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Abstract

Text similarity is the task of comparing words, names, phrases, short texts and
documents in a way that the scores obtained by automatic methods may be,
to some extent, according to human judgment. The set-based approaches for
addressing this task consist on representing texts as sets of elements (e.g. sets
of characters, syllables, words, n-grams) and compare them using resemblance
coe�cients as the Jaccard's index and others. This approach is simple and
e�ective but su�ers from several issues: i) lack of notion of order, ii) the inability
to model element repetitions weighting of elements, iii) lack of adaptability to
the task when there is the availability of training data, and iv) the inability to
model similarity between elements. Some of these issues have been addressed in
the past, but others remain partially or completely as open questions. In this
dissertation, the already addressed issues are placed in a comparative context
with other methods for text similarity. For example, the use of n-grams, bag
theory and parameterized resemblance coe�cients for addressing i), ii) and iii)
respectively, are presented and compared with other approaches.

The similarity between elements is exploited in a new approach called soft
cardinality, which generalizes the classical cardinality of sets and bags. Soft
cardinality allows the construction of similarity functions in combination with
known resemblance coe�cients but provides new functionality and properties.
This approach allows the inference of non-empty intersections between collec-
tions that do not share identical elements but contain similar ones. The mathe-
matical properties of soft cardinality are presented and discussed both theoreti-
cally and empirically to provide a coherent framework for practical applications.

The limited adaptive capacity of similarity measures based on cardinality is
addressed by a new approach that extracts cardinality-based features from the
objects being compared and builds similarity functions tailored to a particular
task. These cardinality-based features are combined with supervised learning
methods to induce similarity functions from training data. The proposed meth-
ods not only aim to learn such functions, but also suitable representations for
each task.

The empirical e�ectiveness of the proposed approaches was successfully tested
in the challenging evaluation contexts of the SemEval competitions in 2012, 2013
and 2014. The proposed methods were used deal with various text processing
tasks (e.g. text similarity, textual entailment, student answer scoring, among
others) and the systems proposed by us (and others) were always been among
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the top winners. A summary of this experience that describes the used methods
and shows results comparatively is presented.

Finally, soft cardinality in combination with the cardinality-based feature
extraction and selection methods were used for building a lexical similarity
function based on WordNet. This new function renews awareness in knowledge-
based approaches to lexical similarity, which have been losing interest because
of the recent success of neural word embedding. Our lexical-similarity method
obtains competitive results versus neural word embedding approaches reaching
state-of-the-art results in several benchmarks.

It is concluded that the soft cardinality and cardinality-based features are
an important contribution to the set-based approaches extending its use in text
applications from being mere baselines to competitive methods in the state-of-
the-art. Also, soft cardinality has the potential of being used in other �elds
in information technology and di�erent domains as demonstrated by the recent
connection made to the �eld of ecology.
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Chapter 1

Introduction

The automatic assessment of text similarity refers to models that compare
words, names, phrases, short texts, documents, and provides a quantitative
score of their similarity or relatedness. To some extent, these scores should
re�ect the judgments of similarity made by humans over the same texts. This
task has been attempted for over �ve decades using a variety of approaches
and aiming at almost any level of combination of text categories ranging from
lexical similarity to retrieval and classi�cation of documents. Usually, the text
comparison methods are based in a variety of basic techniques borrowed from
set theory, vector spaces, probability theory, information theory, stringology,
machine learning, and others. These basic techniques are combined with partic-
ular methods and resources of the �elds of computational linguistics and natural
language processing, as taggers, parsers, lexicons, thesaurus, semantic networks,
encyclopedic knowledge, corpora among others. In this endeavor, many meth-
ods inspired by text applications (e.g. LDA [? ]) have proven e�ective in
addressing problems in other �elds. With this in mind, this dissertation aims
to contribute at the same time to di�erent facets of the text similarity problem
and, in general, to set and bag theories with a new approach wich we call soft
cardinality. In Chapter 2, a survey of text similarity is presented to provide the
proper context for the use of soft cardinality in text applications.

Soft cardinality (2010) [? ] is a generalization of classical cardinality in set
and bag theories, which exploits similarities between collection's elements to
provide a �soft� count of the number of elements. In this dissertation, this new
cardinality function is theoretically de�ned and its main properties are veri�ed
both theoretically and empirically. Chapter 3 introduces soft cardinality by
presenting an intuitive motivation, a formal derivation, its de�nition, a review
of its properties, and an empirical validation using synthetic data. There, the
pseudo-monotonic property of soft cardinality is primarily studied because it
di�ers from the formal mathematical notion of a measure. That is, a formal
measure never reduces its magnitude when the measured object grows. The
argument in favor of using a non-monotonic measure was illustrated by an ex-
ample that uses values of lexical similarities obtained from statistics in a large
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CHAPTER 1. INTRODUCTION 12

corpus. That example showed that the pseudo-monotonic property of the soft
cardinality is useful for modeling the non-monotonic behavior of the composi-
tionality of the language, i.e. more words not always conveys more information
(see Section 3.5.2).

Interestingly during the development of this dissertation, Leinster and Cob-
bold, researchers in the �eld of ecology (2012) [? ] obtained a measure identical
to soft cardinality aiming to measure diversity in a community exploiting the
similarity between species. Both soft cardinality and their zero-order diversity
are equivalent, but were derived using di�erent motivations and paths. While
soft cardinality is related to set (1874) [? ] and bag theories (2001) [? ], zero-
order diversity is a result that can be traced back to Jaccard (1901) [? ], Dice
(1945) [? ], Shannon's information theory (1948) [? ], its Renyi generalization
(1961) [? ] and the Hill's numbers (1973) [? ]. In the times of Jaccard and
Dice, the cardinality of sets and species diversity were a single concept, then
diversity measures followed a di�erent path, and now 70 years later they meet
again.

Lets consider the following example. When measuring diversity in a commu-
nity of 100 individuals of various species, if say another 100 individual are being
added to the community, its degree of diversity can be increased or decreased
depending on the species of the individuals being added. For instance, if the
added individuals belong to a single species that is already present in the com-
munity, then community diversity decreases because one species could become
dominant over others. Di�erently, if the 100 individuals added are an assort-
ment of species that are not already present in the community, then community
diversity increases. This example illustrates the fact that diversity measures are
non-monotonic because it is quite intuitive that the addition of individuals to a
community does not necessarily implies an increase in its diversity. Soft cardi-
nality and zero-degree diversity extend this idea also to similar species. That is,
the addition of individuals with a di�erent degree of similarity with respect to
the individuals in a community could whether produce an increase or decrease in
diversity. One of the contributions of this dissertation is the observation that this
non-monotonic behavior of species in a community can also occur analogously
in another context such as words in a text. In addition, this fact provides addi-
tional theoretical and empirical support to zero-order diversity, while zero-order
diversity reinforces the argument in favor of soft cardinality non-monotonicity
by the fact that modern diversity measures are non-monotonic by nature.

The idea of soft cardinality allows the construction of similarity measures in
di�erent ways. The natural approach is to use soft cardinality as a replacement
for classic cardinality in any of the numerous existing resemblance coe�cients
(e.g. Jaccard, Dice, Tversky, cosine, overlap, etc.) The only additional re-
quirement for computing soft cardinality is to provide a similarity function that
compares pairs of elements. For instance, two short texts A and B can be repre-
sented as collections of words. In turn, words can be represented as sequences of
letters that can be compared with an o�-the-shelf measure such as edit distance
[? ] or Jaro-Winkler similarity [? ]. Thus, having a similarity measure to com-
pare words, the calculation of soft cardinality for each text is straightforward.
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The calculation of the soft cardinality of A ∪ B is simple too, just merge the
two collections and follow the same procedure. However, the calculation of the
soft cardinality of the intersection is not obvious if A ∩ B = ∅. For that, the
well-known set equation |A∩B| = |A|+ |B|−|A∪B| can be applied for inferring
the soft cardinality of the intersection. Finally, a similarity score for A and B
can be obtained by the ratio of |A ∩B| and |A ∪B|, i.e. Jaccard's index.

Somehow surprisingly, this simple approach was used in the �rst of the re-
cent SemEval campaigns in 2012 for addressing the semantic textual similarity
task [? ] obtaining a third place among 88 participating systems. This system
[? ] obtained a score of 0.6708 in the o�cial performance measure (mean) using
a variation of the Tversky index with three �t parameters, a list of stopwords in
English and the Porter's stemmer. Comparatively, the best system [? ] scored
0.6773 but included in its list of used resources: dictionaries, distributional the-
saurus, monolingual corpora, multilingual corpora, Wikipedia, WordNet, distri-
butional similarity, knowledge-based similarity, lemmatizer, POS tagger, statis-
tical machine translation, string similarity, textual entailment and others. While
our system, based on soft cardinality, reproduced its results in seconds, most
other approaches required hours for processing all resources used. This success-
ful participation initiated a series of participations (by us and other teams) in
the same and several other tasks using soft cardinality as core method. Chapter
4 present a summary of that experience to explain some of the methods to use
soft cardinality in natural language processing.

In Chapter 5, the accumulated experience in the use of soft cardinality in
text applications was used to address a more challenging endeavor. In the recent
years, the so-called neural word embeddings [? ? ] appeared in the scene of
natural language processing showing to be the best approach for addressing lex-
ical similarity [? ] and semantic textual similarity [? ]. This approach consists
in obtaining vector representations of words and texts by training predictive
models of the words using large text corpora. The computational resources
needed for obtaining such representations are enormous, but the ease of use
of the representations and their quality largely pay the cost. The success of
this approach has eclipsed traditional methods for lexical similarity based on
resources like WordNet. In spite of the linguistic richness of the information
contained in WordNet, the lexical similarity functions based on it are not match
for neural word embeddings. We propose a new cardinality-based approach for
lexical similarity that exploits the WordNet's graph using the techniques de-
scribed in Chapter 4. Our experiments showed that this approach can produce
competitive results (even better in some benchmarks) compared with neural
word embedding, especially in lexical similarity. However, in the facet of lexical
relatedness, neural word embeddings remains unrivaled.

1.1 Problem de�nition and research questions

The textual similarity task consist in assigning a similarity score to two pieces of
text. The main di�culty is that the assigned score must be according to human
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Table 1.1: Examples of textual similarity from the SICK dataset (2014) in a 5
to 1 scale

texts similarity

Someone is banging the lens of a camera against a nail
4.5

The man is hammering a nail with a camera

Some instruments are being played by a band
3.0

A man is playing an electronic keyboard

A man is singing a song and playing the guitar
1.2

A man is opening a package that contains headphones

Table 1.2: Examples of lexical similarity from the SCWS dataset (2014) in a 10
to 0 scale

word #1 word #2 similarity

war battle 9.08
money currency 7.90
peace amity 6.20
drive ride 4.40
energy laboratory 1.90
�eld handle 0.00

judgment. Table 1.1 shows examples of pairs of texts labeled with the average
of the scores of similarity provided by ten di�erent subjects. This problem
is mainly composed of two aspects: cognitive and linguistic. The cognitive
component refers to the way humans make an assessment of commonalities
and di�erences between the texts to produce a similarity score. The linguistic
component deals with the problem that sometimes the texts that share similar
words conveys di�erent meaning and texts with no words in common could mean
the same thing.

A sub-problem of the text similarity task is the lexical similarity, which
involves assigning a similarity score for pairs of words, again, according to hu-
mans. Table 1.2 shows examples of pairs of words labeled with the mean scores
of similarity provided by ten di�erent subjects. Similarly to textual similarity,
lexical similarity is a�ected by cognitive and linguistic issues (e.g. rareness and
polysemy). It is natural to think that if the scores of similarity between the
two texts words are available, then these scores can be combined in some way
to produce a similarity score for the two texts. However, one of the issues that
arise in this approach is the compositionality of the language. For instance,
even though the word pairs hard-rigid and disk-plate are similar a hard disk (a
storage device) is quite di�erent from a rigid plate (a non-�exible dish).

The concrete practical problem addressed in this dissertation is how to obtain
similarity scores for pairs of words and how to combine these scores to obtain
similarity scores for pairs of texts. These problems have been addressed in the
past using di�erent mathematical models to represent texts and to produce
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similarity scores. Probably the most studied approach is to represent the texts
and words as vectors in a high-dimensional Euclidean space (geometric model)
and the distances in that space are associated to dissimilarities among words and
texts. The mathematical tools for such spaces are numerous, well-known, and
proven in many domains (e.g. distance and similarity functions, dimensionality
reduction, etc.).

Amos Tversky, a renowned mathematician-psychologist, demonstrated ex-
perimentally that the analogy of sets modeled similarity judgments of humans
better than the geometric analogy [? ]. In addition, the concepts of set, cardi-
nality (number of elements of a set), union and intersection are so simple and
intuitive that are introduced from elementary school. By contrast, highly di-
mensional spaces are not obvious, and even a fourth dimension is di�cult to
associate with the world that we can perceive with our senses. This could lead
us to think that if our goal is to build a model that reproduces human similarity
judgments, then a set-based model should be a better option than a geometric
model.

Despite this, similarity models based on sets are rather simple and do not
have the resources and development available of geometric models. This disser-
tation aims to answer the question of how can the set-based models be used and
enhanced to address textual and lexical similarity tasks. The answer is derived
through the proposal, analysis, development and testing of the soft cardinality
and the cardinality-based feature representations.

1.2 Objectives

The main goals of this dissertation are:

� propose a new set-based model of similarity, which based on current mod-
els, integrates the similarities between elements as a key factor for ad-
dressing the textual and lexical similarity tasks.

� provide method for making the proposed model adaptable to training data
and capable of combining evidence of di�erent nature.

The main contribution of this dissertation consist in the proposed methods that
achieved these objectives. This achievement is demonstrated in a number of
theoretical arguments, experiments and comparisons with other approaches. An
incidental, but even more important contribution, is the result that the methods
proposed for the particular text applications addressed, have the potential to
be applied in di�erent domains and scenarios.

1.3 Dissertation road map

The chapters of this dissertation are conceived as articles that can be read
independently and in any order. Most of the cross-references are circumscribed
within each chapter, except Chapter 2 (background) that links related work to
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some parts of the dissertation. Inevitably, there is some overlap we tried to
minimize while maintaining the consistency of each chapter.

Chapter 2 is intended to provide an introduction for readers with little or no
prior knowledge of text comparison problems. Readers with some background
in the area could skip sections or the entire chapter.

Chapter 3 provides a complete theoretical de�nition of soft cardinality and
is aimed at readers interested in a profound vision of the proposed model. This
chapter should be read by researchers seeking connections with other theoretical
models or professionals who want to understand the properties of soft cardinal-
ity that would be useful to model di�erent phenomena. This chapter may be
skipped by readers who only want to know how to use soft cardinality and want
to try it for NLP tasks.

Chapter 4 provides a concise de�nition of soft cardinality and describes the
methods proposed to use it to tackle NLP tasks. In addition, this chapter
includes a review of the systems using soft cardinality in recent SemEval com-
petitions. All tasks addressed involve automatic analysis of short sentences and
paragraphs from video descriptions, de�nitions, headlines, short news, ques-
tions, answers, and others, which are written in languages such as English,
Spanish, French, German and Portuguese.

Chapter 5 addresses the problem of semantic lexical similarity in English
using soft cardinality and cardinality-based representations having WordNet as
a primary resource. The proposed method is compared with the state of the art
using of 12 benchmarks for lexical similarity and relatedness.

Finally, in Chapter 6 we provide the key �ndings that can be derived from
this dissertation, along with a practical section �takeaways�. In addition, we
present an inventory of publications produced by the time this research was
conducted and some statistics of citations up to date.



Chapter 2

Background on Text

Similarity

Text similarity relates to methods for comparing pairs of texts to produce au-
tomatically a similarity score. This score must follow the human judgment. In
fact, the average of the judgments of various human scorers, and their degree of
agreement are the current upper bound for the task, which is commonly used as
gold standard for supervised learning methods and evaluation. In our context,
�text� could mean any piece of written information ranging its textual level from
a word to a document. Our goal in this article is to present the basic underlying
approaches to tackle this task. Most approaches are general methods that can
be applied, to some extent, to di�erent textual levels ranging from lexical to
document similarity and several combinations in between. The presentation of
these methods is organized by their underlying modeling assumptions and some
comments about the pros and cons of their use at di�erent textual levels are
discussed in each section.

A version of this chapter was submitted to Computación y Sistemas journal.

2.1 Introduction

2.1.1 Lexical similarity

A key part of text similarity is the comparison of the lexical units that com-
pose texts, i.e. words or multi-words. The objective is to provide a numerical
assessment of the similarity of two lexical units as an intermediate resource for
the main goal of comparing a pair of texts. The role of lexical similarity in
text comparison ranges from pre-processing tasks (e.g. spell-checking, stem-
ming, named-entity recognition) to the identi�cation and quanti�cation of the
semantic relations between words. Lexical similarity have two principal modal-
ities; morphologic (words are compared by their letters) and semantic (words

17
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are compared by their meanings.)

2.1.1.1 Morphologic lexical similarity

Lexical units are the smallest unit that conveys a meaning in a language. In
most of the Indo-European languages, smaller subdivisions of the words into let-
ters, phonemes or syllables are meaningless. Some pre�xes and su�xes convey
semantic information by changing of meaning of the base word (e.g. expresident,
policeman), while others provide grammatical in�exions of the root or stem of
the word (e.g. singing, commonly). A side of the syntactic and semantic in-
formation provided by these word components, the comparison between words
based on morphological information do not provide semantic relationships be-
yond words that share the same root (e.g. beauty and beautiful). Although, these
semantic relationships based on morphologic similarity are a relatively easy-to-
use resource, many false relationships can be inferred from morphologically-
similar but semantically-distant words (e.g. trail and trait.) In spite of that,
morphologic lexical similarity generally provides a good baseline for semantic
text applications [? ] and is a useful tool when the texts are noisy due to mis-
spellings, typos, speech recognition and optical character recognitions (OCR)
errors. Some of the techniques used for morphologic lexical similarity came from
the �eld of stringology (see [? ] for a survey.)

The morphological similarity is particularly useful for comparing proper
nouns. Names generally lack of a particular meaning in the language and their
primary function is to represent a particular real world entity. The super�-
cial morphological representation of names is an important resource for their
comparison. Moreover, proper nouns are more prone to typos and spellings
variations than regular words (see [? ] for a survey on name matching.)

2.1.1.2 Semantic lexical similarity

Semantic lexical similarity aims to compare words based on their meanings.
Unlike morphologic, semantic lexical similarity requires an external source of
information to compare words. The main resources used for this purpose are
knowledge sources and distributional representations. Commonly used knowl-
edge sources are semantic networks (e.g. WordNet [? ? ]), dictionaries, the-
saurus (e.g. Roget's thesaurus [? ? ]) and encyclopedias (e.g. Wikipedia [? ].)
Distributional representations are based on the so-called distributional hypothe-
sis that states that the meanings of the words can be deduced from the contexts
in which they occur if a su�ciently large corpus is available [? ]. These resources
are exploited in di�erent ways to produce a numerical score of similarity between
pairs of words (see sections 2.4.3 and 2.5.1 for some examples.)

There are many kinds of semantic relationships between words, e.g. syn-
onymy, antonymy, hypernymy, holonymy, and many more. However, for text
comparisons they are simpli�ed in two categories rather blur: similarity and re-
latedness. Similarity involves pairs of words such as {car, bike}, and relatedness
pairs like {car, speed}. The semantic lexical similarity methods are evaluated
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Table 2.1: Publicly available datasets for lexical similarity and relatedness
Name # word pairs Task Reference

MC 30 similarity Miller and Charles [? ]

RG 65 similarity Rubinstein and Goodenough [? ]

WS353 353 both Finkelstein et al. [? ]

WSS 203 similarity Agirre et al. [? ]

WSR 252 relatedness Agirre et al. [? ]

SCWS 1,997 similarity Pennington et al. [? ]

RW 2,034 similarity Luong et al. [? ]

MEN 3,000 relatedness Bruni et al. [? ]

YP-130 130 similarity Yang and Powers [? ]

MTurk287 287 relatedness Radinsky et al.[? ]

MTurk771 771 relatedness Halawi et al. (2012) [? ]

Rel-122 122 relatedness Szumlaski et al [? ]

SimLex-999 999 similarity Baker et al. [? ]

by measuring the correlation of their results versus datasets annotated either
with similarity or relatedness by humans. Table 2.1 shows a list of the current
publicly available lexical similarity benchmarks.

2.1.2 Textual similarity

One of the �rst studies in semantic textual similarity was conducted by Lee et
al. [? ], who proposed a dataset of 50 documents with graded human judgments
of similarity provided for each possible pair. In addition, they tested Tvesky's,
Jaccard's, cosine and overlap coe�cients, combined with several representations
ranging from 3-grams to 10-grams of words. Other considered representations
were obtained using LSA [? ] with di�erent term weighting mechanisms reach-
ing. The best con�guration reached the inter-rater correlation using LSA model
with 100 to 150 latent factors and a local term weighting based on log(tf) (tf
means term frequency, the number of occurrences of a term in a document.)

Recently, Agirre et al. [? ? ? ? ] proposed a series of SemEval challenges
for the semantic textual similarity task (STS). During these campaigns, they
have proposed more 26 datasets composed of pairs of texts labeled with human
judgments of similarity. In 2014, in the context of the same SemEval compe-
titions, Marelli et al. [? ] proposed the SICK dataset (sentences involving
compositional knowledge) consisting of 5,000 pair of short texts labeled with
human judgments of relatedness and entailment. Simultaneously, Jurgens et al.
[? ] proposed four datasets each one of approximately 1,000 pairs of texts in
di�erent textual levels, i.e. paragraph to sentence, sentence to phrase, phrase
to word and word to WordNet's senses.

Given the competitive nature of the challenges in SemEval, the participat-
ing systems (more than 280 systems in the last four years) used a variety of
combinations of methods and resources. Instead of reviewing these combined
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approaches, this chapter aims to present a broad overview of the basic techniques
used by these systems.

2.2 Notation

Lets �rst de�ne a notation that establish a common framework for comparing
and understanding di�erent approaches for text similarity. Let A and B to
objects to be compared with the aim of obtaining a quantitative notion of their
similarity. In di�erent contexts in this survey, A and B could be pairs of words,
multi-words, sentences, short-texts, documents, etc. In fact, we will show that
many of the approaches are analogous and applicable at di�erent textual levels.

Now, to compare A against B it is necessary to build a similarity func-
tion SIM(A,B) that returns a number that re�ects the similarity them. The
�rst step is to provide an object representation. The simplest one is using ob-
jects by themselves, which only makes possible binary comparisons e.g. either
SIM(A,B) = 1 i� A = B or 0 otherwise. If a gradual notion of similarity be-
tween A and B is required, then they must be represented with any subdivision
of features for each one. Lets represent A and B as collections of such features:

A =
{
a1, a2, . . . , a|A|

}
B =

{
b1, b2, . . . , b|B|

}
w(ai) ∈ R

sim(ai, bj) ∈ R

This representation is general enough to model vectors, sets, bags, graphs
and ordered sequences. For vectors, the sub-indexes on each feature indexes
each dimension in the multidimensional space in which A and B are represented,
implying that space have dimensionality k = |A| = |B|. In addition, the features
ai and bi are numbers that indicates the representing value of A and B in the
ith dimension in such space. The function w(i) provides importance weights to
the i -th features. This weighting function can be as simple as ∀x : w(x) = 1
or it can have di�erent or more arguments e.g. w(i) or w(A, ai). The function
sim(i, j) aims to model similarity relations between the features. Again, the
simplest choice is sim(x, y) = 1 i� x = y and 0 otherwise. For instance, if A
and B were words they could be represented by vectors in a space indexed by
the possible letters; features ai could encode the number of times each letter
occurs in the word A; function w(i) could give more importance to vowels in
comparison to consonants; and sim(i, j) could re�ect the similarity between
letters due to proximity on a keyboard.

2.3 Set-based similarity

The set-based approaches compare pairs of objects subdividing them into ele-
ments and counting the number of di�erent and common elements. Typically,
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Table 2.2: Derivation of cardinalities when comparing A and B from
|A|, |B|, |A ∩B|

|A ∪B| = |A|+ |B| − |A ∩B| |A \B| = |A| − |A ∩B|
|A4B| = |A ∪B| − |A ∩B| |B \A| = |B| − |A ∩B|

for comparing words, they are subdivided into characters and texts into words.
Although, this approach is conceptually simple and empirically e�ective, it ig-
nores information like element's order and the element repetitions. However,
these two issues can be respectively addressed by using n-grams representations
(Section 2.3.2) and the theory of bags [? ] (Section 2.3.3.)

Let A = a1, a2, ...a|A| and B = b1, b2, ...b|B| be sets whose main property
is their cardinality (the number of elements) denoted as |A| and |B|. Their
similarity is de�ned as follows:

SIM(A,B) = F (|A|, |B|, |A ∩B|) (2.1)

Where F is an algebraic function that combines these three cardinalities.
Function F only requires these three arguments because all possible areas in
the Venn diagram of two sets can be derived from these three cardinalities (see
Table 2.2). Practically, all resemblance coe�cients can be expressed using these
arguments.

Other formulations consider the universe of discourse U . This component
is used to assess similarities using not only common elements between A and
B but also the common-missing elements between them. For instance, in a
collection of documents where the majority of the documents mention the city
of New York, the fact that a particular pair of documents does not mention it
could be considered as a common feature. However, in the ad hoc formulation
of similarity in this section, where the similarity score depends only on A and
B, the commonalities due to missing elements, is not considered. In practice, in
text applications the universe of discourse is commonly large, i.e. the vocabulary
of the language, collection or domain, making the e�ect of common-missing
elements is negligible.

The following sections provide di�erent alternatives for the function F .

2.3.1 Resemblance coe�cients

Resemblance coe�cients are rational functions that return a similarity value
in [0, 1] range using cardinalities involving two sets. They have been used in
practically all areas of knowledge since Jaccard [? ] introduced his famous index
more than a century ago. A summary of common resemblance coe�cients to
compare two sets (without making use of the universe of discourse) is shown in
Table 2.3.

The �rst �ve coe�cients in Table 2.3 are well-known o�-the-shelf measures.
Although, similarity scores provided by these coe�cients are highly correlated
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Table 2.3: Named Resemblance Coe�cients
resemblance coe�cient expression

Jaccard [? ] |A∩B|
|A∪B|

Dice or Sørensen [? ] |A∩B|
0.5(|A|+|B|)

Overlap |A∩B|
min(|A|,|B|)

Cosine or Ochiai [? ] |A∩B|√
|A|·|B|

Hamming 1
1+|A4B|

Generalized Dice 2·|A∩B|
(|A|p+|B|p)1/p

Tversky [? ] |A∩B|
α|A\B|+β|B\A|+|A∩B|

Symmetrized Tversky [? ] |A∩B|
β(αa+(1−α)b)+|A∩B|�

De-Baets & De-Meyer [? ] αa+βb+δ|A∩B|
α′a+β′b+δ′|A∩B|�

� a = min{|A \B|, |B \A|}; b = max{|A \B|, |B \A|}

with them, the selection of any of these should be made evaluating its perfor-
mance on the task at hand. The next four coe�cients contain parameters that
generalize the previous ones and allow the adaptability of the measure to the
task. For instance, generalized Dice is motivated by the observation that Dice
and cosine coe�cients are quotients of |A∩B| and means between |A| and |B|,
i.e. arithmetic and geometric mean respectively. Replacing in the denominator
of the quotient these means by the generalized mean produce a resemblance
coe�cient that for di�erent values of p reproduce several existing measures. For
instance: for p = 1 it is equivalent to Dice, p → 0 to cosine, and p → −∞
to the overlap coe�cient. Similarity, the Tversky's coe�cient also generalizes
Jaccard's (α = β = 1) and Dice's (α = β = 0.5). Jimenez et al. [? ] addressed
the asymmetry of Tversky's index when α 6= β and also re-organize its parame-
ters making α controls the balance between |A \B| and |B \A|; and β between
|A4B| and |A ∩B|. The coe�cient proposed by De-Baets and De-Meyer [? ]
is even more general, but some combinations of the values of its six parameters
could yield an expression that does not model similarity. Hence, De-Baets et
al. characterized the transitivity of a family of measures for some conditions for
the parameters [? ].

The parameters of these coe�cients can be determined using training data
labeled with a gold-standard usually provided by consensus of several human
judgments. The common method for obtaining suitable values for parameters
is to divide the training data into cross-validation partitions and determine
optimal values for the parameters on each partition. Jimenez et al. [? ] showed
that the performance function for a semantic textual similarity task is mostly
convex and smooth w.r.t. the parameters of a resemblance coe�cient. Then,
the averages of the optimal values for each partition can be used as values for
the parameters in test data.
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Table 2.4: Di�erent n-grams representations of the word sequence
name representation

2-grams {se, eq, qu, ue, en, nc, ce}
3-grams {seq, equ, que, uen, enc, nce}

3-grams padding char. {**s, *se, seq, equ, que, uen, enc, nce, n**, e**}
skipgrams {sq, eu, qe, un, ec, ne}

2:4-spectra
{se, eq, qu, ue, en, nc, ce, seq, equ, que,

uen, enc, nce, sequ, eque, quen, uenc, ence}

2.3.2 N -grams representations

N -grams are the collection of consecutive and overlapping sub-strings of length
n in a string of length m, withm > n. For instance, the collection of 3-grams
in the word sequence is {seq, equ, que, uen, enc, nce}. N -grams represent a
partial order of a long string with sub-strings of limited length. The n-grams
representation in combination with cardinality-based resemblance coe�cients
enhances the set-based approach for similarity by incorporating a partial-order
notion. The use of n-grams in text applications goes back to the seminal work
of Shannon [? ] to measure the entropy of the English language.

N -grams can be used for lexical similarity by subdividing words into n-grams
of characters to cope with OCR errors, misspellings, and in�ectional forms ei-
ther in words as in proper names [? ? ]. Several variations of the n-grams
representation can be used for lexical comparison (see Table 2.4 for examples).
For example, padding characters are additional n − 1 special characters added
to the begin and end of a string [? ]. These characters are especially useful
for distinguishing n-grams that are also common pre�xes and su�xes by dif-
ferentiating them from n-grams in the middle of a character string. Another
variation is skipgrams that was initially proposed by Pirkola et al.[? ] de�ned
as non-adjacent 2-grams. At lexical level, skipgrams have shown to outperform
n-grams in a cross-lingual spelling variants detection task[? ].

The selection of n and the type of n-grams representation is usually done by
the needs of the task at hand or through training data. For lexical comparison,
2-grams and 3-grams are the most common choice. Jimenez and Gelbukh [?
] showed that the use of a representation that combines a range of di�erent
n-grams (e.g. 2:4-spectra) provides the same or even better performance that
the optimal n in the name matching task.

The use of n-grams of words for text comparison is relatively rare in the
context of set-based approaches. This is because the use of n-grams of words
exponentially increases the size of the vocabulary as n increases. Therefore,
this representation is only useful in scenarios involving large corpora, where
each n-gram is likely to occur many times.
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Table 2.5: Example of set and bag of characters representations
x set representation |x| bag representation |x|

A=�mammal� {m,a,l} 3 {m,m,m,a,a,l} 6
B=�mall� {m,a,l} 3 {m,a,l,l} 4
A ∩B {m,a,l} 3 {m,a,l} 3
A ∪B {m,a,l} 3 {m,m,m,a,a,l,l} 7

Jaccard(A,B) 1 - 0.43 -
Dice(A,B) 1 - 0.60 -

2.3.3 Bag representations

The set-based representation inherently ignores repetitions of elements in the
objects being compared. The theory of bags proposed by Jena and Ghosh [? ] is
useful for addressing this issue using its de�nitions for the union and intersection
of bags. The intersection of two bags contains the common elements repeated
the minimum number of repetitions observed on each bag. Similarity, the union,
the maximum frequencies are used. The cardinality property for bags accounts
for the total number of elements in the bag including repetitions. Table 2.5
shows an example comparing set and bag of characters representations of the
words mammal and mall. While, using sets both words result identical, bags
di�erentiate these two words.

The bag's de�nitions of the union, intersection and cardinality can be used
analogously with the resemblance coe�cients in Table 2.3. Navarro proposed
bag distance [? ], which can be used as a less expensive (in time) approximation
of the edit distance (see Subsection 2.6.1). The distance of bags is de�ned as:

DISTbag(A,B) = max(|A \B|, |B \A|),

which can be easily converted into a similarity function by this transforma-
tion:

SIMbag(A,B) = 1− DISTbag(A,B)

max(|A|, |B|)
.

In our running example (A=mammal and B=mall), the bag distance is
DISTbag(A,B) = max(|mam|, |l|) = 3, so SIMbag(A,B) = 0.5. Note that the
edit distance in this example is 4.

2.4 Vector representations

Vector representations consist in representing objects as points (vectors) in a
multidimensional space. In this space, objects are compared by geometrical
analogies by using distances and angles (Subsection 2.4.1.) This representation
is used to represent either words or texts. The common approach to represent
words indexes space dimensions by all the possible contexts where any word
could occur (i.e. distributional representation [? ].) In the case of texts, the
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approach is known as the vector space model (VSM) [? ] where dimensions
are indexed by vocabulary words. Unlike set representation, which mainly ex-
ploits the information contained in the pair of objects being compared, vector
representations usually leverages the information contained in a large collec-
tion of objects to provide a comparison between any pair of them. In the case
of distributional representations for lexical similarity, this means large corpora
where words and contexts occur signi�cantly. For the VSM, this means a large
collection of texts. Both large corpora and text collections are used to com-
pile statistics necessary for the determination of the values of the entries in
each dimension for each vector. Methods range from simple counts to more
sophisticated statistical approaches (Subsections 2.4.3 and 2.4.2.)

Vector representations often involve high dimensionality due to the large
number of possible contexts or vocabulary terms. This problem causes sparsity
by reducing the chances that two objects being compared share some features
(dimensions). This problem can be addressed in two ways: �rst, the features
can be compared with an auxiliary similarity function making it possible to
objects that do not have commons features, but have similar ones, to obtain
a non-zero similarity score (Subsection 2.4.4); and second, the dimensionality
of the space can be reduced exploiting patterns in corpora and text collections
using methods such latent semantic indexing (LSA) [? ] or non-negative matrix
factorization (NMF) [? ]. Recently, a group of methods known as neural word
embedding [? ] aimed to obtain in a single conceptual step low-dimensional
representations for words, phrases and short texts.

For illustration of the vectorial representation for lexical and textual sim-
ilarity, lets consider the following three short texts extracted from the SICK
dataset [? ]:

� A1 : �A young girl is dancing�

� A2 : �One young girl is standing on one leg�

� A3 : �A woman is planting some �owers�

In these examples, capitalization and stopwords (shown in small letters) are
ignored. To represent these texts as vectors (VSM), the number of dimension
and their corresponding labels as extracted from the vocabulary, i.e. {young,
girl, dancing, one, standing, leg, woman, planting, �owers}. This de�nes a
nine-dimensional space, whose �rst dimension is indexed by the word young,
second by girl, and so on. Thus, the vector representation for these texts using
entries of counts of occurrences on each text is:

A1 = {1, 1, 1, 0, 0, 0, 0, 0, 0}
A2 = {1, 1, 0, 2, 1, 1, 0, 0, 0}
A3 = {0, 0, 0, 0, 0, 0, 1, 1, 1}

At this point, bag (see Subsection 2.3.3) and vector -based representations
are equivalent, i.e., non-zero entries in a vector model the elements and their
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number of repetitions in a bag. Likewise, considering only binary occurrences
(i.e. if a word occurs once or more in a text, then the vector entry is 1, otherwise
is 0) makes set and vector -based representations equivalent.

The matrix M4×9, composed by arranging these vectors as matrix rows is
known as the document-term matrix of a text collection. The transpose of
this matrix, Mt

9×4, provides in its rows a distributional representation for the
nine terms T1, T2, . . . , T9 used in the texts (T1 is young, T2 is girl and so on)
[? ]. In this case, each text is considered as a context for the distributional
representation of the terms, known as context-vectors. Another common type
of context is the co-occurrence (or co-location) of two words, i.e., a term Ti
occurring next to Tj in a corpus is considered a context for Tj and vice versa [?
]. So, in our example the distributional representation of the terms is:

T1 = {2, 2, 0, 1, 0, 0, 0, 0, 0}
T2 = {2,2, 1, 0, 1, 0, 0, 0, 0}
T3 = {1, 0,1, 0, 0, 0, 0, 0, 0}
...

...
...

T9 = {0, 0, 0, 0, 0, 0, 0, 1,1}

The obtained matrixM9×9 is known as the term-context matrix. In this case,
this is a term-term matrix whose diagonal contains the number of occurrences
of the terms in the corpus.

2.4.1 Similarity and distance

The similarity between two vectors A = {a1, a2, . . . , ak} and B = {b1, b2, . . . , bk}
in a k-dimensional space is usually measured by the cosine of the angle between
them:

SIMcosine(A,B) =

∑k
i=1 aibi√∑k

i=1 a
2
i

√∑k
i=1 b

2
i

. (2.2)

Therefore, two vectors are considered identical (similarity value of 1) if they
are parallel, and �completely di�erent� if they are perpendicular (similarity value
of 0). Given that in most scenarios entries in the vectors are positive, cosine
similarity return values in [0,1] interval. The main property of this measure
is that vectors are compared by their direction regardless of its magnitude.
In text applications, vector's direction conveys in some way text's meaning
and magnitude only its length. In fact, the denominator in Eq 2.2 normalizes
the magnitudes of the vectors A and B previous to be compared with the dot
product operation.

Another way to compare two vectors in a multidimensional space is measur-
ing the Euclidean distance between them or its generalization the Minkowski
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distance (Euclidean when p = 2):

DISTp(A,B) =

(
k∑
i=1

(ai − bi)p
) 1
p

However, the property of vector representations that relates direction to
�meaning� has made cosine similarity the preferred choice in text applications.
Even if the vectors are normalized previous to the computation of their distance,
cosine similarity have shown to be better aligned with human judgments of
similarity than any other geometrical measure both in distributional and VSM
scenarios [? ].

Similarity and distance (or dissimilarity) are two complementary concepts,
so, there are several methods for mapping them. Generally, similarity is de�ned
in a �xed interval (e.g. [0,1] or [-1,1]) and distance is de�ned as a positive real
number. The simplest mapping between these concepts is:

SIM(A,B) =
1

1 +DIST (A,B)

This approach is useful when the distances between objects being compared
are not too short nor too large. Another formulation that considers the average
pairwise distances between a set of vectors being compared (D̄) is:

SIM(A,B) = e−α·DIST (A,B)

α = − (ln 0.5)

D̄

2.4.2 Term weighting approaches for text comparison

One of the most important aspects of the vector representation for text compar-
ison is to decide the values of the entries in vectors. Almost from its inception,
VSM has been used with entries more informative than the simple raw occur-
rences of a term in a document. Earliest approach �still used nowadays� is the
tf-idf [? ] approach, which combines the inverse-document frequency proposed
by Spärk-Jones [? ] and the term-frequency factor. Thus, the entries ai in A
vector are:

ai = tf.idf(wi, A,D) = tf(wi, A). log
|D|

df(wi,D)
(2.3)

Where, wi is the index term corresponding to the i-th dimension, tf(wi, A)
is the number of occurrences of wi in A, D is a large document collection and
df(wi,D) is the number of documents in D, in which the term ti occurs at least
once. The motivation for that is to highlight the terms that are frequent into
the documents, but rare in the collection. This model was proposed mostly
intuitively, but motivated by its e�ectiveness, over the time various theoretical
interpretations has been proposed [? ]. The �eld of information retrieval (IR)
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has contributed with many alternatives for term weighting. One of the most
used is the well-known BM25 approach proposed by Robertson et al. [? ]:

ai = BM25(wi, A,D) = log

(
|D| − df(wi) + 0.5

df(wi) + 0.5

)
(k1 + 1)Ötf(wi, A)

k1ÖK(A) + tf(wi, A)

K(A) = (1− b) + bÖ
len(A)

avdl(D)

Where, k1 = 1.2 and b = 0.75 are adjustable parameters, len(A) is the
number of words in the text represented by A and avdl(D) is the average of the
number of words in each document in D. The �rst factor in BM25 formula is an
adjusted idf factor; next, k1 formulates a saturation function that prevents tf
to grow linearly; and K is a document's length normalization factor controlled
by b; when b = 0 means no normalization and b = 1 full normalization. This
model is a practical simpli�cation of a probabilistic model based on a two-
Poisson generative model for informative and non-informative words. Although,
BM25 is a retrieval formula in the context of documents being retrieved from a
collection by a query, these weights also re�ect the informativeness of words in
the documents where they occur. Hence, this weighting schema has been used
widely in the context of vectorial representation for texts [? ? ]. Besides, BM25
has preserved its state-of-the-art status for nearly two decades.

2.4.3 Weights for distributional representations

As it was mentioned before in the example at the beginning of this section, a
distributional representation for a word may be composed by counting the num-
ber of times this word appears in di�erent contexts within a corpus. Although,
several aspects such as the size of the corpus and the type of context used a�ect
the quality of distributional representations, the formulations for the weights to
be put into vector entries is a fundamental factor. The entries of the vectors
that compose the term-term matrix depend on the counts of the terms and
their co-occurrences. Let t be a target word to be represented and c a context
word; N is the number of possible contexts in the corpus; C(t, c) are the num-
ber of their co-occurrences and C(t) , C(c) are the independent occurrences of
t and c. The span of the considered context can be extended by modifying the
two-argument function C(t, c) by also counting occurrences of t and c separated
until n words. This is equivalent to considering contexts as symmetrical sliding
windows of 2n+ 1 size centered on each target word [? ]. The total number of
contexts N is usually a large number that is close to the total number of words
in the corpus. When C(∗) and C(∗, ∗) are approximated to the number of hits
returned by a search engine on the Web, the value of N is approximated to a
very large number (e.g. N = 1010 by Bollegala et al. [? ]).

One approach to calculate the degree of association between t and c is to
treat the counts in the corpus as cardinalities, i.e. |A| = C(t), |B| = C(c) and
|A ∩ B| = C(t, c). Thus, these cardinalities can be used with any resemblance
coe�cient [? ? ] (see Subsection 2.3.1). However, this approach showed to
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Table 2.6: Methods for calculating vector entries for lexical distributional
representations using counts.

Approach Expression

Conditional probabilities P (c|t)
Ratios of conditional probabilities P (c|t)

P (c)

Point-wise mutual information, PMI PMI(c, t) = log P (c|t)
P (c)

Positive PMI [? ? ]

{
0 if PMI(c, t) ≤ 0

PMI(c, t) otherwise

Normalized PMI [? ] −PMI(c,t)
P (c,t)

Local mutual information LMI [? ? ] C(c, t)× PMI(c, t)

be less e�ective than other probabilistic approaches based on point-wise mutual
information (PMI) [? ]. For that, the following probabilities can be estimated
by maximum likelihood:

P (c) =
C(c)

N

P (t) =
C(t)

N

P (c, t) =
C(t, c)

N

P (c|t) =
C(t, c)

C(t)

Table 2.6 summarizes the common approaches for calculating the entries
of the term-term matrix based on these probabilities. Bullinaria and Levy con-
ducted a comparative study �nding that a vectorial representation using positive
PMI weights in combination with cosine similarity provides the best results in
di�erent lexical semantics tasks. As for the size of the sliding window, they
found that n = 1, 2 are good choices using weights based on PMI. Once the
term-term or term-context matrix is obtained, it is customary to remove or
weight dimensions by their deviation, entropy or χ2 in order to eliminate the
e�ect of highly frequent contexts, and therefore few informative.

2.4.4 Exploiting similarity between dimensions

All the dimensions in any multidimensional space are orthogonal to each other.
This may be interpreted as a complete disjuction between them. However, if
two di�erent dimensions are indexed by words like car and automobile, their
disjuction is not entirely clear. Less clear is the situation of partially similar or
related word pairs like run/walk or doctor/nurse. This issue can be addressed
by using an external source of information that provides a graded notion of
similarity between i-th and j-th dimensions, sim(i, j). The idea of the group
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of approaches discussed in this section is to maintain the structure of the space
intact and modify the cosine similarity function, so that exploits sim(i.j) in a
meaningful way.

2.4.4.1 SoftTFIDF

The softTFIDF measure[? ] was motivated by the idea of increasing the cosine
similarity value between two texts A and B, represented as vectors with tf.idf
weights, by adding a weighted contribution of pairs of words (a, b) : a ∈ A, b ∈
B, a 6= b whose lexical similarity is greater than a threshold θ. Moreau et al.
[? ] noticed that the original de�nition and implementation provided by Cohen
et al. su�ered from correctness and normalization problems. However, both
original and corrected versions have been widely used primarily to deal with
name matching tasks. Thus, the softTFIDF similarity score can be de�ned as:

A = {a1, a2, . . . , a|A|}
B = {b1, b2, . . . , b|B|}

w(ai, A) =
tf.idf(ai, A)√∑k
j=1 tf.idf(aj , A)2

sim(x, y) ∈ [0, 1]

sim(x, y) = sim(y, x)

sim(x, x) = 1

sim(x, ∅) = 0

b̃(θ, a,B) = {b ∈ B|∀b′ ∈ B : sim(a, b) ≥ sim(a, b′) ∧ sim(a, b) > θ ∧ w(b, B) > 0}
1 ≥ θ > 0

SIM(A,B) =
∑

{a∈A|w(a,A)>0}

w(a,A)× w(b̃(θ, a,B), B)× sim(a, b̃(θ, a,B))

Where, A and B are two sets of words representing the texts to be compared;
tf.idf(z, Z) is the tf.idf weight (Eq. 2.3) of word z in text Z (assuming that
Z belongs to a collection of texts); sim(x, y) is the lexical similarity between
words x and y; and closest(θ, a,B) is the most similar element in B to a having
sim(a, b) > θ. For name matching, the common choice is θ = 0.8 and the Jaro-
Winkler similarity for sim(x, y) (see Section 2.6.3.) The complexity of pair-wise
comparisons in a vector space model is O(max[|A|, |B|]), where |A| the number
of non-zero entries in A vector. SoftTFIDF increases complexity to O(|A|×|B|)
due to the computation of b̃(θ, a,B).

2.4.4.2 Soft cosine

Recently, Sidorov et al. [? ] proposed a measure (somehow related to the
work of Mikawa et al. [? ]) with the same aim as softTFIDF but needless of
parameters and free of normalization issues. Given two text represented by A
and B in a VSM of dimensionality k and a lexical similarity function sim(wi, wj)
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for comparing the indexing words of dimensions i-th and j-th (sij for short),
the soft cosine between them is de�ned as:

SIM(A,B) =

∑∑k′

i,j sijaibj√∑∑k′

i,j sijaiaj

√∑∑k′

i,j sijbibj

Here, ai and bj are the entries of the vectors A and B and k′ is the dimension
of the sub-space where the entries of A and B are not zero in at least one of
the vectors. In fact, sub-indexes i and j varies only on such dimensions of the
original space. The time complexity of soft cosine is O(k′2), which is greater
that of softTFIDF's but in a similar order. Authors also proposed a method
for computing soft cosine in linear time using a transformation matrix that can
be obtained o�ine in O(k4) time. This approach was originally tested in a
question-answering task with multiple choice options, observing that soft cosine
consistently outperformed cosine similarity using a sim(∗, ∗) function based on
edit distance (see Subsection 2.6.1.)

2.5 Knowledge-based approaches

Knowledge-based approaches exploit a knowledge source external to the data be-
ing compared leveraging structured knowledge to provide a notion of similarity
according to it. This knowledge source can be a semantic network like WordNet
[? ] and SNOMED [? ] (see Subsection 2.5.1); or encyclopedic resources such
as Wikipedia. Knowledge-based approaches have been used to address lexical
similarity and textual similarity by combining the scores provided by measures
based on knowledge with set or vector -based representations.

2.5.1 Measures based on semantic networks

Semantic networks consist in graphs where nodes correspond to concepts (or
words) and edges represent relationships between concepts. These semantic re-
lationships can be either directed (e.g. hypernymy, holonymy) or undirected
(e.g. synonymy, antonymy) forming in most cases a tree of a directed-acyclic
graph. The intuition for calculating the similarity between pairs of nodes in
that graph is that similar concepts should be closer to each other than dis-
similar pairs. In addition, the type of modeled relationship on the edges and
their directions is also exploited. For instance, most of the existing measures
is based on the is-a hierarchy formed by hypernym-hyperonym relationships in
the graph. Some of the most used measures are described below.

Let a and b be two concepts in a taxonomy where multiple inheritances could
happen. The similarity between concepts based on the length of the path that
separates them [? ] is:

simPATH(a, b) =
1

pathLCS(a, b)
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Where, pathLCS(a, b) is the minimum number of edges that connects a and
b in the graph but visiting their least common subsumer (LCS), which is the
common ancestor of a and b that is farther from the top of the is-a taxonomy.
This restriction prevents the connection of nodes through multiple inheritance
nodes located deeper in the taxonomy. However, McInnes et al. [? ] relaxed this
restriction observing that the measure u-path correlated better than simPATH

comparing similarity judgments of physicians using SNOMED[? ].
Hirst and St. Ongle [? ] proposed another measure based on pathLCS(a, b)

in a network connected by not only hypernymy relations but meronymy and
antonymy too. Their approach also considers the number of changes of direc-
tion, turns(a, b), in the path for hypernyms and meronyms relationships. The
measure is given by this expression:

simH&SO(a, b) = C − pathLCS(a, b)− turns(a, b)

Where, C = 8 and k = 1 are constants that can be adjusted to particular
tasks and data.

Another group of measures make use of the observation that pairs of concepts
separated by a �xed path tend to be less similar than those closer to the top of
the taxonomy. Therefore, these measures incorporates information of the total
depth of the taxonomy D and the number of edges from a concept c to the top
of the taxonomy,d(c). For instance, Leacock and Chodorow [? ] proposed a
measure adjusted by D:

simL&CH(a, b) = − log
pathLCS(a, b)

2D

Wu and Palmer [? ] a measure analogous to the Dice's coe�cient but using
d(∗) as cardinality function:

simW&P (a, b) =
2× d(lcs(a, b))

d(a) + d(b)

Nguyen and Al-Mubaid [? ] combined both D and d(lcs(a, b)) in the follow-
ing expression:

simN&AM (a, b) = log (2 + (pathLCS(a, b)− 1)× (D − d(lcs(a, b))))

Choi and Kim incorporated the length of the maximum possible path in the
taxonomy, P in a measure that combines paths and depths:

simCH&K(a, b) =
P − pathLCH(a, b)

P
× D − |d(a)− d(b)|

D

(here, | ∗ | means absolute value).
Batet et al. [? ] proposed another measure based on the set of �supercon-

cepts� of a concept c, which is the union of the ancestors of the concept c and
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itself. For the sake of comparison, we present their measure in terms of the
components of the measures already presented:

simBAT (a, b) = − log
d(a) + d(b)− 2d(lcs(a, b))

d(a) + d(b)− d(lcs(a, b)) + 1

Another important component used for building measures in semantic net-
works is the information content (IC) concept, which was introduced by Resnik
[? ] for the lexical similarity task. IC came from information theory [? ] and
is de�ned as the negative logarithm of the probability of a word or concept,
IC(c) = − log p(c). The probability p(c) can be estimated by maximum likeli-
hood from occurrences of c in a corpus but considering that every occurrence of
c should also be counted for any concept up into the is-a taxonomy. Thus, more
general concepts become more probable until the top concept in the taxonomy
that gets a probability of 1. Given the negative-logarithmic formulation of IC,
more general concepts get lower IC and vice versa.

Resnik himself proposed a similarity measure combining IC with LCS [? ?
]:

simRES(a, b) = IC(lcs(a, b))

Similarly, Lin [? ] and Jiang and Conrath proposed a measure combining
also the IC for each concept:

simLIN (a, b) =
2IC(lcs(a, b))

IC(a) + IC(b)

simJ&C(a, b) =
1

IC(a) + IC(b)− 2IC(lcs(a, b))

2.6 String based methods

2.6.1 Levenshtein distance family

Also known as edit distance [? ], consist in computing the minimal number of
edit operations (i.e. insertion, deletion, and substitution) needed to transform
a sequence of characters into another. For instance, for transforming saturday
into sunday it requires 3 operations: 0 insertions, 2 deletions, and 1 substitu-
tion. Needelman and Wunsch [? ] proposed a dynamic programming solution
for calculating edit distances e�ciently in O(len(a).len(b)) time. This algorithm
exploits the hierarchical structure of the problem by solving sub-problems split-
ting each string at all possible positions (see Algorithm 2.1). Although this
approach can be applied to long sequences, in text applications it make sense
to use it for comparing words, proper names, and short phrases.

The edit distance has been extended by modifying the set of edit operations
and adjusting costs associated with each operation. For instance, Damerau [? ]
proposed transposition as an additional edit operation, i.e. swapping of two con-
tiguous elements. This operation allows the modeling of common misspellings
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Algorithm 2.1 Needelman and Wunsch's dynamic programming algorithm for
edit distance
EditDistance(a, b)

d[0..len(a), 0..len(b)] //declare matrix of integers
for i from 0 to len(a)

d[i, 0] = i
for j from 1 to len(b)

d[0, j] = j
for i from 1 to len(a)

for j from 1 to len(b)
if a[i] == b[j] then

cost = 0
else

cost = 1
d[i, j] = min(d[i-1, j] + 1 // deletion
d[i, j-1] + 1 // insertion
d[i-1, j-1] + cost) // substitution

return (d[m, n])

S U N D A Y

0 1 2 3 4 5 6

S 1 0 1 2 3 4 5

A 2 1 1 2 3 3 4

T 3 2 2 2 3 4 4

U 4 3 2 3 3 4 5

R 5 4 3 3 4 4 5

D 6 5 4 4 3 4 5

A 7 6 5 5 4 3 4

Y 8 7 6 6 5 4 3

Figure 2.1: Edit distance dynamic programming matrix example.
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including missing, erroneous, and transposed characters, comprising most of the
mistakes made by humans when writing digital documents. Another variation
that obtains the longest common sub-sequence (LCS) [? ] can be seen as an
edit distance that allows only insertions and deletions at cost 1 (i.e. the number
of impaired characters). LCS has been used in text applications not only for
comparing character sequences, but also for comparing sequences of words [? ?
]. Needleman and Wunsch [? ] also proposed a di�erentiated cost G (i.e. gap
cost) for insertion and deletion operations; this approach is also known as the
Sellers Algorithm.

Waterman et al. [? ] proposed an edit distance measure adding an alphabet
distance function d(c1, c2), allowing di�erent for editing operations depending
on the characters being compared. For instance, the substitution cost for the
characters �1� and �l � might be lower than the cost between �e� and �h�. Gotoh [?
] modi�ed the distance proposed by Waterman et al. considering open/extend
gap operations with variable costs (or Smith-Waterman distance [? ]). These
new operations allow closer matches with truncated or abbreviated strings (e.g.
comparing �Michael S. Waterman� with �M. S. Waterman�). In order to have
that property, the cost of extending a gap has to be smaller than the gap opening
cost.

2.6.2 Learning edit distances

Ristad and Yianilos [? ] were the �rst to propose a method to learn the optimum
adaptation cost schema for edit distance for a particular matching problem in
a supervised manner. They proposed an edit distance with the three original
operations insertion, deletion and substitution. Let a and b be characters in
the alphabet Σ of the strings including ε as the empty character. The costs
to be learned are a matrix C|Σ|×|Σ| whose entries are the substitution costs
at character level. The insertion cost for a character a is ca,ε. Similarly the
deletion and substitution costs are cε,a and ca,b respectively. The optimal costs
are estimated with an expectation maximization (EM) strategy using a training
dataset. Bilenko and Mooney [? ] proposed a similar approach to learn the
optimal cost for an edit distance including open and extend -gap operations.

2.6.3 Jaro and Jaro-Winkler measures

The Jaro's similarity between two strings of lengthm and n takes only O(m+n)
in space and time complexity [? ]. It considers the number of common characters
c and the number of transpositions t using the following expression.

simJaro(sm, sn) = 1
3

(
c
m + c

n + c−t
c

)
Common characters are considered only in a sliding window of sizemax(m,n)/2,

in addition, common characters can not be shared and are assigned with a greedy
strategy. The case when c = 0, simJaro must return a value of 0 for avoiding
division by zero. In order to compute the transpositions t of two lists, common
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characters are ordered according with its occurrence in the strings being com-
pared. The number of characters that are unmatched in common positions on
both lists is the number of transpositions t.

The Jaro-Winkler similarity [? ] is an improved Jaro similarity considering
also the number of common characters l at the beginning of both strings using
the following expression.

simJaro−Winkler(sm, sn) = simJaro(sm, sn) + l
10 (1− simJaro(sm, sn))

Jaro and Jaro-Winkler measures were conceived and have been used mainly
for matching proper names. However, these measures can be used as a faster
alternative to the edit distance. Similarity, Jaro-Winkler measure have been
used for lexical similarity because its property of giving more importance to the
mismatches at the characters at the beginning of the words is somehow aligned
with the importance of the �rst characters in the stems of words.

2.7 Other approaches

2.7.1 Monge-Elkan measure

Monge and Elkan [? ] proposed a simple but e�ective method to compare two
objects represented as collections of elements. Given two collections of elements
A, B and a similarity measure for comparing pairs of elements sim(a, b), the
Monge-Elkan measure is computed as follows.

SIMME(A,B) =
1

|A|

|A|∑
i=1

max
|B|
j=1sim(ai, bj) (2.4)

In fact the Monge-Elkan measure is an suboptimal O(|a| × |b|) approxima-
tion to the assignment problem, which has a complexity of O(min(|a|, |b|)3)
for the better solutions [? ]. Note that Monge-Elkan measure is not sym-
metrical making of this method rather an inclusion measure than a similar-
ity measure. This feature makes this method useful for detecting directional
textual entailment. Nonetheless, it can be symmetrized by SIM(A,B) =
max(SIMME(A,B), SIMME(B,A)).

Jimenez et al. proposed a generalization of the Monge-Elkan method replac-
ing the arithmetic mean in the formula by the generalized mean [? ]:

SIMGME(A,B) =

 1

|A|

|A|∑
i=1

(
max

|b|
j=1sim(ai, bj)

)p 1
p

(2.5)

Values of p > 1 can be interpreted as giving more importance to the pair
of elements more similar over the less similar. In a name matching task, a
value of p = 2 produced optimal results, which can be interpreted as integrating
an Euclidean measure as a replacement of the Manhattan distance that was
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implicitly used in the original formulation. The Monge-Elkan method has been
used for comparing names at character level and for short texts using words as
elements [? ? ].

2.7.2 Compression distance

Cilibrasi and Vitányi [? ] proposed the idea of using data compression to obtain
a distance measure between two objects A, B using the normalized compression
distance (NCD) computed with the following expression.

NCD(A,B) =
C(A⊕B)−min {C(A), C(B)}

max {C(A), C(B)}
C(A) is the size of the compressed information of A, and C(A ⊕ B) is the

same function but with the concatenation of A and B. The compressor C has
to satisfy the conditions of a normal compressor:

1. Idempotency. C(xx) = C(x), and C(λ) = 0, where λ is the empty string.

2. Monotonicity. C(xy) ≥ C(x).

3. Symmetry. C(xy) = C(yx).

4. Distributivity. C(xy) + C(z) ≤ C(xz) + C(yz).

The data compressor C for text strings and documents may be BZ2, ZLib or
any other data-compression method. This method was originally tested by
the authors in document clustering tasks. Christen [? ] tested the method
in a comparative study of approximate string metrics in name matching tasks
obtaining comparable results against the best results obtained with measures of
the Jaro's and edit distance families.



Chapter 3

Mathematical properties of

Soft Cardinality:

Enhancing Jaccard, Dice and cosine

similarity measures with element-wise

distance

The soft cardinality function generalizes the concept of counting measure
of the classical cardinality of sets. This function provides an intuitive measure
of the amount of elements in a collection (i.e. a set or a bag) exploiting the
similarities among them. Although soft cardinality was �rst proposed in an
ad-hoc way, it has been successfully used in various tasks in the �eld of natural
language processing (NLP). In this paper, a formal de�nition of soft cardinality
is proposed together with an analysis of the mathematical properties (particu-
larly its boundaries and monotonicity) and an empirical evaluation of the model
using synthetic data.

A version of this chapter was submitted to Information Sciences journal.

3.1 Introduction

Similarity measures such as Jaccard (sim(a, b) = |A∩B|/|A∪B|) [? ], Dice (sim(a, b) =
2·|A∩B|/|A|+|B|) [? ] and cosine (sim(a, b) = |A∩B|/

√
|A|·|B|) [? ] coe�cients are

de�ned as arithmetic expressions of the cardinality of the sets |A|, |B|, their
union |A ∪ B| and intersection |A ∩ B|. These coe�cients are among the most
used similarity measures in science. However, this approach fails to capture im-

38
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portant characteristics of many data such as the fact there could be a continuous
degree of similarity between set's elements. Consider two texts represented as
sets that share the same meaning, but have no words in common. Similarity
measures based on standard set operations are not able to re�ect the similarity
between the texts, since these operations fail to represent word similarity. In
this paper, this approach is formally extended by making it able to handle this
and other scenarios where the similarities between elements induce similarities
between collections that contain them.

The soft cardinality model was initially proposed (in 2008) as a convenient
way to represent text similarity ([? ] in Eq. 3.10, and [? ]), and its e�ectiveness
was validated by the success of the approach to addressing di�erent NLP tasks in
SemEval . In this paper, the formal derivation and de�nition of soft cardinality
is presented along with a review of some of its mathematical properties and an
experimental validation over synthetic data. This provides a more sound and
formal basis for a model that has already been proven e�ective in practice.

In the spirit of soft cardinality but applied to vectors, Sidorov et al. [? ]
proposed the soft-cosine measure, which is particularly similar to our approach.
Moreover, Leinster and Cobbold [? ] (2012) recently proposed a generalized
diversity measure in the �eld of ecology, which incorporates pairwise similarities
between species in addition to traditional relative abundance for each species.
This measure has the form of the Hill numbers [? ], which was in turn derived
from the generalized Shannon entropy of Renyi [? ] for di�erent orders q. Our
formulation for soft cardinality using default softness parameter (p = 1 in Eqs.
3.5 and 3.6) is equivalent to the Leinster-Cobbold diversity of order q = 0 (see
[? ]: page 480). Interestingly, both measures cross at that speci�c point of these
parameters, but our derivation came through set theory, while theirs was based
on information theory in a direction traced by Ricotta and Szeidl [? ].

A fundamental property of a collection (set or bag) is its size or cardinality,
i.e. the number of elements that compose it. The notion of soft cardinality is to
make this count �soft", assuming those elements that are similar to others in the
collection �count less� than others that are very di�erent from the rest. There-
fore, the soft cardinality of a collection containing similar elements should be
less than that of a collection with the same number of elements, but signi�cantly
di�erent. For instance, consider two sets of animals: A ={horse, donkey, zebra}
and B ={horse, snake, bee}. The soft cardinality of the former collection could
be, say, 1.3 (�a bit more than one animal�) and the latter, say, 2.9 (�a bit fewer
than three totally di�erent animals�). The classical cardinalities of A and B are
identical, but the soft ones provide a more intuitive measure of the �amount� of
concepts represented in them.

As shown in the example above, the idea of elements in a collection that count
less than others implies that they may contribute with less than 1 to the soft
cardinality of the collection. Therefore, the range of this function of cardinality
is R+ instead of N. Furthermore, an element that is identical to another element
already in the collection must contribute nothing to the total soft cardinality of
the collection. More precisely, all instances (repetitions) of a distinct element
contribute only 1 to the soft cardinality of the collection. This idea di�ers
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from the previously proposed de�nitions of the cardinality of a bag, which takes
into account all the elements, including duplicates [? ? ]. Nevertheless, the
number of repetitions of an element in a collection plays an important role
in many applications in NLP and IR �elds. The soft cardinality model was
relaxed to address the above issue by providing a way to handle, besides pairwise
similarities, the importance weights associated with each element. Therefore,
the number of repetitions may play a role in the calculation of these weights
and thus not be ignored by the soft-cardinality model.

The organization of the rest of this paper is as follows: In Section 3.3, the
motivation and derivation of the soft cardinality formulation is presented. In
Section 3.4, the mathematical de�nition of soft cardinality is presented. In
Section 3.5, a review of the properties is presented. Particularly, we elaborate
on the property of monotonicity and the relevance for NLP. Next, in Section 3.7,
the behavior and properties of soft cardinality are illustrated with experiments
with synthetic data. Finally, in Section 3.8 some brief concluding remarks are
provided.

3.2 Intuition

The process that led us to the inception of soft cardinality was purely intuitive.
For us, the �nal model appeared since the �rst moment. Next, it showed to
be useful and competitive in several text processing tasks [? ? ? ? ? ? ? ?
]. And �nally, the model was analyzed theoretically in an attempt to explain
its good performance. The idea came to us intuitively when addressing a name
matching task. We observed that in a collection, where repetitions of identical
elements are allowed (i.e. a bag), the cardinality of the derived set (i.e. the
collection without repetitions) can be expressed by the sum of the inverses of the
number of repetitions. For illustration, lets consider the collection {a,b,b,c,c,c}.
The contribution of the element a to the set cardinality was 1, that of each
b was 1/2 and that of each c is 1/3. Thus, the summation of all contributions
1+ 1/2+ 1/2+ 1/3+ 1/3+ 1/3 = 3 is the cardinality of the set {a,b,c}. We arranged
the elements in a matrix whose entries indicated if the elements were identical
(1) or not (0).

a b b c c c row sum inverse
a 1 0 0 0 0 0 1 1
b 0 1 1 0 0 0 2 1/2
b 0 1 1 0 0 0 2 1/2
c 0 0 0 1 1 1 3 1/3
c 0 0 0 1 1 1 3 1/3
c 0 0 0 1 1 1 3 1/3∑

= 3

The next question was what would happen if the two instances of b were not
identical but similar, say 0.9 similar, and the same happens to c. The matrix
becomes:
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a b b′ c c′ c′′ row sum inverse
a 1 0 0 0 0 0 1 1
b 0 1 0.9 0 0 0 1.9 0.53
b′ 0 0.9 1 0 0 0 1.9 0.53
c 0 0 0 1 0.9 0.9 2.8 0.36
c′ 0 0 0 0.9 1 0.9 2.8 0.36
c′′ 0 0 0 0.9 0.9 1 2.8 0.36∑

= 3.12

Does the result 3.12 could mean �three and a bit elements�? The next obvious
test was making the instances of b and c almost dissimilar between them, say
0.01:

a b b′ c c′ c′′ row sum inverse
a 1 0 0 0 0 0 1 1
b 0 1 0.01 0 0 0 1.01 0.99
b′ 0 0.01 1 0 0 0 1.01 0.99
c 0 0 0 1 0.01 0.01 1.02 0.98
c′ 0 0 0 0.01 1 0.01 1.02 0.98
c′′ 0 0 0 0.01 0.01 1 1.02 0.98∑

= 5.92

Does the result 5.92 could mean �a bit less than six elements�? Our �rst
answer to the previous two questions was yes. Voilá soft cardinality!. This
model was so simple and intuitive that our �rst thought was that most likely
the model should already be proposed in the past by someone. The search for
connections in the literature was fruitless until the end of 2014 when �nally the
connection with the work of Leinster and Cobbold was found.

3.3 Derivation

Let Â = {a1, . . . , an} be a set of sets and A =
⋃n
i=1 ai the set resulting of joining

the sets in Â. The cardinality of A is given by the following equation:

|A| =

∣∣∣∣∣∣
⋃
a∈Â

∣∣∣∣∣∣ =
∑

J∈P(Â)\∅

(
−1|J|−1

∣∣∣∣∣⋂
a∈J

a

∣∣∣∣∣
)
, (3.1)

This is simply the well-known inclusion-exclusion principle. For the case
n = 2, we can express the cardinality |A| as a function of a the similarity
between sets a1 and a2 expressed by the Jaccard's coe�cient:

S(a1, a2) =
|a1 ∩ a2|
|a1 ∪ a2|

(3.2)

The resulting formula is as follows:



CHAPTER 3. MATHEMATICAL PROPERTIES OF SOFT CARDINALITY: 42

|A| = |a1 ∪ a2| = |a1|+ |a2| − |a1 ∩ a2|

=
|a1|

S(a1, a1) + S(a1, a2)
+

|a2|
S(a2, a2) + S(a2, a1)

(3.3)

Each of the summands in Eq. 3.3 represents the individual contributions
of a1 and a2 to |A|. In the event that the sets have zero similarity (their
intersection is empty), the individual contributions of them are simply |a1| and
|a2| (assuming S(x, x) = 1), and decrease as S(a1, a2) increases. This structure
is generalized to higher values of n, assuming that the contribution to the total
cardinality provided by a set ai is |ai| if ai is not similar to another set but
decreases as these similarities increase. The division of |ai| by the sum of the
similarities against all sets in Â can provide an expression for the contribution
of a set following the above intuition. Therefore, the following formula is a
plausible approximation for the total cardinality:

|A| =

∣∣∣∣∣
n⋃
i=1

ai

∣∣∣∣∣ '
n∑
i=1

(
|ai|∑n

j=1 S(ai, aj)

)
. (3.4)

Note that Eq. 3.3 and the approximation given in Eq. 3.4 depend solely on
pairwise similarities and |ai|.

The exact calculation of the cardinality by Eq. 3.1, requires O(2n) time
since the cardinality of all the subsets of Â must be calculated. In contrast,
the approximation given by Eq. 3.4 only requires O(n2) time. Must impor-
tantly, Eq. 3.4 allows for generalization to situations where instead of subsets
we have objects that can be compared by a similarity function. As similarities
and distances are complementary concepts, that generalization also applies to
element-wise distances since any distance function can be transformed into a
similarity function.

3.4 De�nition

3.4.1 Comparison between elements

Let A = {a1,a2, . . . , an} be a collection whose the elements are comparable be-
tween them and repetitions are allowed (also called a bag or multiset). Let us
de�ne three notions of comparability among elements, namely similarity func-
tion, crisp comparator and indistinguishable comparator.

De�nition 1. A similarity function on A is a function S : A × A → [0, 1]
subject to:

R1. S(x, x) = 1 any element is identical to itself,

R2. S(x, y) = 1 i� x = y (x and y are identical),
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R3. S(x, y) = 0 i� x and y do not share commonalities,

R4. 0 < S(x, y) < 1 i� x and y are similar to some extent,

R5. S(x, y) = S(y, x) (symmetry).

De�nition 2. A crisp comparator for A is a function SF : A × A → {0, 1}
subject to R1, R2 and R3, but this last is replaced by S(x, y) = 0 i� x 6= y .

SF(x, y) =

{
1 iff x = y,

0 iff x 6= y.

Therefore, a crisp comparator is the one that returns a score of 1 only for
identical elements and 0 otherwise. The term �crisp� is used here as opposed to
�soft�, similarly to the use of this term in fuzzy sets, where it means the opposite
of �fuzzy� [? ].

De�nition 3. An indistinguishable comparator in A, is a function S• : A ×
A → 1, i.e. ∀x, y : S•(x, y) = 1. An indistinguishable comparator is the one
that considers all possible elements identical.

Proposition 1. Any similarity function S raised to a large power is equivalent
to the crisp comparator, i.e. limp→∞ Sp = SF. Clearly, if the value returned
by S is 1, then the value returned by Sp is 1 for any value of p. In contrast, if
the values returned by S satis�es 0 ≤ S < 1, then limp→∞ Sp = 0.

Proposition 2. Any similarity function S raised to a power close to 0 (from the
right) is equivalent to the indistinguishable comparator, i.e. limp→0+ Sp = S•.
Clearly, ∀S : S0 = 1 (assuming 00 = 1).

The previous de�nitions and propositions show that the elements of a col-
lection can be compared with any degree of softness using Sp, obtaining the
maximum �softness� (indistinguishability) when p → 0+ and the maximum
�hardness� (discriminability) when p→∞.

3.4.2 Soft cardinality

De�nition 4. Let S be a similarity function to compare pairs of elements, A a
collection and a an element in A. The contribution of a to the soft cardinality
of A is de�ned by the formula:

|a|S =
1∑

b∈A S(a, b)p
; p > 0. (3.5)

The maximum value of such contribution is 1, obtained when ai is a fully
distinct element in A, i.e. S(ai,, aj) = 0 for any i 6= j, and 1 otherwise. Note that
by R1 ∀ai ∈ A : 0 < |ai|S ≤ 1. Here, p becomes a softness control parameter
making S to range from S• to SF. The default value for this parameter is p = 1,
which leaves the similarity function S unchanged.
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De�nition 5. The soft cardinality of a collection A given a similarity function
S, denoted as |A|S, is the addition of all the contributions of their elements:

|A|S =
∑
a∈A
|a|S . (3.6)

Proposition 3. The soft cardinality of a collection with only one element is 1
and the soft cardinality of the empty collection ∅ is 0. This is a consequence of
De�nition 4, De�nition 5 and R1.

Corollary 1. The soft cardinality of any collection is always positive, i.e.
∀A ∀S : |A|S ≥ 0.

3.4.3 Disjointness based on similarity

In previous subsections, the term �fully distinct element� was used to refer in-
formally to elements that do not have commonalities against others. In this
subsection, similarity-based de�nitions of disjointness for an element and a sub
collection are presented.

De�nition 6. An element a such that a ∈ A is a disjoint element w.r.t. A
if the similarities against all the other elements in A is 0 (excluding a and
its repetitions). Complementarily, a is not a disjoint element w.r.t. A if the
similarity of a against at least one element in A (again excluding a and its
repetitions) is greater than 0.

Corollary 2. Let a be an element in A. If a is disjoint w.r.t. A, then the
contribution |a|S of a to |A|S is 1. Proof. By De�nition 4, |a|S is the inverse
of the addition of the similarities against all the elements in A. If a is disjoint,
then all these similarities are 0 except against itself, which is 1. Therefore, the
addition of the similarities is 1, so |a|S = 1 .

De�nition 7. A sub collection Ad is disjoint in A if all the elements of Ad are
disjoint w.r.t. A \ Ad and not disjoint w.r.t. Ad. Accordingly, a sub collection
containing only one disjoint element w.r.t. A is also a disjoint partition of A.

Given the above de�nition, the elements of a disjoint sub collection are
linked by similarity relationships, directly or transitively, and disconnected from
the other elements in the collection. Therefore, here the concept �disjoint sub
collection� is equivalent to the concept �connected component� in graph theory.

De�nition 8. The disjoint partition of a collection A is a set of disjoint sub-
collections DA = {A1, A2, . . . , A|DA|} such that

⋃
Ad∈DA Ad = A and ∀i 6=

j, Ai ∩Aj = ∅.

Corollary 3. The soft cardinality of A is additive w.r.t. the disjoint sub col-
lections in DA. By De�nitions 5 and 8 it follows that |A|S =

∑
Ad∈DA |Ad|S .
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3.5 Properties

3.5.1 Bounds

Lemma 1. The soft cardinality is monotonic w.r.t. S. Proof. Consider a
collection A with more than two elements and two particular elements ax and
ay that are partially similar, i.e. 0 < S(ax, ay) < 1. The similarity function
S can be modi�ed to Sε by altering only the similarity between ax and ay
by adding a small value ε and keeping the other similarities unchanged, i.e.
Sε(ax, ay) = S(ax, ay) + ε and Sε = S for the remaining pairs. Let us compare
the soft cardinalities |A|S and |A|Sε . The only element contributions that di�er
are |ax|Sε = 1

1
|ax|S

+ε
and |ay|Sε = 1

1
|ay|S

+ε
. Clearly, if 0 < |a|S ≤ 1 and ε > 0,

then |ax|Sε < |ax|S and |ay|Sε < |ay|S , and so, |A|Sε < |A|S . Conversely, if
ε < 0, then |A|Sε > |A|S . Therefore, |A|S varies monotonically as S varies.

Corollary 4. By Lemma 1, it can be concluded that if there are two similarity
functions S1 and S2 that satisfy ∀x, y : S1(x, y) ≥ S2(x, y) (or S1 ≥ S2, for
short), then |A|S1

≤ |A|S2
. In addition, the opposite, S1 ≤ S2 =⇒ |A|S1

≥ |A|
is also true. Must be taken into mind that, given the monotonicity of the
exponential function, if p1 < p2, then S

p1 > Sp2 . Therefore, |A|Sp1 < |A|Sp2 ,
which means that the soft cardinality is monotonic w.r.t. the softness control
parameter p.

Both Lemma 1 and Corollary 4 support the intuition that the larger the
similarities among the elements of a collection, the lower its soft cardinality.
Moreover, as has been demonstrated the monotonicity of the soft cardinality
regarding S, and knowing that SF and S• are extremes in the spectrum of
possible functions S, boundaries can be found for the soft cardinality.

Lemma 2. The soft cardinality of any disjoint sub collection Ad is lower
bounded by 1. Proof. The element comparator that provides the maximum
degree of similarity is S•. In view of Lemma 1 and Corollary 4, the use of S•

produces the minimum soft cardinality, hence ∀S : |Ad|S• ≤ |Ad|S . Now, by
De�nition 2 and De�nition 4 the contribution of an element a ∈ Ad is sim-
ply |a|S• = 1

|Ad| , which leads by De�nition 5 to |Ad|S• =
∑
a∈Ad

1
|Ad| = 1.

Therefore, 1 ≤ |Ad|S .

Theorem 1. The soft cardinality of a collection A is lower bounded by |Ad| ≤
|A|S . Proof. Suppose that DA is the disjoint partition of A, by Lemma 3 each
disjoint sub collection is lower bounded by 1 ≤ |Ad|S . This inequality can be
added through all disjoint sub collections in A:

∑
Ad∈DA 1 ≤

∑
Ad∈DA |Ad|S .

Clearly, the left side of this inequation is |Ad|, and by Corollary 3, the right side
is |A|S . Therefore the theorem is proved.

Lemma 3. The soft cardinality of any disjoint sub collection Ad is upper
bounded by |Ad|. Proof. Analogously as in Lemma 2 , the element compara-
tor that provides the minimum degree of similarity is SF, which produces the
maximum soft cardinality. Besides, by De�nition 4, |a|SF = 1∑

b∈Ad
SF(a,b)p

= 1



CHAPTER 3. MATHEMATICAL PROPERTIES OF SOFT CARDINALITY: 46

because SF(a, b) is only 1 if a = b and 0 otherwise. Thus, by De�nition 5,
|Ad|SF =

∑
a∈Ad |a|SF = |Ad|. Finally, by Corollary 4, if ∀x, y : S(x, y) ≥

SF(x, y), then |Ad|S ≤ |Ad|SF . Therefore |Ad|S ≤ |Ad|.

Theorem 2. The soft cardinality of a collection A is upper bounded by |A|S ≤
|A|. Proof. Suppose that DA is the disjoint partition of A, by Lemma 3
each disjoint sub collection is bounded by |Ad|S ≤ |Ad|. Similarly as in The-
orem 1, this inequality can be added through all disjoint sub collections in A:∑
Ad∈DA |Ad|S ≤

∑
Ad∈DA |Ad|. The left side of the inequality is |A|S due to

Corollary 3. The right side is |A| due to De�nition 8, which prevents any element
to be counted more than once. Therefore, |A|S ≤ |A|.

In conclusion for any collection A and its disjoint partition DA, the soft
cardinality is bounded by |DA| ≤ |A|S ≤ |A|. Furthermore, it is interesting to
see that the classical view of a set is equivalent to a collection that has only
disjoint elements. Accordingly, for such collection |A| = |A|SF , showing that the
soft cardinality is a generalization of the classical cardinality. Besides, it was
shown that in the case when soft cardinality is equivalent to classic cardinality
the latter is an upper bound for the former. This result agrees with our initial
intuition that if there are commonalities among the elements of A, then the soft
cardinality must be less than the simple counting of the elements. Similarly,
since the lower bound is the number of disjoint sub collections, it is shown
that the soft cardinality can decrease only until a meaningful limit. Thus, if a
collection has only one disjoint sub-collection, then the minimal soft cardinality
is 1, i.e. one element.

3.5.2 Monotonicity

Up to here, the term monotonicity was used in the sense of the property of
a function w.r.t. its parameters, i.e. |A|S with respect to S or p. However,
monotonicity is a mathematical property of a measure at a playground, where a
numeric value assigned by the measure to any subset must be less than or equal
to the numeric value assigned to the set. For instance, the classical cardinality
is a trivial counting measure that ful�lls monotonicity. Thus, the measure that
the soft cardinality tries to approximate (Eq. 3.4) is also monotonic. Intuitively,
the soft cardinality should satisfy monotonicity because it has been shown that
it is a softened enumeration of elements in a collection. It makes sense that,
when an element is added to a collection, the soft cardinality must increase or
remain unchanged, but never decrease. However, it was observed empirically
that the soft cardinality observes monotonicity in most cases, but �fails� in some
situations. In fact, in Section 3.7 , it can be seen that the number of cases where
the soft cardinality is not monotonic decrease as the softness control parameter p
increases. In this sub section, the cases in which the soft cardinality is monotonic
or not, are reviewed analytically. In particular, a non-monotonic example may
show that this behavior models heuristics that could be an advantage for NLP
applications rather than a drawback.
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The following statements require these assumptions: Let A be a collection
and b a new element such that b /∈ A. The insertion of b into A results in a new
collection, denoted by A⊕ b.

Theorem 3. If b is similar to only one element a such that a ∈ A, then
|A ⊕ b|S ≥ |A|S . Proof. The contributions to the soft cardinality of the
common elements between A and A ⊕ b are identical except for a, that is |a|S
in A, and decrease to |a|S

1+|a|SS(a,b) in A ⊕ b. Besides, |A ⊕ b|S increases in

comparison with |A|S because the contribution of the new element b, which

is |b|S = 1
1+S(a,b) . Hence, |A ⊕ b|S ≥ |A|S i� 1

1+S(a,b) ≥ |a|S −
|a|S

1+|a|SS(a,b) ,

i.e. i� the increment at the left side is larger than the excrement at right.
This inequation can be rewritten as 1

|a|S(1+S(a,b)) + 1
1+|a|SS(a,b) ≥ 1 (recall that

0 < |a|S ≤ 1 and 0 < S(a, b) ≤ 1). In the previous inequation, the �rst addend
gets the minimal value of 0.5 if |a|S = S(a, b) = 1. Similarly, the second addend
gets the same minimal value of 0.5 also if S(a, b) = 1, for a total at the left side
of the inequation of 1. Therefore, the inequality holds for all possible values of
|a|S and S(a, b). Consequently, the theorem is proven.

Remark 1. If b is disjoint w.r.t. A⊕ b, then |A⊕ b|S = |A|S +1. This property
is equivalent to the classical cardinality because |b| = 1 and all the contributions
of the elements of A to the soft cardinality of the collection are unchanged.

Remark 2. If a ∈ A, a is disjoint w.r.t. A, and S(a, b) = 1, then |A ⊕ b|S =
|A|S. Exact copies of disjoint elements do not increase the soft cardinality.

Theorem 3 and Remarks 1 and 2 cover the cases when the soft cardinality
is strictly monotonic, being Remark 1 the case with maximal monotonicity and
Remark 2 the minimal.

Theorem 4. If b is similar to more than one element in A, then |A⊕ b|S could
be less, equal or greater than |A|S . Proof. Let C be a sub collection of A (i.e.
C ⊆ A) such that b is similar to all the elements in C (i.e. ∀a ∈ C : S(a, b) > 0),
and let m be the number of such elements (i.e. m = |C| ≥ 2). Similar as in
Theorem 3, |A⊕ b|S di�ers from |A|S by an increment due to |b|S , and also by
the decrements in the contributions of the elements of C due to their similarities
against b. In the following questioned equality, the increment is put at left and
the absolute decrements at right:

1

1 +
∑
a∈C S(a, b)

?
=
∑
a∈C

[
|a|S −

|a|S
1 + |a|SS(a, b)

]
. (3.7)

Here, if the left side is equal or greater than the right side, then the insertion of
b holds monotonicity. Otherwise, the insertion of b into A produces a reduction
in the soft cardinality. To prove this theorem, the following three examples
illustrate the feasibility of each case of the questioned equality in Eq. 3.7:

Example 1, for |A ⊕ b|S < |A|S . Suppose that ∀a ∈ C : |a|S = 1 and

S(a, b) = 1. The replacement of these values in Eq. 3.7 produces: 1
1+m

?
= m

2 . As
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m ≥ 2, it follows that 1
1+m < m

2 for m ≥ 2, so |A⊕ b|S < |A|S (not monotonic
case).

Example 2, for |A ⊕ b|S = |A|S . Suppose that ∀a ∈ C : |a|S = 1
mand

S(a, b) = 1. The replacement of these values in Eq. 3.7 produces: 1
1+m

?
= 1

1+m .
Obviously, |Ab+ |S = |A|S . Interestingly, if the similarity is set to a �xed value
S(a, b) = k, then it gets 1

1+mk ≥
k

k+m , which is true for m ≥ 2 and 0 ≤ k ≤ 1.
In this case, |A⊕ b|S ≥ |A|S (monotonic case).

Example 3, for |A ⊕ b|S > |A|S . Suppose that ∀a ∈ C : |a|S = 1
1+m and

S(a, b) = 1. The replacement of these values in Eq. 3.7 produces: 1
1+m

?
=

m
1+m −

m
2+m . The questioned equality can be rewritten as 1−m

1+m

?
= −m

2+m . Let

m′ = m − 1, when m is replaced by m′ in the right side it gets 1−m
1+m

?
= 1−m′

1+m′ .
Now, it is easier to see that on both sides produce the same series of numbers but
with an o�set of 1. Consequently, 1−m

1+m > −m
2+m for m ≥ 2, and |A⊕ b|S > |A|S

(monotonic case).

Note that if a new inserted element has similarities with the elements be-
longing to di�erent disjoint sub collections, these sub collections become one
disjoint sub collection. Being reduced the number of disjoint sub collections,
the lower boundary of the soft cardinality is also reduced (by Theorem 1) thus
compromising monotonicity.

Theorem 4 shows an interesting fact: when the new element being added to
the collection is similar to more than one element in the collection, the mono-
tonicity of the soft cardinality may or may not hold. Contrary, as shown in
Theorem 3 , when the new element is similar to only one element in the col-
lection, monotonicity is strict. Furthermore, the above examples in Theorem 4
show that monotonicity depends on these multiple similarities as on the contri-
butions to the soft cardinality of the elements similar to the new one. Appar-
ently, when these contributions and/or these similarities are low, monotonicity
seems to hold. Unlike this, when the new element has similarities close to 1
against other elements, and these elements are almost disjoint (the contribution
to the soft cardinality |a|S close to 1), the situation leads to non-monotonicity.
This scenario rise a question: Is this behavior useful or harmful for the natural
language processing?

To address the this question, let us �rst say that an element a1 in A with
a high contribution to the soft cardinality (i.e. |a1|S is close to 1) means that
such element is mostly not similar against the others elements in A. If another
element a2 in A has the same condition, then it is probable that the similarity
between a1 and a2 is also low. In that scenario, if an element b is being added
to A, and it happens that S(a1, b) and S(a2, b) are both high (close to 1), then
b provides new evidence that a1 and a2 are similar. Clearly, this situation does
not ful�ll the transitive closure of S because a1 is similar to b, b to a2, but a1

and a2 are not similar. Although, S is not restricted with metric properties, the
triangle inequality in the dissimilarities (1−S) may be violated too. Contrarily,
if the element being added is only similar to one element in the collection, no
new similarity connections are made inside that collection, and so monotonicity
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Table 3.1: Relatedness scores from Google Books Ngram corpus (1999-2000)
using nPMI in a sliding window of three words

S(a, b)
a ↓ b→ New York City Times
New 1.0000 0.9128 0.5207 0.5920
York 0.9128 1.0000 0.5542 0.6283
City 0.5207 0.5542 1.0000 0.1508
Times 0.5920 0.6283 0.1508 1.0000

Table 3.2: Soft cardinality scores for all sub collections of {New, York, City,
Times}
i Ai |Ai|S i Ai |Ai|S
0 {} 0.0000 8 {York, City} 1.2868
1 {New} 1.0000 9 {York, Times} 1.2283
2 {York} 1.0000 10 {New, York} 1.0456
3 {City} 1.0000 11 {New, York, City} 1.2983
4 {Times} 1.0000 12 {New, York, Times} 1.2432
5 {City, Times} 1.7380 13 {New, City, Times} 1.6454
6 {New, City} 1.3152 14 {York, City, Times} 1.6068
7 {New, Times} 1.2563 15 {York, New, City, Times} 1.5247

holds as shown by Theorem 3.
Now, let us illustrate the pseudo-monotonic behavior of the soft cardinal-

ity using an example. Consider the collection of words A={New, York, City,
Times} and a similarity function S obtained by the normalized pointwise mutual
information (nPMI) [? ] using counts from the Google Books Ngram corpus1

between years 1999 and 2000, an sliding windows of size 3, and p = 1. The
resulting collocational-relatedness function is shown in Table 3.1.

Although, only collocational evidence is used here, the S function seems to
follow intuition. In such small context, terms like City and Times are almost
unrelated, which is reasonable if no further context is provided. Once, the term
New is added to the collection, it provides new evidence of the second-order
relatedness between City and Times. Similarly, the term York strengthen this
evidence. Table 3.2 shows the soft cardinality scores obtained by Eq. 3.6 for all
sub collections in A. Note that in this example, as S is a relatedness function,
the soft cardinality measures the amount of unrelated terms.

Among these scores, sub collections such as A13 and A14, which have more
words than A5, get a lower soft cardinality evidencing a non-monotonic behavior.
Besides, A15 gets an even lower soft cardinality showing how the additional
context reinforces the relationship between City and Times. Similarly, A6 to
A11 and A7 to A12 are non-monotonic insertions. It is interesting to see that, in
this example all the other possible element insertions (e.g. |A11|S > |A8|S) the

1https://books.google.com/ngrams
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monotonicity holds, showing that the soft cardinality can deal with transitive
and non-transitive relationships in A induced by S. Clearly, for this particular
example a non-strictly monotonic measure is more convenient than a monotonic
one. Besides, this example illustrates how all the n-wise relationships in a
collection can be inferred from pairwise ones using the soft cardinality.

The previous example also suggests, that the amount of information in nat-
ural language is not a measure (in mathematical sense) with respect to the
number of words. It is generally accepted that more words in a message not
necessarily convey more concepts or information. For instance, words and its
de�nitions exhibit a non-monotonic behavior. Consider the text �a man who
works� conveys at least two distinct concepts, namely: �man� and �to work�.
However, if the word �wood� is added to the message the de�nition becomes
collapsed in only one concept, �carpenter�.

3.5.3 Idempotence

Theorem 5. Let A and B be two collections that contain the same number of
distinct elements but di�er in the total number the elements (counting repeti-
tions). If the relative proportions of the number of repetitions of the elements in
A and B are the same, then |A|S = |B|S . Proof. Let A be a collection with m
distinct elements a1, a2, . . . , am (i.e. ∀i, j ∈ {1, 2, . . . ,m} ∧ i 6= j, S(ai, aj) < 1)
and ri is the number of repetitions of ai in A. The soft cardinality of A becomes:

|A|S =

m∑
i=1

ri∑m
j=1 rj · S(ai, aj)p

.

The number of elements in A is n =
∑m
i ri and the relative proportion of ai is

fi = ri/n. Replacing ri by n · fi in the previous equation gets:

|A|S =

m∑
i=1

fi∑m
j=1 fj · S(ai, aj)p

.

Therefore, if the relative proportions fi are the same in A and B, then |A|S =
|B|S .

Theorem 5 shows that soft cardinality depends (besides on similarities among
elements) either on the relative proportions of the repetitions of the elements
or the number of repetitions. Therefore, if B contains the same elements of A
but repeated k times, then the soft cardinality of both collections is the same.
Working with relative proportions could be more convenient in applications such
as document and image processing making the results independent of the length
or resolution respectively.
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3.6 Similarity functions

3.6.1 Inferring cardinality of intersection

The soft cardinality of the intersection of two collections cannot be calculated
directly from A ∩ B because the intersection operator is inherently crisp. This
means that, if there are no common elements between A andB, their intersection
is empty, and so its soft cardinality is 0. The following de�nition allows to infer
the soft cardinality of the intersection between two collections by means of the
soft cardinalities of each collection and their union.

De�nition 9. Let A and B be two collections, the soft cardinality of the inter-
section of them is |A∩B|S = |A|S+ |B|S−|A∪B|S. In this case, the operator ∪
means bag union, which takes the maximum of the number of occurrences of the
common elements in each bag. Example: {1, 1, 2, 3} ∪ {1, 2, 2} = {1, 1, 2, 2, 3}.

This allows non-empty intersections for pairs of collections that have no
elements in common, but they do have similar ones. Once |A ∪ B|S , |A ∩ B|S ,
|A|S and |B|S are known, it is possible to obtain all the other areas in the Venn's
diagram of two sets, i.e. |A4B|S = |A∪B|S−|A∩B|S , |A\B|S = |A|S−|A∩B|S
and |B \ A|S = |B|S − |A ∩ B|S . These are the building blocks of almost all
cardinality-based resemblance coe�cients.

3.6.2 Building similarity functions

There are several parametric and non-parametric families of cardinality based
similarity functions ranging from simple formulations such as Jaccard's [? ] and
Dice's [? ] coe�cients until parametric formulations [? ? ]. The way to build
a text similarity function is i) to select a linguistic unit to be compared (e.g.
sentences), ii) to use a representation of the texts based on bags (e.g. bags of
words, n-grams, dependencies, etc.), iii) to choose a cardinality based similarity
coe�cient (e.g. Jaccard's, Tversky's, De Baet's coe�cients), and iv) to provide
a pairwise similarity function S for the elements produced by the used text
representation (e.g. normalized Levenshtein similarity, nPMI [? ], normalized
path length in WordNet [? ], etc.). The simplest example of such similarity
function for pairs of sentences is:

Ssentence(A,B) =
|A ∩B|Sword
|A ∪B|Sword

. (3.8)

Here, Ssentence is the produced similarity function that compares pairs of text
sentences based on the similarities between words provided by Sword. The only
parameter to be adjusted in Eq. 3.8 is p. Jimenez et al. [? ] showed that the
default p = 1 works �ne for short sentences in English. However, a convenient
value for p depends mainly on the range and distribution of the values returned
by Sword, on the length of the texts, and on the task at hand. An optimal
value can be determined using training data with a gold standard of similarity
scores. Other parameters introduced by the use of parametric cardinality-based
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coe�cients, such as α and β in the Tversky's index [? ], can be determined in
the same way [? ].

It is important to note that Eq. 3.8 is recursive, similar to the popular
Monge-Elkan measure [? ? ]. That is, the similarity function Ssentence is
obtained from another similarity function, Sword. This idea can be recursively
used to build a similarity function Sparagraph from Ssentence, and so on. In
that way, it is possible to build similarity functions that exploit the hierarchical
structure of text and natural language.

The previous example the ilustrates the process for contructing a similarity
function using soft cardinality. Clearly, the process is analogous in any other
domain where objects can be modeled as collections of elements.

3.6.3 Weighted soft cardinality

Now, let us introduce a relaxed soft-cardinality model that allows importance
weights associated to the elements of a collection.

De�nition 10. The weighted contribution of an element a, such that a ∈ A, to
|A|S, is given by multiplying the unweighted contribution by a positive weighting
function having ∀x ∈ A : W (x) ≥ 0, that is:

|a|S =
W (a)∑

x∈A∧W (x)>0 S(a, x)
. (3.9)

The functionW (ai) is any weighting mechanism for the elements of A. When
the elements of A are divisible into sub elements, the straightforward choice is
W (x) = |x|. Another examples could be entropy W (x) = −P (x). log2(P (x)) or
the tf-idf weighting schema W (x,A) = tf(x,A).idf(x, U) [? ], here U is a large
set of collections or words, i.e. a document collection.

This weighted version of the soft cardinality allows incorporating the com-
mon practice in NLP of promoting informative words and ignore non-informative
words. It is important to note, that elements with null weights (or close to 0)
should be removed from the collections because, even though their contribution
is 0, their similarities still interacts with the other elements a�ecting their con-
tributions. This issue reveals the fact that most of the properties of the soft
cardinality get overwritten because of the e�ect of the weights. Despite that,
the weighted approach preserves the original motivations of the soft cardinality
and extends its modeling ability.

3.7 Testing soft cardinality in random data

In this section, the properties of the soft cardinality are empirically explored
using random data.

The �rst experiment aims to compare the soft cardinality against a gold
standard that provides exact soft cardinality. For a given number n of elements
in a collection, all their m-wise (m ∈ {2, 3, . . . , n}) relations can be randomly
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a3 

|a1∩a2|=0.30+0.09=0.39 

|a2∩a3|=0.34+0.09=0.43 ; 

|a1∩a3|=0.16+0.09=0.25 

|A|*=0.45+0.30+0.27+0.34+

0.41+0.16+0.9 = 2.02 

a1 a2 a3 1/|ai|S |ai|S 

a1 1.0 0.242 0.143 1.385 0.722 

a2 0.242 1.0 0.274 1.516 0.660 

a3 0.143 0.274 1.0 1.417 0.706 

|A|S=0.722+0.660+0.706= 2.088 |A|*≈|A|S 

(a) (b) (c) 

(d) 

S(x,y)=|x ∩ y| / (|x|+|y|-|x ∩ y|) 

n=3 

(e) 

|a1|=0.45+0.30+0.09+0.16 = 1.00 

|a2|=0.27+0.34+0.09+0.30 = 1.00 

|a3|=0.41+0.16+0.09+0.34 = 1.00 

S 

Figure 3.1: Example of obtaining a gold standard for comparison with the soft
cardinality

generated assigning to them uniformly distributed random numbers drawn from
the [0,1] interval. These m-wise relations can be seen as all distinct areas of a
Venn's diagram built using the n elements treated as sets. The random numbers
are adjusted in order to make the individual areas that comprise a1, a2 and a3

add up to 1. Thus, the summation of all those relations values provides a
measure of the amount of non-redundant information in the collection. Figure
3.1 (a) to (c) depicts an example of this process for n = 3: (a) a collection
with 3 elements is given, (b) each element is treated as a set and a random
number is assigned to each possible m-wise relation, (c) the �cardinality� of
each element is checked to add up to 1. In that example, it is possible to
say that the soft counting of the number of elements in that collection is 2.02
elements, which is analogous to the idea of soft cardinality, but computed using
all possible relations among the elements. Note that the number of m-wise
relations is 2n − 1, which grows exponentially making the generation of this
gold standard only feasible for relatively small values of n (until n = 20 in our
experiments). For instance, for n = 20, while soft cardinality requires only 190
pairwise relationships, the gold standard requires 1,048,576 m-wise.

Once the gold standard value (|A|∗ in Figure 3.1(c)) is obtained for the
collection, it is compared against the soft cardinality. For that purpose, the
pairwise intersections, which are only n(n−1)/2 , are extracted from the same
random data and the Jaccard coe�cient is used to get the element-to-element
similarity function S. Finally, the soft cardinality is computed (Eq. 3.6 using
p = 1) and compared against the gold standard. This process is shown for our
running example in Figure 3.1 (d) and (e). In this example, the gold standard
and soft cardinality are relatively close (2.088 ≈ 2.02).
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Figure 3.2: Correlations obtained between the soft cardinality and the gold
standard for 1,000 samples varying n from 2 to 20

This process is repeated 1,000 times generating di�erent random data, and
all obtained values for the gold standard and soft cardinality are compared
using the Pearson's correlation. Figure 3.2 shows the resulting correlations for
collections ranging from n = 2 to n = 20. In addition, Figure 3.3 shows plots
of the data for 6 selected values of n.

These results show that the soft cardinality is highly correlated with the pro-
posed gold standard. At �rst, the correlation seems to decrease as n increases,
but then it stabilizes around 0.9, which is highly signi�cant for a sample size of
1,000. If the soft cardinality is interpreted as a pairwise approximation of the
�real� one computed with all m-wise relationships, then this stable correlation
suggest that the soft cardinality is a good approximation for those values.

The results of this experiment could depend importantly on how the ran-
dom data was drawn. Clearly, using uniformly distributed random numbers for
each distinct area of the Venn's diagram (see Figure [�g:example-exact-sc](b))
promotes high degrees of similarity among the elements. As it can be seen in
Figure [�g:correlation-plots], as n increases the data varies in smaller ranges,
which means that the degree of redundancy is higher in larger collections us-
ing that uniformly generated random data. Nevertheless, it is noticeable that
the correlation between the soft cardinality and the proposed gold standard is
preserved even at such small scale. Additional experiments were carried out
with other distributions observing that such correlation prevails. For instance,
in Figure [�g:non_uniform_random_plots] the uniformly generated data (mid-
dle points in blue) is compared with one set generated by promoting similarities
(lower points in red) and other promoting dissimilarities (upper points in green).
The dissimilarities were promoted by dividing each random number r by a fac-
tor that depends on the number q of elements involved in the relation, by the
expression: r′ = r/(1+10q) . Similarly, for promoting similarities the expression
was r′ = r/(1+10(n−q)) .
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Figure 3.3: Correlation between �exact� and soft cardinality for 1,000 random
collections of n elements
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Figure 3.4: Correlation between �exact� and soft cardinalities for di�erently
generated random data
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Figure 3.5: Example of 60 random uniform points at left, and clustered in 3
groups at right

3.7.1 Pseudo-monotonicity and softness control

The goal of this subsection is to visualize the pseudo-monotonic behavior of the
soft cardinality w.r.t. the softness control parameter p in randomly generated
data. For that, several sets of 60 points are generated in a tridimensional space
inside a cube with a diagonal from (0,0,0) to (1,1,1). For each run, two sets are
generated: one uniformly and another clustered in three zones. The clustered
data was generated by, �rst selecting three random centroids separated at least
by a distance De, and then iteratively generating random points around them
into spheres of radius Di. Examples of these data sets are shown in Figure 3.5,
uniform at left and clustered at right.

The similarity function for pairs of points is based on the Euclidean distance:

Spoints(a, b) = 1− distance(a, b)√
3

.
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Figure 3.6: Soft cardinalities of subsets of incremental number of random gen-
erated elements; uniformly at left and 3-clustered at right

Using this similarity function, the soft cardinalities of sets with incremental
insertions of elements are calculated using di�erent values of the softness control
parameter p. In Figure 3.6, each series shows the results for a di�erent run.
This �gure shows that most of the element insertions, both in the uniform and
clustered cases, produce monotonic increments in the soft cardinality. Although,
there are some non-monotonic insertions, the average tendency of each series is
clearly monotonic. It is interesting to see that the values of the soft cardinality
in the clustered data are considerably lower than those of the uniform data,
considering that the average similarity in both data sets is similar. This shows
that the soft cardinality reveals that the �amount of information� in a set is
larger when it is generated with a criterion of maximum entropy (uniform).
Figure 3.6 (at left) also shows how for larger values of p the soft cardinality
tends to its upper boundary, i.e. the classical cardinality.

The upper and lower boundaries of the soft cardinality can be better appre-
ciated in Figure 3.7 at left, where the softness control parameter p is plotted
versus the soft cardinality of di�erent sized sets. In the uniform data, the lower
boundary is obtained with the minimum value of p. Next, as p increases each
series tends asymptotically to the upper boundary, i.e. the number of elements.
It is interesting to see that, in the clustered data (Figure 3.7 at right) there are
local minima in the slopes of the curves when the soft cardinality is around 3,
i.e. the number of clusters. These plots also con�rm that the soft cardinality is
strictly monotonic with respect to the softness control parameter (Lemma 1).

The results discussed in this subsection con�rmed empirically and graphi-
cally some of the properties of the soft cardinality properties theoretically pre-
sented earlier.
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Figure 3.7: Soft cardinalities of di�erent sized subsets varying the softness con-
trol parameter p (uniform data at left and clustered at right)

3.8 Conclusion

In this paper, we have shown that the soft cardinality approach has: plausible
intuitions, theoretical foundation, experimental validity, practical usefulness and
good performance. Regarding the intuitions about soft counting, the presented
model correctly put the idea of a cardinality measure in a setting where similar-
ities among elements reveal and remove redundancy. In addition, the proposed
theoretical de�nition and mathematical properties provide a solid foundation
for the model. Experimental validation conducted using synthetic data corrob-
orated the main intuition and properties of the soft cardinality. Besides, the
fact that the soft cardinality can be used analogously and interchangeably with
the classical cardinality allows the use of a wide variety of available methods
and techniques.



Chapter 4

Soft cardinality in semantic

text processing:

Experience of the SemEval interna-

tional competitions

Soft cardinality is a generalization of the classic set cardinality (i.e. the
number of elements in a set), which exploits similarities between elements to
provide a �soft� counting of the number of elements in a collection. This model
is so general that can be used interchangeability as cardinality function in re-
semblance coe�cients such as Jaccard's, Dice's, cosine and others. Beyond that,
cardinality-based features can be extracted from pairs of objects being compared
to learn adaptive similarity functions from training data. This approach can be
used for comparing any object that can be represented as a set or bag. We and
other international teams used soft cardinality to address a series of natural
language processing (NLP) tasks in the recent SemEval (semantic evaluation)
competitions from 2012 to 2014. The systems based on soft cardinality have
always been among the best systems in all the tasks in which they participated.
This paper describes our experience in that journey by presenting the general-
ities of the model and some practical techniques for using soft cardinality for
NLP problems.

A version of this chapter was accpeted for publication at Polibits journal (May
2015).
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4.1 Introduction

SemEval1 (Semantic Evaluation) is a series of academic workshops which aims
to bring together the scienti�c community in the �eld of natural language pro-
cessing (NLP) around tasks involving automatic analysis of texts. Each year,
a set of challenges is proposed dealing with di�erent aspects of the area of
computational semantics attracting the attention of research groups of insti-
tutions worldwide. Each challenge follows a peer reviewing screening process
ensuring the relevance, correctness, quality, and fairness of each competition.
Task organizers pose an interesting challenge by providing a new dataset and a
methodology for evaluating systems that address that challenge. For instance,
organizers of the semantic textual similarity task (STS) provide several train-
ing datasets containing pairs of short texts labeled with a gold standard built
using human annotators. Next, participating teams build systems that predict
annotations in unseen test data, and organizers evaluate the performance of
each system. Finally, organizers and participants describe their experiences and
used approaches in peer-reviewed articles, which become de facto state of the
art methods.

We, researchers from the Universidad Nacional de Colombia and the Centro
de Investigación en Computación of the IPN in Mexico collaborated to partic-
ipate in several SemEval tasks since 2012. The core component of our partic-
ipating systems is soft cardinality [? ], a recently proposed approach to make
the classic cardinality of set theory sensitive to the similarities and di�erences
between the elements in a collection. This approach is particularly appropriate
for addressing NLP problems because it allows �nding commonalities between
texts that do not share words but have words that are similar in some degree.
Somehow surprisingly, systems build with this simple approach obtained impres-
sive results in several SemEval challenges defeating considerably more complex
and costly approaches. In addition, our team was the one with the highest
number of participations from 2012 to 2014 also using the same core approach
for addressing all tasks and always obtaining very satisfactory results.

This paper describes our experience in that journey by reviewing our partic-
ipations in SemEval. Section 4.2 presents a brief description of soft cardinality,
some parameterized resemblance coe�cients, and the method for extracting
cardinality-based feature representations. Section 4.3 presents some of the tech-
niques and resources used for addressing NLP tasks using soft cardinality. Sec-
tion 4.4 reviews the systems and particular tasks addressed in SemEval, and a
summary of the obtained results is presented. Finally in Section 4.5 we provide
some concluding remarks.

4.2 Soft cardinality approach

The cardinality of a collection of elements is the counting of non-repeated ele-
ments within. This de�nition is intrinsically associated with the notion of set,

1http://en.wikipedia.org/wiki/SemEval

http://en.wikipedia.org/wiki/SemEval
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which is a collection of non-repeating elements. The notation of the cardinality
of a collection or set A is |A|. Jimenez et al. [? ] proposed soft cardinality, which
uses a notion of similarity between elements for grouping not only identical el-
ements but similar too. That notion of similarity between elements is provided
by a similarity function that compares two elements ai and aj returning a score
in [0,1] interval having sim(x, x) = 1. Although, it is not necessary that sim
ful�lls another mathematical property aside identity, symmetry is also desirable.
Thus, the soft cardinality of a collection A, whose elements a1, a2, . . . , a|A| are
comparable with a similarity function sim(ai, aj), is denoted as |A|sim. This
soft cardinality is given by the following expression:

|A|sim =

|A|∑
i=1

wai∑|A|
j=1 sim(ai, aj)p

(4.1)

It is trivial to see that |A| = |A|sim if either p → ∞ or when the function
sim is a crisp comparator, i.e. one that returns 1 for identical elements and
0 otherwise. This property shows that soft cardinality generalizes classic car-
dinality and that the parameter p controls its degree of �softness�, the default
value is p = 1. The values wai are optional �importance� weights associated
with each element ai, by default those weights can be assigned to 1.

4.2.1 Inferring intersection cardinality

The soft cardinality of the intersection of two collections cannot be calculated
directly from A ∩ B because the intersection operator is inherently crisp. This
means that, if there are no common elements between A andB, their intersection
is empty, and so its soft cardinality is 0. The following de�nition allows inferring
the soft cardinality of the intersection through soft cardinalities of each collection
and their union.

Let A and B be two collections, the soft cardinality of their intersection is
|A ∩B|sim = |A|sim + |B|sim − |A ∪B|sim. In this case, the operator ∪ means
bag union, which takes the maximum number of occurrences of the elements in
each bag. Example: {1, 1, 2, 3} ∪ {1, 2, 2} = {1, 1, 2, 2, 3}[? ].

This infers non-empty intersections for pairs of collections that have not
common elements, but have similar elements. Once |A ∪ B|sim, |A ∩ B|sim,
|A|sim and |B|sim are known, it is possible to obtain all other areas in the Venn's
diagram of two sets, i.e. |A4 B|sim = |A ∪ B|sim − |A ∩ B|sim, |A \ B|sim =
|A|sim−|A∩B|sim and |B \A|sim = |B|sim−|A∩B|sim. These are the building
blocks of almost any cardinality-based resemblance coe�cient.

4.2.2 Cardinality-based resemblance coe�cients

Since more than a century when Jaccard [? ] proposed his well-known index,
the classic set cardinality has been used to build similarity functions for set
comparison. Basically, any cardinality-based similarity function is an algebraic
combination of |A|, |B| and either |A ∩ B| or |A ∪ B| (e.g. Jaccard, Dice [? ],
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Table 4.1: Named Resemblance Coe�cients
Resemblance coe�cient SIM(A,B) =

Jaccard [? ] |A∩B|
|A∪B|

Dice or Sørensen [? ] |A∩B|
0.5(|A|+|B|)

Overlap |A∩B|
min(|A|,|B|)

Cosine or Ochiai [? ] |A∩B|√
|A|·|B|

Hamming 1
1+|A4B|

Tversky [? ], overlap and cosine [? ] coe�cients). Table 4.1 shows some of the
most used resemblance coe�cients.

The simplest way to build similarity functions with soft cardinality is to
replace the classic cardinality | ∗ | by soft cardinality | ∗ |sim. These coe�cients
have mathematical properties (e.g. transitivity, metric properties) that make of
them a good option for many applications. When cosine coe�cient is used in
combination with soft cardinality, the resulting approach is conceptually similar
to the soft cosine measure proposed by Sidorov et al. [? ].

4.2.3 Parameterized resemblance coe�cients

Some resemblance coe�cients contain in its formulation parameters that allow
adaptation to particular tasks. One of them is the Tversky's index [? ], which
was proposed as a cognitive model of similarity:

SIM(A,B) =
|A ∩B|

α|A \B|+ β|B \A|+ |A ∩B|
;

α, β ≥ 0

There, parameters α and β control the balance of the di�erences between
A and B. In Tversky's model, one of the sets being compared is the referent
and the other is the variant, making this similarity measure asymmetric when
α 6= β. This asymmetry makes of Tversky's model an inclusion measure rather
than a similarity measure. Nevertheless, in its original form it is still useful
in text applications where the texts being compared have an ordinal relation,
e.g. question-answer in question answering, query-document in information re-
trieval, text-hypothesis in textual entailment, text-summary in summarization,
and others. In applications such as textual similarity or paraphrase detection,
symmetry plays an important role. Jimenez et al.[? ] proposed a symmetriza-
tion of Tversky's index in the following way:

SIM(A,B) =
c

β(αa+ (1− α)b) + c
(4.2)

|c| = |A ∩B|+ bias,
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a = min[|A \B|, |B \A|],

b = max[|A \B|, |B \A|].

This formulation also re-arranges parameters α and β in a way that α con-
trols the balance between the di�erences of A and B, and β controls the im-
portance in the denominator between di�erences and commonalities between A
and B. The additional parameter bias allows removing an implicit degree of
similarity between A and B, so usually bias ≤ 0. This parameter can also be
associated with the average or minimum intersections in a dataset. This coe�-
cient generalizes Jaccard (α = β = 1; bias = 0), Dice (α = β = 0.5; bias = 0),
overlap (α = 1;β = 0; bias = 0) and Hamming (α = 1;β = 1; bias = 1−|A∩B|).

Another generalization can be made by the observation that Dice and cosine
coe�cients are the ratio of |A ∩ B| and the arithmetic and geometric means,
respectively. Therefore, the denominator can be replaced the expression of the
generalized mean between |A| and |B|:

SIMp(A,B) =
|A ∩B|

0.5(|A|p + |B|p)1/p
(4.3)

Di�erent values of the parameter p produce di�erent known coe�cients, i.e.
Dice (p = 1), cosine (p → 0) and overlap (p → ∞). Other interesting values
of p correspond to known means: p = −1 is the harmonic mean, p = 2 is the
quadratic mean and p→ −∞ is the minimum.

De-Baets and De-Meyer [? ] proposed another hexaparametric generalized
resemblance coe�cient (a and b as in Eq. 4.2:

SIM(A,B) =
αa+ βb+ δ|A ∩B|
α′a+ β′b+ δ′|A ∩B|

The values selected for parameters in resemblance coe�cients are usually
obtained by optimizing some criterion using training data. For example, in
a dataset that consist of triples (A,B, gAB) where gAB is a gold standard of
similarity (e.g. agreement of human judgments), the optimal set of parameters
can be obtained by maximizing the correlation (Pearson or Spearman) between
SIM(A,B) and gAB or by minimizing the mean-absolute error (MAE) or root-
mean-squared error (RMSE).

4.2.4 Cardinality-based features for machine learning mod-

els

The parameterized resemblance coe�cients allow the exploration and adapta-
tion of a relatively large set of similarity functions to a particular problem. How-
ever, the space of possible formulations of similarity functions is huge. Which is
the most appropriate similarity function for a particular problem is a question
that can be addressed by adjusting parameters in these coe�cients, but this
strategy is nothing more than an arbitrary bias in the search. In this case, �a
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problem� means a dataset that needs to be modeling or explained by the sim-
ilarity function. An exhaustive exploration of candidate similarity function is
out of question given the large number of possible formulations. Genetic pro-
gramming [? ] can be used for this, but still the considered functions might be
unable to model local non-linearities in some datasets. Using machine learning
methods may be an appropriate option to address these issues.

Most machine learning algorithms builds models using a �xed features set
(i.e. a vector) to represent each sample (e.g. linear regression, support vector
machines, naïve Bayes, decision trees, K -means, etc.) Training data is a set of
samples wherein each sample is associated with a target variable, a similarity
score in our scenario. These labeled samples are used to construct a black box
model, which is able, to some extent, to predict the target variable, and it is also
able of producing predictions for unlabeled data. There is a variety of methods
for obtaining these black box models including approaches whether geometric,
probabilistic, algorithmic, information theoretical, among many others. This
approach allows learning a similarity function adapted to the problem at hand
e�ciently and generally with a good level of generalization.

The proposed approach consists in extracting a �xed set of features from
each pair of sample objects A and B, building a training dataset using these
features, and labeling each sample with a gold-standard of similarity. Next,
this training dataset is used to learn a machine learning model for the target
variable. Finally, the learned model is used to provide similarity scores for other
pairs of objects by extracting from them the same features set.

The proposed features for each pair of objects are based on cardinality, using
either classical or soft cardinality. Thus, for a pair of objects (A,B) represented
as sets (or bags), the basic set of cardinality-based features consist of |A|, |B|
and |A ∪ B|. All other possible cardinality-based features are mathematical
combinations thereof these three features. The following obvious features are
the other areas in the Venn's diagram of two sets, i.e. |A∩B|, |A4B|, |A \B|
and |B \ A|, Table 4.2 shows the basic and derived set of features described.
An additional set of features aimed to enable machine learning algorithms to
identify symmetrical patterns in the objects being compared is built using min()
and max() functions, see �Derived set 2� in Table 4.2.

Although, many machine learning methods requires or includes previous pre-
processing steps of normalization or standardization of the features. Therefore,
it makes sense to produce some features whose values are limited in a range.
Table 4.3 shows an extended set of features limited to [0,1] interval. These fea-
tures are aimed to allow machine learning algorithms for learning patterns from
the relative proportions of cardinality magnitudes. In the context of text appli-
cations, these rational features allow identifying patterns that are independent
of the length of texts.

4.2.5 Exploring larger sets of features

Feature sets presented in the previous section have shown e�ective to address
many natural language processing challenges at SemEval competitions. Despite



CHAPTER 4. SOFT CARDINALITY IN SEMANTIC TEXT PROCESSING:65

Table 4.2: The basic and derived feature sets for the comparison two collections
of words.

Basic Derived set 1
|A| |A ∩B| = |A|+ |B| − |A ∪B|
|B| |A4B| = |A ∪B| − |A ∩B|
|A ∪B| |A \B| = |A| − |A ∩B|

|B \A| = |B| − |A ∩B|

Derived set 2
max(|A|, |B|)
min(|A|, |B|)

max(|A \B|, |B \A|)
min(|A \B|, |B \A|)

Table 4.3: Set of ten extended rational features.
Feature expression Feature expression

#1 |A|/|A∪B| #6 |B|−|A∩B|/|B|
#2 |A|−|A∩B|/|A| #7 |B|−|A∩B|/|A∪B|
#3 |A|−|A∩B|/|A∪B| #8 |A∩B|/|B|
#4 |A∩B|/|A| #9 |A∩B|/|A∪B|
#5 |B|/|A∪B| #10 |A∪B|−|A∩B|/|A∪B|

their e�ectiveness, they seem to be arbitrary. For example, features shown in
Table 4.3 are rational combinations of some of the features in Table 4.2. Why
only select these ten combinations? In fact, if the Table 4.2 contains 11 features
and number 1 is added to this set, then the number of possible combinations
of rational features is 12 × 11 = 131. With this new set of 131 features, the
ten features in Table 4.3 seems to be arbitrary indeed. The reason for including
number 1 in the basic feature set is thereby allowing the basic features and their
inverses be included in the combined feature set, e.g. |A4B| and 1/|A4B|. Note
that Jaccard index (i.e. |A∩B|/|A∪B|) is also included in this combined set. Let's
call the basic set of features F , formally:

F (A,B) = {1, |A|, |B|, |A ∪B|, |A ∩B|, |A4B|,
|A \B|, |B \A|,min(|A|, |B|),max(|A|, |B|),
min(|A \B|, ||B \A|),max(|A \B|, ||B \A|)}

Before providing a formal de�nition of the combined set of features, an addi-
tional set of basic features from di�erent means (averages) must be considered
as well. These additional features allow include Dice, cosine, and other coef-
�cients as features too. For that, the expression of the generalized mean (see
denominator at Eq. 4.3) can be used considering only a representative subset
of the possible values for parameter p:

P = {−50,−20,−10,−4,−3,−2,−1,

0.0001, 1, 2, 3, 4, 10, 20, 50}
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Now, the basic feature set F can be extended to F ′ by including all the
generalized means restricted by P , between |A| and |B|, and between |A \ B|
and |B \A|, formally :

F ′(A,B) = F (A,B) ∪
{0.5(|A|p + |B|p)

1/p |∀p ∈ P } ∪
{0.5(|A \B|p + |B \A|p)

1/p |∀p ∈ P }

Now, the number of features in F ′(A,B) is |F (A,B)| + 2|P | = 42 features.
The combined set of features can be de�ned as:

C(A,B) =

{
f1
f2

∣∣(f1, f2) ∈ F ′(A,B)× F ′(A,B) ∧ f1 6= f2

}
This combination produce 42×41 = 1, 722 features in C(A,B). This is a very

large number of features for comparing only two set. Clearly, only subsets of
this set of features are useful for particular applications. Even di�erent datasets
for a same task could require di�erent representations. The idea is to make a
selection of features (see [? ] for an introductory tutorial) before using any
machine learning regressor or classi�er for a particular task. This allows to
learn an adequate representation for the task prior to learn and adequate black-
box (or even an interpretable) model for addressing the task. The optimal
feature set for a particular task is very di�cult to �nd because it would require
considering 21,772 possible subsets. Generally, using known methods only a near-
optimal subset can be found, whose size is usually not too small nor too large.
Jimenez et al. [? ] observed that as a general rule the number of near-optimal
features is between 10% and 20% of the number of available training samples.
However, the larger the number of possible features explored, the higher the
chances of �nding smaller feature subsets. For example, Dueñas et al. [? ]
considering a similar feature set but also including logarithmic functions, found
that the most correlated feature to the di�culty of a short-answer question was

|A\B|
log(0.5

√
|A|2+|B|2)

, where A corresponds to the text of the reference answer and

B to the question.
Although, we did not use these cardinality-based feature representation

learned from training data in SemEval competitions, in subsequent studies
showed this approach e�ective for lexical similarity task and in the analysis
of questions for student evaluation. Therefore, we believe this approach may
also be useful for other applications of NLP.

4.3 Using soft cardinality for NLP

4.3.1 Textual similarity

The way to build a text similarity function is i) to select a linguistic unit to be
compared (e.g. sentences), ii) to use a representation of the texts based in bags
(e.g. bags of words, n-grams, dependencies, etc.), iii) to choose a cardinality
based similarity coe�cient (e.g. Jaccard's, Tversky's, De Beat's coe�cients),
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and iv) to provide a pairwise similarity function SIMword for comparing the
elements produced by the used text representation (e.g. normalized Levenshtein
similarity, nPMI [? ], normalized path length in WordNet [? ], etc.). The
simplest example of such similarity function for sentence pairs is:

SIMsentence(A,B) =
|A ∩B|SIMword

|A ∪B|SIMword

. (4.4)

The only parameter to be adjusted in Eq. 4.4 is p, the softness controller
parameter. Jimenez et al. [? ] showed that the default p = 1 works well for
short sentences in English. However, a suitable value for p depends primarily
on the range and distribution of the values returned by SIMword, on the length
of the texts, and on the task at hand. Clearly, any resemblance coe�cient
presented in Section 4.2.2 and Section 4.2.3 can be used.

It is important to note that Eq. 4.4 is recursive, similar to the popular
Monge-Elkan measure [? ? ]. That is, the similarity function SIMsentence is
obtained from another similarity function, SIMword. This idea can be recur-
sively used to build a similarity function SIMparagraph based on SIMsentence,
and so on. Thus, it is possible to build similarity functions exploiting the hier-
archical structure of the text and natural language.

4.3.2 Term weights

Term weighting is a common practice in NLP to promote informative words and
ignore non-informative words. For instance, the so-called stopwords are function
words that can be removed of texts preserving their meaning to some extent,
examples of these stopwords are the, of, for, etc. Removing stopwords may be
interpreted as a binary weighting for the words in a text, i.e. assigning 1 for
non-stopwords and 0 otherwise. However, a graded notion of informativeness
has proven more e�ective than the binary approach. Probably the most used
term-weighting schemes are tf.idf [? ] and BM25 [? ].

The soft cardinality allows the use of term weights at wai in Eq. 4.1. It
is important to note, that elements with zero weights (or close to 0) should be
removed from texts because, although their contribution is 0, their similarities
still interacts with the other elements a�ecting soft cardinality. This issue re-
veals the fact that most of the properties of the soft cardinality get overwritten
because of term weighting. However, that weighted approach still preserves the
original motivations of soft cardinality and extends its modeling capability [? ].

4.3.3 Features for text comparison

In Section 4.2.4 we presented a method for extracting basic sets of cardinality-
based features from a pair of texts represented as sets or bags of words. When
the soft cardinality is being used in short texts, its word-to-word similarity
function SIMword plays a central role in the meaning of the extracted features.
For instance, if the SIMword compares words morphologically, then features
extracted using |∗ |SIMword

re�ect morphological features in texts. Additionally,
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other types of features can be extracted by modifying the set representation
of text. For instance, a text A can be enriched with words taken from the
dictionary de�nitions of the words already in A. These and others methods for
feature extraction are presented in the following sections.

4.3.3.1 Morphological features

For extracting morphological features of texts it is only necessary to provide a
SIMword(w1, w2) function based on the characters of the words. Some options
are edit distance [? ] (converted to a similarity function) or Jaro-Winkler simi-
larity [? ] (see [? ] for a survey). Our choice was to use the Tversky symmetrized
index (Eq. 4.2) by representing each word by 3-grams of characters, e.g. house
is represented as {hou, ous, use}. The values of the parameters of the Tversky
symmetrized index were obtained by building a simple text similarity function
SIMsentence(A,B) using Dice's coe�cient and soft cardinality using that func-
tion as auxiliary similarity function, i.e. | ∗ |SIMword

by Eq. 4.1. Then the space
of parameters were explored by hill-climbing optimizing the Pearson's correla-
tion between the similarity score obtained SIMsentence and the gold standard
of the SICK dataset [? ]. The optimal values of the parameters were α = 1.9,
β = 2.36, bias = −0.97. In fact, the size of n-grams, n = 3, was also optimal for
that function. The softness-control parameter of soft cardinality was optimized
too, obtaining p = 0.39, but it is irrelevant for SIMword. Thus, the proposed
similarity function for comparing words is:

SIMword(w1, w2) =
|w1 ∩ w2| − 0.97

2.36(1.9a− 0.9b) + |w1 ∩ w2| − 0.97
(4.5)

a = min[|w1 \ w2|, |w2 \ w1|]
b = max[|w1 \ w2|, |w2 \ w1|]

Finally, having soft cardinality | ∗ |SIMword
for each pair of texts A and B

the features described in Section 4.2.4 or Section 4.2.5 can be obtained straight-
forwardly.

4.3.3.2 Semantic features

The proposed SIMword(w1, w2) function in previous section only exploits the
super�cial information of the words, therefore the extracted features using soft
cardinality | ∗ |SIMword

convey the same kind of information but at textual
level. The obvious next step is to use a function of similarity of words that
exploits semantic relationships between the words instead of comparing letters.
In that way, the soft cardinality-based features would convey semantic informa-
tion. There are several choices for that. First, knowledge-based lexical measures
based on WordNet can do the job (see background section in [? ].) Alterna-
tively, distributional representations that make use of frequencies of the words
taken from large corpora (see [? ] for some examples) can be used for semantic
lexical similarity. Recently, neural word embedding [? ? ] has become the state-
of-the-art for semantic lexical similarity. The approach consists in building a
predictive model for each word in the vocabulary of a large corpus based in local
contexts. For this, each vocabulary word is represented as a �xed dimensional
vector (usually from 100 to 300 dimensions). These representations are those
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that maximize the probability of generating the entire corpus. Although, the
process of obtaining these representations is computationally expensive, pre-
trained vectors are freely-available for use 2 3. To obtain similarity scores with
this approach, the cosine similarity between their vectorial representations is
used.

4.3.3.3 ESA Features

For this set of features, we used the idea proposed by Gabrilovich and Markovitch
[? ] of extending the representation of a text by representing each word by its
textual de�nition in a knowledge base, i.e. explicit semantic analysis (ESA).
For that, we used as knowledge base the synset's textual de�nitions provided
by WordNet. First, in order to determine the textual de�nition associated to
each word, the texts were tagged using the maximum entropy POS tagger in-
cluded in the NLTK4. Next, the Adapted Lesk's algorithm [? ] for word sense
disambiguation was applied in the texts disambiguating one word at the time.
The software package used for this disambiguation process was pywsd5. The
argument parameters needed for the disambiguation of each word are the POS
tag of the target word and the entire sentence as context. Once all the words
are disambiguated with their corresponding WordNet synsets, each word is re-
placed by all the words in their textual de�nition jointly with the same word
and its lemma. The �nal result of this stage is that each text in the dataset is
replaced by a longer text including the original text and some related words.
The motivation of this procedure is that the extended versions of each pair of
texts have more chance of sharing common words that the original texts.

Once the extended versions of the texts were available, the same features
described in Section 4.3.3.1 or Section 4.3.3.2 can be obtained.

4.3.3.4 Features for each part-of-speech category

This set of features is motivated by the idea proposed by Corley and Mihalcea
[? ] of grouping words by their POS category before being compared for se-
mantic textual similarity. Our approach provides a version of each text pair in
the dataset for each POS category including only the words belonging to that
category. For instance, the pair of texts {�A beautiful girl is playing tennis�,
�A nice and handsome boy is playing football �} produces new pairs such as:
{�beautiful �, �nice handsome�} for the ADJ tag, {�girl tennis�, �boy football �}
for NOUN and {�is playing�, �is playing�} for VERB.

Again, the POS tags were provided by the NLTK's maximum entropy tag-
ger. The 28 POS categories were simpli�ed to nine categories in order to avoid
an excessive number of features and hence sparseness; used mapping is shown in
Table 4.4. Next, for each one of the nine new POS categories a set of features is

2http://code.google.com/p/word2vec/
3http://nlp.stanford.edu/projects/glove/
4http://www.nltk.org/
5https://github.com/alvations/pywsd

http://code.google.com/p/word2vec/
http://nlp.stanford.edu/projects/glove/
http://www.nltk.org/
https://github.com/alvations/pywsd
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Reduced tag set NLTK's POS tag set

ADJ JJ,JJR,JJS

NOUN NN,NNP,NNPS,NNS

ADV RB,RBR,RBS,WRB

VERB VB,VBD,VBG,VBN,VBP,VBZ

PRO WP,WP$,PRP,PRP$

PREP RP,IN

DET PDT,DT,WDT

EX EX

CC CC

Table 4.4: Mapping reduction of the POS tag set

extracted reusing again the method proposed in section 4.2.4. The only di�er-
ence consideration is the stopwords should not be removed and stemming should
not be performed. The motivation for generating this feature sets grouped by
POS category is that the machine learning algorithms could weight di�erently
each category. The intuition behind this is that it is reasonable that categories
such as VERB and NOUN could play a more important role for the task at
hand than others such as ADV or PREP. Using these categorized features, such
discrimination among POS categories can be discovered from the training data.

4.3.3.5 Features from dependencies

Syntactic soft cardinality [? ? ] extends the soft cardinality approach by
representing texts as bags of dependencies instead of bags of words. Each de-
pendency is a 3-tuple composed of two syntactically related words and the type
of their relationship. For instance, the sentence �The boy plays football � is be
represented with 3 dependencies: [det,�boy�,�The�], [subj,�plays�,�boy�] and
[obj,�plays�,�football �]. Clearly, this representation distinguishes pairs of texts
such as {�The dog bites a boy�,�The boy bites a dog�}, which are indistinguish-
able when they are represented as bags of words. This representation can be
obtained automatically using the Stanford Parser [? ], which, in addition, pro-
vides a dependency identifying the root word in a sentence.

Once the texts are represented as bags of dependencies, it is necessary to
provide a similarity function between two dependency tuples in order to use soft
cardinality, and hence to obtain the cardinality-based features in Table 4.2. Such
function can be obtained using the SIMword function (Eq. 4.5) for comparing
the �rst and second words between the dependencies and even the labels of the
dependency types. Let's consider two dependencies tuples d = [ddep, dw1

, dw2
]

and p = [pdep, pw1 , pw2 ] where ddep and pdep are the labels of the dependency
type; dw1 and pw1 are the �rst words on each dependency tuple; and dw2 and pw2

are the second words. The similarity function for comparing two dependency
tuples can be a linear combination of the sim scores between the corresponding
elements of the dependency tuples by the following expression:
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simdep(d, p) = γsim(ddep, pdep) + δsim(dw1 , pw2) + λsim(dw2 , pw2)

Although, it is unusual to compare the dependencies' type labels ddep and
pdep with a similarity function designed for words, we observed experimentally
that this approach yield better overall performance in the textual relatedness
task in comparison with a simple exact comparison. The optimal values for
the parameters γ = −3, δ = 10 and λ = 3 were determined with the same
methodology used in Section 4.2.3 for determining α, β and bias. Clearly, the
fact that δ > λ means that the �rst words in the dependency tuples plays a more
important role than the second ones. However, the fact that γ < 0 is counter
intuitive because it means that the lower the similarity between the dependency
type labels is, the larger the similarity between the two dependencies. Up to
date, we have been unable to �nd a plausible explanation for this phenomenon.

4.4 Soft cardinality at SemEval

The soft cardinality approach has been used by several teams for participating in
several tasks in the recent SemEval campaigns (2012 to 2014). In SemEval, the
task organizers propose a NLP task, provide datasets, and an evaluation setup
that is carried out by them. This methodology ensures a fair comparison of the
performance of the methods used by competitors. The participating systems
that incorporated soft cardinality among their used methods have obtained very
satisfactory results, obtaining in most of the cases rankings among the top
systems. In this section, a brief overview of these participations is presented.

4.4.1 Semantic textual similarity

The task of automatically comparing the similarity or relatedness between pairs
of texts is fundamental in NLP, which attracted the attention of many re-
searchers in the last decade [? ? ]. This task consists in building a system
able to compare pairs of texts, using (or not) training data and return graded
predictions of similarity or relatedness. The system performance is evaluated by
correlating its predictions against a gold standard built using human judgments
in a graded scale. Table 4.5 contains a summary of the results obtained by the
systems that used soft cardinality.

In 2012, soft cardinality was used for the �rst time [? ] in the pilot of the
Semantic Textual Similarity (STS) task [? ]. The approach consisted in building
a cardinality-based similarity function SIMsentence combining soft cardinality
with a coe�cient similar to Tversky's (see Subsection 4.3.1.) The function
SIMword used for comparing pairs of words was based on n-grams of characters
combined with the same rational coe�cient used at sentence level (see Eq. 4.5.)
The parameters p, n and those of both coe�cients were obtained by looking for
an optimal combination in the provided training data. Finally, tf-idf weights
were associated with the words (weights wai in Eq. 4.1.) This simple approach
obtained an unexpected third place in the o�cial ranking among 89 participating
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systems. Besides, as Table 4.5 shows, this system was pretty close to the top
system, which used considerably more resources [? ]. Besides, comparing the
rankings obtained for individual datasets and the overall ranking (3rd), it can
be seen that the soft cardinality system was more consistent across di�erent
data sets than most of the other systems.

In 2013, the STS task was proposed again but with increased di�culty be-
cause no additional data was provided for training. Our 2012 approach was
extended by building an additional similarity function for sentences using nPMI
[? ] as the comparator of words. Moreover, the predictions were obtained
training a regression SVM with the features described in Subsection 4.2.4. This
system ranked 19th among 89 systems. However, in addition to the o�cial re-
sults, we discovered that the same 2012 function averaged with the new nPMI
function correlated much better (4th) [? ].

In addition, in 2013, a pilot for the Typed Similarity task was proposed. It
consisted in comparing pairs of text records associated with objects from the
Europeana6 database. Croce et al. [? ] built a system based on the previously
proposed syntactic soft cardinality [? ]. This consists in representing texts as
sets of triples (word1, word2, relation) extracted from dependency graphs, and
combine them using soft cardinality with a similarity function for those triplets.
This system ranked �rst among 15 participants.

In 2014, the task 10 at SemEval was the third STS version [? ], which
included additional datasets in Spanish. Lynum et al. [? ] proposed a system
for the data sets in English using features (among others) extracted with soft
cardinality ranking �rst in 4 out of 6 data sets among 37 participating systems.
Similarly, Jimenez et al. [? ] proposed a system based on the soft cardinality
for the Spanish data sets, ranking �rst in one of the data sets and third overall
among 22 systems. This system also participated in tasks 1 [? ] and 3 [? ],
which addressed text relatedness and similarity between di�erent lexical levels
(e.g. paragraph to sentence) respectively. In these tasks, the systems based on
the soft cardinality ranked 4th out of 17, and 3rd out of 38 systems. The used
features were a combination of the feature sets presented in sections 4.3.3.1,
4.3.3.2, 4.3.3.3, 4.3.3.3, 4.3.3.4, and 4.3.3.5.

These results show that soft cardinality is a very competitive tool for build-
ing text similarity functions with relatively few resources, namely: a similarity
function for comparing pairs of words, soft cardinality, and a cardinality-based
coe�cient or a regression method to learn this coe�cient.

4.4.2 Textual Entailment

Textual entailment (TE) is the task that consists in determining whether or
not a text entails another one. It was proposed under the name cross-lingual
textual entailment (CLTE) [? ? ] in SemEval with the additional di�culty
of having the two texts in di�erent languages. The results obtained by the
systems based on the soft cardinality that participated in this task in 2012 and

6http://www.europeana.eu/

http://www.europeana.eu/
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Table 4.5: Best results obtained by systems that used soft cardinality in SemEval
2012-2014 for textual similarity and relatedness (Pearson correlation)
Year Task Dataset Rank Soft Card.� Top Sys.� Ref.

2012 STS

MSRpar 7th/89 0.6405 0.7343

[? ]

MSRvid 9th/89 0.8562 0.8803
SMT-eur 9th/89 0.5152 0.5666
OnWN 3rd/89 0.7109 0.7273

SMT-news 11th/89 0.4833 0.6085
All (w. mean) 3rd/89 0.6708 0.6773

2013
STS

Headlines 30th/90 0.6713 0.7838

[? ]

OnWN 7th/90 0.7412 0.8431
FNWM 22th/90 0.3838 0.5818
SMT 54th/90 0.3035 0.4035

All (w. mean) 19th/90 0.5402 0.6181
All (uno�cial) 4th/90 0.5747 0.6181

Typed sim. Europeana 1st/15 0.7620 0.7620 [? ]

2014

Task 1-STS SICK 4th/17 0.8043 0.8280

[? ]
Task 3

Para2Sent 1st/38 0.8370 0.837
Sent2Phr 6th/38 0.7390 0.7770
Phr2Word 3rd/22 0.2740 0.4150
Word2Sense 5th/20 0.2560 0.3890

All (w. mean) 3rd/38 0.5260 0.5810

Task 10 (en)

deft-forum 1st/38 0.5305 0.5305

[? ]

deft-news 2nd/37 0.7813 0.7850
headlines 1st/37 0.7837 0.7837
images 1st/37 0.8343 0.8343
OnWN 4th/37 0.8502 0.8745

tweet-news 1st/37 0.7921 0.7921
All (w. mean) 3rd/38 0.7549 0.7610

Task 10 (es)
Wikipedia 1st/22 0.7804 0.7804

[? ]news 7th/22 0.8154 0.8454
All (w. mean) 3rd/22 0.8013 0.8072

�Results for the best system using the soft cardinality
�Results for the best system in competition
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Table 4.6: Best results for accuracy obtained by the systems that used the soft
cardinality in SemEval 2012 to 2014 for the cross-lingual textual entailment task
(CLTE)

Year Dataset Rank Soft Card. Top Sys. Ref.

2012

Spanish-English 5th/29 0.552 0.632

[? ]
Italian-English 1st/21 0.566 0.566
French-English 1st/21 0.570 0.570
German-English 3rd/21 0.550 0.558

2013

Spanish-English 1st/15 0.434 0.434

[? ]
Italian-English 1st/15 0.454 0.454
French-English 6th/15 0.426 0.458
German-English 6th/16 0.414 0.452

2013 are shown in Table 4.6. The approach consisted in providing two versions
of the pair of texts, each one in a single language, using machine translations
from Google translate7. Once in a single language, the soft cardinality features
explained in Subsection 4.2.4 were extracted for each text pair using the same
word-to-word similarity function SIMword used for STS. Finally, these features
were combined by a classi�er to determine the type of entailment. In 2013,
Jimenez et al. [? ] showed that these features are also language independent,
making possible to train a single classi�er using data in di�erent languages.
This approach produced (not included in the o�cial ranking) state-of-the-art
results for all CLTE datasets [? ].

In 2014, the textual entailment task was proposed for the SICK dataset
(Sentences Involving Compositional Knowledge) [? ]. Using the same approach
as in CLTE, but combining additional features from soft cardinalities obtained
with word similarity functions based on WordNet, ESA and dependency graphs,
the soft-cardinality system [? ] ranked 3rd among 18. Table 4.7 shows the results
obtained by the soft cardinality system both in textual entailment and textual
relatedness sub-tasks.

4.4.3 Automatic students' answer grading

The task consisted in grading the correctness of a student answer (SA) to a
question (Q) given a reference answer (RA) [? ]. The approach of the system
that used soft cardinality [? ] consisted in extracting features for pairs (SA,Q),
(Q,RA), (SA,RA) (again using the simple SIMword word similarity function)
and training with them a J48-graft tree classi�er. Table 4.8 shows the results
obtained by the soft cardinality system predicting correctness in 5 categories.
In all other numbers of categories and evaluation measures, the soft cardinality
system also ranked 1st overall datasets [? ]. Recently, Leeman-Munk et al. [? ]
integrated the soft cardinality approach in an experimental automatic tutoring
system.

7https://translate.google.com

https://translate.google.com
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Table 4.7: Results for SemEval task 1 in 2014
Entailment Relatedness

system accuracy o�. rank Pearson Spearman MSE o�. rank

UNAL-NLP_run1 83.05% 3rd/18 0.8043 0.7458 0.3593 4th/17

UNAL-NLP_run2 79.81% - 0.7482 0.7033 0.4487 -

UNAL-NLP_run3 80.15% - 0.7747 0.7286 0.4081 -

UNAL-NLP_run4 80.21% - 0.7662 0.7142 0.4210 -

UNAL-NLP_run5 83.24% - 0.8070 0.7489 0.3550 -

ECNU_run1 83.64% 2nd/18 0.8280 0.7689 0.3250 1st/17

Stanford_run5 74.49% 12th/18 0.8272 0.7559 0.3230 2nd/17

Illinois-LH_run1 84.58% 1st/18 0.7993 0.7538 0.3692 5th/17

Table 4.8: Best results obtained by the soft-cardinality system in the Student
Response Analysis task at SemEval 2013 (weighted-average F1 in 5 correctness
levels)

Dataset Testing group Size Rank Soft Card. Top Sys.

Beetle
unseen answers 439 4th/9 0.558 0.705
unseen questions 819 4th/9 0.450 0.614

SciEntsBank
unseen answers 540 4th/9 0.537 0.625
unseen questions 733 1st/9 0.492 0.492
unseen domains 4,562 1st/9 0.471 0.471

F1weighted average 7,093 1th/9 0.502 0.502
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4.5 Conclusion

We presented our experience participating in SemEval competitions using soft
cardinality and cardinality-based feature representations. This article describes
the basic methods and particular methods for addressing textual similarity, mul-
tilingual textual similarity, typed-textual similarity, textual entailment, cross-
lingual textual entailment and automatic students' answer grading. A summary
of the o�cial results obtained in SemEval challenges provides the evidence of
the e�ectiveness of the used methods in open competition. It can be come to the
conclusion that soft cardinality is a practical and e�ective tool to address several
NLP problems. Furthermore, the soft cardinality model is general enough to be
used in other domains and applications.



Chapter 5

Cardinality-based lexical

similarity in WordNet:

Bridging the gap to neural embed-

ding

Measuring lexical similarity using WordNet has a long tradition, but has
been challenged by distributional methods in the last decade, and more recently
by neural word embedding. In the last three years, several larger lexical sim-
ilarity benchmarks have been proposed where word embedding has achieved
state of the art results. The success of such methods has eclipsed the use of
WordNet for predicting human judgments of lexical similarity and relatedness.
We propose a new method that exploits the WordNet graph, obtaining a word
representation based on related neighbor words. Features extracted from car-
dinalities computed on this word representation, combined with support vector
regression and a training dataset based on common synonyms and antonyms,
produced competitive results versus word embedding approaches. Moreover, the
proposed approach obtained state of the art results in 3 out of the 13 bench-
marks tested. Although, word embedding is still the best approach for the task,
our method signi�cantly reduced the gap between knowledge based approaches
and distributional representations.

A version of this chapter was submitted to Information Sciences journal.
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5.1 Introduction

WordNet [? ? ] is a lexical database that links words in a graph connected by
relationships of synonymy, hyperonymy, hyponymy, etc. This has been used for
20 years for addressing many NLP tasks, including lexical similarity. Lexical
similarity functions based on WordNet use graph measures to provide a numer-
ical score of the similarity between two synsets (senses in WordNet) [? ? ].
Another important concept added this approach is information content [? ],
which combines counts of lexical units in corpora aware of the WordNet is-a
hierarchy [? ? ? ? ]. Agirre et al. explored another direction, proposing an
adapted version of the PageRank algorithm and extracting a probability distri-
bution over WordNet synsets, which were encoded as vectors for comparison.

The other common approach to address lexical similarity is to make use
of the distributional hypothesis in the sense of �words with similar meaning will
occur with similar neighbors if enough material is available� [? ]. This approach
involves the construction of a matrix words× contexts, whose entries contains
the number of times a word occurs in a particular context across corpora. The
`context' of a word could be word co-occurrence, a symmetrical sliding window
around the word, a sentence, dependencies, etc. The goal of this approach is
to obtain a vectorial representation of the words, and combine this with cosine
similarity to provide a similarity score. The resultant matrix is large and sparse,
which makes it necessary to reduce dimensionality by limiting the size of the
word vocabulary or using techniques such as latent semantic analysis (LSA)
[? ], non-negative matrix factorization (NMF) [? ], and/or random indexing
[? ], among others. Agirre et al. [? ] compared some distributional and
WordNet approaches, concluding that the former consistently outperformed the
latter for lexical similarity. They also di�erentiated the similarity from the
relatedness task, and consequently most benchmarks for lexical semantics clearly
di�erentiate these categories.

Among distributional approaches, neural word embedding [? ? ? ] has
received great attention. In this approach, rather than �rst obtaining word con-
texts then reducing dimensionality, the steps are merged in a single procedure
that attempts to learn a language model from corpora with an optimal word
representation. This language model aims to build a prediction model for each
word given a large number of contexts. Baroni et al. [? ] compared traditional
distributional methods against word embedding, and concluded that word em-
bedding was superior in performance at several tasks, including lexical similarity
and relatedness.

Both WordNet and distributional methods have their pros and cons in prac-
tical applications. For example, while WordNet based approaches are aware of
the di�erent senses of a word, distributional methods merge senses in a sin-
gle representation. In contrast, when a language other than English is used,
WordNet is a di�cult and costly resource to build, but text corpora required by
distributional approaches are generally available. Recently, Aletras and Steven-
son [? ] proposed a hybrid approach combining word embedding and WordNet,
obtaining very competitive results but observed only a marginal contribution of
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the WordNet component to the overall performance.
There is an important gap in performance between WordNet based and word

embedding approaches. In this paper we attempt to reduce this di�erence, and
we propose a new method using WordNet to build lexical similarity relatedness
functions. The proposed method uses supervised learning and a set based word
representation extracted from WordNet neighbor words in the graph. Rather
than extracting a prede�ned set of features from this representation, we extract
a relatively large number of features and select an optimal subset in a supervised
way. The features are cardinalities (counts) of the two representing sets and of
di�erent set operations between them. For training such models, we used a
subset of the available benchmarks and a new dataset, W1500, based on a list
of common synonyms and antonyms. We demonstrate that models trained with
such simple dataset performed similar to models trained with larger datasets
labeled with considerably more expensive annotations.

We compared the proposed method against recent studies by Pennington et
al. [? ], Aletras and Stevenson [? ], and Baroni et al. [? ] using identical ex-
perimental setups. We also use other publicly available benchmarks for testing,
making a total of 13 comparisons. We surveyed the state of the art results for
these benchmarks and compared them against results obtained in this paper.
Our proposed method is a competitive alternative to word embedding for the
lexical similarity task, but less competitive for the lexical relatedness task.

5.2 Cardinality-based lexical similarity

The proposed word representation consists of sets containing related words from
the neighborhood of a word in the WordNet's graph. The motivation for this is
that neighbor words in WordNet are connected by strong semantic relationships
that are less noisy than the relationship inferred from corpora statistics. Lexical
similarity functions based on WordNet usually have synsets as arguments, im-
plying that the words to be compared were extracted from a context and that a
previous word sense disambiguation process was performed. The proposed rep-
resentation is used to model and compare words rather than synsets, allowing
a direct comparison against distributional methods. In addition, the proposed
method di�ers from classical WordNet based approaches that focus on a par-
ticular relationship (e.g. hypernyms) in that we use all types of relationships
available in WordNet.

WordNet is a graph where nodes are synsets connected by directed seman-
tic relationships, e.g. hypernyms, entailments, attributes, etc. Associated with
each synset is a textual de�nition, gloss, describing the meaning of the synset.
Each synset also has a set of lexical representations, lemmas, which in turn
can be linked to other lemmas by relationships at lemma level, e.g. antonyms,
pertanyms, related forms, etc. Lemmas may also be related indirectly through
synsets, thereby inheriting all the synset level relationships. For the proposed
representation, the neighbor words (lemmas) of a word (also a lemma) are ob-
tained by following all possible synset and lemma level relationships. The ob-
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tained set of words is further enriched by extracting keywords from the textual
de�nitions of the synsets directly related to the word to be represented.

The process, which is detailed in the following subsections, can be summa-
rized as: i) take a set of word pairs, each labeled with a gold standard of lexical
similarity or relatedness; ii) represent each word as a set of related words ex-
tracted from WordNet; iii) extract 17 cardinality based factors from each pair of
representing sets; iv) recombine these factors in 272 rational features; v) deter-
mine a reduced set of features in a supervised way; and vi) �t a regression model
using the reduced set of features to a gold standard of similarity or relatedness.

5.2.1 Word representation by neighbor words

Let w be a word, then the set of neighbor words related to w, Rw, can be
obtained from WordNet using the procedure

1. Let Synsetsw be the set of synsets where the word w belongs to.

2. Let RelatedSynsetss be the set of synsets related to synset s. This is
obtained by the union of the following sets whose names indicate their
meaning in WordNet:

RelatedSynsetss = Hypernymss ∪ InstanceHypernymss ∪
Hyponymss ∪ InstanceHyponymss ∪
MemberHolonymss ∪MemberMeronymss ∪
SubstanceHolonymss ∪ PartHolonymss ∪
SubstanceMeronymss ∪ PartMeronymss ∪
Attributess ∪ Entailmentss ∪ Causess ∪
AlsoSeess ∪ V erbGroupss ∪ SimilarTos

3. The set of synsets related to w is RelatedSynsetsw =
⋃

s∈Synsetsw
RelatedSynsetss.

4. Let Lemmass be the set of lemmas associated to synset s.

5. The set of lemmas associated to word w is Lemmaw =
⋃

s∈RelatedSynsetsw
Lemmass.

6. Let RelatedLemmaslbe the set of lemmas related to lemma l by merging
the following sets:

RelatedLemmasl = Antonmsl ∪ Pertanymsl ∪ TopicDomainsl ∪
RegionDomainsl ∪ UsageDomainsl ∪
DerivationallyRelatedFormsl ∪
Hypernymsl ∪ InstanceHypernymsl ∪
Hyponymsl ∪ InstanceHyponymsl ∪
MemberHolonymsl ∪MemberMeronymsl ∪
SubstanceHolonymsl ∪ PartHolonymsl ∪
SubstanceMeronymsl ∪ PartMeronymsl ∪
Attributesl ∪ Entailmentsl ∪ Causesl ∪
AlsoSeesl ∪ V erbGroupsl ∪ SimilarTol
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Table 5.1: List of additional stopwords from WordNet synsets' de�nitions
act, act, action, another, become, body, capable, cause, change, coming,

consisting, containing, especially, etc, form, giving, group, lacking, made,

make, move, one, order, part, particular, people, person, persons, place,

position, property, quality, relating, resulting, small, somebody, someone,

something, state, time, two, used, using, usually, whose

7. The set of all related lemmas to w is obtained by expanding the set
Lemmasw with their related lemmas:

AllRelatedLemmasw = Lemmasw ∪
⋃

l∈Lemmasw

RelatedLemmasl.

8. Let DefinitonKeywordss be the set of words obtained from the textual
de�nition of synset s after removing stopwords1.The stopwords list was
extended with the words showed in Table 5.1, which are frequent and
mostly uninformative in WordNet's textual de�nitions.

9. The set of related words to w is obtained using

Rw = AllRelatedLemmasw ∪
⋃

s∈RelatedSynsetsw

DefinitionKeywordss.

The set, Rw, of related words to w is composed by all its neighbor lemmas
and the keywords in the de�nitions of its related synsets. Table 5.2 shows some
examples of representations obtained using the proposed procedure for some
words in the rare words (RW) dataset [? ]. In these examples, the majority
of the representing words appear to be meaningfully related to the represented
word. Some poorly related words could arise from less common senses of the
related synsets or from unrelated words extracted from glosses. Due to space
restrictions here, the number of representing words in the selected examples is
very low. The average number of representing words in RW is 115, whereas the
Stanford Contextual Word Similarities (SCWS) dataset [? ], which contains
less rare words, has an average of 211 representing words for each word. Hence,
common words seems to have better connectivity in WordNet's graph compared
to less common words.

5.2.2 Features

Once two words, a and b, are represented by their sets of related words, Ra and
Rb, respectively, these sets must be compared to provide a similarity score that
re�ects the degree of similarity or relatedness between them. The �rst option
is to use an o� the shelf resemblance coe�cient based on cardinality, such as
Jaccard [? ], or Dice [? ] coe�cients. These are rational expressions that com-
bine the three cardinalities, |Ra|, |Rb| and |Ra∩Rb| (or alternatively |Ra∪Rb|),

1In our experiments we used the list of English stopwords included in nltk.org
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Table 5.2: Examples of the proposed word representation based on neighbor
words in WordNet

w Rw

irrationally

disorder, insane, insanity, irrational, irrationality, mind,

permanent, powers, relatively, understanding, unreason,

based, consistent, free, good, healthy, judgment, logic,

mental, mentally, normal, powers, rational, rationality,

rationalness, reason, sane, saneness, sanity, sense, sound

subdivide

apart, carve_up, come, dissever, divide, divider, divisible, division,

part, partitive, parts, pieces, portions, separate, smaller, split,

split_up, subdivide, subdivider, subdivision, subdivisions

belief, common, concert, impossible, indivisible, purpose,

undergoing, unite

wealthy

abundant, a�uence, a�uent, �ush, loaded, material, money,

moneyed, possessing, possessions, rich, richness, supply, value, wealth,

wealthiness, wealthy,little, poor, poorness, poverty

to produce a similarity score in the [0, 1] interval. Most of these coe�cients
produce metrics with desirable properties such as transitivity. However, gen-
erally they fail to adapt to particular tasks, yielding sub-optimal performance.
Alternatively, parameterized coe�cients [? ? ? ? ] provide some degree of
adaptability, allowing adjustment of parameters using training data.

When training data is available, it would be preferable to use regression for
training a similarity function adapted to the particular task. This approach
showed to be e�ective for several NLP tasks in the recent SemEval campaigns
[? ? ? ]. The cardinality based features extracted from a pair of sets comprised
cardinalities of all possible areas in their Venn diagram. Some additional fea-
tures were derived by combining the basic features into rational coe�cients in
an attempt to capture non-linear relationships. Although some of these feature
sets produced quality prediction models, the features sets were somewhat arbi-
trary and their selection was guided by intuition. For our lexical similarity task,
a relatively large set of features was extracted using a set of 17 factors to be
combined in rational forms. Table 5.3 shows this set of factors, fi, i = 0 . . . 16,
which are combined in rational forms, fifj , i 6= j; i, j = 1 . . . n, to produce a fea-

ture. These factors are the building blocks of many resemblance coe�cients, e.g.
f4
f8

is the matching coe�cient, and f4
f11

is the cosine coe�cient. Factors f8 to f14

are di�erent instances of the generalized mean between |Ra| and |Rb|. Factor f0

allows the factors and their multiplicative inverses to be features. Although the
space of possible features is vast, this methodology produces a relatively large
feature set of 272 features just from recombining 3 basic cardinalities. The aim
of having these features is to use labeled training data for learning not only the
similarity function but also a convenient subset of features.
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Table 5.3: Factors for rational features

f0 = 1 f6 = |Rb \ Ra| f12 =
√
|Ra|2+|Rb|2

2

f1 = |Ra| f7 = |Ra4Rb| f13 = 3

√
|Ra|3+|Rb|3

2

f2 = |Rb| f8 = min(|Ra|, |Rb|) f14 = 2×|Ra|×|Rb|
|Ra|+|Rb|

f3 = |Ra ∪ Rb| f9 = max(|Ra|, |Rb|) f15 = min(|Ra \ Rb|, |Rb \ Ra|)
f4 = |Ra ∩ Rb| f10 = |Ra|+|Rb|

2 f16 = max(|Ra \ Rb|, |Rb \ Ra|)
f5 = |Ra \ Rb| f11 =

√
|Ra| × |Rb| -

5.2.3 Cardinality

In addition to the classical set cardinality, the proposed set of features can
also be computed using soft cardinality [? ], known in the ecology �eld as 0
order diversity [? ]. Soft cardinality requires an auxiliary similarity measure to
compare pairs of elements (words in our scenario) and obtain the soft count of
the number of elements in a set. We used the WordNet based measure proposed
by Resnik [? ], using values of information content computed from the Brown
corpus. Since this and most other measures based on WordNet are de�ned for
comparing synsets, we adapted them for comparing pairs of words (lemmas)
by averaging the similarity scores of all possible synset pairs in the Cartesian
product of the synsets associated to each word:

sim(a, b) =

∑
(sa,sb)∈Synsetsa×Synsetsb

Resnik(sa, sb)

|Synsetsa × Synsetsb|
(5.1)

Thus, the soft cardinality of a set of words, W = {w1,w2, . . . , wn}, is

|W|′ =

n∑
i=1

 n∑
j=1

sim(wi, wj)
p

−1

(5.2)

Equation 5.2 is used to obtain |Ra|′ and |Rb|′. The soft cardinality of their
union is obtained by calculating the soft cardinality of the concatenation of both
sets, |Ra ∪ Rb|′ = |Ra ⊕ Rb|′. The intersection is |Ra ∩ Rb|′ = |Ra|′ + |Rb|′ −
|Ra∪Rb|′, and the remaining factors in Table 5.3 are derived from these 4 basic
soft cardinalities. In our experiments, we used p = 5 for the softness controller
parameter.

5.2.4 Feature selection

The proposed method for feature selection is supervised. Suppose we have a
training dataset composed of n pairs of words, where each pair is annotated
with a gold standard of similarity or relatedness, and the 272 features described
above are extracted for each training pair. This dataset, D, is a matrix of size
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n×272, with target vector T, 1×272, containing the gold standard. Let Dk be
a matrix of size n × k containing a selection with the k best features obtained
from a linear regression model that �ts D to T. In our experiments we used
the KBest feature selection method implemented in Scikit-learn [? ]. To avoid
over�tting, the feature selection process was performed on each one of the 10
partitions of a 10 fold cross validation split and the samples were randomly
shu�ed 30 times for a total of 300 partitions of D and T. We denote such
partitions as Di,j ,Ti,j , where i indexes the shu�es and j the folds. The k best
features, Dk

i,j , were obtained for each partition, and those features selected in at
least 80% of the 300 partitions were included in the �nal set of features. Note
that altering the 80% inclusion from 65% to 95% did not produce signi�cant
changes in the selected feature set.

5.2.5 Regression

Once the features were extracted and selected using either classic or soft cardi-
nality, they were combined using support vector regression [? ]. The support
vector parameters were set to C = 100, γ = 0.001, and the most appropriate
kernel for the task was RBF. All features were standardized before training and
means and standard deviations were saved to apply the same transformation to
the test data. Each regression model was denoted by svrDATA, where DATA
indicates the name of the training dataset used.

5.2.6 W1500 an inexpensive training dataset for lexical

similarity

Benchmarks for lexical similarity and relatedness were built by selecting a set of
pairs of words and aggregating 10 or more human judgments in a �xed numerical
scale to obtain a gold standard [? ? ? ? ? ]. Recent benchmarks, such as
MEN [? ], were built by aggregating 50 binary judgments for each pair in
an attempt to reduce the noise and cognitive load of using a numerical scale.
This methodology requires a large amount of costly hand labor and limits the
convenience of supervised approaches, such as that proposed in this work. There
is also the inconvenience that word pairs used in benchmarks are selected with
particular criteria (e.g. common nouns), making the models trained with such
data less applicable for other type of words.

As an a�ordable alternative, we built a dataset using list of common syn-
onyms and antonyms taken from publicly available web pages for English as a
second language students2. We collected 500 pairs of synonyms and 500 pairs
of antonyms. The synonym pairs were labeled with a lexical similarity score of
1 and antonym pairs were labeled with a constant c. We experimentally deter-
mined c = 0.2 to be meaningful for the lexical similarity task. A third subset of
500 pairs was obtained from random combinations of words from the synonyms

2http://www.englishleap.com/vocabulary/synonyms,

http://www.englisch-hilfen.de/en/words/synonyms.htm
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and antonyms subsets and manually veri�ed that the two words were unrelated.
The pairs in this third subset were labeled with a lexical similarity score of 0.

We refer this dataset as W15003. The aim of this dataset was to show that
supervised models for predicting lexical similarity, trained with such simple
resource, can perform similarly to models trained with current benchmarks.

5.3 Experiments

The experiments compare the performance of the proposed lexical similarity
relatedness measure with classical measures based solely on WordNet and with
scores obtained from cosine similarities between word representations obtained
from word embedding. Our main interest is to determine which data is more
convenient for training our models and to what extent our approach is a com-
petitive alternative to word embedding approaches.

5.3.1 Datasets

We used the benchmarks employed by Pennington et al. (2014) [? ] for word
similarity: WS353: Finkelstein et al., 2001 [? ], MC: Miller and Charles, 1991
[? ], RG: Rubenstein and Goodenough, 1965 [? ], SCWS: Huang et al., 2012 [?
], and RW: Luong et al., 2013 [? ]. Since the proposed method is supervised, we
combined these 5 datasets in all possible combinations of training/testing and
compared results using the proposed W1500 dataset for training. Our method
was compared using the same experimental setup employed by Pennington et
al.

We also compared our proposed approach with Aletras and Stevenson (2015)
[? ]. The comparison used the same 6 datasets as they employed: MC, RG,
WS353, the semantic (WSS) and relatedness (WSR) partitions of WS353 pro-
posed by Agirre et al. [? ], and the MEN dataset (relatedness) proposed by
Bruni et al. [? ]. For the sake of future comparison, we provide a complete com-
bination of all possible con�gurations of training/testing using the 8 standard
benchmarks and also our W1500 dataset.

For additional testing of our approach, we perfomed further experiments us-
ing datasets: YP-130 (similarity) [? ], MTURK287 (relatedness) [? ], MTURK771
(relatedness) [? ], Rel-122 (relatedness) [? ], Verb-143 [? ], and the recently
proposed SimLex-999 (similarity) [? ]. All these datasets were not observed
during the training and development of the method proposed in this paper.

Summarizing the results of Pennington et. al [? ], Aletras and Stevenson [?
], the recent survey of Baroni et al. [? ], and the results of the current work
(and others), we present an updated survey of the state of the art for the 13
benchmarks employed and W1500.

3https://sites.google.com/site/sergiojimenezvargas/W1500.txt
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5.3.2 Performance measures

The customary measure for assessing the performance of a lexical similarity
method is the Spearman's correlation coe�cient, ρ. To provide a single measure
across di�erent sets of datasets we propose the simple average, ρ̄, of ρ obtained
on each dataset. We consider the average weighted by the number of samples
in each dataset, similar to the mean measure used for aggregating Pearson's
coe�cients across di�erent datasets in the semantic textual similarity task in
the recent SemEval campaigns [? ]. However, we opted for the simple average
as the number of samples in the benchmarks varies considerably from 30 in MC
to 3,000 in MEN. The aim of this measure is to compare the overall performance
of each method against results published by Pennington et al. [? ], Aletras and
Stevenson [? ], and Baroni et al. [? ]. Thus, ρ̄Penn are averages across MC, RG,
WS353, SCWS, and RW datasets; ρ̄Ale are averages across MC, RG, WS353,
WSS, WSR, and MEN; and ρ̄Bar are averages across RG, WS353, WSS, WSR,
and MEN. For consistency with published results, ρ̄Ale and ρ̄Bar are reported
with 2 decimals, and ρ̄Penn with 4. Note that none of the ρ̄ measures include
W1500, our proposed training dataset.

5.3.3 Baselines

The �rst baseline for the lexical similarity task is a morphological measure based
on the edit distance [? ]. This baseline is

sim(a, b) = 1− ed(a, b)

max(len(a).len(b))
,

where ed(a, b) measures the minimum number of edit operations (i.e., in-
sertion, deletion, and replacement) needed at character level to convert word a
into b or vice versa.

The second group of baselines comprises classical lexical similarity measures
based on WordNet implemented in the NLTK [? ]: path: the inverse of the
number of edges between to synsets, lch: Leacock and Chodorow[? ], wup: Wu
and Palmer [? ], lin.brown/lin.semcor : Lin's measure using Brown or Semcor
corpora for information content calculation, res.brown/res.semcor : Resnik [? ],
and jcn.brown/jcn.semcor : Jiang and Conrath[? ].

Table 5.4 shows the performance measures across all datasets and the number
of word pairs on each one (�nal row). The edit distance baseline is rather
low in all measures, and only SCWS and RW datasets include morphologically
similar word pairs. The classical measures based on WordNet are particularly
unsuitable for modeling word relatedness and infrequent words given the poor
performances in WSR (relatedness), MEN (relatedness), and RW (rare words)
datasets. This inability for modeling relatedness by classic WordNet measures
was also observed by Szumlanki et al. [? ] using another dataset labeled with
relatedness judgments (Rel-122). All baselines obtained ρ̄ < 0.47.
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Table 5.4: Spearman's rank correlation of edit distance and classic similarity
functions based on WordNet for lexical similarity and relatedness benchmarks
dataset →
measure ↓ MC RG WS353 WSS WSR MEN SCWS RW W1500 ρ̄Penn ρ̄Ale ρ̄Bar

edit dist. -0.1642 0.0690 -0.0181 0.0063 -0.0487 0.0771 0.2851 0.1818 -0.0145 0.0707 -0.01 0.02

path 0.6035 0.6610 0.2966 0.5483 0.0250 0.2717 0.4435 0.0497 0.2545 0.4109 0.40 0.36

lch 0.5176 0.6410 0.2387 0.4607 -0.0088 0.2589 0.3949 0.0146 0.0855 0.3613 0.35 0.32

wup 0.5425 0.4567 0.3232 0.5359 0.0856 0.2160 0.3694 0.0141 0.1996 0.3412 0.36 0.32

lin.brown 0.7144 0.6223 0.3319 0.6105 0.0161 0.2713 0.3697 0.0121 0.1499 0.4101 0.43 0.37

lin.semcor 0.6647 0.4868 0.2238 0.4639 -0.0204 0.2619 0.3943 0.0283 0.1567 0.3596 0.35 0.28

res.brown 0.6742 0.6464 0.3630 0.6218 0.0460 0.2743 0.3822 0.0582 0.1479 0.4248 0.44 0.39

res.semcor 0.7037 0.6563 0.3664 0.6191 0.0587 0.2810 0.4317 0.0531 0.1570 0.4422 0.45 0.40

jcn.brown 0.8197 0.7272 0.3099 0.6120 -0.0047 0.2928 0.4556 0.0122 0.3263 0.4649 0.46 0.39

jcn.semcor 0.5934 0.4108 0.1587 0.3497 -0.0574 0.1966 0.4203 0.0049 0.3246 0.3176 0.28 0.21

# pairs 30 65 353 203 252 3000 1997 2034 1500 - - -

5.3.4 Number of features

Given that the feature selection method proposed in subsection 5.2.4 is super-
vised, the use of 10 fold cross validation is important to determine the k-best
parameters for each training dataset, avoiding over�tting. As k ranged from 5
to 200 features, the Spearman's coe�cient, ρCV , was computed for each dataset
and each cardinality function (i.e., classic and soft), comparing cross validated
predictions versus gold standards. The con�guration with the best ρCV for pair
dataset cardinality pair and smallest number of k-best features was selected.
This criterion aims to select a k-best value that yields a near optimal perfor-
mance while keeping the number of features small. The k-best values for those
selected con�gurations are reported in Table 5.5 (columns ρCV ).

Although we expected good correspondences between the ρCV columns, such
as those obtained by svrMC and svrWSR, most of the trained models show sig-
ni�cant di�erences of the optimal k-best between classic and soft cardinalities.
For example, model svrWS353 obtained an unexpectedly high number of fea-
tures (128 features for classic cardinality) for a dataset with only 353 samples.
Consequently, we determined the optimal k-best values for the best con�gura-
tions of ρ̄Penn and ρ̄Ale test measures. The k-best values determined at training
time for soft cardinality are good predictors of their corresponding optimal test
values, but di�ers signi�cantly in most cases for classic cardinality. Neverthe-
less, in the following experiments the k-best values employed for each dataset
cardinality pair are those in columns ρCV in Table 5.5 (values in bold face).
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Table 5.5: Optimal values of the k-best parameter for feature selection method
Classic cardinality Soft cardinality

regressor training samples ρCV ρ̄Penn ρ̄Ale ρCV ρ̄Penn ρ̄Ale

svrMC 30 17 17 17 21 21 21
svrRG 65 8 25 15 26 32 32

svrWS353 353 128 12 16 45 45 45
svrWSS 203 16 25 15 52 27 52
svrWSR 252 14 29 29 14 14 14
svrSCSW 1,997 74 27 15 65 61 61
svrRW 2,034 128 9 9 32 30 30
svrMEN 3,000 87 8 10 79 65 65
svrW1500 1,500 91 35 32 76 51 51

5.3.5 Previous results from distributional and word em-

bedding methods

Table 5.6 shows the Spearman's correlations of recently published studies ad-
dressing lexical similarity relatedness tasks using word embedding methods. The
�rst group corresponds to the work of Pennington et al. (2014) [? ] who pro-
posed GloVe, a word embedding method that combines evidence from local con-
text and global counts. GloVe vectors are compared against word2vec (CBOW)
[? ] and a SVD baseline, all of them in a 300 dimension space and trained
on the same corpora. The name of each method includes the size of the train-
ing corpora in billions of tokens. The best performing method in this group is
'GloVe 42B', which produces ρ̄Penn = 0.6996.

The second group in Table 5.6 corresponds to Aletras and Stevenson (2015)
[? ]. They proposed several hybrid models that combined word embedding and
WordNet (H models) and compared them with a word embedding trained with
a 2.8B token corpora (D model). H∗ is the best method of this group, with
ρ̄Ale = 0.72 and ρ̄Bar = 0.71.

The �nal group of results are taken from a survey by Baroni et al. (2014),
where they compared word2vec embedding ('predict' models) against models
based on token counts in corpora, i.e., distributional semantic models (DSM),
combined with dimensionality reduction techniques, such as SVD or NMF. They
proposed 48 con�gurations of the former and 36 of the latter, varying parameters
such as �nal dimensionality, context window size, and others. Results `each'
correspond to the best con�guration for each benchmark and `all' to the single
best con�guration across all benchmarks. Models in this group were trained
using the same 2.8B token corpora used by Aletras and Stevenson. Methods
D and `count.each' are equivalent and, as expected, obtain very similar results
(ρ̄Bar).

The best performing method in groups 2 and 3 is `predict.each', ρ̄Bar = 0.78.
Model H∗ was outperformed by `predict.all', which are a more comparable pair
since both have a single con�guration across all benchmarks. Unfortunately,
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Table 5.6: Spearman's rank correlation from state of the art methods published
by Pennington et al., Aletras & Stevenson, and Baroni et al. ([? ? ? ])

method MC RG WS353 WSSWSRMEN SCWS RW ρ̄Penn ρ̄Ale ρ̄Bar

SVD-L 6B 0.7270 0.751 0.6570

na na na

0.5650 0.3700 0.6140

na na

SVD-L 42B 0.7640 0.741 0.7400 0.5830 0.399 0.6454

CBOW 6B 0.6560 0.6820 0.5720 0.5700 0.3250 0.5610

CBOW 100B 0.7960 0.7540 0.6840 0.5940 0.4550 0.6566

GloVe 6B 0.7270 0.7780 0.6580 0.5390 0.3810 0.6166

GloVe 42B 0.8360 0.8290 0.7590 0.5960 0.4780 0.6996

D 0.72 0.79 0.62 0.70 0.59 0.72

na na na

0.69 0.68

H 0.64 0.69 0.49 0.60 0.36 0.58 0.56 0.54

Hp 0.86 0.82 0.58 0.67 0.49 0.63 0.68 0.64

H̃ 0.71 0.71 0.55 0.69 0.42 0.54 0.60 0.58

H̃p 0.86 0.85 0.58 0.68 0.46 0.55 0.66 0.62

H∗ 0.79 0.81 0.67 0.76 0.57 0.72 0.72 0.71

H∗p 0.80 0.86 0.52 0.62 0.41 0.56 0.63 0.59

count.each

na

0.74 0.62 0.70 0.59 0.72

na na na na

0.67

predict.each 0.84 0.75 0.80 0.70 0.80 0.78

count.all 0.70 0.62 0.70 0.57 0.72 0.66

predict.all 0.83 0.73 0.78 0.68 0.80 0.76

the results of Pennington et al. are not comparable with those of Aletras and
Stevenson, and Baroni et al., but the results presented in the following subsec-
tion are comparable with all of them.

Note that there is signi�cant di�erence between the result obtained by classic
WordNet based measures (Table 5.4) and other methods (Table 5.6), especially
for WS353, WSR, MEN, and RW datasets. The WordNet based measures ob-
tained competitive results only for the three smallest datasets (MC, RG, and
WSS), which contains very common word pairs linked by similarity rather than
relatedness.

5.3.6 Results of our proposed method

We present results obtained from the proposed method as presented in section
5.2, using either classic or soft cardinality (Table 5.7 and 5.8, respectively).
Rows labeled �cosine� shows the results obtained by another baseline that uses
the cardinalities |Ra|, |Rb|, and |Ra ∩ Rb| and combines them with the cosine
coe�cient,

cosine(Ra,Rb) =
|Ra ∩ Rb|√
|Ra| · |Rb|

.

Although this is a set based formulation, it is equivalent to the well-known
geometrical formulation of the cosine similarity, where Ra and Rb are repre-
sented as binary vectors in a vector space model indexed by vocabulary. This
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baseline allows us to quantify the bene�t of using the proposed supervised regres-
sion function rather than a plausible o� the shelf cardinality based resemblance
coe�cient.

Each row shows the Spearman's coe�cients obtained by our regression func-
tion trained with a particular dataset. The best results for each dataset and
measure (ρ̄) are shown in bold face. Since all possible con�gurations of training
and test data are reported, the diagonal in the results tables shows the training
error measured by the mean correlations obtained using 30 rounds of 10 fold
cross validation (underlined values). The diagonal data are copied in the row
labeled �svrself �, along with their corresponding standard deviations, σ, and ρ̄.

5.3.6.1 Cosine baseline

Regarding the cosine baseline, there are signi�cant di�erences in performance
from our proposed method combining the set based word representation with
a supervised function versus a simple resemblance coe�cient. Even our worst
performing models doubled the performance baseline. Thus, the complexity
of our proposed approach resides in the regression function rather than in the
word representation. In contrast, word embedding vectors are usually combined
with cosine similarity, which is a conceptually simple function, implying that
the complexity of these models lies in the word representation.

5.3.6.2 Classic vs. soft cardinality

Comparing cosine baselines from Tables 5.7 and 5.8, classic cardinality outper-
forms soft cardinality. In contrast, the proposed regression function suggests
soft cardinality to be the better choice. Almost 84% of the entries in Table 5.8
are superior to their counterparts in Table 5.7. Combining this outcome with
the convenience of using soft rather than classic cardinality in feature selection
(Section 5.2.4) suggests soft cardinality is more appropriate for the task.

5.3.6.3 ρ̄∗ measures

Our proposed approach (Tables 5.7 and 5.8) is comparable with word embed-
ding systems (Table 5.6). The best result, ρ̄Penn = 0.6996, obtained by GloVe
42B is very close to ρ̄Penn = 0.6814 obtained by our model svrSCWS using soft
cardinality. However, the SCWS dataset was used as training data for svrSCWS ,
thus including the training data in part for results measured by ρ̄Penn. A bet-
ter comparison is ρ̄Penn = 0.6672 obtained by svrW1500 using soft cardinality,
which used training data not involved in the comparison measures ρ̄∗. Although
we do not provide a measure of the signi�cance of the di�erences in ρ̄Penn, the
results obtained by svrW1500 can be considered competitive given the a�ordabil-
ity of the training data (Section 5.2.6) and simplicity of the word representation
(Section 5.2.1). Comparing across the datasets of ρ̄Penn, any of our svr∗ models
are comparable aside from WS353, which shows signi�cant di�erences (0.7590
by GloVe 42B, 0.6102 by our best model).
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We can compare our WordNet based model with hybrid WordNet word em-
bedding approaches using ρ̄Ale. The baseline of this group is the D model (word
embedding only), with ρ̄Ale = 0.69, which is equaled by our models svrSCWS

and svrW1500, ρ̄Ale = 0.70 and 0.69, respectively, using soft cardinality. The
best hybrid model, H∗, produces ρ̄Ale = 0.72, and this di�erence can be at-
tributed to the contribution of WordNet to that model. Across datasets, our
soft cardinality models have superior performance for MC; comparable for RG,
WS353, and WSS; and inferior for WSR and MEN. Given that WSS (similarity)
and WSR (relatedness) are partitions of WS356, this suggests that the proposed
method is more suitable for modeling similarity than relatedness, in comparison
with word embedding methods that appear to address both facets of lexical
analysis properly.

Comparing with Baroni et al., measured by ρ̄Bar, shows that word embed-
ding can be re�ned to �t the lexical similarity relatedness task. Compared
with their results, our model is equivalent for `count' models, but signi�cantly
superior for `predict' (word embedding) models (ρ̄Bar = 0.78) obtained by `pre-
dict.each' against 0.66 and 0.65 by our best models.

5.3.6.4 Training performance

The training performance of each model (row svrself in Tables 5.7 and 5.8)
appears a good predictor of the performance of other svr∗ models trained with
di�erent data and tested with the same dataset (values in the same column).
As expected, this value is the best performance achieved for large datasets,
such as MEN, SCWS, RW, and W1500. The di�erences between these training
performances and models trained with another data are not signi�cant. In
particular, using the W1500 dataset for training produced very competitive
results in comparison with the training performance (compare svrW1500 and
svrself rows in tables 5.7 and 5.8). Standard deviations in training may be
considered small for all datasets (σ < 0.002 for large and σ < 0.03 for small
datasets). This shows the stability of the regression model across folds and
training test splits and the ability of the proposed method to predict unseen
data.

5.3.6.5 Additional test data

Tables 5.9 and 5.10 shows the 9 trained models from svrMC to svrW1500 tested in
YP-130, MTurk287, MtTurk771, Rel-122, Verb-143, and SimLex-999 datasets.
Tables 5.9 and 5.10 show the features extracted using classic and soft cardinality,
respectively.

Contrary to the results obtained using training and development data, here
classic cardinality consistently outperforms soft cardinality. Classic cardinality
yields state of the art results for YP-130 and SimLex-999 datasets (Table 5.11).
In contrast, results obtained using Mturk287, Mturk711, and Rel-122, which
are datasets containing mainly relatedness pairs, were low. This con�rms our
previous observation that the proposed method is more suitable for modeling
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Table 5.7: Spearman's correlation of the proposed similarity measure for dif-
ferent training/test con�gurations using classic cardinality. When training and
test datasets are the same (underlined diagonal), 10 fold cross validation was
used and the result is the average of 30 × 10 fold cross validation rounds.
method MC RG WS353 WSS WSR MEN SCWS RW W1500 ρ̄Penn ρ̄Ale ρ̄Bar

cosine 0.4205 0.4116 0.2379 0.3880 0.0983 0.2444 0.2330 0.0534 0.3522 0.2713 0.30 0.28

svrMC 0.8148 0.7856 0.5634 0.7489 0.3558 0.6005 0.5950 0.4477 0.8035 0.6413 0.64 0.61

svrRG 0.8744 0.7592 0.5223 0.7344 0.3123 0.6082 0.5533 0.3611 0.7988 0.6141 0.64 0.59

svrWS353 0.7568 0.6878 0.5483 0.7214 0.3735 0.5487 0.5724 0.2793 0.7555 0.5689 0.61 0.58

svrWSS 0.8970 0.7983 0.5441 0.7436 0.3313 0.6227 0.5648 0.4117 0.8020 0.6432 0.66 0.61

svrWSR 0.6026 0.6369 0.5161 0.6945 0.3123 0.6174 0.2723 0.2108 0.6989 0.4477 0.56 0.56

svrMEN 0.8244 0.7632 0.5746 0.7271 0.3775 0.6369 0.5609 0.2641 0.7754 0.5974 0.65 0.62

svrSCWS 0.8371 0.7725 0.5948 0.7419 0.3822 0.6008 0.6082 0.4353 0.7984 0.6496 0.65 0.62

svrRW 0.7374 0.6811 0.5243 0.6817 0.2840 0.4901 0.5714 0.4476 0.7525 0.5924 0.57 0.53

svrW1500 0.8507 0.7273 0.5688 0.7233 0.3647 0.6140 0.5703 0.4175 0.8058 0.6269 0.64 0.60

svrself 0.8148 0.7592 0.5483 0.7436 0.3123 0.6369 0.6082 0.4476 0.8058 0.6356 0.64 0.60

σ 0.0276 0.0142 0.0064 0.0036 0.0108 0.0014 0.0017 0.0014 0.0010 - - -

Table 5.8: Spearman's correlation of the proposed similarity measure for dif-
ferent training/test con�gurations using SOFT cardinality. When training and
test datasets are the same, 10 fold cross validation was used and the result is
the average of 30 × 10 fold cross validation rounds.
method MC RG WS353 WSS WSR MEN SCWS RW W1500 ρ̄Penn ρ̄Ale ρ̄Bar

cosine 0.4044 0.4373 0.0996 0.2114 0.0093 0.1957 0.2386 -0.0032 0.2944 0.2354 0.23 0.19

svrMC 0.8479 0.8358 0.5482 0.7551 0.3315 0.5974 0.5912 0.4431 0.7978 0.6532 0.65 0.61

svrRG 0.8952 0.8170 0.5333 0.7447 0.3213 0.5979 0.5739 0.4299 0.7961 0.6499 0.65 0.60

svrWS353 0.8769 0.8364 0.5650 0.7744 0.4396 0.6362 0.6130 0.4239 0.8030 0.6630 0.69 0.65

svrWSS 0.9068 0.8156 0.5961 0.7494 0.4035 0.6086 0.6064 0.4151 0.7956 0.6680 0.68 0.63

svrWSR 0.8133 0.7683 0.5285 0.7313 0.2967 0.6032 0.3534 0.3298 0.7600 0.5587 0.62 0.59

svrMEN 0.8756 0.8275 0.5994 0.7561 0.4206 0.6435 0.5929 0.3715 0.7932 0.6534 0.69 0.65

svrSCWS 0.8992 0.8417 0.6102 0.7721 0.4240 0.6300 0.6184 0.4376 0.8036 0.6814 0.70 0.66

svrRW 0.8823 0.8424 0.5858 0.7667 0.3934 0.6402 0.6121 0.4453 0.8055 0.6736 0.69 0.65

svrW1500 0.8856 0.8203 0.6015 0.7586 0.4178 0.6411 0.5934 0.4352 0.8145 0.6672 0.69 0.65

svrself 0.8479 0.8170 0.5650 0.7494 0.2967 0.6435 0.6184 0.4453 0.8145 0.6587 0.65 0.61

σ 0.0276 0.0120 0.0100 0.0064 0.0100 0.0012 0.0010 0.0010 0.0006 - - -
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Table 5.9: Spearman's correlation coe�cients for trained models with classic
cardinality features for additional test datasets

model YP-130 MTurk287 MTurk771 Rel-122 SimLex-999 Verb-143

svrMC 0.7546 0.4223 0.5498 0.4820 0.5047 0.3633�

svrRG 0.7439 0.5005 0.5178 0.4789 0.5008 0.3503

svrWS353 0.6843 0.3869 0.5214 0.2439 0.4994 0.2396

svrWSS 0.7557 0.5099 0.5437 0.4897 0.5108 0.3577

svrWSR 0.7185 0.5004 0.4612 0.4819 0.4456 0.2521

svrMEN 0.7492 0.4991 0.5307 0.4586 0.5149 0.3292

svrSCWS 0.7574� 0.4816 0.5416 0.3275 0.5215 0.3174

svrRW 0.7121 0.3354 0.5389 0.0940 0.4794 0.3212

svrW1500 0.7385 0.4524 0.5447 0.4711 0.5327 0.3280

�Pearson's correlation r = 0.7970
�Pearson's correlation r = 0.6134

Table 5.10: Spearman's correlation coe�cients for trained models with soft
cardinality features for additional test datasets

model YP-130 MTurk287 MTurk771 Rel-122 SimLex-999 Verb-143

svrMC 0.6604 0.3978 0.4862 0.4046 0.3532 0.2724

svrRG 0.7058 0.4465 0.4713 0.4071 0.3522 0.2598

svrWS353 0.6088 0.4382 0.4532 0.4020 0.3930 -0.0125

svrWSS 0.5880 0.4048 0.4593 0.4132 0.3782 0.0466

svrWSR 0.6817 0.4669 0.5074 0.4117 0.3640 0.2785

svrMEN 0.5691 0.4632 0.4359 0.4533 0.3815 -0.0827

svrSCWS 0.5743 0.4224 0.4291 0.3670 0.3875 -0.028

svrRW 0.6558 0.4942 0.4725 0.4258 0.3957 -0.0258

svrW1500 0.5595 0.4350 0.4508 0.3629 0.4034 -0.0149

lexical similarity than relatedness. It is also important to highlight that the
two best models, svrWSS and svrW1500, were trained with a set of only 203
similar word pairs (WSS) and a simple set of common synonyms and antonyms
(W1500), respectively.

5.3.7 Updated state of the art on lexical similarity

Baroni et al. [? ] compiled state of the art results for several benchmarks and
tasks including lexical similarity. We extend this by including datasets MC,
SCWS, and RW, and update it with the results of Pennington et al. [? ], this
work, and others.

In the last two columns of Table 5.11, we show a comparison of our method
against the state of the art results for each benchmark regardless of the meth-
ods and resources used. Column `best' shows the best results obtained for each
dataset using any of the proposed models trained with any data, and column
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`di�.' shows the relative di�erence between this and the best result published
to date. The larger di�erences are those of the benchmarks that include, par-
tially or totally, word pairs associated by relatedness, i.e., WS353, WSR, MEN,
MTurk287, MTurk711, and Rel-122. These di�erences range from 37.2% (WSR)
to 8.3% (Rel-122), which are signi�cant. In the other benchmarks, characterized
by similarity relationships in their word pairs, our proposed method obtained
either state of the art results or di�erences less than 6.4%.

5.4 Discussion

There is a signi�cant gap between the performance of classic WordNet measures
and distributional methods, and the gap is larger for neural embedding. The
main weaknesses of these measures are their inability to model relatedness and
address rare words. This is clearly revealed by the WSR (relatedness part of
WS353) and RW (rare words) datasets, where the best scores are extremely low
(ρ = 0.0587 and ρ = 0.0582, respectively). The former is possibly due to the
dominant structure in WordNet being the is a hierarchy, while the latter could
be caused by the few relationships modeled for infrequent words in WordNet.
Although our proposed measure does not stand out in these and other similar
datasets (Rel-122, MTurk287, and MTurk771), we believe that our approach
remedies these drawbacks. A possible explanation is that the proposed measure
exploits all types of relationships in WordNet and keywords extracted from
synset de�nitions.

Supervised learning is generally criticized for its dependency on costly la-
beled data, which also needs to be a representative sample of the target data.
However, the proposed approach was e�ective with a diversity of training data.
For example, in Table 5.7, svr∗ models trained with any dataset (except WSR)
obtained ρ̄Penn > 0.6499, comparable to the best result obtained by Penning-
ton et al. (ρ̄Penn = 0.6996). In the same table, robustness regarding training
data is also evident for models trained using WS353 and its partitions WSS and
WSR. While the di�erence in ρ̄Penn between WSS and WSR is considerable
(0.6680 vs. 0.5587), the di�erence between WS353 (0.6630) and WSS is small
despite WS353 containing all WSR data. Similarly, svrMC , which has only 30
word pairs for training, achieved ρ = 0.5912 predicting similarities in the SCWS
dataset with 1,997 word pairs. This is comparable to the state of the art result
for this dataset, ρ = 0.6184 (comparing words out of context).

Our proposed model achieves almost the same results when trained with
W1500 or SCWS, which was the best training dataset. Thus, the similarity
function learned by support vector regression can also be obtained by constraints
imposed by synonyms, antonyms, and random pairs of unrelated words. This
approach is comparable to that of Halawi et al. [? ], who used similar constraints
to improve a distributional word representation.

Unfortunately our results do not provide a clear conclusion to the use of
classic or soft cardinality for computing counts in word representation. On the
one hand, soft cardinality seems a clear choice for the 9 datasets used for train-
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ing and testing (MC, RG, etc.). For those datasets, soft cardinality performed
consistently better than classic, produced less variance in performance across
di�erent training data, and the optimal number of selected features in training
data was a good prediction for test data. On the other hand, in the experiments
on test datasets (YP-130, MTurk*, etc.), classic cardinality consistently outper-
formed soft cardinality. This behavior could be due to the sensitivity of soft
cardinality to its parameters, i.e., the softness control (p) and the auxiliary sim-
ilarity function (sim) of Eq.5.2. The selection of p = 5 and sim = res.semcor
was based on results from previous work and a small exploration using RG and
WS353 as development datasets. Further exploration of these parameters using
more data and cross validation could provide better insight to their e�ects on
performance.

5.5 Conclusion

We presented a supervised learning approach to build a lexical similarity func-
tion based on WordNet. This approach was tested in all lexical similarity relat-
edness benchmarks proposed to date, obtaining state of the art or comparable
results when used to predict human judgments of similarity. The proposed
method showed to be less e�ective regarding relatedness, but still superior to
other classic measures based on WordNet. Similarly, our method produced com-
parable results to word embedding approaches for the lexical similarity task, but
signi�cant di�erences were evident when modeling lexical relatedness.
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Conclusion

6.1 Conclusions

The main observation made in this dissertation is that set-based methods have
been underestimated in automatic text analysis and processing applications.
We have shown that set-based approaches can compete and collaborate with
vector, probability, and stringology -based approaches. This is possible in part
because of the two main contributions of this work, namely soft cardinality
and cardinality-based representations. On the one hand, soft cardinality is a
new artifact that was thoroughly studied and developed in this dissertation,
making it a useful tool with the potential to be applied in many domains.
Our theoretical presentation of the soft cardinality and its connection with the
Leinster and Cobbold's zero-order diversity theory provides a solid framework
for investigation of new theories and applications. It is now clear that soft
cardinality is not only a method for making �soft� counts of the number of
elements in collections, but also a measure of the amount of information (in
the context of information theory) and diversity (in the context of individuals,
species, and communities.)

On the other hand, Cardinality-based representations showed its potential
for addressing various practical problems in text applications. From now on,
there is a new alternative aside from the resemblance coe�cients for using clas-
sic and soft cardinality to build similarity functions, classi�ers and others. Re-
semblance coe�cients are the fundamental components of the representations
based on cardinality. However, the combination of these representations with
machine learning techniques provides a powerful tool for modeling the complex
interactions between objects. In this dissertation, only some sets of feature were
explored, opening the way for new questions to be formulated and investigated.

97
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6.2 The takeaways

We are excited about the possible applications of soft cardinality in the near
future. Besides suggested NLP and computer science applications, we expect
to witness applications such as measuring the diversity of students in a uni-
versity or comparing political regions for social or economic studies. Consider
measuring the demographic diversity of your department at your university by
representing it as the set of its students. Simply provide a pairwise similarity
measure between students, which can be obtained by representing each student
as a set of demographic features and compare pairs using Jaccard's index. Let
D be a department and s a student:

div(D) =
∑
sa∈D

1∑
sb∈D sim(sa, sb)

Now, let's �nd out if academic performance is correlated with diversity in
all departments. Or �nd the nearby departments by this department-similarity
function:

SIMdept(D1, D2) =
div(D1) + div(D2)− div(D1 ∪D2)

div(D1 ∪D2)
.

Now you can compare pairs of departments, why not measure the demo-
graphic diversity of the entire university by using soft cardinality again? Now,
you can obtain a university-similarity function too. Just keep going!

Consider the hypothesis that the demographic diversity of two a�ne collab-
orating departments in di�erent institutions could lead to a Nobel Prize. Let's
gather some pairs of collaboration departments that were and weren't awarded
with the Nobel Prize. Now, it's possible to extract some cardinality-based fea-

tures from each pair like div(D1)
div(D1∪D2) and some others among the 272 features

proposed in Section 5.2.2. Just identify some useful features and give that data
to a SVM and check if the features can predict some Nobel laureates accurately.
If so, you can suggest some promising collaborations.

6.3 Summary of Contributions

In this last section, we present all contributions and products related directly
or indirectly to the development of this dissertation.

6.3.1 Articles in international conferences

� Our �rst conference article proposing the measure presented in equation
2.5 in CICLING'09, Mexico D.F., Mexico [? ].

� The �rst publication about soft cardinality presented in SPIRE'10, Los
Cabos, Mexico [? ].
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� Soft cardinality applied to name matching and information retrieval tasks
presented in MICAI'11 [? ] obtaining the best paper award.

� Contribution (co-author) to the article titled �Towards User Pro�le-based
Interfaces for Exploration of Large Collections of Items� presented in the
workshop Decisions@Recsys'13 in The ACM Conference on Recommender
Systems 2013, Hong Kong.

6.3.2 Articles in Journals

� An article in Applied and Computational Mathematics Journal (A2 Col-
ciencias ranking, IF=0.697, 2013) applying soft cardinality to name match-
ing, information retrieval, textual entailment and paraphrase detection [?
].

� Article based on the Chapter 4 of this was accepter for pubblication at
Polibits journal (A1 Colciencias ranking).

� Article based on the Chapter 3 of this dissertation submitted to Informa-
tion Sciences (A1 Colciencias ranking, IF=3.893, 2014).

� Article based on the Chapter 5 of this dissertation submitted to Informa-
tion Sciences.

� Article based on the Chapter 2 of this dissertation submitted to Com-
putación y Sistemas journal (A1 Colciencias ranking).

� The article titled �BM25-CTF: Improving TF and IDF factors in BM25 by
using collection term frequencies� co-authored with Silviu Cucerzan from
Microsoft Research, Redmond, WA, submitted to Information Sciences.

6.3.3 Participations in international competitions

� Semantic text similarity task at SemEval 2012, Montreal, CA [? ].

� Cross-lingual textual entailment for content synchronization task at Se-
mEval 2012, Montreal, CA [? ].

� Shared task, semantic textual similarity at SemEval 2013, Atlanta, Geor-
gia, USA [? ].

� Cross-lingual textual entailment for content synchronization task at Se-
mEval 2013, Atlanta, Georgia, USA [? ].

� The Joint Student Response Analysis and 8th Recognizing Textual Entail-
ment Challenge at SemEval 2013, Atlanta, Georgia, USA [? ].

� Evaluating Phrasal Semantics task at SemEval 2013, Atlanta, Georgia,
USA [? ].
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� Author Pro�ling task at CLEF 2013, Valencia, Spain [? ].

� Evaluation of Compositional Distributional Semantic Models on Full Sen-
tences through Semantic Relatedness and Entailment at SemEval 2014,
Dublin, Ireland [? ].

� Cross-Level Semantic Similarity tasks at SemEval 2014, Dublin, Ireland
[? ].

� Multilingual Semantic Textual Similarity at SemEval 2014, Dublin, Ire-
land [? ? ].

� L2 (second language) Writing Assistant task at SemEval 2014, Dublin,
Ireland [? ]

� Analysis of Clinical Text task at SemEval 2014, Dublin, Ireland [? ].

6.3.4 Contributions to NLP for education

Given the success of our participation in The Joint Student Response Analysis
task at SemEval 2013 we were motivated to collaborate in the following works:

� Conference article titled �Automatically Assessing Children's Writing Skills
Based on Age-Supervised Datasets�, presented at CICLING 2014, Kat-
mandu, Nepal [? ].

� Conference article titled �Automatic prediction of item di�culty for short-
answer questions� submitted to 10CCC'15 (The Tenth Colombian Congress
of Computation), Bogotá, Colombia.

� Conference poster article titled �ZETEMA: A Web Service for Automatic
Short-Answer Questions Grading� submitted to 10CCC'15 (The Tenth
Colombian Congress of Computation), Bogotá, Colombia.

6.3.5 Statistics of citations to our work

Until June 19th, 2015.

� H-index in Google Scholar: 5

� Total number of articles: 20

� Total number of citations in Google Scholar: 101

� Citations to our work: 47

� Citations using or extending our work: 8

� Missing: 3

� Erroneous: 14
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� Self-citations: 31

� Real H-index: 4 (removing 'self' and 'erroneous')

� Total number of citations: 90 (adding 'missing' and removing 'erroneous')

� Real number of citations: 59 ('total' removing 'self')
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