNN uni-bigram LIME 0.650
LR stats SHAP 0.645
KNN bigram LIME 0.635
KNN uni-bi-skipgram LIME 0.630
KNN unigram LIME 0.625
Naive Bayes uni-skipgram SHAP 0.590
Naive Bayes skipgram SHAP 0.550

Table 6.3: Metric Results for Test dataset - English PAN@CLEF classifiers

Classifier Precision Recall Accuracy F1-Score

Ensemble Model with LR 0.6667 0.7000 0.6750 0.6829
Ensemble Model using Soft Voting 0.7157 0.7300 0.7200 0.7228
Ensemble Model using Hard Voting 0.7170 0.7600 0.7300 0.7379
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6.1.2 Model Interpretation

The Hard Voting model gets the best results of the ensemble model approaches. It
gives equal importance for every classifier since it works as a majority voting classifier.
The generalization resulted better because it considers the best classifiers for the final
prediction. In addition, with a deeper analysis of the behavior of each individual classifier,
the theoretical maximum accuracy that the best ensemble approach can get is 0.975. Two
hundred predictions are evaluated and 5 of them cannot be evaluated correctly with none
of the classifiers described in Section 6.1.1.

The Ensemble Model with LR gets the worst results of the ensemble model approaches.
Figure 6.1 is the interpretation of which models have better importance to get its final
predictions. Comparing these classifiers with Table 5.7, the conclusion is that this ensemble
classifier is considering the classifiers with the best train accuracy results and apparently,
they are not generalizing the problem sufficiently enough to get a better score. The best
individual classifiers which generalized better the problem were not considered in the top
15 of the most important classifiers, this could be the main reason its final results are not
as good as they should be. The red tone represents a greater value for the feature, which
in this case means a high probability.

Figure 6.1: Top 15 of most important classifiers for ensemble model

The top 15 most important features used by the top 5 best classifiers are joined and
described in Table 6.4. The interpretation for these features is: the more they increase
their TF-IDF value, the more prediction is affected, according to the column they belong
to. Top relevant features for all classifiers can be analyzed in Appendix B.
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Table 6.4: Most important features used by English PAN@CLEF classifiers

Real news Fake news

zzuserzz trump
zzhashzz zzurlzz obama
zzhashzz trump s
zzrtzz donald
zzuserzz zzuserzz video
zzrtzz zzuserzz meghan
zzurlzz zzurlzz watch
zzemojizz she
zzuserzz zzurlzz report
2020 birthday
review clinton
tv hillary
- democrats
series
season
ps zznumberzz
everyone
ps
via
how to

Figures from 6.2 to 6.5 represent the interpretation of the predictions that none of the
classifiers can predict correctly. They are based on the best classifier developed.

Figure 6.2 shows the user is not a fake news spreader. According to Table 6.4, the use
of Twitter entities like user’s mentions, URLs, etc. have an impact towards real news, but
apparently, this input is an exception to the learned rule and that is why it cannot be
predicted correctly. The same happens with Figure 6.3, Figure 6.4 and Figure 6.6. Figure
6.5 is the opposite, due to the absence of Twitter entities and the presence of features such
as "hillary" and "trump", the user account is labeled as fake news spreader. As a general
conclusion, these classifiers learned how to detect fake news spreaders accounts considering
the presence or absence of Twitter entities mainly. Also, texts related to political people
such as "trump", "hillary" or "obama" are considered factors to fake news texts.

Figure 6.2: Interpretation of the best classifier’s prediction 1
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Figure 6.3: Interpretation of the best classifier’s prediction 2 - English

Figure 6.4: Interpretation of the best classifier’s prediction 3 - English

Figure 6.5: Interpretation of the best classifier’s prediction 4 - English

Figure 6.6: Interpretation of the best classifier’s prediction 5 - English
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6.2 Fake News Spreaders Profiling - Spanish

6.2.1 Results

Table 6.5 and Table 6.6 shows the results obtained for all individual classifiers, when
predicts the test dataset. SVM classifier for combined unigrams and bigrams gets the best
result, with an accuracy of 0.82. Table 6.7 presents the results of three final ensemble
models. The first one is a LR meta classifier, and the second and third use soft and hard
voting respectively. When working with the LR classifier, the ensemble model reaches its
best accuracy result of 0.795, which is lower than the best individual classifier.

Table 6.5: Accuracy of Test dataset for Spanish PAN@CLEF classifiers - Part 1/2

Classifier N-gram Type Feature Selection Accuracy

SVM uni-bigram LIME 0.820
SVM uni-skipgram LIME 0.800
MLP uni-bigram LIME 0.800
MLP uni-skipgram LIME 0.800
SVM uni-bi-skipgram LIME 0.795
MLP uni-bi-skipgram LIME 0.795
LR uni-bigram SHAP 0.785
LR unigram SHAP 0.780
LR uni-skipgram SHAP 0.780
LR uni-bi-skipgram SHAP 0.780
SVM bigram LIME 0.780
MLP unigram LIME 0.780
MLP skipgram LIME 0.780
SVM unigram LIME 0.775
KNN uni-skipgram LIME 0.775
RF uni-bigram SHAP 0.770
KNN skipgram LIME 0.770
LR skipgram SHAP 0.765
RF uni-bi-skipgram SHAP 0.765
SVM skipgram LIME 0.765
AdaBoost uni-skipgram SHAP 0.765
LR bigram SHAP 0.760
AdaBoost uni-bi-skipgram SHAP 0.760
MLP bigram LIME 0.760
LDA bigram SHAP 0.760
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Table 6.6: Accuracy of Test dataset for Spanish PAN@CLEF classifiers - Part 2/2

Classifier N-gram Type Feature Selection Accuracy

RF uni-skipgram SHAP 0.755
KNN uni-bigram LIME 0.755
KNN uni-bi-skipgram LIME 0.755
AdaBoost uni-bigram SHAP 0.750
LR stats SHAP 0.750
AdaBoost skipgram SHAP 0.745
LDA uni-bigram SHAP 0.745
RF unigram SHAP 0.740
AdaBoost bigram SHAP 0.740
RF skipgram SHAP 0.735
KNN unigram LIME 0.735
KNN bigram LIME 0.735
AdaBoost unigram SHAP 0.730
Naive Bayes bigram SHAP 0.730
RF bigram SHAP 0.725
LDA unigram SHAP 0.725
LDA uni-bi-skipgram SHAP 0.720
Naive Bayes uni-bi-skipgram SHAP 0.720
Naive Bayes unigram SHAP 0.715
LDA skipgram SHAP 0.710
Naive Bayes uni-bigram SHAP 0.705
LDA uni-skipgram SHAP 0.700
Naive Bayes skipgram SHAP 0.700
Naive Bayes uni-skipgram SHAP 0.685

Table 6.7: Metric Results for Test dataset - Spanish PAN@CLEF classifiers

Classifier Precision Recall Accuracy F1-Score

Ensemble Model using LR 0.8242 0.7500 0.7950 0.7853
Ensemble Model using Soft Voting 0.8500 0.6800 0.7800 0.7556
Ensemble Model using Hard Voting 0.8415 0.6900 0.7800 0.7582
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6.2.2 Model Interpretation

In this case, the Ensemble Model with LR obtains the best results of the ensemble
model approaches. Figure 6.7 shows which models have more importance to get the
final predictions. Comparing these classifiers with Table 5.14, the conclusion is that this
ensemble classifier is considering the classifiers with the best train accuracy results (the
top 4 is integrated by MLP versions) and apparently, they are generalizing the problem
sufficiently enough to get a better score. Surprisingly, the best individual classifier is not
considered at the top most important classifiers for this ensemble model.

Figure 6.7: Top 15 of most important classifiers for ensemble model

With a deeper analysis of the behavior of each individual classifier, the theoretical
maximum accuracy that the best ensemble approach can get is 0.96 using all classifiers.
Two hundred predictions are evaluated and 7 of them cannot be evaluated correctly with
none of the classifiers. The top 15 most important features used by the top 5 best classifiers
are joined and described in Table 6.8. The interpretation of these features is: the more
they increases their TF-IDF value, the more affect the prediction, according to the column
they belong to. Top relevant features for all classifiers can be analyzed in Appendix B.

Figures from 6.8 to 6.11 represents some predictions that none of the classifiers can
predict correctly. They are based on the best classifier developed which is SVM using
unigrams and bigrams. Due to SVM has elevated computational cost when SHAP is
applied, LIME is used instead.
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Table 6.8: Most important features used by Spanish PAN@CLEF classifiers

Real news Fake news

zzhashzz unete
zzuserzz zzuserzz video
zzuserzz sánchez
zzhashzz zzhashzz unete zzuserzz
zzurlzz zzhashzz zzurlzz unete
zzrtzz iglesias
zzrtzz zzuserzz pedro
en zzhashzz zzurlzz vía
zzuserzz y dinero
madrid facebook
de zzhashzz podemos
qué amor
zzemojizz dios
sí venezuela
algo secreto
ha
creo
os

Figure 6.8 shows the user is not a fake news spreader. According to Table 6.8, the
use of Twitter entities like user’s mentions, URLs, etc., have an impact towards real news,
but apparently, this input is an exception to the learned rule and that is why it cannot
be predicted correctly. The same happens with Figure 6.9, Figure 6.10 and Figure 6.11.
All 7 incorrect predictions have this problem, and in conclusion, this rule related with
the presence and absence of Twitter entities is less general than English corpus. Another
consideration is related with the most important features, where no specific topic can be
seen at first sight, hence, this model can be considered more general than English one,
and it can be an explanation about why in PAN@CLEF 2020, the English corpus is more
complicated to classify than Spanish corpus.
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Figure 6.8: Interpretation of the best classifier’s prediction 1 - Spanish

Figure 6.9: Interpretation of the best classifier’s prediction 2 - Spanish
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Figure 6.10: Interpretation of the best classifier’s prediction 3 - Spanish

Figure 6.11: Interpretation of the best classifier’s prediction 4 - Spanish
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6.3 Comparison with PAN@CLEF 2020 Results

Table 6.9 presents the top 25 better results for the event, and they are compared to the
results obtained by this work. The best classifier developed in this work surpass the event’s
first places. Considering that over 60 teams participated in this event, having solutions
placed at the top 10 is meaningful. This proves that SHAP values and LIME values can
be used as feature selection methods and they can get competitive results when extracting
important features.

Table 6.9: Comparison with PAN@CLEF 2020 Results

Participant EN Accuracy ES Accuracy Mean Accuracy

SVM+uni-bigrams 0.745 0.820 0.7825
bolonyai20 [31] 0.750 0.805 0.7775
pizarro20 [23] 0.735 0.820 0.7775
LR+uni-bigrams 0.745 0.785 0.7650
SVM+uni-bi-skipgrams 0.735 0.795 0.7650
LR+unigrams 0.745 0.780 0.7625
LR+uni-bi-skipgrams 0.735 0.780 0.7575
koloski20 0.715 0.795 0.7550
deborjavalero20 0.730 0.780 0.7550
vogel20 0.725 0.785 0.7550
Ensemble Hard Voting 0.730 0.780 0.7550
higueraporras20 0.725 0.775 0.7500
tarela20 0.725 0.775 0.7500
Ada+uni-bi-skipgrams 0.735 0.760 0.7475
babaei20 0.725 0.765 0.7450
staykovski20 0.705 0.775 0.7400
hashemi20 0.695 0.785 0.7400
estevecasademunt20 0.710 0.765 0.7375
castellanospellecer20 0.710 0.760 0.7350
shrestha20 0.710 0.755 0.7325
tommasel20 0.690 0.775 0.7325
johansson20 0.720 0.735 0.7275
murauer20 0.685 0.770 0.7275
espinosagonzales20 0.690 0.760 0.7250
ikae20 0.725 0.725 0.7250
morenosandoval20 0.715 0.730 0.7225
majumder20 0.640 0.800 0.7200
sanchezromero20 0.685 0.755 0.7200
lopezchilet20 0.680 0.755 0.7175
nadalalmela20 0.680 0.755 0.7175
carrodve20 0.710 0.725 0.7175
gil20 0.695 0.735 0.7150
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6.4 Fake News Detection - Spanish

6.4.1 Results

Table 6.10 and Table 6.11 shows the results obtained for all classifiers, when predicts
individually the test dataset outcomes. LR classifier for unigrams, bigrams and skipgrams
combined gets the best result, with an F1 score of 0.8197. Table 6.12 presents the results
of the final ensemble model when working with the use of majority voting, including soft
and hard voting. When working as a majority hard voting classifier, the model reaches
its best F1 score of 0.8028 which is lower than the best individual classifier score. These
scores In this particular case, individual results cannot be compared, by the time this work
is written, this event is taking place and there are several limitations to test multiple times
different solution proposals.

Table 6.10: F1 Score for Development Dataset at FakeDes@Iberlef 2021 - Part 1/2

Classifier N-gram Type Feature Selection Accuracy

LR uni-bi-skipgrams SHAP 0.8197
LR uni-skipgrams SHAP 0.8156
SVM bigrams LIME 0.8089
SVM uni-bi-skipgrams LIME 0.8086
SVM uni-skipgrams LIME 0.8085
MLP bigrams LIME 0.8070
AdaBoost uni-bigrams SHAP 0.8068
LR bigrams SHAP 0.8058
LR uni-bigrams SHAP 0.8042
MLP uni-bi-skipgrams LIME 0.8028
MLP uni-bigrams LIME 0.8027
NB uni-bigrams SHAP 0.8000
LR unigrams SHAP 0.7985
SVM uni-bigrams LIME 0.7985
MLP skipgrams LIME 0.7932
MLP unigrams LIME 0.7929
MLP uni-skipgrams LIME 0.7916
LR skipgrams SHAP 0.7913
SVM skipgrams LIME 0.7913
NB uni-bi-skipgrams SHAP 0.7883
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Table 6.11: F1 Score for Development Dataset at FakeDes@Iberlef 2021 - Part - Part 2/2

Classifier N-gram Type Feature Selection Accuracy

RF uni-bi-skipgrams SHAP 0.7880
SVM unigrams LIME 0.7810
NB bigrams SHAP 0.7786
RF skipgrams SHAP 0.7781
AdaBoost uni-bi-skipgrams SHAP 0.7781
AdaBoost uni-skipgrams SHAP 0.7770
LDA uni-skipgrams SHAP 0.7741
AdaBoost skipgrams SHAP 0.7718
NB uni-skipgrams SHAP 0.7670
RF uni-skipgrams SHAP 0.7661
AdaBoost unigrams SHAP 0.7642
NB unigrams SHAP 0.7642
KNN uni-bigrams LIME 0.7633
KNN uni-bi-skipgrams LIME 0.7633
RF unigrams SHAP 0.7612
RF uni-bigrams SHAP 0.7606
LDA uni-bi-skipgrams SHAP 0.7555
KNN unigrams LIME 0.7555
KNN uni-skipgrams LIME 0.7555
AdaBoost bigrams SHAP 0.7544
LDA skipgrams SHAP 0.7544
LDA unigrams SHAP 0.7491
NB skipgrams SHAP 0.7482
RF bigrams SHAP 0.7405
KNN bigrams LIME 0.7352
LDA uni-bigrams SHAP 0.7232
LDA bigrams SHAP 0.6992
LR statistical

features
SHAP 0.6863

KNN skipgrams LIME 0.6498

Table 6.12: Ensemble Model Results for FakeDes@Iberlef 2021 Development Dataset

Classifier Precision Recall Accuracy F1-Score

Ensemble Model using LR 0.8154 0.7465 0.7966 0.7794
Ensemble Model using Soft Voting 0.8058 0.7887 0.8068 0.7972
Ensemble Model using Hard Voting 0.8028 0.8028 0.8102 0.8028
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6.4.2 Model Interpretation

In this case, the Ensemble Model with Hard Voting gets the best results of the ensemble
model approaches. This approach considers all individual classifiers with the same impor-
tance and the prediction is a majority voting. With a deeper analysis of the behavior
of each individual classifier, the theoretical maximum accuracy that the best ensemble
approach can get using the development dataset is 1.0, which means all development
inputs can be predicted correctly using the individual classifiers developed. The top 15
most important features used by the top 5 best classifiers are joined and described in
Table 6.13. The interpretation of these features is: the more they increases their TF-IDF
value, the more affect the prediction, according to the column they belong to. Top relevant
features for all classifiers can be analyzed in Appendix B.

Table 6.13: Most important features used by Spanish FakeDes@Iberlef classifiers

Real news Fake news

en el : "
. en , y
zznumberzz de , pues
en zznumberzz no se
. el ya que
de zznumberzz ya
" , !
. la todo
el zznumberzz "
zznumberzz . esto
zznumberzz , :
, " ha
zznumberzz mil pues
zznumberzz y lo
en la será
zznumberzz se
tiene nos
’ que
aseguró de acuerdo
mil
;
sobre
dijo
- zznumberzz
. zznumberzz
?
méxico
gobierno
contra
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According to Table 6.13, the classifiers are focusing in punctuation and numbers’
presence. No topic can be related at first sight to these features, and although there
are no test results, it is possible to interpret some test inputs in order to understand the
model’s behaviour. The following text is an input of the test dataset which is labeled
incorrectly, due to it is clarifying fake information:

’Agua con limón y bicarbonato no previene el Covid-19 Un té de limón con bicarbonato
no elimina el coronavirus. Se dice que esta mezcla "mata de manera inmediata el virus"
y "lo elimina completamente del cuerpo".Tal afirmación viene sostenida por el siguiente
argumento: "Estos dos componentes alcalinizan el sistema inmunológico, ya que, cuando
cae la noche, el sistema se acidifica y bajan las defensas". Datos La mezcla de limón y
bicarbonato en agua caliente no sirve para combatir el coronavirus ni alcaliniza el organismo.
No se ha demostrado que ningún alimento o bebida proteja contra el coronavirus. El doctor
Jaime Barrio, del Consejo Científico del Colegio Oficial de Médicos de Madrid (Icomem),
recuerda que la propia Organización Mundial de la Salud (OMS) y otros organismos
oficiales se han pronunciado en este sentido. Del mismo modo, las autoridades sanitarias
espanolas precisan que "no hay que tomar precauciones especiales" con los alimentos...’

Figure 6.12: Interpretation of an incorrect prediction 4 - FakeDes@Iberlef

Figure 6.12 shows the most important features used to predict that the text is related
to fake news. Some features considered as fake news indicators shown in Table 6.13 are
presented in this example (features in red color), and they provoke this result.

On the other hand, here is an example when the classifier is working correctly:

’Exempleada de Facebook denuncia nulas medidas para evitar manipulación política
Sabemos que además de ser un buen lugar para compartir con nuestros seres queridos,
Facebook es una herramienta de comunicación poderosa para hacer llegar todo tipo de
mensajes a millones de personas, por lo que también puede ser un arma poderosa. Así lo
sabe Sophie Zhang, una extrabajadora de la empresa que aseguró en un informe sobre las
irregularidades de la red social estar segura de "tener sangre en las manos" luego de haber
colaborado con la companía. Según la ingeniera, Facebook ha sido lento en reaccionar o
ha ignorado la existencia de campanas organizadas para distribuir desinformación política
e influir en los resultados de elecciones en países de todo el mundo, según el informe
interno de la exempleada de la companía. Te recomendamos: Facebook elimina cuentas
que buscaban influir de forma política en América Latina "La verdad es que simplemente
no nos preocupábamos lo suficiente como para’
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Figure 6.13: Interpretation of a correct prediction 4 - FakeDes@Iberlef

Here the classifier predicts this text as real information, and in fact it is. According
to Table 6.13, the presence of zznumberzz mil and de ausence of ya have an impact to the
result towards real news detection. The real article can be found in [43].
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6.5 Comparison with FakeDes@Iberlef 2021 Event

Table 6.14 presents the results evaluated at CodaLab Platform. The event has a limitation
of 2 submissions per user and the evaluation method is using the F1-Score for "Fake" class.
The best approaches can compete with the other participants, and as a conclusion, the
solution approach for this model can solve both tasks as well as other works found in the
State of the Art.

Table 6.14: Comparison with FakeDes@Iberlef 2021 - Development Dataset Results

Classifier F1-Score

ClaudiaPorto 0.8498
GuanZhengyi 0.8497
vitiugin 0.8198
LR+Uni-bi-skipgrams 0.8197
Ensemble Model 0.8028
spalenza 0.7973
Maoqin 0.7865
gamallo 0.7655
luiso91 0.7576
jorge.reyes 0.7402
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6.6 Summary of Best Classifiers per Corpus

As a summary, Figure 6.14, Figure 6.15 and Figure 6.16 presents the top 10 best classifiers
developed in this work for each corpus when applying SHAP and LIME as feature selector
methods. The figures present the accuracy and the F1 score respectively.

Figure 6.14: Best classifiers for PAN@CLEF 2020 - English

Figure 6.15: Best classifiers for PAN@CLEF 2020 - Spanish
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Figure 6.16: Best classifiers for FakeDes@Iberlef



7 Conclusions and Future Work

7.1 Conclusions

7.1.1 Learning from experiment failures

Fake news identification can be a complex problem due to high data representations.
This is the main reason a feature selection method using SHAP and LIME is considered.
They provide a way to interpret results and focus on relevant features in order to give a
better solution approach. About features used in this work, emojis and emoticons do not
provide good results when using them as individual features. The same happens with stop
words with length less than 5 characters and, many classifiers do not consider punctuation
characters as features. Skipgrams are more complex than bigrams and unigrams, so
additional experiments are analyzed in order to select a good representation when using
them. One of them is to consider reversed texts, and by this approach, the importance
of having two n-grams in a text does not take into consideration the sequence of them.
Unfortunately, this approach did not give better results than using normal skipgrams,
hence it was not contemplated in the final solution.

7.1.2 Ensemble Model

The purpose of developing an ensemble model in this work, is to compare multiple classifiers
found in literature and take advantages from each one of them. Although it did not
have the best performance in results, it cannot be discarded because it can provide more
generalization given the different characteristics each classifier takes in consideration.

7.1.3 Interpretations

One of the main goal of this work is the interpretation of the final model’s outcomes, using
a XAI. SHAP and LIME techniques provide the contribution per feature when predicting
an outcome, and by this way, users can interpret the model’s knowledge about the task.
This particular interpretation can provide enough information to give a set of rules the
model is considering. SHAP time cost is high when working with classifiers that does not
have an efficient way to calculate their feature contributions. SVM, KNN and MLP are
the most expensive models and an exact interpretation of them are analyzed using LIME.
For the PAN@CLEF 2020 corpus, the interpretation is that the models are learning which
topics are most common for fake news spreaders in both languages, which it might imply

59
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this is not a general solution for the problem. For the FakeDes@Iberlef 2021 corpus, the
interpretation is done through specific words and punctuation for a single topic which is
politics. In this case, the conclusion is that the model has learned specific features for fake
news detection.

7.1.4 Comparison between English and Spanish

In PAN@CLEF event, English is the most difficult language to work with. Assuming the
interpretation previously described, it might be due to the difficulty of split users by the
topics they talk about. Assuming that a topic can be relevant to the tasks, it is possible to
build a bilingual approach using the properties of this work, or a new corpus where topic
is not relevant could be considered in order to get a more general solution for both tasks.

7.1.5 Considerations

To consider a user account as fake spreader could not be ethical. Every user in most
of social media platforms have the right of publish what they want (of course with their
respective limitation and political rules of the platform) and being tagged as a "spread
fake news user" can be something to treat in a delicate way. The publication of this work
could help fake news spreaders to change their way they share information, and it could
be a explanation why this problem is evolving through time.

7.1.6 Applications

When there is a tendency about a topic that is relevant for general society, users want to
know as many information as they can obtain, but not all information is useful. If someone
wants to inform reliable information, he/she can use this work as an approach to detect
information that are fake for an specific problem. Of course, this work can improve its
results if more data is provided. This solution can complement a whole system where fake
news spreaders and fake news are detected, where each module focuses on different feature
representations in order to difficult users to hack the system detector.

7.2 Future Work

The analysis of other features such as sentiments, POS tagging, or embeddings can improve
the results of the present work. According to the State of the Art, all solution approaches
that considered this kind of data representation did not obtain better results than the
ones that used statistical and frequency features, but by using any XIA tool, it could be
possible to explain or at least have an idea about why they could not reach a better score.

The comparison with other feature selection methods can be a good justification about
why SHAP and LIME can be used for that kind of process, in addition, SHAP and LIME
methods can be compared and analyzed in order to select the better method for a task.
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Evaluating the predictions of this solution approach with other datasets and other
languages can explain deeper the process this work proposes, hence this model could work
with multilingual texts.
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8 Appendix A

8.1 Feature Selection Plots for English PAN@CLEF Classifiers

Figure 8.1: Accuracy per subset of relevant Features for AdaBoost using unigrams

Figure 8.2: Accuracy per subset of relevant Features for AdaBoost using bigrams
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Figure 8.3: Accuracy per subset of relevant Features for AdaBoost using skipgrams

Figure 8.4: Accuracy per subset of relevant Features for Logistic Regression using unigrams

Figure 8.5: Accuracy per subset of relevant Features for Logistic Regression using bigrams
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Figure 8.6: Accuracy per subset of relevant Features for Logistic Regression using skipgrams

Figure 8.7: Accuracy per subset of relevant Features for Support Vector Machine using unigrams

Figure 8.8: Accuracy per subset of relevant Features for Support Vector Machine using bigrams
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Figure 8.9: Accuracy per subset of relevant Features for Support Vector Machine using
skipgrams

Figure 8.10: Accuracy per subset of relevant Features for Random Forest using unigrams

Figure 8.11: Accuracy per subset of relevant Features for Random Forest using bigrams
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Figure 8.12: Accuracy per subset of relevant Features for Random Forest using skipgrams

Figure 8.13: Accuracy per subset of relevant Features for Multilayer Perceptron using unigrams

Figure 8.14: Accuracy per subset of relevant Features for Multilayer Perceptron using bigrams
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Figure 8.15: Accuracy per subset of relevant Features for Multilayer Perceptron using skipgrams

Figure 8.16: F1-Score per subset of relevant Features for Linear Discriminant Analysis using
unigrams

Figure 8.17: F1-Score per subset of relevant Features for Linear Discriminant Analysis using
bigrams
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Figure 8.18: F1-Score per subset of relevant Features for Linear Discriminant Analysis using
skipgrams

Figure 8.19: F1-Score per subset of relevant Features for Naive Bayes using unigrams

Figure 8.20: F1-Score per subset of relevant Features for Naive Bayes using bigrams
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Figure 8.21: F1-Score per subset of relevant Features for Naive Bayes using skipgrams

Figure 8.22: F1-Score per subset of relevant Features for K-Nearest Neighbors using unigrams

Figure 8.23: F1-Score per subset of relevant Features for K-Nearest Neighbors using bigrams
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8.2 Feature Selection Plots for Spanish PAN@CLEF Classifiers

Figure 8.24: Accuracy per subset of relevant Features for AdaBoost using unigrams

Figure 8.25: Accuracy per subset of relevant Features for AdaBoost using bigrams
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Figure 8.26: Accuracy per subset of relevant Features for AdaBoost using skipgrams

Figure 8.27: Accuracy per subset of relevant Features for Logistic Regression using unigrams

Figure 8.28: Accuracy per subset of relevant Features for Logistic Regression using bigrams
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Figure 8.29: Accuracy per subset of relevant Features for Logistic Regression using skipgrams

Figure 8.30: Accuracy per subset of relevant Features for Support Vector Machine using
unigrams

Figure 8.31: Accuracy per subset of relevant Features for Support Vector Machine using bigrams
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Figure 8.32: Accuracy per subset of relevant Features for Support Vector Machine using
skipgrams

Figure 8.33: Accuracy per subset of relevant Features for Random Forest using unigrams

Figure 8.34: Accuracy per subset of relevant Features for Random Forest using bigrams



CHAPTER 8. APPENDIX A 78

Figure 8.35: Accuracy per subset of relevant Features for Random Forest using skipgrams

Figure 8.36: Accuracy per subset of relevant Features for Multilayer Perceptron using unigrams

Figure 8.37: Accuracy per subset of relevant Features for Multilayer Perceptron using bigrams
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Figure 8.38: Accuracy per subset of relevant Features for Multilayer Perceptron using skipgrams

Figure 8.39: F1-Score per subset of relevant Features for Linear Discriminant Analysis using
unigrams

Figure 8.40: F1-Score per subset of relevant Features for Linear Discriminant Analysis using
bigrams
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Figure 8.41: F1-Score per subset of relevant Features for Linear Discriminant Analysis using
skipgrams

Figure 8.42: F1-Score per subset of relevant Features for Naive Bayes using unigrams

Figure 8.43: F1-Score per subset of relevant Features for Naive Bayes using bigrams
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Figure 8.44: F1-Score per subset of relevant Features for Naive Bayes using skipgrams

Figure 8.45: F1-Score per subset of relevant Features for K-Nearest Neighbors using unigrams

Figure 8.46: F1-Score per subset of relevant Features for K-Nearest Neighbors using bigrams
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8.3 Feature Selection Plots for FakeDes@Iberlef Corpus

Figure 8.47: F1-Score per subset of relevant Features for AdaBoost using unigrams

Figure 8.48: F1-Score per subset of relevant Features for AdaBoost using bigrams
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Figure 8.49: F1-Score per subset of relevant Features for AdaBoost using skipgrams

Figure 8.50: F1-Score per subset of relevant Features for Logistic Regression using unigrams

Figure 8.51: F1-Score per subset of relevant Features for Logistic Regression using bigrams
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Figure 8.52: F1-Score per subset of relevant Features for Logistic Regression using skipgrams

Figure 8.53: F1-Score per subset of relevant Features for Support Vector Machine using
unigrams

Figure 8.54: F1-Score per subset of relevant Features for Support Vector Machine using bigrams
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Figure 8.55: F1-Score per subset of relevant Features for Support Vector Machine using
skipgrams

Figure 8.56: F1-Score per subset of relevant Features for Random Forest using unigrams

Figure 8.57: F1-Score per subset of relevant Features for Random Forest using bigrams
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Figure 8.58: F1-Score per subset of relevant Features for Random Forest using skipgrams

Figure 8.59: F1-Score per subset of relevant Features for Multilayer Perceptron using unigrams

Figure 8.60: F1-Score per subset of relevant Features for Multilayer Perceptron using bigrams
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Figure 8.61: F1-Score per subset of relevant Features for Multilayer Perceptron using skipgrams

Figure 8.62: F1-Score per subset of relevant Features for Linear Discriminant Analysis using
unigrams

Figure 8.63: F1-Score per subset of relevant Features for Linear Discriminant Analysis using
bigrams
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Figure 8.64: F1-Score per subset of relevant Features for Linear Discriminant Analysis using
skipgrams

Figure 8.65: F1-Score per subset of relevant Features for Naive Bayes using unigrams

Figure 8.66: F1-Score per subset of relevant Features for Naive Bayes using bigrams
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Figure 8.67: F1-Score per subset of relevant Features for Naive Bayes using skipgrams

Figure 8.68: F1-Score per subset of relevant Features for K-Nearest Neighbors using unigrams

Figure 8.69: F1-Score per subset of relevant Features for K-Nearest Neighbors using bigrams
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9.1 Intepretation SHAP Plots for English PAN@CLEF
Classifiers

Figure 9.1: Top 20 of Most Important Features for Logistic Regression using unigrams
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Figure 9.2: Top 20 of Most Important Features for Logistic Regression using uni-bigrams

Figure 9.3: Top 20 of Most Important Features for Logistic Regression using uni-bi-skipgrams
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Figure 9.4: Top 20 of Most Important Features for Support Vector Machine Classifier using
uni-bigrams

Figure 9.5: Top 20 of Most Important Features for Support Vector Machine Classifier using
uni-skipgrams
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Figure 9.6: Top 20 of Most Important Features for Support Vector Machine Classifier using
uni-bi-skipgrams

Figure 9.7: Top 20 of Most Important Features for AdaBoost using uni-skipgrams
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Figure 9.8: Top 20 of Most Important Features for Random Forest using uni-skipgrams

Figure 9.9: Top 20 of Most Important Features for Random Forest using uni-bigrams
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Figure 9.10: Top 20 of Most Important Features for Logistic Regression using uni-skipgrams
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9.2 Intepretation SHAP Plots for Spanish PAN@CLEF
Classifiers

Figure 9.11: Top 20 of Most Important Features for Support Vector Machine Classifier using
uni-bigrams
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Figure 9.12: Top 20 of Most Important Features for Support Vector Machine Classifier using
uni-skipgrams

Figure 9.13: Top 20 of Most Important Features for MultiLayer Perceptron Classifier using
uni-bigrams
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Figure 9.14: Top 20 of Most Important Features for MultiLayer Perceptron Classifier using
uni-skipgrams

Figure 9.15: Top 20 of Most Important Features for Support Vector Machine Classifier using
uni-bi-skipgrams
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Figure 9.16: Top 20 of Most Important Features for MultiLayer Perceptron Classifier using
uni-bi-skipgrams

Figure 9.17: Top 20 of Most Important Features for Logistic Regression using uni-bigrams
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Figure 9.18: Top 20 of Most Important Features for Logistic Regression using unigrams

Figure 9.19: Top 20 of Most Important Features for Logistic Regression using uni-skipgrams
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Figure 9.20: Top 20 of Most Important Features for Logistic Regression using uni-bi-skipgrams



CHAPTER 9. APPENDIX B 102

9.3 Intepretation SHAP Plots for Spanish FakeDes@Iberlef
Classifiers

Figure 9.21: Top 20 of Most Important Features for Logistic Regression using uni-bi-skipgrams
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Figure 9.22: Top 20 of Most Important Features for Logistic Regression using uni-skipgrams

Figure 9.23: Top 20 of Most Important Features for Support Vector Machine using bigrams
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Figure 9.24: Top 20 of Most Important Features for Support Vector Machine using
uni-bi-skipgrams

Figure 9.25: Top 20 of Most Important Features for Support Vector Machine using
uni-skipgrams
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Figure 9.26: Top 20 of Most Important Features for Multi-Layer Perceptron using bigrams

Figure 9.27: Top 20 of Most Important Features for AdaBoost using uni-bigrams
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Figure 9.28: Top 20 of Most Important Features for Logistic Regression using bigrams

Figure 9.29: Top 20 of Most Important Features for Logistic Regression using uni-bigrams



CHAPTER 9. APPENDIX B 107

Figure 9.30: Top 20 of Most Important Features for Multi-Layer Perceptron using
uni-bi-skipgrams
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